1
|
Guo Y, Wei Z, Zhang Y, Cao J. Research Progress on the Mechanism of Milk Fat Synthesis in Cows and the Effect of Conjugated Linoleic Acid on Milk Fat Metabolism and Its Underlying Mechanism: A Review. Animals (Basel) 2024; 14:204. [PMID: 38254373 PMCID: PMC10812695 DOI: 10.3390/ani14020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Milk fat synthesis in cows mainly includes the synthesis of short- and medium-chain fatty acids, the uptake, transport, and activation of long-chain fatty acids (LCFAs), the synthesis of triglycerides, and the synthesis of the genes, transcription factors, and signaling pathways involved. Although the various stages of milk fat synthesis have been outlined in previous research, only partial processes have been revealed. CLA consists of an aggregation of positional and geometric isomers of linoleic fatty acid, and the accumulated evidence suggests that the two isomers of the active forms of CLA (cis-9, trans-11 conjugated linoleic acid and trans-10, cis-12 conjugated linoleic acid, abbreviated as c9, t11-CLA and t10, c12-CLA) can reduce the fat content in milk by regulating lipogenesis, fatty acid (FA) uptake, oxidation, and fat synthesis. However, the mechanism through which CLA inhibits milk fat synthesis is unique, with most studies focusing only on the effects of CLA on one of the genes, transcription factors, or signaling pathways involved. In this study, we summarized the structure and function of classic genes and pathways (mTOR, SREBP, AMPK, and PPARG) and new genes or pathways (THRSP, METTL3, ELOVL, and LPIN1) involved in each stage of milk fat synthesis and demonstrated the interactions between genes and pathways. We also examined the effects of other substances (melanin, nicotinic acid, SA, etc.). Furthermore, we evaluated the influence of β-sitosterol, sodium butyrate, Met arginine, and Camellia oleifera Abel on milk fat synthesis to improve the mechanism of milk fat synthesis in cows and provide a mechanistic reference for the use of CLA in inhibiting milk fat biosynthesis.
Collapse
Affiliation(s)
- Yuanyin Guo
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.G.); (Z.W.)
| | - Ziang Wei
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.G.); (Z.W.)
| | - Yi Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jie Cao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.G.); (Z.W.)
| |
Collapse
|
2
|
Rico DE, Razzaghi A. Animal board invited review: The contribution of adipose stores to milk fat: implications on optimal nutritional strategies to increase milk fat synthesis in dairy cows. Animal 2023; 17:100735. [PMID: 36889250 DOI: 10.1016/j.animal.2023.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
A wide range of nutritional and non-nutritional factors influence milk fat synthesis and explain the large variation observed in dairy herds. The capacity of the animal to synthesize milk fat will largely depend on the availability of substrates for lipid synthesis, some of which originate directly from the diet, ruminal fermentation or from adipose tissue stores. The mobilization of non-esterified fatty acids from adipose tissues is important to support the energy demands of milk synthesis and will therefore have an impact on the composition of milk lipids, especially during the early lactation period. Such mobilization is tightly controlled by insulin and catecholamines, and in turn, can be affected indirectly by factors that influence these signals, namely diet composition, lactation stage, genetics, endotoxemia, and inflammation. Environmental factors, such as heat stress, also impact adipose tissue mobilization and milk fat synthesis, mainly through endotoxemia and an immune response-related increase in concentrations of plasma insulin. Indeed, as proposed in the present review, the central role of insulin in the control of lipolysis is key to improving our understanding of how nutritional and non-nutritional factors impact milk fat synthesis. This is particularly the case during early lactation, as well as in situations where mammary lipid synthesis is more dependent on adipose-derived fatty acids.
Collapse
Affiliation(s)
| | - Ali Razzaghi
- Innovation Center, Ferdowsi University of Mashhad, PO Box 9177948974, Mashhad, Iran
| |
Collapse
|
3
|
The Processes of Nutrition and Metabolism Affecting the Biosynthesis of Milk Components and Vitality of Cows with High- and Low-Fat Milk. Animals (Basel) 2022; 12:ani12050604. [PMID: 35268175 PMCID: PMC8909040 DOI: 10.3390/ani12050604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
In order to clarify the mechanism of the depression of milk fat formation and preserve the health of animals, the aim of the research was to study the characteristics of rumen digestion, energy metabolism, and milk composition in high-producing dairy cows with high and low levels of milk fat that are fed the same diet. Two groups of cows with normal milk fat content (3.94 ± 0.12; n = 10) and low milk fat content (2.95 ± 0.14, n = 10) contained in the same diet were identified. Gas exchange (O2 uptake and CO2 output) was studied in cows and blood samples, rumen contents (pH, NH3-N), and VFA and milk (fat, protein, and fatty acid composition) were collected and analyzed. It was determined that cows with low fat milk are more efficient at using the metabolized energy of their diets due to the tendency to have a decrease in the proportion of heat production (by 6.2 MJ; p = 0.055) and an earlier start of a positive energy balance. At the same time, the fat content in milk did not depend on the level of hormones in the blood or on the formation of acetate in the rumen. An analysis of the duration of the productive use of cows on this farm (n = 650) showed that the number of lactations was inversely correlated with the level of fat in milk (r = −0.68; p < 0.05, n = 1300). These results indicate the advantages of cows that can reduce the fat content of their milk in the first months of lactation.
Collapse
|
4
|
Wen G, Fischer J, Most E, Eder K, Ringseis R. Decreased All- trans Retinoic Acid-Induced Expression of Sodium-Iodide Transporter in Mammary Epithelial Cells Caused by Conjugated Linoleic Acid Isomers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4493-4504. [PMID: 30938528 DOI: 10.1021/acs.jafc.9b00673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Expression of sodium-iodide symporter (NIS) is stimulated by sterol-regulatory-element-binding transcription factors (SREBFs) in mammary epithelial MCF-7 cells. Because conjugated linoleic acid (CLA) isomers have been shown to inhibit transcriptional activity of SREBFs in the mammary gland, the hypothesis was tested that CLA isomers inhibit NIS expression induced by all- trans retinoic acid (ATRA) in MCF-7 cells through inhibiting SREBF activity. c9t11-CLA and t10c12-CLA decreased ATRA-induced NIS-mRNA expression from 1.00 (ATRA alone) to 0.80 ± 0.12 (200 μM c9t11-CLA, P < 0.05) and 0.62 ± 0.10 (200 μM t10c12-CLA, P < 0.05), NIS-protein expression from 1.00 (ATRA alone) to 0.77 ± 0.08 (200 μM c9t11-CLA, P < 0.05) and 0.63 ± 0.05 (200 μM t10c12-CLA, P < 0.05), and NIS-promoter activity from 1.00 (ATRA alone) to 0.74 ± 0.13 (200 μM c9t11-CLA, P < 0.05) and 0.76 ± 0.13 (200 μM t10c12-CLA, P < 0.05); however, c9t11-CLA and t10c12-CLA increased the mRNA levels of SREBF isoforms and their target genes. In contrast, the mRNA expression of peroxisome-proliferator-activated receptor γ (PPARG) was strongly induced by ATRA alone but decreased by CLA isomers from 1.00 (ATRA alone) to 0.80 ± 0.06 (200 μM c9t11-CLA, P < 0.05) and 0.86 ± 0.06 (200 μM t10c12-CLA, P < 0.05). Overexpression of PPARγ in MCF-7 cells increased basal NIS-promoter activity, and treatment with the PPARγ ligand troglitazone stimulated ATRA-induced NIS-promoter activity. In conclusion, the results suggest that CLA isomers exert their effect on the expression of NIS by decreasing PPARG expression in MCF-7 cells.
Collapse
Affiliation(s)
- Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology , Justus-Liebig-University Giessen , Heinrich-Buff-Ring 26-32 , 35392 Giessen , Germany
| | - Julia Fischer
- Institute of Animal Nutrition and Nutrition Physiology , Justus-Liebig-University Giessen , Heinrich-Buff-Ring 26-32 , 35392 Giessen , Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology , Justus-Liebig-University Giessen , Heinrich-Buff-Ring 26-32 , 35392 Giessen , Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology , Justus-Liebig-University Giessen , Heinrich-Buff-Ring 26-32 , 35392 Giessen , Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology , Justus-Liebig-University Giessen , Heinrich-Buff-Ring 26-32 , 35392 Giessen , Germany
| |
Collapse
|
5
|
Abstract
During recent decades, the UK dairy industry has had to adjust to the introduction of milk quotas in 1984, the deregulation of milk markets in 1994, and accommodate changes in the demand for dairy products. The combination of these factors, in addition to Bovine Spongiform Encephalopathy and Foot and Mouth disease, and a fall in milk price has inevitably resulted in a restructuring of the industry, but also reinforced the need for all sectors of the industry to respond to the prevailing economic climate and changes in consumer preferences.
Collapse
|
6
|
Duodenal infusion of conjugated linoleic acid mixture influences milk fat synthesis and milk CLA content in dairy cows. ACTA ACUST UNITED AC 2018. [DOI: 10.1017/s1463981500040747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Conjugated linoleic acids (CLA) are potent anticarcinogens secreted into the milk of ruminants. The present study was carried out to detect the post–ruminal effects of a duodenally infused commercial CLA product on milk–fat synthesis and fatty acid pattern in lactating cows. Four Holstein cows, fistulated with duodenal cannulae, were infused with 200 g of a CLA mixture daily into the duodenum over a period of 5 days (period II), while no application of CLA acted as controls in period I and III. In contrast to the marginal effect of the CLA application on milk yield, an obvious decrease of milk fat content of 40% was measured. The fat yield decreased during the infusion period to about half of the control period, whereas protein and lactose content in milk was not significantly influenced. The CLA percentage of milk fat increased sevenfold during infusion of the CLA supplement. The data demonstrate that duodenal infusion of CLA inhibits the milk fat synthesis, resulting in the decrease of milk fat content and fat yield. It can be concluded, that CLA supplements increase the CLA concentration in milk fat, which probably has to be rumen protected for oral administration.
Collapse
|
7
|
Schäfers S, Meyer U, von Soosten D, Hüther L, Drong C, Eder K, Most E, Tröscher A, Pelletier W, Zeyner A, Dänicke S. Influence of conjugated linoleic acids and vitamin E on milk fatty acid composition and concentrations of vitamin A and α-tocopherol in blood and milk of dairy cows. J Anim Physiol Anim Nutr (Berl) 2017; 102:e431-e441. [PMID: 28815782 DOI: 10.1111/jpn.12762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/14/2017] [Indexed: 11/28/2022]
Abstract
The objective of this trial was to investigate the influences of conjugated linoleic acid (CLA) and vitamin E (Vit. E) and their interactions on fatty acid composition and vitamins in milk (α-tocopherol, retinol and β-carotene) as well as on α-tocopherol in blood of pluriparous cows from week 6 ante partum until week 10 post-partum (p.p.). We assigned 59 pluriparous German Holstein cows to four treatment groups with the treatment factors CLA and Vit. E at two levels in a 2 × 2 factorial design. Milk fatty acid composition and milk vitamins were analysed on lactation days 7 and 28. α-tocopherol in blood serum was analysed on days -42, -7, 1, 7, 14, 28 and 70 relative to parturition. Milk concentration of α-tocopherol was influenced by Vit. E (p < .001) and CLA (p = .034). Percentage of cis-9, trans-11 CLA in total milk fat was influenced by treatment with CLA (p < .001), while for percentage of trans-10, cis-12 CLA an interaction between treatment and day (p = .019), driven by an increase in both CLA groups from day 7 to day 28, was found. Serum ratios of α-tocopherol to cholesterol were influenced by Vit. E (p < .001). Results suggest that treatment with CLA during late pregnancy and early lactation is suitable to enhance the proportion of trans-10, cis-12 CLA in milk and thereby influencing nutritional properties. As treatment with Vit. E did not have an impact on milk fatty acid composition, it might be possible to increase the antioxidative capacity of the dairy cow without affecting milk properties. Consequently, combined treatment with CLA and Vit. E might elicit synergistic effects on the cow and milk quality by increasing the proportion of CLA in milk fat as well as the excretion of Vit. E and the Vit. E levels in serum.
Collapse
Affiliation(s)
- S Schäfers
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - U Meyer
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - D von Soosten
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - L Hüther
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - C Drong
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - K Eder
- Department of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Gießen, Germany
| | - E Most
- Department of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Gießen, Germany
| | | | | | - A Zeyner
- Institute of Agricultural and Nutritional Sciences, Group Animal Nutrition, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - S Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| |
Collapse
|
8
|
Bajramaj DL, Curtis RV, Kim JJM, Corredig M, Doelman J, Wright TC, Osborne VR, Cant JP. Addition of glycerol to lactating cow diets stimulates dry matter intake and milk protein yield to a greater extent than addition of corn grain. J Dairy Sci 2017; 100:6139-6150. [PMID: 28601462 DOI: 10.3168/jds.2016-12380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/22/2017] [Indexed: 12/18/2022]
Abstract
The objective of this study was to determine if the addition of glycerol to the diet of dairy cows would stimulate milk protein yield in the same manner as the addition of corn grain. Twelve multiparous lactating dairy cows at 81 ± 5 d in milk were subjected to 3 dietary treatments in a replicated 3 × 3 Latin square design for 28-d periods. The diets were a 70% forage diet considered the basal diet, the basal diet with 19% ground and high-moisture corn replacing forages, and the basal diet with 15% refined glycerol and 4% added protein supplements to be isocaloric and isonitrogenous with the corn diet. Cows were milked twice a day and samples were collected on the last 7 d of each period for compositional analysis. Within each period, blood samples were collected on d 26 and 27, and mammary tissue was collected by biopsy on d 28 for Western blot analysis. Dry matter intake increased from 23.7 kg/d on the basal diet to 25.8 kg/d on the corn diet and 27.2 kg/d on the glycerol diet. Dry matter intake tended to be higher with glycerol than corn. Milk production increased from 39.2 kg/d on the basal diet to 43.8 kg/d on the corn diet and 44.2 kg/d on the glycerol diet. However, milk yield did not differ between corn and glycerol diets. Milk lactose yields were higher on the corn and glycerol diets than the basal diet. Milk fat yield significantly decreased on the glycerol diet compared with the basal diet and tended to decrease in comparison with the corn diet. Mean milk fat globule size was reduced by glycerol feeding. Milk protein yield increased 197 g/d with addition of corn to the basal diet and 263 g/d with addition of glycerol, and the glycerol effect was larger than the corn effect. The dietary treatments had no effects on plasma glucose concentration, but plasma acetate levels decreased 27% on the glycerol diet. Amino acid concentrations were not affected by dietary treatments, except for branched-chain amino acids, which decreased 22% on the glycerol diet compared with the corn diet. The decreases in plasma acetate and branched-chain amino acid concentrations with glycerol and the larger effects of glycerol than corn on milk protein and fat yields suggest that glycerol is more glucogenic for cows than corn grain.
Collapse
Affiliation(s)
- D L Bajramaj
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1 Canada
| | - R V Curtis
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1 Canada
| | - J J M Kim
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1 Canada
| | - M Corredig
- Department of Food Science, University of Guelph, Ontario, N1G 2W1 Canada
| | - J Doelman
- Nutreco Canada Agresearch, Guelph, Ontario, N1G 4T2 Canada
| | - T C Wright
- Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario, N1G 4Y2 Canada
| | - V R Osborne
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1 Canada
| | - J P Cant
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1 Canada.
| |
Collapse
|
9
|
Yao DW, Luo J, He QY, Li J, Wang H, Shi HB, Xu HF, Wang M, Loor JJ. Characterization of the liver X receptor-dependent regulatory mechanism of goat stearoyl-coenzyme A desaturase 1 gene by linoleic acid. J Dairy Sci 2017; 99:3945-3957. [PMID: 26947306 DOI: 10.3168/jds.2015-10601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/13/2016] [Indexed: 01/05/2023]
Abstract
Stearoyl-coenzyme A desaturase 1 (SCD1) is a key enzyme in the biosynthesis of palmitoleic and oleic acid. Although the transcriptional regulatory mechanism of SCD1 via polyunsaturated fatty acids (PUFA) has been extensively explored in nonruminants, the existence of such mechanism in ruminant mammary gland remains unknown. In this study, we used goat genomic DNA to clone and sequence a 1,713-bp fragment of the SCD1 5' flanking region. Deletion assays revealed a core region of the promoter located between -415 and -109 bp upstream of the transcription start site, and contained the highly conserved PUFA response region. An intact PUFA response region was required for the basal transcriptional activity of SCD1. Linoleic acid reduced endogenous expression of SCD1 and sterol regulatory element binding factor-1 (SREBF1) in goat mammary epithelial cells. Further analysis indicated that both the sterol response element (SRE) and the nuclear factor Y (NF-Y) binding site in the SCD1 promoter were responsible for the inhibition effect by linoleic acid, whereas the effect was abrogated once NF-Y was deleted. In addition, SRE and NF-Y were partly responsible for the transcriptional activation induced via the liver X receptor agonist T 4506585 (Sigma-Aldrich, St. Louis, MO). When goat mammary epithelial cells were cultured with linoleic acid, addition of T 4506585 markedly increased SCD1 transcription in controls, but had no effect on cells with a deleted SRE promoter. These results demonstrated that linoleic acid can regulate SCD1 expression at the transcriptional level through SRE and NF-Y in a liver X receptor-dependent fashion in the goat mammary gland.
Collapse
Affiliation(s)
- D W Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - J Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100.
| | - Q Y He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - J Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, P. R. China 450046
| | - H Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - H B Shi
- College of Animal Sciences, Zhejiang Sci-Tech University, Hangzhou, P. R. China 310058
| | - H F Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - M Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
10
|
Badinga L, Greene ES. Physiological Properties of Conjugated Linoleic Acid and Implications for Human Health. Nutr Clin Pract 2017; 21:367-73. [PMID: 16870804 DOI: 10.1177/0115426506021004367] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Conjugated linoleic acid (CLA) refers to a mixture of positional and geometric dienoic isomers of linoleic acid found naturally in animal products of ruminant sources. Recent interest in CLA research stems from the well-documented anticarcinogenic, antiatherogenic, antidiabetic, and antiobesity properties of CLA in rodents. However, there has been very little published human research on CLA. This review discusses the physiologic properties of CLA and their potential implications for human health.
Collapse
Affiliation(s)
- Lokenga Badinga
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, 32910-0910, USA.
| | | |
Collapse
|
11
|
Wen G, Pachner LI, Gessner DK, Eder K, Ringseis R. Sterol regulatory element-binding proteins are regulators of the sodium/iodide symporter in mammary epithelial cells. J Dairy Sci 2016; 99:9211-9226. [PMID: 27614840 DOI: 10.3168/jds.2016-11174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/17/2016] [Indexed: 12/29/2022]
Abstract
The sodium/iodide symporter (NIS), which is essential for iodide concentration in the thyroid, is reported to be transcriptionally regulated by sterol regulatory element-binding proteins (SREBP) in rat FRTL-5 thyrocytes. The SREBP are strongly activated after parturition and throughout lactation in the mammary gland of cattle and are important for mammary epithelial cell synthesis of milk lipids. In this study, we tested the hypothesis that the NIS gene is regulated also by SREBP in mammary epithelial cells, in which NIS is functionally expressed during lactation. Regulation of NIS expression and iodide uptake was investigated by means of inhibition, silencing, and overexpression of SREBP and by reporter gene and DNA-binding assays. As a mammary epithelial cell model, the human MCF-7 cell line, a breast adenocarcinoma cell line, which shows inducible expression of NIS by all-trans retinoic acid (ATRA), and unlike bovine mammary epithelial cells, is widely used to investigate the regulation of mammary gland NIS and NIS-specific iodide uptake, was used. Inhibition of SREBP maturation by treatment with 25-hydroxycholesterol (5 µM) for 48h reduced ATRA (1 µM)-induced mRNA concentration of NIS and iodide uptake in MCF-7 cells by approximately 20%. Knockdown of SREBP-1c and SREBP-2 by RNA interference decreased the mRNA and protein concentration of NIS by 30 to 50% 48h after initiating knockdown, whereas overexpression of nuclear SREBP (nSREBP)-1c and nSREBP-2 increased the expression of NIS in MCF-7 cells by 45 to 60%, respectively, 48h after initiating overexpression. Reporter gene experiments with varying length of NIS promoter reporter constructs revealed that the NIS 5'-flanking region is activated by nSREBP-1c and nSREBP-2 approximately 1.5- and 4.5-fold, respectively, and activation involves a SREBP-binding motif (SRE) at -38 relative to the transcription start site of the NIS gene. Gel shift assays using oligonucleotides spanning either the wild-type or the mutated SRE at -38 of the NIS 5'-flanking region showed that in vitro-translated nSREBP-1c and nSREBP-2 bind only the wild-type but not the mutated SRE at -38 of NIS. Collectively, the present results from cell culture experiments with human mammary epithelial MCF-7 cells and from genetic studies show for the first time that the NIS gene and iodide uptake are regulated by SREBP in cultured human mammary epithelial cells. Future studies are necessary to clarify if the regulation of NIS expression and iodide uptake by SREBP also applies to the lactating bovine mammary epithelium.
Collapse
Affiliation(s)
- G Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - L I Pachner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - D K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - R Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany.
| |
Collapse
|
12
|
Effect of oil supplementation of a diet containing a high concentration of starch on levels of trans fatty acids and conjugated linoleic acids in bovine milk. ACTA ACUST UNITED AC 2016. [DOI: 10.1017/s1357729800058501] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractSixteen Holstein Friesian cows were offered ad libitum a forage mixture of three parts (dry-matter (DM) basis) maize silage (starch and neutral-detergent fibre (NDF) 324 and 395 g/kg DM) and one part grass silage (NDF 518 g/kg DM) in a 4 ✕ 4 Latin-square change-over design experiment using four periods each of 4 weeks. Cows were housed in a cubicle house, bedded on sand and given food through Calan gates. The four supplement treatments were control (no oil supplement, C); 1·5 kg/day processed crushed linseed (PL); 1·5 kg/day crushed linseed (L) and 0·6 kg/day marine algae (A) providing 0, 440, 423 and 109 g/day of oil respectively. Cows also received a pelleted concentrate in three equal meals (12·0, 10·5, 10·5 and 11·2 kg/day for C, PL, L and A respectively) containing (g/kg DM) 260, 203, 288 and 74 of crude protein, NDF, starch and water-soluble carbohydrate respectively. Oil supplementation depressed (P < 0·05) forage intake (11·2, 10·3, 10·1 and 10·1 kg DM per day) but milk yield was unaffected (P > 0·05) by treatment (mean 35·9 kg/day). Milk fat concentrations were low and further depressed (P < 0·05) by algal supplementation (33·5, 32·3, 32·3 and 25·6 g/kg). Algal supplementation caused a three-fold increase in the concentrations of (n-3) long chain (>C20) polyunsaturated fatty acids in milk fat (to 0·51 g/100 g fat) representing a transfer efficiency from diet to milk of ca. 5%. Oil supplementation increased levels of all trans monoenes in milk but the effect was much greater for treatment A (P < 0·05) and for trans-10 C18: 1 (1·52, 1·94, 1·72 and 6·12 g/100 g milk fat for C, PL, L and A respectively). Trans-10 C18: 1 was the predominant trans monoene in milk fat for all treatments (47·7, 45·2, 45·6 and 67·4% of total). Treatment A also caused the greatest increases (P < 0·05) in conjugated linoleic acid (CLA to 0·54, 0·69, 0·65 and 0·97 g/100 g milk fat). Although mainly cis-9, trans-11, a small proportion (4·8 to 5·5%) of the CLA was identified as the trans-10, cis-12 isomer for all treatments. This pattern of isomers of trans monoenes and CLA, which may have implications for the health properties of the milk, may be related to effects on rumen function caused by the high starch intakes (5·75, 5·09, 5·11 and 5·27 kg/day).
Collapse
|
13
|
Bionaz M, Osorio J, Loor JJ. TRIENNIAL LACTATION SYMPOSIUM: Nutrigenomics in dairy cows: Nutrients, transcription factors, and techniques1,2. J Anim Sci 2015; 93:5531-53. [DOI: 10.2527/jas.2015-9192] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- M. Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97333
| | - J. Osorio
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97333
| | - J. J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| |
Collapse
|
14
|
Reduction in cytoplasmic lipid content in bovine embryos cultured in vitro with linoleic acid in semi-defined medium is correlated with increases in cryotolerance. ZYGOTE 2015; 24:485-94. [PMID: 26350684 DOI: 10.1017/s0967199415000428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
UNLABELLED We examined whether culturing embryos with linoleic acid (LA) in semi-defined medium reduces lipid accumulation and improves cryosurvival after vitrification. Embryos were cultured with LA (100 μM) and a semi-defined medium was used during in vitro culture (IVC), in which the fetal calf serum was substituted by bovine serum albumin (BSA). There was a reduction (P < 0.05) in the embryonic development rate ( CONTROL 25.8% versus LA: 18.5%), but the proposed system was effective in promoting the decrease (P = 0.0130) in the intracellular lipid content ( CONTROL 27.3 ± 0.7 versus LA: 24.6 ± 0.7 arbitrary fluorescence units of embryos stained with the fluorescent dye Nile Red), consequently increasing (P = 0.0490) the embryo survival after 24h of culture post-warming ( CONTROL 50.0% versus LA: 71.7%). The results question the criteria used to evaluate the efficiency of an in vitro production system specifically with relation to the maximum number of blastocysts produced and suggest that might be more appropriate to improve the desired characteristics of embryos generated in accordance with the specific purpose of in vitro embryo production, commercial or scientific. In conclusion, supplying LA to serum-free culture medium was found to adversely affect the rates of embryo development to the blastocyst stage, but significantly reduced embryo lipid accumulation and improved cryopreservation survival.
Collapse
|
15
|
Ramirez Ramirez H, Castillo Lopez E, Harvatine K, Kononoff P. Fat and starch as additive risk factors for milk fat depression in dairy diets containing corn dried distillers grains with solubles. J Dairy Sci 2015; 98:1903-14. [DOI: 10.3168/jds.2014-8528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/11/2014] [Indexed: 01/30/2023]
|
16
|
González-Serrano AF, Ferreira CR, Pirro V, Lucas-Hahn A, Heinzmann J, Hadeler KG, Baulain U, Aldag P, Meyer U, Piechotta M, Jahreis G, Dänicke S, Cooks RG, Niemann H. Effects of long-term dietary supplementation with conjugated linoleic acid on bovine oocyte lipid profile. Reprod Fertil Dev 2015; 28:RD14352. [PMID: 25720762 DOI: 10.1071/rd14352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/13/2015] [Indexed: 02/28/2024] Open
Abstract
Nutritional and environmental conditions around conception and during early embryonic development may have significant effects on health and well-being in adult life. Here, a bovine heifer model was used to investigate the effects of rumen-protected fat supplementation on oocyte quality and embryo development. Holstein-Friesian heifers (n=84) received a dietary supplement consisting of rumen-protected conjugated linoleic acid (CLA) or stearic acid (SA), each on top of an isocaloric basic diet. Oocytes were collected via ultrasound-guided follicular aspiration and subjected to in vitro maturation followed by either desorption electrospray ionisation mass spectrometry (DESI-MS) for lipid profiling of individual oocytes or in vitro fertilisation and embryo culture. The type of supplement significantly affected lipid profiles of in vitro-matured oocytes. Palmitic acid and plasmalogen species were more abundant in the mass spectra of in vitro-matured oocytes after rumen-protected SA supplementation when compared with those collected from animals supplemented with CLA. Lipid concentrations in blood and follicular fluid were significantly affected by both supplements. Results show that rumen-protected fatty-acid supplementation affects oocyte lipid content and may pave the way for the establishment of a large-animal model for studies towards a better understanding of reproductive disorders associated with nutritional impairments.
Collapse
|
17
|
Zhu JJ, Luo J, Sun YT, Shi HB, Li J, Wu M, Yu K, Haile AB, Loor JJ. Short communication: Effect of inhibition of fatty acid synthase on triglyceride accumulation and effect on lipid metabolism genes in goat mammary epithelial cells. J Dairy Sci 2015; 98:3485-91. [PMID: 25726120 DOI: 10.3168/jds.2014-8202] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 01/12/2015] [Indexed: 01/12/2023]
Abstract
The role of fatty acid synthase (FASN) on de novo fatty acid synthesis has been well established. In monogastrics, unlike acetyl-coenzyme A carboxylase, FASN is primarily controlled at the transcriptional level. However, no data exist on ruminant mammary cells evaluating effects of FASN knockdown on mRNA expression of lipogenic genes. Inhibition of FASN in mammary cells by C75-mediated interference, a synthetic inhibitor of FASN activity, and short hairpin RNA-mediated interference markedly reduced cellular triglyceride content at least in part by decreasing the expression of genes related to triglyceride synthesis (GPAT, AGPAT6, and DGAT2) and enhancing the expression of lipolysis-related genes (ATGL and HSL). Consistent with the markedly lower expression of genes related to lipid droplet formation and secretion (TIP47, ADFP, BTN1A1, and XDH), cellular lipid droplets also were reduced sharply after incubation with C75 or adenovirus-short-hairpin-RNA. The results underscored the essential role of FASN in the overall process of milk-fat formation in goat mammary epithelial cells.
Collapse
Affiliation(s)
- J J Zhu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - J Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100.
| | - Y T Sun
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - H B Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - J Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - M Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - K Yu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - A B Haile
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| |
Collapse
|
18
|
Rosiglitazone, a PPAR-γ agonist, fails to attenuate CLA-induced milk fat depression and hepatic lipid accumulation in lactating mice. Lipids 2014; 49:641-53. [PMID: 24781388 DOI: 10.1007/s11745-014-3906-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 04/02/2014] [Indexed: 01/19/2023]
Abstract
Our objective was to investigate the combination of rosiglitazone (ROSI) and conjugated linoleic acid (CLA) on mammary and hepatic lipogenesis in lactating C57Bl/6 J mice. Twenty-four lactating mice were randomly assigned to one of four treatments applied from postpartum day 6 to day 10. Treatments included: (1) control diet, (2) control plus 1.5 % dietary CLA (CLA) substituted for soybean oil, (3) control plus daily intra-peritoneal (IP) rosiglitazone injections (10 mg/kg body weight) (ROSI), and (4) CLA plus ROSI (CLA-ROSI). Dam food intake and milk fat concentration were depressed with CLA. However, no effects were observed with ROSI. The CLA-induced milk fat depression was due to reduced expression for mammary lipogenic genes involved in de-novo fatty acid (FA) synthesis, FA uptake and desaturation, and triacyglycerol synthesis. Liver weight (g/100 g body weight) was increased by CLA due to an increase in lipid accumulation triggering a compensatory reduction in mRNA abundance of hepatic lipogenic enzymes, including acetyl-CoA carboxylase I and stearoyl-CoA desaturase I. On the contrary, no effects were observed with ROSI on hepatic and mammary lipogenic gene and enzyme expression. Overall, feeding CLA to lactating mice induced milk fat depression and increased hepatic lipid accumulation, probably due to the presence of trans-10, cis-12 CLA isomer, while ROSI failed to significantly attenuate both hepatic steatosis and reduction in milk fat content.
Collapse
|
19
|
Singh SP, Häussler S, Heinz JFL, Akter SH, Saremi B, Müller U, Rehage J, Dänicke S, Mielenz M, Sauerwein H. Lactation driven dynamics of adiponectin supply from different fat depots to circulation in cows. Domest Anim Endocrinol 2014; 47:35-46. [PMID: 24462180 DOI: 10.1016/j.domaniend.2013.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 12/17/2022]
Abstract
Adipose tissue (AT) depots are heterogeneous in terms of morphology and adipocyte metabolism. Adiponectin, one of the most abundant adipokines, is known for its insulin sensitizing effects and its role in glucose and lipid metabolism. Little is known about the presence of adiponectin protein in visceral (vc) and subcutaneous (sc) AT depots. We assessed serum adiponectin and adiponectin protein concentrations and the molecular weight forms in vc (mesenterial, omental, and retroperitoneal) and sc (sternum, tail-head, and withers) AT of primiparous dairy cows during early lactation. Primiparous German Holstein cows (n = 25) were divided into a control (CON) and a conjugated linoleic acid (CLA) group. From day 1 of lactation until slaughter, CLA cows were fed 100 g of a CLA supplement/d (approximately 6% of cis-9, trans-11 and trans-10, cis-12 isomers each), whereas the CON cows received 100 g of a fatty acid mixture/d instead of CLA. Blood samples from all animals were collected from 3 wk before calving until slaughter on day 1 (n = 5, CON cows), 42 (n = 5 each of CON and CLA cows), and 105 (n = 5 each of CON and CLA cows) of lactation when samples from different AT depots were obtained. Adiponectin was measured in serum and tissue by ELISA. In all AT depots adiponectin concentrations were lowest on day 1 than on day 42 and day 105, and circulating adiponectin reached a nadir around parturition. Retroperitoneal AT had the lowest adiponectin concentrations; however, when taking total depot mass into consideration, the portion of circulating adiponectin was higher in vc than sc AT. Serum adiponectin was positively correlated with adiponectin protein concentrations but not with the mRNA abundance in all fat depots. The CLA supplementation did not affect adiponectin concentrations in AT depots. Furthermore, inverse associations between circulating adiponectin and measures of body condition (empty body weight, back fat thickness, and vc AT mass) were observed. In all AT depots at each time, adiponectin was present as high (approximately 300 kDa) and medium (approximately 150 kDa) molecular weight complexes similar to that of the blood serum. These data suggest differential contribution of AT depots to circulating adiponectin.
Collapse
Affiliation(s)
- S P Singh
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - S Häussler
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany.
| | - J F L Heinz
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - S H Akter
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - B Saremi
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - U Müller
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - J Rehage
- Clinic for Cattle, University of Veterinary Medicine, D-30173 Hannover, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - M Mielenz
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany; Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
20
|
Häussler S, Germeroth D, Friedauer K, Akter SH, Dänicke S, Sauerwein H. Characterization of the dynamics of fat cell turnover in different bovine adipose tissue depots. Res Vet Sci 2013; 95:1142-50. [PMID: 23932766 DOI: 10.1016/j.rvsc.2013.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 06/16/2013] [Accepted: 07/08/2013] [Indexed: 11/25/2022]
Abstract
In many but not all high producing cows, the energy requirements for milk yield and maintenance exceed energy intake by voluntary feed intake during early lactation. Prioritizing milk secretion, body reserves mainly from adipose tissue are mobilized and imply an increased risk for metabolic diseases. Reducing the energy output via milk by decreasing the milk fat content through feed supplements containing conjugated linoleic acids (CLAs) may attenuate the negative energy balance during this period. In two separate trials, variables characterizing fat cell turnover were investigated in different subcutaneous and visceral fat depots from primiparous heifers (n = 25) during early lactation, and subcutaneous fat from non-lactating, over-conditioned heifers (n = 12) by immunohistochemistry. The portion of apoptotic adipocytes was consistently greater than that of proliferating cells and preadipocytes; the sporadically observed effects of CLA were limited to visceral fat. Lactating heifers had more apoptosis and less preadipocytes than non-lactating heifers.
Collapse
Affiliation(s)
- S Häussler
- Institute of Animal Science, Physiology and Hygiene Group, University of Bonn, 53115 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Kramer R, Wolf S, Petri T, von Soosten D, Dänicke S, Weber EM, Zimmer R, Rehage J, Jahreis G. A commonly used rumen-protected conjugated linoleic acid supplement marginally affects fatty acid distribution of body tissues and gene expression of mammary gland in heifers during early lactation. Lipids Health Dis 2013; 12:96. [PMID: 23827056 PMCID: PMC3706325 DOI: 10.1186/1476-511x-12-96] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/28/2013] [Indexed: 12/26/2022] Open
Abstract
Background Conjugated linoleic acids (CLA) in general, and in particular the trans-10,cis-12 (t10,c12-CLA) isomer are potent modulators of milk fat synthesis in dairy cows. Studies in rodents, such as mice, have revealed that t10,c12-CLA is responsible for hepatic lipodystrophy and decreased adipose tissue with subsequent changes in the fatty acid distribution. The present study aimed to investigate the fatty acid distribution of lipids in several body tissues compared to their distribution in milk fat in early lactating cows in response to CLA treatment. Effects in mammary gland are further analyzed at gene expression level. Methods Twenty-five Holstein heifers were fed a diet supplemented with (CLA groups) or without (CON groups) a rumen-protected CLA supplement that provided 6 g/d of c9,t11- and t10,c12-CLA. Five groups of randomly assigned cows were analyzed according to experimental design based on feeding and time of slaughter. Cows in the first group received no CLA supplement and were slaughtered one day postpartum (CON0). Milk samples were taken from the remaining cows in CON and CLA groups until slaughter at 42 (period 1) and 105 (period 2) days in milk (DIM). Immediately after slaughter, tissue samples from liver, retroperitoneal fat, mammary gland and M. longissimus (13th rib) were obtained and analyzed for fatty acid distribution. Relevant genes involved in lipid metabolism of the mammary gland were analyzed using a custom-made microarray platform. Results Both supplemented CLA isomers increased significantly in milk fat. Furthermore, preformed fatty acids increased at the expense of de novo-synthesized fatty acids. Total and single trans-octadecenoic acids (e.g., t10-18:1 and t11-18:1) also significantly increased. Fatty acid distribution of the mammary gland showed similar changes to those in milk fat, due mainly to residual milk but without affecting gene expression. Liver fatty acids were not altered except for trans-octadecenoic acids, which were increased. Adipose tissue and M. longissimus were only marginally affected by CLA supplementation. Conclusions Daily supplementation with CLA led to typical alterations usually observed in milk fat depression (reduction of de novo-synthesized fatty acids) but only marginally affected tissue lipids. Gene expression of the mammary gland was not influenced by CLA supplementation.
Collapse
|
22
|
Sanches BV, Marinho LSR, Filho BDO, Pontes JHF, Basso AC, Meirinhos MLG, Silva-Santos KC, Ferreira CR, Seneda MM. Cryosurvival and pregnancy rates after exposure of IVF-derived Bos indicus embryos to forskolin before vitrification. Theriogenology 2013; 80:372-7. [PMID: 23746692 DOI: 10.1016/j.theriogenology.2013.04.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 03/19/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
Abstract
In vitro-produced (IVP) bovine embryos are more sensitive to cryopreservation than their in vivo counterparts due to their higher lipid concentrations, whereas Bos indicus IVP embryos are even more sensitive than Bos taurus IVP embryos. To examine the effects of a lipolytic agent, before vitrification of Bos indicus IVP embryos, on embryo survival, viability, and pregnancy rates, two experiments were conducted. In experiment 1, Bos indicus (Nelore) embryos were produced from abattoir-derived ovaries and allocated into two groups. In the treatment group, 10 μM of forskolin was added to the in vitro culture medium on Day 5 and incubated for 48 hours. On Day 7 of culture, IVP-expanded blastocysts from both the control (n = 101) and treatment (n = 112) groups were vitrified with ethylene glycol and DMSO via the Cryotop procedure. Although there was no significant difference between the rates of blastocoel reexpansion and hatching of the embryos exposed to forskolin (87.5% and 70.5%, respectively) compared with the control embryos (79.2% and 63.3%, respectively), the numerically superior rates of the embryos exposed to forskolin led to another experiment. In experiment 2, blastocysts produced from the ovum pick up were exposed or not exposed to the lipolytic agent and vitrified as in experiment 1. Embryos treated with forskolin had higher pregnancy rates than the control group (48.8% vs. 18.5%). In view of these results, 1908 Bos indicus embryos were produced from ovum pick up, exposed to the lipolytic agent, and blastocysts were transferred to recipients, and the pregnancy rates of the embryos of various breeds were compared. The mean pregnancy rate obtained was 43.2%. All data were analyzed by chi-square or by binary logistic regression (P ≤ 0.05). In conclusion, treatment with forskolin before vitrification improved cryotolerance of Bos indicus IVP embryos, resulting in good post-transfer pregnancy rates.
Collapse
Affiliation(s)
- B V Sanches
- In Vitro Brasil Ltda, Mogi Mirim, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Trans-10, cis 12-Conjugated Linoleic Acid-Induced Milk Fat Depression Is Associated with Inhibition of PPARγ Signaling and Inflammation in Murine Mammary Tissue. J Lipids 2013; 2013:890343. [PMID: 23762566 PMCID: PMC3666273 DOI: 10.1155/2013/890343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 03/18/2013] [Indexed: 12/19/2022] Open
Abstract
Exogenous trans-10, cis-12-CLA (CLA) reduces lipid synthesis in murine adipose and mammary (MG) tissues. However, genomewide alterations in MG and liver (LIV) associated with dietary CLA during lactation remain unknown. We fed mice (n = 5/diet) control or control + trans-10, cis-12-CLA (37 mg/day) between d 6 and d 10 postpartum. The 35,302 annotated murine exonic evidence-based oligo (MEEBO) microarray and quantitative RT-PCR were used for transcript profiling. Milk fat concentration was 44% lower on d 10 versus d 6 due to CLA. The CLA diet resulted in differential expression of 1,496 genes. Bioinformatics analyses underscored that a major effect of CLA on MG encompassed alterations in cellular signaling pathways and phospholipid species biosynthesis. Dietary CLA induced genes related to ER stress (Xbp1), apoptosis (Bcl2), and inflammation (Orm1, Saa2, and Cp). It also induced marked inhibition of PPAR γ signaling, including downregulation of Pparg and Srebf1 and several lipogenic target genes (Scd, Fasn, and Gpam). In LIV, CLA induced hepatic steatosis probably through perturbations in the mitochondrial functions and induction of ER stress. Overall, results from this study underscored the role of PPAR γ signaling on mammary lipogenic target regulation. The proinflammatory effect due to CLA could be related to inhibition of PPAR γ signaling.
Collapse
|
24
|
von Soosten D, Kramer R, Jahreis G, Meyer U, Flachowsky G, Dänicke S. Transfer of conjugated linoleic acids into different tissues of dairy cows. Arch Anim Nutr 2013; 67:119-33. [DOI: 10.1080/1745039x.2013.773648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Du M, Ahn DU, Nam KC, Sell JL. Influence of dietary conjugated linoleic acid on volatile profiles, color and lipid oxidation of irradiated raw chicken meat. Meat Sci 2012; 56:387-95. [PMID: 22062169 DOI: 10.1016/s0309-1740(00)00067-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Forty-eight, 27-week-old White Leghorn hens were fed a diet containing 0, 1.25, 2.5 or 5.0% conjugated linoleic acid (CLA) for 12 weeks. At the end of the 12-week feeding trial, hens were slaughtered, and boneless, skinless breast and leg meats were separated from carcasses. Meats were ground through 9 and 3-mm plates, and patties were prepared. Patties prepared from each dietary treatment were divided into two groups and either vacuum- or aerobic-packaged. Patties were irradiated at 0 or 3.0 kGy using a linear accelerator and stored at 4°C. Samples were analyzed for thiobarbituric acid reactive substances, volatile profiles, color and odor characteristics at 0 and 7 days of storage. Dietary CLA reduced the degree of lipid oxidation in raw chicken meat during storage. The content of hexanal and pentanal in raw chicken meat significantly decreased as dietary CLA level increased. Irradiation accelerated lipid oxidation in meat with aerobic packaging, but irradiation effect was not as significant as that of the packaging. Dietary CLA treatment improved the color stability of chicken patties. Color a*-value of irradiated raw chicken meat was higher than that of the nonirradiated meat. Dietary CLA decreased the content of polyunsaturated fatty acid and increased CLA in chicken muscles, which improved lipid and color stability and reduced volatile production in irradiated and nonirradiated raw chicken meat during storage.
Collapse
Affiliation(s)
- M Du
- Department of Animal Science, Iowa State University, Ames, IA 50011-3150, USA
| | | | | | | |
Collapse
|
26
|
Vyas D, Teter B, Erdman R. Milk fat responses to dietary supplementation of short- and medium-chain fatty acids in lactating dairy cows. J Dairy Sci 2012; 95:5194-5202. [DOI: 10.3168/jds.2011-5277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/25/2012] [Indexed: 01/13/2023]
|
27
|
Bauman DE, Harvatine KJ, Lock AL. Nutrigenomics, rumen-derived bioactive fatty acids, and the regulation of milk fat synthesis. Annu Rev Nutr 2011; 31:299-319. [PMID: 21568706 DOI: 10.1146/annurev.nutr.012809.104648] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mammary synthesis of milk fat continues to be an active research area, with significant advances in the regulation of lipid synthesis by bioactive fatty acids (FAs). The biohydrogenation theory established that diet-induced milk fat depression (MFD) in the dairy cow is caused by an inhibition of mammary synthesis of milk fat by specific FAs produced during ruminal biohydrogenation. The first such FA shown to affect milk fat synthesis was trans-10, cis-12 conjugated linoleic acid, and its effects have been well characterized, including dose-response relationships. During MFD, lipogenic capacity and transcription of key mammary lipogenic genes are coordinately down-regulated. Results provide strong evidence for sterol response element-binding protein-1 (SREBP1) and Spot 14 as biohydrogenation intermediate responsive lipogenic signaling pathway for ruminants and rodents. The study of MFD and its regulation by specific rumen-derived bioactive FAs represents a successful example of nutrigenomics in present-day animal nutrition research and offers several potential applications in animal agriculture.
Collapse
Affiliation(s)
- Dale E Bauman
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
28
|
Akter SH, Häussler S, Dänicke S, Müller U, von Soosten D, Rehage J, Sauerwein H. Physiological and conjugated linoleic acid-induced changes of adipocyte size in different fat depots of dairy cows during early lactation. J Dairy Sci 2011; 94:2871-82. [PMID: 21605757 DOI: 10.3168/jds.2010-3868] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/18/2011] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the effects of lactation and conjugated linoleic acid (CLA) supplementation on adipocyte sizes of subcutaneous (s.c.) and visceral (VC) fat depots in primiparous dairy cows during the first 105 d in milk (DIM). German Holstein heifers (n=25) were divided into a control (CON) and a CLA group. From 1 DIM until sample collection, CLA cows were fed 100g of CLA supplement/d (about 6% of c9,t11 and t10,c12 isomers each), whereas the CON cows received 100g of fatty acid mixture/d instead of CLA. The CON cows (n=5 each) were slaughtered at 1, 42, and 105 DIM, and the CLA cows (n=5 each) were slaughtered at 42 and 105 DIM. Adipose tissues from 3s.c. depots (tailhead, withers, and sternum) and from 3 VC depots (omental, mesenteric, and retroperitoneal) were sampled. Hematoxylin-eosin staining was done to measure adipocyte area (μm(2)). Retroperitoneal adipocyte sizes were mostly larger than adipocytes from the other sites, independent of lactation time and treatment. Significant changes related to duration of lactation were limited to retroperitoneal fat: adipocyte sizes were significantly smaller at 105 DIM than at 1 DIM in CON cows. Adipocyte sizes were decreased in s.c. depots from the tailhead at 105 DIM and from the sternum at 42 DIM in CLA versus CON cows, whereas for VC depots, adipocyte sizes were decreased in mesenteric fat at 42 and 105 DIM, and in omental and retroperitoneal fat, at 105 DIM in CLA versus CON cows. Within the CLA group, adipocyte sizes were smaller in the s.c. depot from the tailhead at 105 DIM than at 42 DIM. Adipocyte sizes and depot weights were significantly correlated in s.c. depots (r=0.795) in the CLA group and in retroperitoneal fat both in the CON (r=0.698) and the CLA (r=0.723) group. In conclusion, CLA-induced decreases in adipocyte size indicate lipolytic or antilipogenic effects of CLA, or both effects, on adipose tissue in primiparous dairy cows.
Collapse
Affiliation(s)
- S H Akter
- Institute of Animal Science, Physiology and Hygiene Group, University of Bonn, 53115 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Kadegowda AKG, Connor EE, Teter BB, Sampugna J, Delmonte P, Piperova LS, Erdman RA. Dietary trans fatty acid isomers differ in their effects on mammary lipid metabolism as well as lipogenic gene expression in lactating mice. J Nutr 2010; 140:919-24. [PMID: 20220207 DOI: 10.3945/jn.109.110890] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The biological activities and mechanisms of action of individual transoctadecenoic acids (trans-18:1 FA) have not been completely elucidated. We examined the effects of several individual trans-18:1 FA isomers and trans-10, cis-12 conjugated linoleic acid (CLA) on fat synthesis, and expression of lipogenic genes in mammary and liver tissue in lactating mice. From d 6 to 10 postpartum, 30 lactating C57BL/6J mice were randomly assigned to either a control (CTR) diet containing 20 g/kg oleic acid or diets in which the oleic acid was either completely replaced by partially hydrogenated vegetable oil (PHVO), trans-7 18:1 (T7), trans-9 18:1 (T9), or trans-11 18:1 (T11) or partially replaced with 6.66 g/kg trans-10, cis-12 CLA. Milk fat percentage was decreased by CLA (44%), T7 (27%), and PHVO (23%), compared with CTR. In the mammary gland, CLA decreased the expression of genes related to de novo FA synthesis, desaturation, triacylglycerol formation, and transcriptional regulation. PHVO and T7 diets decreased the expression of 1-acylglycerol-3-phosphate O-acyltransferase and thyroid hormone responsive SPOT14 homolog (THRSP) mRNA. In contrast, dietary trans FA (tFA) did not affect hepatic lipogenic gene expression. However, mice fed CLA, T7, and PHVO diets had increased liver weights due to hepatic steatosis. Trans-7 18:1 was extensively desaturated to trans-7, cis-9 CLA in mammary and liver tissues. Dietary trans-7 18:1 could lead to milk fat depression in lactating mice, possibly through its desaturation product trans-7, cis-9 CLA. Also, the differences between the effects of trans-10, cis-12 CLA and other tFA could be attributed to its effects on carbohydrate response element binding protein and PPARgamma, in addition to sterol regulatory element binding transcription factor 1c and THRSP.
Collapse
Affiliation(s)
- Anil K G Kadegowda
- Department of Animal and Avian Sciences, and 4Department of Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Medeiros S, Oliveira D, Aroeira L, McGuire M, Bauman D, Lanna D. Effects of dietary supplementation of rumen-protected conjugated linoleic acid to grazing cows in early lactation. J Dairy Sci 2010; 93:1126-37. [DOI: 10.3168/jds.2009-2645] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 11/09/2009] [Indexed: 11/19/2022]
|
31
|
Carloni M, Fedeli D, Roscioni T, Gabbianelli R, Falcioni G. Seasonal variation of fat composition in sheep’s milk from areas of central Italy. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2009. [DOI: 10.1007/s12349-009-0057-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Gervais R, McFadden J, Lengi A, Corl B, Chouinard P. Effects of intravenous infusion of trans-10, cis-12 18:2 on mammary lipid metabolism in lactating dairy cows. J Dairy Sci 2009; 92:5167-77. [DOI: 10.3168/jds.2009-2281] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Eitam H, Brosh A, Orlov A, Izhaki I, Shabtay A. Caloric stress alters fat characteristics and Hsp70 expression in milk somatic cells of lactating beef cows. Cell Stress Chaperones 2009; 14:173-82. [PMID: 18704763 PMCID: PMC2727988 DOI: 10.1007/s12192-008-0070-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 07/25/2008] [Indexed: 10/21/2022] Open
Abstract
Selection for higher production rate in cattle inhabiting challenging habitats may be considered disadvantageous because of possible deleterious effects on immunity and reproduction and, consequently, on calf crop percentage. In Israel, free-grazing high productive beef cows experience reduction in nutritional quality of forage during up to 8 months of the year. As milk production by dams dictates calf performance, dam's nutritional needs and rebreeding rates, the aim of the present study was to test how lactating beef cows deal with combined caloric and protein stress both at the productive and self protective levels. For this purpose, we studied the effect of long-term caloric stress on milk characteristics and gene expression of stress and milk components producing proteins. Lactating dams responded to caloric stress by decreased body weight, milk, and milk protein production. To compensate for total energy loses in milk, they produced milk of higher fat concentration and shifted the proportions of its fatty acids towards long and unsaturated ones. This was reflected by increased mRNA transcription of the fatty acid binding protein. Prolonged low-energy diet promoted cell-specific heat shock protein (Hsp) response; whereas significant increase of Hsp90 but unchanged levels of Hsp70 proteins were observed in white blood cells, the expression of Hsp70 in milk somatic cells was markedly attenuated, in parallel with a marked increase of alpha(s1)-casein expression. At the mammary gland level, these results may indicate a decrease in turnover of proteins and a shift to an exclusive expression of milk components producing factors. Similar responses to caloric stress were revealed also in ketotic dairy cows. Ketosis promoted a shift towards long and unsaturated fatty acids and an increased expression of alpha(s1)-casein in milk somatic cells. These findings may reflect an evolutionary-preserved mechanism in lactating cows for coping with caloric restriction. Overall, our results provide an index to test suitability of beef cattle breeds to inadequate caloric demands.
Collapse
Affiliation(s)
- Harel Eitam
- Institute of Animal Science, Department of Ruminant Science & Genetics, Newe Ya’ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095 Israel
- Department of Evolutionary and Environmental Biology, Faculty of Science and Science Education, University of Haifa, Haifa, 31905 Israel
| | - Arieh Brosh
- Institute of Animal Science, Department of Ruminant Science & Genetics, Newe Ya’ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095 Israel
| | - Alla Orlov
- Institute of Animal Science, Department of Ruminant Science & Genetics, Newe Ya’ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095 Israel
| | - Ido Izhaki
- Department of Evolutionary and Environmental Biology, Faculty of Science and Science Education, University of Haifa, 31905 Haifa, Israel
| | - Ariel Shabtay
- Institute of Animal Science, Department of Ruminant Science & Genetics, Newe Ya’ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095 Israel
| |
Collapse
|
34
|
|
35
|
Liu Z, Chen P, Li J, Lin S, Wang D, Zhu L, Yang D. Conjugated linoleic acids (CLA) moderate negative responses of heat-stressed cows. Livest Sci 2008. [DOI: 10.1016/j.livsci.2008.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Hausman GJ, Dodson MV, Ajuwon K, Azain M, Barnes KM, Guan LL, Jiang Z, Poulos SP, Sainz RD, Smith S, Spurlock M, Novakofski J, Fernyhough ME, Bergen WG. Board-invited review: the biology and regulation of preadipocytes and adipocytes in meat animals. J Anim Sci 2008; 87:1218-46. [PMID: 18849378 DOI: 10.2527/jas.2008-1427] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The quality and value of the carcass in domestic meat animals are reflected in its protein and fat content. Preadipocytes and adipocytes are important in establishing the overall fatness of a carcass, as well as being the main contributors to the marbling component needed for consumer preference of meat products. Although some fat accumulation is essential, any excess fat that is deposited into adipose depots other than the marbling fraction is energetically unfavorable and reduces efficiency of production. Hence, this review is focused on current knowledge about the biology and regulation of the important cells of adipose tissue: preadipocytes and adipocytes.
Collapse
Affiliation(s)
- G J Hausman
- USDA-ARS, Richard B. Russell Agricultural Research Station, Athens, GA 30604, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kadegowda AKG, Piperova LS, Delmonte P, Erdman RA. Abomasal infusion of butterfat increases milk fat in lactating dairy cows. J Dairy Sci 2008; 91:2370-9. [PMID: 18487659 DOI: 10.3168/jds.2007-0894] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this study was to compare the effects of abomasal infusion of butterfat containing all fatty acids (FA) present in milk, including the short- and medium-chain FA, with infusion of only the long-chain FA (LCFA) present in milk, on the FA composition and milk fat yield in lactating dairy cows. Eight rumen-fistulated Holstein cows, in early lactation (49 +/- 20 days in milk) were used in a replicated 4 x 4 Latin square design. Treatments were abomasal infusion of the following: 1) no infusion (control), 2) 400 g/d of butterfat (butterfat), 3) 245 g/d of LCFA (blend of 59% cocoa butter, 36% olive oil, and 5% palm oil) providing 50% of the 16:0 and equivalent amounts of C18 FA as found in 400 g of butterfat, and 4) 100 g/d of conjugated linoleic acid (CLA, negative control), providing 10 g of trans-10, cis-12 CLA. Fat supplements were infused in equal portions 3 times daily at 0800, 1400, and 1800 h during the last 2 wk of each 3-wk experimental period. Daily dry matter intake and milk production were unaffected by the infusion treatments. Butterfat infusion increased milk fat percentage by 14% to 4.26% and milk fat yield by 21% to 1,421 g/d compared with controls (3.74% and 1,178 g/d). Milk fat percentage and fat yield were decreased by 43% by CLA. Milk protein percentage was higher (3.70%) in CLA-infused cows than in control (3.30%), butterfat (3.28%), or LCFA (3.27%) treatments. Although LCFA had no effect on fat synthesis, abomasal infusion of butterfat increased milk fat percentage and yield, suggesting that the availability of short- and medium-chain FA may be a limiting factor for milk fat synthesis.
Collapse
Affiliation(s)
- A K G Kadegowda
- Animal and Avian Sciences Department, University of Maryland, College Park 20742, USA
| | | | | | | |
Collapse
|
38
|
Bauman DE, Perfield JW, Harvatine KJ, Baumgard LH. Regulation of fat synthesis by conjugated linoleic acid: lactation and the ruminant model. J Nutr 2008; 138:403-9. [PMID: 18203911 DOI: 10.1093/jn/138.2.403] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Conjugated linoleic acid (CLA) isomers effect an impressive range of biological processes including the ability to inhibit milk fatty acid synthesis. Although this has been demonstrated in several mammals, research has been most extensive with dairy cows. The first isomer shown to affect milk fat synthesis during lactation was trans-10, cis-12 CLA, and its effects have been well characterized including dose-response relationships. Recent studies have tentatively identified 2 additional CLA isomers that regulate milk fat synthesis. Regulation by CLA occurs naturally in dairy cows when specific CLA isomers produced as intermediates in rumen biohydrogenation act to inhibit milk fat synthesis; this physiological example of nutritional genomics is referred to as diet-induced milk fat depression. Molecular mechanisms for the reduction in mammary lipid synthesis involve a coordinated down-regulation of mRNA expression for key lipogenic enzymes associated with the complementary pathways of milk fat synthesis. Results provide strong evidence of a role for sterol response element-binding protein 1 and Spot 14 in this translational regulation. Effects of CLA on body fat accretion have also been investigated in nonlactating animals, but CLA effects on mammary fatty acid synthesis occur at an order-of-magnitude lower dose and appear to involve very different mechanisms than those proposed for the antiobesity effects of CLA. Overall, results demonstrate the unique value of cows as a model to investigate the role of CLA in the regulation of milk fat synthesis during lactation.
Collapse
Affiliation(s)
- Dale E Bauman
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
39
|
|
40
|
Shingfield KJ, Ahvenjärvi S, Toivonen V, Vanhatalo A, Huhtanen P. Transfer of absorbed cis-9, trans-11 conjugated linoleic acid into milk is biologically more efficient than endogenous synthesis from absorbed vaccenic acid in lactating cows. J Nutr 2007; 137:1154-60. [PMID: 17449574 DOI: 10.1093/jn/137.5.1154] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cis-9, trans-11, the major isomer of conjugated linoleic acid (CLA) in bovine milk fat, is derived from ruminal biohydrogenation of 18:2 (n-6) and endogenous conversion of trans-11 18:1 (vaccenic acid; VA) in the mammary gland. Most evidence to date suggests that endogenous synthesis is the major source of cis-9, trans-11 CLA, but the extent of VA desaturation is less well defined. Four lactating cows were used in consecutive 4 x 4 Latin squares to examine changes in milk fatty acid composition and secretion in response to abomasal infusions of lipid supplements enriched with cis-9, trans-11 CLA (88.8%) or VA (29.4%). Treatments were infused over 4-d, followed by a 3-d washout, during 7 d experimental periods and administered to deliver 0, 3, 6, and 12 g cis-9, trans-11 CLA/d (Expt. 1) or 0, 7.5, 15 and 30 g VA/d (Expt. 2). Infusions of cis-9, trans-11 CLA increased linearly milk cis-9, trans-11 CLA concentrations from 0.68 to 1.46 g/100 g fatty acids. Abomasal infusions of VA increased linearly milk VA and cis-9, trans-11 CLA content from 1.22 to 2.72 and 0.61 to 1.24 g/100 g fatty acids, respectively. Changes in milk fatty acid secretion indicated that 28.9% of VA was converted to cis-9, trans-11 CLA. Results provide evidence that conversion by Delta9-desaturase to cis-9, trans-11 CLA in the lactating cow is independent of postruminal VA supply. In conclusion, endogenous synthesis via VA was equivalent to approximately 21% of the response to increases in cis-9, trans-11 CLA available for absorption.
Collapse
Affiliation(s)
- Kevin J Shingfield
- Animal Production Research, MTT Agrifood Research Finland, Jokioinen, FIN 31600, Finland.
| | | | | | | | | |
Collapse
|
41
|
Loor JJ, Lin X, Herbein JH. Effects of dietarycis9,trans11–18: 2,trans10,cis12–18: 2, or vaccenic acid (trans11–18: 1) during lactation on body composition, tissue fatty acid profiles, and litter growth in mice. Br J Nutr 2007; 90:1039-48. [PMID: 14641963 DOI: 10.1079/bjn20031002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cis9,trans11 (c9,t11)-18: 2 andtrans10,cis12 (t10,c12)-18: 2 are the major conjugated linoleic acid (CLA) isomers in dietary supplements which reduce milk fat content in nursing women. The present study evaluated the effects of each CLA isomer or vaccenic acid on body composition and tissue fatty acids during lactation in mice. Dams were fed 30 g rapeseed oil (control)/kg diet or 20 g control plus 10 g 18: 0,trans11–18: 1 (t11–18: 1),c9,t11–18: 2, ort10,c12–18: 2. Dietaryt10,c12–18: 2 reduced food intake by 18 % and carcass fat weight of the dams by 49 % compared with the other treatments. Milk fat percentage ranked by treatment was 18: 0>t11–18: 1=c9,t11–18: 2>t10,c12–18: 2. The sum of saturated 12: 0 to 16: 0 in milk fat was lower whenc9,t11–18: 2 was fed compared with the control, 18: 0, ort11–18: 1 treatments. Dietaryt10,c12–18: 2 caused further reductions in milk fat 12: 0 to 16: 0. The proportion of CLA isomers was 3-fold greater in milk fat than in the carcasses of the dams. The pups nursing from the dams fedt10,c12–18: 2 had the lowest body weights and carcass fat, protein, and ash contents. Nursing from the dams fedc9,t11–18: 2 also resulted in lower carcass fat compared with the 18: 0 ort11–18: 1 treatments. The ratios ofcis9–16: 1:16: 0 orcis9–18: 1:18: 0, proxies for Δ9-desaturase activity, were markedly lower in the carcasses of the dams and pups fedt10,c12–18: 2. The ratio of 20: 4n-6:18: 2n-6, a proxy for Δ6- and Δ5-desaturase and elongase activity, in the liver of the dams and pups fedt10,c12–18: 2 also was lower. Dietaryt11–18: 1 enhanced the content ofc9,t11–18: 2 in milk fat and carcasses. As in previous studies, the reduction in food intake byt10,c12–18: 2 could not entirely account for the marked decrease in carcass fat content and milk fat concentration.T10,c12–18: 2 probably had a negative effect on Δ9-desaturase and mammaryde novofatty acid synthesis. Although these effects need to be confirmed in lactating women, the results suggest that the consumption of supplements containingt10,c12–18: 2 should be avoided during the nursing period.
Collapse
Affiliation(s)
- Juan J Loor
- Dairy Science Department, Virginia Tech Unicersity, Blacksburg, 24061-0315, USA.
| | | | | |
Collapse
|
42
|
Kay JK, Mackle TR, Bauman DE, Thomson NA, Baumgard LH. Effects of a Supplement Containing Trans-10, Cis-12 Conjugated Linoleic Acid on Bioenergetic and Milk Production Parameters in Grazing Dairy Cows Offered Ad Libitum or Restricted Pasture. J Dairy Sci 2007; 90:721-30. [PMID: 17235149 DOI: 10.3168/jds.s0022-0302(07)71556-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Conjugated linoleic acid (CLA) reduces milk fat synthesis in grazing dairy cows and may improve calculated net energy balance (EBAL). Study objectives were to determine whether CLA-induced milk fat depression could be utilized during times of feed restriction to improve bioenergetic and milk production parameters. Twelve multiparous rumen-fistulated Holstein cows (204 +/- 7 d in milk) were offered ad libitum (AL) or restricted (R) pasture and abomasally infused twice daily with 0 (control) or 50 g/d of CLA (CLA; mixed isomers) in a 2-period crossover design. Treatment periods lasted 10 d and were separated by a 10-d washout period. Milk and plasma samples were averaged from d 9 and 10, and EBAL was calculated from d 6 to 10 of the infusion period. Pasture restriction reduced the yield of milk (3.9 kg/d) and milk components. The CLA treatment reduced milk fat yield by 44 and 46% in AL and R, respectively. There was no effect of CLA on milk yield or milk lactose content or yield in either feeding regimen; however, CLA increased the milk protein content and yield by 7 and 6% and by 5 and 8%, in AL and R, respectively. The CLA-induced changes to milk fat and protein doubled the protein:fat ratio in both AL and R. Calculated EBAL improved following the CLA infusion (-0.44 vs. 2.68 and 0.38 vs. 3.29 Mcal/d for AL and R, respectively); however, CLA did not alter plasma bioenergetic markers. Data indicate that during short periods of nutrient limitation, supplemental CLA may be an alternative management tool to enhance protein synthesis and improve the milk protein:fat ratio and calculated EBAL in cows grazing pasture. Further studies are required to determine whether CLA is effective at improving bioenergetic and production parameters during more severe or longer term nutrient restriction.
Collapse
Affiliation(s)
- J K Kay
- Dexcel, Ltd., Hamilton, New Zealand
| | | | | | | | | |
Collapse
|
43
|
Liu W, Degner SC, Romagnolo DF. Trans-10, cis-12 conjugated linoleic acid inhibits prolactin-induced cytosolic NADP+ -dependent isocitrate dehydrogenase expression in bovine mammary epithelial cells. J Nutr 2006; 136:2743-7. [PMID: 17056794 DOI: 10.1093/jn/136.11.2743] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Conjugated linoleic acid (CLA) has been found to exert beneficial effects on lipid profile and repress de novo fatty acid synthesis in mammary gland during lactation. However, the underlying mechanisms responsible for the antilipogenic effects of CLA have not been established. The cytosolic NADP+ -dependent isocitrate dehydrogenase (IDH1) plays a critical role in cholesterol and fatty acid biosynthesis by providing reducing equivalents as NADPH. In previous studies, we documented that the expression of IDH1 in bovine mammary epithelium was modulated by regulators of mammary differentiation and metabolic effectors. In this study, we investigated the short-term effects of prolactin (PRL) and CLA on IDH1 expression in BME-UV bovine mammary epithelial cells. In time-course experiments, we found that the treatment with PRL for 60 and 90 min elicited a significant increase in IDH1 transcript levels. Conversely, the cotreatment of BME-UV cells with PRL plus a CLA mixture for 90 min prevented the accumulation of IDH1 mRNA induced by PRL. In addition, we found that the trans-10, cis-12 CLA, but not the cis-9, trans-11 CLA isomer, inhibited basal- and PRL-induced IDH1 mRNA expression. The inhibitory effects of the trans-10, cis-12 CLA isomer on PRL-induced IDH1 expression accumulation were confirmed by quantitative real time PCR and western-blotting analysis. We propose that the inhibitory effects of CLA on milk fat synthesis in mammary epithelial cells may derive, at least in part, from repression of IDH1 expression.
Collapse
Affiliation(s)
- Wenjing Liu
- Laboratory of Mammary Gland Biology, Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
44
|
Dhiman TR, Nam SH, Ure AL. Factors affecting conjugated linoleic acid content in milk and meat. Crit Rev Food Sci Nutr 2006; 45:463-82. [PMID: 16183568 DOI: 10.1080/10408390591034463] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Conjugated linoleic acid (CLA) has been recently studied mainly because of its potential in protecting against cancer, atherogenesis, and diabetes. Conjugated linoleic acid (CLA) is a collective term for a series of conjugated dienoic positional and geometrical isomers of linoleic acid, which are found in relative abundance in milk and tissue fat of ruminants compared with other foods. The cis-9, trans-11 isomer is the principle dietary form of CLA found in ruminant products and is produced by partial ruminal biohydrogenation of linoleic acid or by endogenous synthesis in the tissues themselves. The CLA content in milk and meat is affected by several factors, such as animal's breed, age, diet, and management factors related to feed supplements affecting the diet. Conjugated linoleic acid in milk or meat has been shown to be a stable compound under normal cooking and storage conditions. Total CLA content in milk or dairy products ranges from 0.34 to 1.07% of total fat. Total CLA content in raw or processed beef ranges from 0.12 to 0.68% of total fat. It is currently estimated that the average adult consumes only one third to one half of the amount of CLA that has been shown to reduce cancer in animal studies. For this reason, increasing the CLA contents of milk and meat has the potential to raise the nutritive and therapeutic values of dairy products and meat.
Collapse
Affiliation(s)
- Tilak R Dhiman
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA.
| | | | | |
Collapse
|
45
|
Moore CE, Kay JK, Collier RJ, Vanbaale MJ, Baumgard LH. Effect of Supplemental Conjugated Linoleic Acids on Heat-Stressed Brown Swiss and Holstein Cows. J Dairy Sci 2005; 88:1732-40. [PMID: 15829665 DOI: 10.3168/jds.s0022-0302(05)72846-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Heat-stressed dairy cattle are bioenergetically similar to early-lactation cows in that dietary energy may be inadequate to support maximum milk and milk component synthesis. Study objectives were to evaluate whether conjugated linoleic acids- (CLA-) induced milk fat depression (MFD) during heat stress would allow for increased milk and milk component synthesis. In addition, CLA effects on production variables and its ability to induce MFD were compared between Holstein and Brown Swiss cows. Multiparous cows (n = 8, Holstein; n = 5, Brown Swiss) averaging 97 +/- 17 d in milk were used in a crossover design during the summer (mean temperature-humidity index = 75.7). Treatment periods were 21 d with a 7-d adaptation period before and between periods. During adaptation periods, all cows received a supplement of palm fatty acid distillate (242 g/d). Dietary treatment consisted of 250 g/d of CLA supplement (78.9 g/d of CLA) or 242 g/d of palm fatty acid distillate to provide equal amounts of fatty acids. The CLA supplement contained a variety of CLA isomers (3.0% trans-8, cis-10; 3.4% cis-9, trans-11; 4.5% trans-10, cis-12; and 4.8% cis-11, trans-13 CLA). Treatments were applied 2 x/d with half of the supplement top-dressed at 0600 h and the remainder top-dressed at 1800 h. There was no overall treatment effect on dry matter intake (23.9 kg/d), milk yield (40.0 kg/d), somatic cell count (305,000), protein (2.86%), or lactose content (4.51%) or yields of these milk components. Supplementation with CLA decreased overall milk fat content and yield by 26 and 30%, irrespective of breed. The reduction of milk fat content and yield was greatest on d 21 (28 and 37%, respectively). Energy availability predicted by energy balance was improved with CLA supplementation compared with controls (3.7 vs. 7.1 Mcal/d, respectively). Respiration rate (78 breaths/min) and skin temperature (35.4 degrees C) during maximum heat load were not affected by treatment. The group receiving CLA had higher total milk fat CLA concentration (9.3 vs. 4.9 mg/g). Supplementation with CLA induced MFD and altered milk fat composition similarly between breeds and improved calculated energy balance during heat stress, but had no effect on production measures under these conditions.
Collapse
Affiliation(s)
- C E Moore
- Department of Animal Sciences, The University of Arizona, Tucson 85721, USA
| | | | | | | | | |
Collapse
|
46
|
Lee KW, Lee HJ, Cho HY, Kim YJ. Role of the Conjugated Linoleic Acid in the Prevention of Cancer. Crit Rev Food Sci Nutr 2005; 45:135-44. [PMID: 15941017 DOI: 10.1080/10408690490911800] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
There are multiple lines of evidence that a variety of natural fatty acids are effective in health promotion. Among these fatty acids, conjugated linoleic acid (CLA)--a collective term referring to a mixture of positional and geometric isomers of linoleic acid (LA, cis-9, cis-12-octadecadienoic acid)--is currently under intensive investigation due to its health-promotion potential. The antitumor activity of CLA is of special interest, since it shows inhibitory effects against multistage carcinogenesis at relatively low dietary levels. Many studies using in vivo and in vitro models have shown that CLA suppresses the development of multistage carcinogenesis at different sites. The research to date on CLA has provided a vast amount of information about the mechanism on how CLA functions in the prevention of cancer. This article discusses characteristics of CLA in the prevention of cancer in both in vivo and in vitro studies and the possible underlying chemoprevention mechanisms.
Collapse
Affiliation(s)
- Ki Won Lee
- Department of Food Science and Technology, School of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
47
|
Anderson NK, Beerman KA, McGuire MA, Dasgupta N, Griinari JM, Williams J, McGuire MK. Dietary fat type influences total milk fat content in lean women. J Nutr 2005; 135:416-21. [PMID: 15735072 DOI: 10.1093/jn/135.3.416] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trans fatty acids (TFA) are found naturally in some foods (e.g., dairy products) as well as many processed foods made with partially hydrogenated vegetable oils (PHVO). Data from a growing literature suggest that some TFA decrease milk fat in lactating animals. Because the physiologic effects of TFA in lactating women are unknown, this study was designed to investigate the effects of TFA consumption on human milk fat. A randomized, crossover design (n = 12) was used to study the effect of 3 dietary treatments: high PHVO (regular margarine), low PHVO (low TFA margarine), or low PHVO but high in naturally occurring TFA (butter) on milk fat. Treatments were administered for 5 d, with 7-d washout periods. Maternal adiposity was estimated by dual-energy X-ray absorptiometry. Milk and blood were collected on d 5 of each intervention period. In general, milk and serum fatty acid concentrations mirrored those of the dietary treatments. There were significant interactions between treatment and maternal adiposity on milk fat and infant milk consumption, as well as on serum glucose and nonesterified fatty acid (NEFA) concentrations. Consumption of regular margarine, compared with low TFA margarine, resulted in lower milk fat in leaner, but not in more obese women. Consumption of either regular or low TFA margarine, compared with butter, elevated serum NEFA concentrations in the more obese women. In summary, consumption of regular margarine, compared with low TFA margarine, decreased milk fat in lean women. Further studies are required to determine whether infant milk consumption might compensate for this potentially important change in milk composition.
Collapse
Affiliation(s)
- Nicole K Anderson
- Department of Food Science and Human Nutrition, Washington State University, Pullman, WA 99164-6376, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Michaud AL, Lawrence P, Adlof R, Brenna JT. On the formation of conjugated linoleic acid diagnostic ions with acetonitrile chemical ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:363-368. [PMID: 15645500 DOI: 10.1002/rcm.1797] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Acetonitrile chemical ionization tandem mass spectrometry has recently been shown to be a rapid method for the identification of double-bond position and geometry in methyl esters of conjugated linoleic acids (CLAs); however, the structures of intermediate and diagnostic ions and their mechanisms of formation are not known. A mechanism is proposed here in which the m/z 54 ion, (1-methyleneimino)-1-ethenylium (MIE), undergoes nucleophilic attack preferentially by the cis double bond in CLAs with mixed geometry (cis/trans, trans/cis), favoring the observed C--C cleavage vinylic to the trans double bond. The [M+54](+) addition product intermediate is consistent with a heterocyclic six-membered ring resulting from the two-step addition of MIE to the CLA. Experiments with isotopically labeled CLAs and acetonitrile, and from MS/MS/MS experiments, yield data consistent with this proposal. The proposed mechanism is also consistent with known ion-molecule chemistry in smaller compounds, and explains most phenomena associated with MIE-CLA ion chemistry.
Collapse
Affiliation(s)
- Anthony L Michaud
- Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca NY 14853, USA
| | | | | | | |
Collapse
|
49
|
Ringseis R, Saal D, Müller A, Steinhart H, Eder K. Dietary conjugated linoleic acids lower the triacylglycerol concentration in the milk of lactating rats and impair the growth and increase the mortality of their suckling pups. J Nutr 2004; 134:3327-34. [PMID: 15570033 DOI: 10.1093/jn/134.12.3327] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent studies showed that conjugated linoleic acids (CLA) lower triacylglycerol concentrations in the milk of lactating animals. This study was performed to determine the reasons for this phenomenon; we also investigated whether there is a relation between altered lipid metabolism in the liver and the reduction in milk triacylglycerols in rats fed CLA. Two groups of female rats were fed diets containing 0 [sunflower oil (SFO) group] or 14.7 g/kg diet of a CLA mixture (CLA group) at the expense of sunflower oil during growth, pregnancy, and lactation. CLA-fed rats had 49 and 80% lower mRNA concentration and activity of fatty acid synthase, respectively, a 51% lower mRNA concentration of lipoprotein lipase (LPL) in their mammary glands at d 17 of lactation, and a 46% lower milk fat content than SFO rats (P < 0.05). Although CLA rats had lower concentrations of triacylglycerols in the liver than SFO rats (20.8 +/- 2.6 vs. 62.6 +/- 27.7 micromol/g, P < 0.05), concentrations of triglycerides in plasma, which are the substrates of LPL, did not differ between the groups. Moreover, the number of pups per litter, litter weights, and pup weights at d 17 of lactation were 41, 35, and 22% lower, respectively, in the CLA group than in the SFO group. In conclusion, the present study suggests that dietary CLA reduces triacylglycerol concentrations in the milk via reduced de novo fatty acid synthesis in the mammary gland and an impaired uptake of fatty acids from lipoproteins into the mammary gland. This might be the reason for reduced growth rates and an increased mortality of suckling pups.
Collapse
Affiliation(s)
- Robert Ringseis
- Institut für Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Emil-Abderhaldenstrasse 26, D-06108 Halle/Saale, Germany
| | | | | | | | | |
Collapse
|
50
|
Perfield JW, Lock AL, Pfeiffer AM, Bauman DE. Effects of Amide-Protected and Lipid-Encapsulated Conjugated Linoleic Acid (CLA) Supplements on Milk Fat Synthesis. J Dairy Sci 2004; 87:3010-6. [PMID: 15375062 DOI: 10.3168/jds.s0022-0302(04)73432-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The trans-10, cis-12 isomer of conjugated linoleic acid (CLA) is a potent inhibitor of milk fat synthesis; its ability to reduce milk fat output in a controlled manner as a feed supplement, has potential management applications in the dairy industry. The effectiveness of dietary supplements of trans-10, cis-12 CLA is related to the extent to which their metabolism by rumen bacteria is minimized. A number of processes have been used to manufacture "rumen-protected" feed supplements, and their efficacy can be described by the extent of protection from rumen bacteria as well as postruminal bioavailability. The objective of this study was to investigate the effects of 2 rumen-protected CLA supplements on milk fat synthesis. Using the same initial batch of CLA, supplements were manufactured by the formation of fatty acyl amide bonds or by lipid encapsulation. Three rumen fistulated Holstein cows were randomly assigned in a 3 x 3 Latin square experiment. Treatments were 1) no supplement (control), 2) amide-protected CLA supplement, and 3) lipid-encapsulated CLA supplement. Supplements were fed to provide 10 g/d of the trans-10, cis-12 CLA isomer. Over the 7-d treatment period, 21 and 22% reductions in milk fat yield were observed for the amide-protected and lipid-encapsulated supplements, respectively. Transfer of trans-10, cis-12 CLA into milk fat was also similar for the amide-protected (7.1%) and lipid-encapsulated (7.9%) supplements. Overall, the amide-protected and lipid-encapsulated CLA supplements were equally effective at reducing milk fat synthesis and had no effect on milk yield or dry matter intake.
Collapse
Affiliation(s)
- J W Perfield
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|