1
|
Ahmed IU, Myerscough MR. HDL and plaque regression in a multiphase model of early atherosclerosis. Math Biosci 2024; 373:109208. [PMID: 38759951 DOI: 10.1016/j.mbs.2024.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Atherosclerosis is a chronic disease of the arteries characterised by the accumulation of lipids and lipid-engorged cells in the artery wall. Early plaque growth is aggravated by the deposition of low density lipoproteins (LDL) in the wall and the subsequent immune response. High density lipoproteins (HDL) counterbalance the effects of LDL by accepting cholesterol from macrophages and removing it from the plaque. In this paper, we develop a free boundary multiphase model to investigate the effects of LDL and HDL on early plaque development. We examine how the rates of LDL and HDL deposition affect cholesterol accumulation in macrophages, and how this impacts cell death rates and emigration. We identify a region of LDL-HDL parameter space where plaque growth stabilises for low LDL and high HDL influxes, due to macrophage emigration and HDL clearance that counterbalances the influx of new cells and cholesterol. We explore how the efferocytic uptake of dead cells and the recruitment of new macrophages affect plaque development for a range of LDL and HDL influxes. Finally, we consider how changes in the LDL-HDL profile can change the course of plaque development. We show that changes towards lower LDL and higher HDL can slow plaque growth and even induce regression. We find that these changes have less effect on larger, more established plaques, and that temporary changes will only slow plaque growth in the short term.
Collapse
Affiliation(s)
- Ishraq U Ahmed
- School of Mathematics and Statistics, University of Sydney, Australia.
| | - Mary R Myerscough
- School of Mathematics and Statistics, University of Sydney, Australia
| |
Collapse
|
2
|
Wilson VD, Bommart S, Passerieux E, Thomas C, Pincemail J, Picot MC, Mercier J, Portet F, Arbogast S, Laoudj-Chenivesse D. Muscle strength, quantity and quality and muscle fat quantity and their association with oxidative stress in patients with facioscapulohumeral muscular dystrophy: Effect of antioxidant supplementation. Free Radic Biol Med 2024; 219:112-126. [PMID: 38574978 DOI: 10.1016/j.freeradbiomed.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The purpose of this study was to identify causes of quadriceps muscle weakness in facioscapulohumeral muscular dystrophy (FSHD). To this aim, we evaluated quadriceps muscle and fat volumes by magnetic resonance imaging and their relationships with muscle strength and oxidative stress markers in adult patients with FSHD (n = 32) and healthy controls (n = 7), and the effect of antioxidant supplementation in 20 of the 32 patients with FSHD (n = 10 supplementation and n = 10 placebo) (NCT01596803). Compared with healthy controls, the dominant quadriceps strength and quality (muscle strength per unit of muscle volume) were decreased in patients with FSHD. In addition, fat volume was increased, without changes in total muscle volume. Moreover, in patients with FSHD, the lower strength of the non-dominant quadriceps was associated with lower muscle quality compared with the dominant muscle. Antioxidant supplementation significantly changed muscle and fat volumes in the non-dominant quadriceps, and muscle quality in the dominant quadriceps. This was associated with improved muscle strength (both quadriceps) and antioxidant response. These findings suggest that quadriceps muscle strength decline may not be simply explained by atrophy and may be influenced also by the muscle intrinsic characteristics. As FSHD is associated with increased oxidative stress, supplementation might reduce oxidative stress and increase antioxidant defenses, promoting changes in muscle function.
Collapse
Affiliation(s)
- Vinicius Dias Wilson
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France; Centro Universitário Estácio de Belo Horizonte, Minas Gerais, Brazil.
| | - Sébastien Bommart
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France; Department of Radiology, CHU of Montpellier, Arnaud de Villeneuve Hospital, 34090, Montpellier, France.
| | - Emilie Passerieux
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France.
| | - Claire Thomas
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France; LBEPS, Univ Evry, IRBA, University Paris Saclay, 91025, Evry, France.
| | - Joël Pincemail
- Department of CREDEC, Department of Medical Chemistry, University Hospital of Liege, Sart Tilman, Liege, Belgium.
| | - Marie Christine Picot
- Department of Biostatistics and Epidemiology, University Hospital, Montpellier, France; CIC 1001-INSERM, Montpellier, France.
| | - Jacques Mercier
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France; Department of Clinical Physiology, CHU of Montpellier, Montpellier, France.
| | - Florence Portet
- Department of Clinical Physiology, CHU of Montpellier, Montpellier, France; U1061 INSERM, CHU de Montpellier, Montpellier University, France.
| | - Sandrine Arbogast
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France.
| | - Dalila Laoudj-Chenivesse
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France; Department of Clinical Physiology, CHU of Montpellier, Montpellier, France.
| |
Collapse
|
3
|
Rahmy HAF, El-Tanany RRA, Ghoneem WMA. Nutrient utilization, growth performance, and antioxidative status of Barki lambs fed diets supplemented with black (Nigella sativa) and rocket (Eruca sativa) seeds. Trop Anim Health Prod 2024; 56:156. [PMID: 38727858 PMCID: PMC11087338 DOI: 10.1007/s11250-024-04005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
The current study aimed to determine the polyphenol compounds in Nigella sativa (NS) and Eruca sativa (ES) seeds, and evaluate the impact of their addition either as a sole additive or in combination on the growth performance, digestibility, some rumen and blood parameters and antioxidative status of Barki lambs. Forty-eight male lambs (27.18 ± 0.22 kg, 5-6 months), were divided into 4 balanced groups. The experimental diets were randomly distributed to the control group (CON); fed alfalfa hay plus concentrate feed mixture at a ratio of 30:70% without additives, while, NSD, ESD, and NESD groups: fed CON diet plus 2% NS, 2% ES or 1% NS + 1% ES, respectively as a ratio from total mixed ration (TMR). Results indicated that rutin and catechin were the most phenolic compounds observed either in NS or ES seeds. The NS and ES-supplemented groups recorded the highest (P < 0.05) values for dry matter digestibility, nutritive values, average daily gain, and the best feed conversion ratio. However, growth performance, nutritive value, and all nutrient digestibility except for dry matter were not significantly altered with the NESD group. Concentrations of ruminal NH3-N and TVFA were significantly (P < 0.05) reduced with the NESD group, with no significant differences in pH values among different groups. Values of blood parameters showed significant increases in WBCs, PCV, and T-AOC, and decreases in cholesterol, triglycerides, and MDA with the addition of NS and ES seeds or both. Therefore, the addition of NS and ES seeds is recommended to improve lambs' health and antioxidant status.
Collapse
|
4
|
Aispuro-Hernández E, de Jesús Vergara-Jiménez M, Cárdenas-Torres FI, Lagarda-Díaz I, Martínez-Téllez MÁ, Soto-Córdova FJ, Corrales-Maldonado CG, Del Carmen Vargas-Arispuro I, Ontiveros N. Fruit Juices of Etcho (Pachycereus pecten-aboriginum) and Giant Cardon (Pachycereus pringlei) are Sources of Health-Promoting Ingredients with Potential Anticancer Properties. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:728-734. [PMID: 37658958 DOI: 10.1007/s11130-023-01099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
Mexico is one of the main diversification centers of cacti in the world, with more than 500 endemic species, most of which remain nutritionally and functionally uncharacterized. The columnar cacti of the genus Pachycereus comprise five underutilized endemic Mexican species, whose nutraceutical properties have only been studied in the P. weberi species. Therefore, this study aimed to evaluate the nutritional quality and bioactive properties of etcho (P. pecten-aboriginum) and giant cardon (P. pringlei) fruit. The physical, chemical, and nutritional composition of etcho and giant cardon fruits were characterized, as well as the profile and content of bioactive compounds, antioxidant activity (ABTS•+ and DPPH•), and antiproliferative capacity in cervical (HeLa) and breast cancer (MDA-MB-231, MCF-7, and T-47D) cell lines. Our results suggest that etcho and giant cardon fruits are rich sources of essential nutrients and bioactive phytochemicals (including K, Mg, P, dietary fiber, polyphenolic compounds, vitamin C, betalains, and myo-inositol) with antioxidant and anticancer potential by inhibiting the proliferation of all evaluated cell lines with IC50 values in the range of 198 to 287 µg of gallic acid equivalents/mL. Therefore, etcho and giant cardon fruits could be used for nutraceutical purposes, and their consumption could promote health benefits.
Collapse
Affiliation(s)
- Emmanuel Aispuro-Hernández
- Posgrado en Ciencias de la Nutrición y Alimentos Medicinales, Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, 80019, México
| | - Marcela de Jesús Vergara-Jiménez
- Posgrado en Ciencias de la Nutrición y Alimentos Medicinales, Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, 80019, México
| | - Feliznando Isidro Cárdenas-Torres
- Posgrado en Ciencias de la Nutrición y Alimentos Medicinales, Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, 80019, México
| | - Irlanda Lagarda-Díaz
- Departamento de Física, Investigadores por México CONAHCyT-Universidad de Sonora, Hermosillo, Sonora, 83000, México
| | | | | | | | | | - Noé Ontiveros
- Facultad de Ciencias Biológicas y de Salud, Departamento de Ciencias Químico-Biológicas y Agropecuarias, Laboratorio de Análisis Clínicos e Investigación (LACIUS, U.N.), Universidad de Sonora, Navojoa, Sonora, 85880, México.
| |
Collapse
|
5
|
Mason SA, Parker L, van der Pligt P, Wadley GD. Vitamin C supplementation for diabetes management: A comprehensive narrative review. Free Radic Biol Med 2023; 194:255-283. [PMID: 36526243 DOI: 10.1016/j.freeradbiomed.2022.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Growing evidence suggests that vitamin C supplementation may be an effective adjunct therapy in the management of people with diabetes. This paper critically reviews the current evidence on effects of vitamin C supplementation and its potential mechanisms in diabetes management. Evidence from meta-analyses of randomized controlled trials (RCTs) show favourable effects of vitamin C on glycaemic control and blood pressure that may be clinically meaningful, and mixed effects on blood lipids and endothelial function. However, evidence is mostly of low evidence certainty. Emerging evidence is promising for effects of vitamin C supplementation on some diabetes complications, particularly diabetic foot ulcers. However, there is a notable lack of robust and well-designed studies exploring effects of vitamin C as a single compound supplement on diabetes prevention and patient-important outcomes (i.e. prevention and amelioration of diabetes complications). RCTs are also required to investigate potential preventative or ameliorative effects of vitamin C on gestational diabetes outcomes. Oral vitamin C doses of 500-1000 mg per day are potentially effective, safe, and affordable for many individuals with diabetes. However, personalisation of supplementation regimens that consider factors such as vitamin C status, disease status, current glycaemic control, vitamin C intake, redox status, and genotype is important to optimize vitamin C's therapeutic effects safely. Finally, given a high prevalence of vitamin C deficiency in patients with complications, it is recommended that plasma vitamin C concentration be measured and monitored in the clinic setting.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paige van der Pligt
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Nutrition and Dietetics, Western Health, Footscray, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
6
|
Lin YT, Wang LK, Hung KC, Chang CY, Wu LC, Ho CH, Chen JY. Prevalence and Predictors of Insufficient Plasma Vitamin C in a Subtropical Region and Its Associations with Risk Factors of Cardiovascular Diseases: A Retrospective Cross-Sectional Study. Nutrients 2022; 14:nu14051108. [PMID: 35268083 PMCID: PMC8912640 DOI: 10.3390/nu14051108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Background: to evaluate the prevalence and predictors of insufficient plasma vitamin C among adults in a subtropical region and its associations with cardiovascular disease risk factors including dyslipidemia and lipid-independent markers, namely homocysteine, high-sensitivity C-reactive protein (hs-CRP) and lipoprotein(a). Methods: Data of this retrospective cross-sectional study were extracted from electronic medical database of a Medical Center. Based on plasma vitamin C status, subjects were split into two groups—subjects with sufficient and insufficient plasma vitamin C levels (<50 µmol/L, ≤8.8 mg/L). Results: Prevalence of insufficient plasma vitamin C in 3899 adults was 39%. Multivariate logistic regression identified male gender, high body mass index, age 20−39, and winter/spring as independent predictors of insufficient vitamin C among all subjects. Greater proportions of subjects with insufficient plasma vitamin C had lower high-density lipoprotein cholesterol levels and elevated levels of triglyceride, homocysteine and hs-CRP (all p < 0.001). There were no differences in total cholesterol, low-density lipoprotein cholesterol and lipoprotein(a) between groups. Conclusions: There was a high prevalence of insufficient plasma vitamin C in the subtropical region, which indicates that insufficient plasma vitamin C remains a public health issue. Further study is needed to confirm these findings and to determine the underlying mechanisms.
Collapse
Affiliation(s)
- Yao-Tsung Lin
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 71004, Taiwan; (Y.-T.L.); (L.-K.W.); (K.-C.H.)
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Li-Kai Wang
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 71004, Taiwan; (Y.-T.L.); (L.-K.W.); (K.-C.H.)
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 71004, Taiwan; (Y.-T.L.); (L.-K.W.); (K.-C.H.)
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Chia-Yu Chang
- Department of Neurology, Chi Mei Medical Center, Tainan 71004, Taiwan;
- The Center for General Education, Southern Taiwan University of Science and Technology, Tainan 80424, Taiwan
| | - Li-Ching Wu
- Center for Precision Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan;
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chung-Han Ho
- Department of Medical Research, Chi Mei Medical Center, Tainan 71004, Taiwan;
| | - Jen-Yin Chen
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 71004, Taiwan; (Y.-T.L.); (L.-K.W.); (K.-C.H.)
- Correspondence:
| |
Collapse
|
7
|
Liu D, Gu Y, Yu H. Vitamin C regulates the production of reactive oxygen species through Wnt10b signaling in the gill of zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1271-1282. [PMID: 34228252 DOI: 10.1007/s10695-021-00982-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, the mechanism that vitamin C (VC) regulates the production of reactive oxygen species (ROS) through Wnt10b signaling was investigated in the gill of zebrafish (Danio rerio). The results showed that 0.5 and 1.0 g/kg VC diets induced the gene expression of Wnt10b, β-catenin, SOD, CAT, and GSH-PX in gill. In addition, VC decreased the levels of H2O2, O2·- and ·OH, whereas the activities of SOD, CAT, and GSH-PX were increased by VC in the gill of zebrafish. To evaluate the role of Wnt10b in regulating oxidative stress, Wnt10b RNA was further interfered and the gene expression and activities of antioxidant enzymes were detected in gill. The result of Wnt10b RNA interference showed that Wnt10b signaling played a key role in regulating the gene expression of SOD, CAT, and GSH-PX. In all, VC may regulate the production of ROS through Wnt10b signaling in the gill of zebrafish (Danio rerio).
Collapse
Affiliation(s)
- Dongwu Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, China.
| | - Yaqi Gu
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Hairui Yu
- College of Biological and Agricultural Engineering, Weifang Bioengineering Technology Research Center, Weifang University, Weifang, 261061, China
| |
Collapse
|
8
|
Liu L, Tao L, Chen J, Zhang T, Xu J, Ding M, Wang X, Zhong J. Fish oil-gelatin core-shell electrospun nanofibrous membranes as promising edible films for the encapsulation of hydrophobic and hydrophilic nutrients. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Sotomayor CG, Bustos NI, Yepes-Calderon M, Arauna D, de Borst MH, Berger SP, Rodrigo R, Dullaart RPF, Navis GJ, Bakker SJL. Plasma Vitamin C and Risk of Late Graft Failure in Kidney Transplant Recipients: Results of the TransplantLines Biobank and Cohort Study. Antioxidants (Basel) 2021; 10:631. [PMID: 33919075 PMCID: PMC8143099 DOI: 10.3390/antiox10050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
Recent studies have shown that depletion of vitamin C is frequent in outpatient kidney transplant recipients (KTR) and that vitamin C is inversely associated with risk of death. Whether plasma vitamin C is associated with death-censored kidney graft failure remains unknown. We investigated KTR who participated in the TransplantLines Insulin Resistance and Inflammation Biobank and Cohort Study. The primary outcome was graft failure (restart of dialysis or re-transplantation). Overall and stratified (pinteraction < 0.1) multivariable-adjusted Cox regression analyses are presented here. Among 598 KTR (age 51 ± 12 years-old; 55% males), baseline median (IQR) plasma vitamin C was 44.0 (31.0-55.3) µmol/L. Through a median follow-up of 9.5 (IQR, 6.3‒10.2) years, 75 KTR developed graft failure (34, 26, and 15 events over increasing tertiles of vitamin C, log-rank p < 0.001). Plasma vitamin C was inversely associated with risk of graft failure (HR per 1-SD increment, 0.69; 95% CI 0.54-0.89; p = 0.004), particularly among KTR with triglycerides ≥1.9 mmol/L (HR 0.46; 95% CI 0.30-0.70; p < 0.001; pinteraction = 0.01) and among KTR with HDL cholesterol ≥0.91 mmol/L (HR 0.56; 95% CI 0.38-0.84; p = 0.01; pinteraction = 0.04). These findings remained materially unchanged in multivariable-adjusted analyses (donor, recipient, and transplant characteristics, including estimated glomerular filtration rate and proteinuria), were consistent in categorical analyses according to tertiles of plasma vitamin C, and robust after exclusion of outliers. Plasma vitamin C in outpatient KTR is inversely associated with risk of late graft failure. Whether plasma vitamin C‒targeted therapeutic strategies represent novel opportunities to ease important burden of graft failure necessitates further studies.
Collapse
Affiliation(s)
- Camilo G. Sotomayor
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (M.Y.-C.); (M.H.d.B.); (S.P.B.); (G.J.N.); (S.J.L.B.)
- Faculty of Medicine, University of Chile, 8330033 Santiago, Chile; (N.I.B.); (R.R.)
| | - Nicolas I. Bustos
- Faculty of Medicine, University of Chile, 8330033 Santiago, Chile; (N.I.B.); (R.R.)
| | - Manuela Yepes-Calderon
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (M.Y.-C.); (M.H.d.B.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - Diego Arauna
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, 3460000 Talca, Chile;
| | - Martin H. de Borst
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (M.Y.-C.); (M.H.d.B.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - Stefan P. Berger
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (M.Y.-C.); (M.H.d.B.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - Ramón Rodrigo
- Faculty of Medicine, University of Chile, 8330033 Santiago, Chile; (N.I.B.); (R.R.)
| | - Robin P. F. Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Gerjan J. Navis
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (M.Y.-C.); (M.H.d.B.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - Stephan J. L. Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (M.Y.-C.); (M.H.d.B.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| |
Collapse
|
10
|
Berretta M, Quagliariello V, Maurea N, Di Francia R, Sharifi S, Facchini G, Rinaldi L, Piezzo M, Manuela C, Nunnari G, Montopoli M. Multiple Effects of Ascorbic Acid against Chronic Diseases: Updated Evidence from Preclinical and Clinical Studies. Antioxidants (Basel) 2020; 9:antiox9121182. [PMID: 33256059 PMCID: PMC7761324 DOI: 10.3390/antiox9121182] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Severe disease commonly manifests as a systemic inflammatory process. Inflammation is associated withthe enhanced production of reactive oxygen and nitrogen species and with a marked reduction in the plasma concentrations of protective antioxidant molecules. This imbalance gives rise to oxidative stress, which is greater in patients with more severe conditions such as sepsis, cancer, cardiovascular disease, acute respiratory distress syndrome, and burns. In these patients, oxidative stress can trigger cell, tissue, and organ damage, thus increasing morbidity and mortality. Ascorbic acid (ASC) is a key nutrient thatserves as an antioxidant and a cofactor for numerous enzymatic reactions. However, humans, unlike most mammals, are unable to synthesize it. Consequently, ASC must be obtained through dietary sources, especially fresh fruit and vegetables. The value of administering exogenous micronutrients, to reestablish antioxidant concentrations in patients with severe disease, has been recognized for decades. Despite the suggestion that ASC supplementation may reduce oxidative stress and prevent several chronic conditions, few large, randomized clinical trials have tested it in patients with severe illness. This article reviews the recent literature on the pharmacological profile of ASC and the role of its supplementation in critically ill patients.
Collapse
Affiliation(s)
- Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
- Correspondence:
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Raffaele Di Francia
- Italian Association of Pharmacogenomics and Molecular Diagnostics (IAPharmagen), 60126 Ancona, Italy;
| | - Saman Sharifi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (S.S.); (M.M.)
| | - Gaetano Facchini
- Division of Medical Oncology, “S. Maria delle Grazie” Hospital—ASL Napoli 2 Nord, 80126 Pozzuoli, Italy;
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 80121 Napoli, Italy;
| | - Michela Piezzo
- Division of Breast Medical Oncology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy;
| | - Ceccarelli Manuela
- Division of Infectious Disease, University of Catania, 95122 Catania, Italy;
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (S.S.); (M.M.)
| |
Collapse
|
11
|
Lee D, Jo MG, Kim SY, Chung CG, Lee SB. Dietary Antioxidants and the Mitochondrial Quality Control: Their Potential Roles in Parkinson's Disease Treatment. Antioxidants (Basel) 2020; 9:antiox9111056. [PMID: 33126703 PMCID: PMC7692176 DOI: 10.3390/antiox9111056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Advances in medicine and dietary standards over recent decades have remarkably increased human life expectancy. Unfortunately, the chance of developing age-related diseases, including neurodegenerative diseases (NDDs), increases with increased life expectancy. High metabolic demands of neurons are met by mitochondria, damage of which is thought to contribute to the development of many NDDs including Parkinson’s disease (PD). Mitochondrial damage is closely associated with the abnormal production of reactive oxygen species (ROS), which are widely known to be toxic in various cellular environments, including NDD contexts. Thus, ways to prevent or slow mitochondrial dysfunction are needed for the treatment of these NDDs. In this review, we first detail how ROS are associated with mitochondrial dysfunction and review the cellular mechanisms, such as the mitochondrial quality control (MQC) system, by which neurons defend against both abnormal production of ROS and the subsequent accumulation of damaged mitochondria. We next highlight previous studies that link mitochondrial dysfunction with PD and how dietary antioxidants might provide reinforcement of the MQC system. Finally, we discuss how aging plays a role in mitochondrial dysfunction and PD before considering how healthy aging through proper diet and exercise may be salutary.
Collapse
Affiliation(s)
- Davin Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Min Gu Jo
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Seung Yeon Kim
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
- Correspondence: (C.G.C.); (S.B.L.)
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
- Correspondence: (C.G.C.); (S.B.L.)
| |
Collapse
|
12
|
Anti-Atherosclerotic Activity of (3 R)-5-Hydroxymellein from an Endophytic Fungus Neofusicoccum parvum JS-0968 Derived from Vitex rotundifolia through the Inhibition of Lipoproteins Oxidation and Foam Cell Formation. Biomolecules 2020; 10:biom10050715. [PMID: 32380666 PMCID: PMC7277969 DOI: 10.3390/biom10050715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/02/2023] Open
Abstract
An endophytic fungus, Neofusicoccum parvum JS-0968, was isolated from a plant, Vitex rotundifolia. The chemical investigation of its cultures led to the isolation of a secondary metabolite, (3R)-5-hydroxymellein. It has been reported to have antifungal, antibacterial, and antioxidant activity, but there have been no previous reports on the effects of (3R)-5-hydroxymellein on atherosclerosis. The oxidation of lipoproteins and foam cell formation have been known to be significant in the development of atherosclerosis. Therefore, we investigated the inhibitory effects of (3R)-5-hydroxymellein on atherosclerosis through low-density lipoprotein (LDL) and high-density lipoprotein (HDL) oxidation and macrophage foam cell formation. LDL and HDL oxidation were determined by measuring the production of conjugated dienes and malondialdehyde, the amount of hyperchromicity and carbonyl content, conformational changes, and anti-LDL oxidation. In addition, the inhibition of foam cell formation was measured by Oil red O staining. As a result, (3R)-5-hydroxymellein suppressed the oxidation of LDL and HDL through the inhibition of lipid peroxidation, the decrease of negative charges, the reduction of hyperchromicity and carbonyl contents, and the prevention of apolipoprotein A-I (ApoA-I) aggregation and apoB-100 fragmentation. Furthermore, (3R)-5-hydroxymellein significantly reduced foam cell formation induced by oxidized LDL (oxLDL). Taken together, our data show that (3R)-5-hydroxymellein could be a potential preventive agent for atherosclerosis via obvious anti-LDL and HDL oxidation and the inhibition of foam cell formation.
Collapse
|
13
|
Liu D, Gu Y, Pang Q, Han Q, Li A, Wu W, Zhang X, Shi Q, Zhu L, Yu H, Zhang Q. Vitamin C inhibits lipid deposition through GSK-3β/mTOR signaling in the liver of zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:383-394. [PMID: 31782040 DOI: 10.1007/s10695-019-00727-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
In this study, the mechanism that VC inhibits lipid deposition through GSK-3β/mTOR signaling was investigated in the liver of Danio rerio. The results indicated that 0.5- and 1.0-g/kg VC treatments activated mTOR signaling by inhibiting GSK-3β expression. The mRNA expression of FAS, ACC, and ACL, as well as the content of TG, TC, and NEFA, was decreased by 0.5- and 1.0-g/kg VC treatments. Moreover, to confirm GSK-3β playing a key role in regulating TSC2 and mTOR, GSK-3β RNA was interfered and the activity of GSK-3β was inhibited by 25- and 50-mg/L LiCl treatments, respectively. The results indicated that GSK-3β inactivation played a significant role in inducing mTOR signaling and inhibiting lipid deposition. VC treatments could induce mTOR signaling by inhibiting GSK-3β, and mTOR further participated in regulating lipid deposition by controlling lipid profile in the liver of zebrafish.
Collapse
Affiliation(s)
- Dongwu Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, China.
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China.
| | - Yaqi Gu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Qiang Han
- Research and Development Office, Sunwin Biotech Shandong Co., Ltd., Weifang, 262737, China
| | - Ao Li
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Weiwei Wu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Xiuzhen Zhang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Qilong Shi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, China
| | - Lanlan Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, China
| | - Hairui Yu
- College of Biological and Agricultural Engineering, Weifang Bioengineering Technology Research Center, Weifang University, Weifang, 261061, China
| | - Qin Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Science and Biotechnology, Guangxi University for Nationalities, Nanning, 530008, China
| |
Collapse
|
14
|
Epimedium koreanum Extract and Its Flavonoids Reduced Atherosclerotic Risk via Suppressing Modification of Human HDL. Nutrients 2019; 11:nu11051110. [PMID: 31109081 PMCID: PMC6566614 DOI: 10.3390/nu11051110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is the key factor responsible for cardiovascular events, which is a major cause of morbidities and mortalities worldwide. It is well known that high-density lipoprotein (HDL) oxidation and glycation increases the risk for atherosclerosis. Epimedium koreanum has been used as a traditional oriental medicine for treating erectile dysfunction, kidney diseases, osteoporosis, and breast cancer. However, no reports on the effects of E. koreanum on HDL modification exist. In this study, we investigated the inhibitory effects of E. koreanum extract and its eight flavonoids, which are: (1) anhydroicaritin 3-O-rhamnoside, (2) β-anhydroicaritin, (3–5) epimedins A-C, (6) epimedoside A, (7) icariin, and (8) des-O-methyl-β-anhydroicaritin, against HDL modification. HDLs obtained from pooled human plasma samples were incubated in vitro with E. koreanum extract or each compound in the presence of copper sulfate or fructose. The HDL modifications were evaluated by measuring generation of conjugated dienes, production of thiobarbituric acid reactive substances, change in electrophoretic mobility of apoA-I, advanced glycation end products formation, and apoA-I aggregation. Consequently, E. koreanum extract and compound 8 suppressed HDL modification through inhibition of lipid peroxidation, apoA-I aggregation, negative charge increase, and AGEs formation. In particular, compound 8 showed more potent inhibitory effect on HDL modification than the extracts, suggesting its protective role against atherosclerosis via inhibition of HDL oxidation and glycation.
Collapse
|
15
|
Ovuakporie‐Uvo O, Idu M, Omoregie ES. Nutrients and chemical composition of Desplatsia dewevrei. Food Sci Nutr 2019; 7:1768-1777. [PMID: 31139390 PMCID: PMC6526697 DOI: 10.1002/fsn3.1019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/14/2018] [Accepted: 10/19/2018] [Indexed: 11/06/2022] Open
Abstract
Several plants species have served as food for man because of their nutritional values. However, there is a lack of data on the nutritional benefits of Desplatsia dewevrei. Hence, this study was aimed at investigating the nutrients and chemical composition of D. dewevrei leaves and fruits. Vitamins, amino acid profile, and mineral composition of D. dewevrei were investigated. Minerals found present include copper, magnesium, calcium, and potassium. Vitamins B, C, and K up to the daily standard required intake levels according to World Health Organization standards were discovered in D. dewevrei. The protein score from the amino acid composition was 100%. Phytate and oxalate, which are non-nutritional components, were found present in D. dewevrei; however, in values far below the daily intake required limit by the WHO standard. In conclusion, D. dewevrei from this research finding has convincing qualities of a reliable nutraceutical raw material, which can be properly finished and incorporated into the human diet to harness its vitality.
Collapse
Affiliation(s)
- Oghale Ovuakporie‐Uvo
- Department of Biological and Chemical Sciences, Faculty of Natural and Applied SciencesMichael and Cecilia Ibru UniversityUghelliDelta StateNigeria
| | - MacDonald Idu
- Phytomedicine Research Group, Department of Plant Biology and BiotechnologyUniversity of BeninBenin CityEdo StateNigeria
| | | |
Collapse
|
16
|
Kiokias S, Proestos C, Oreopoulou V. Effect of Natural Food Antioxidants against LDL and DNA Oxidative Changes. Antioxidants (Basel) 2018; 7:antiox7100133. [PMID: 30282925 PMCID: PMC6211048 DOI: 10.3390/antiox7100133] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022] Open
Abstract
Radical oxygen species formed in human tissue cells by many endogenous and exogenous pathways cause extensive oxidative damage which has been linked to various human diseases. This review paper provides an overview of lipid peroxidation and focuses on the free radicals-initiated processes of low-density lipoprotein (LDL) oxidative modification and DNA oxidative damage, which are widely associated with the initiation and development of atherosclerosis and carcinogenesis, respectively. The article subsequently provides an overview of the recent human trials or even in vitro investigations on the potential of natural antioxidant compounds (such as carotenoids; vitamins C and E) to monitor LDL and DNA oxidative changes.
Collapse
Affiliation(s)
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece.
| | - Vassilki Oreopoulou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Iron Politechniou 9, 15780 Athens, Greece.
| |
Collapse
|
17
|
Bashandy SAE, Ebaid H, Abdelmottaleb Moussa SA, Alhazza IM, Hassan I, Alaamer A, Al Tamimi J. Potential effects of the combination of nicotinamide, vitamin B2 and vitamin C on oxidative-mediated hepatotoxicity induced by thioacetamide. Lipids Health Dis 2018; 17:29. [PMID: 29444683 PMCID: PMC5813429 DOI: 10.1186/s12944-018-0674-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/05/2018] [Indexed: 02/08/2023] Open
Abstract
Background The liver disease is one of the most important traditional public health problems in Egypt. Oxidative stress is attributed to such pathological condition that further contributes to the initiation and progression of liver injury. In the present study, we have investigated if the strong antioxidant power of Nicotinamide (NA), Vitamin B2 (VB2), and Vitamin C (VC) can ameliorate TAA-induced oxidative stress-mediated liver injury in the rats. Methods Thirty-six albino rats were divided into six groups: Control group; TAA group (IP injection with TAA at a dosage of 200 mg/Kg three times a week for two months); TAA + NA group (rats administered with NA at a dosage of 200 mg/kg daily besides TAA as in the control); TAA + VB2 group (rats administered with vitamin B2 at a dosage of 30 mg/kg daily besides injection with TAA); TAA + VC group (rats administered with vitamin C at a dosage of 200 mg/kg daily along with injection of TAA). TAA + NA + VB + VC group (rats administered the with the three vitamins daily in TAA pre-injected at the respective doses described above). Results Treatment of rats with TAA led to a significant elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), total bilirubin, cholesterol, triglycerides, low-density lipoprotein (LDL) and tumor necrosis factor-alpha (TNF-α) in the serum samples. Moreover, malondialdehyde (MDA), hydroxyproline and nitic oxide (NO) were also significantly increased in the TAA-treated rats, while reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were significantly compromised in the hepatic samples. Rats administered with NA, VB2, and VC as individually or in combination ameliorated the deleterious effects of TAA that was confirmed by histopathology. However, the combination of the three vitamins was found more effective as compared to each of the vitamins. Conclusion Our work demonstrates that NA, VB2, and VC cross-talk with each other that act as a more potent biochemical chain of antioxidant defense against TAA-induced toxicities in vivo.
Collapse
Affiliation(s)
- Samir A E Bashandy
- Pharmacology Department, Medical Division, National Research Centre, Bohouth St. (former EL Tahrir St.), Dokki, Giza, EL, 33, Egypt
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia. .,Department of Zoology, Faculty of Science, Minia University, Minia, Egypt.
| | - Sherif A Abdelmottaleb Moussa
- Committee of Radiation and Environmental Pollution Protection (CREPP), Department of Physics, College of Science, Al- Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.,Biophysics Group, Biochemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt
| | - Ibrahim M Alhazza
- Department of Zoology, Faculty of Science, Minia University, Minia, Egypt
| | - Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdulaziz Alaamer
- Committee of Radiation and Environmental Pollution Protection (CREPP), Department of Physics, College of Science, Al- Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Jameel Al Tamimi
- Pharmacology Department, Medical Division, National Research Centre, Bohouth St. (former EL Tahrir St.), Dokki, Giza, EL, 33, Egypt
| |
Collapse
|
18
|
A novel turn-on fluorescent strategy for sensing ascorbic acid using graphene quantum dots as fluorescent probe. Biosens Bioelectron 2017; 92:229-233. [DOI: 10.1016/j.bios.2017.02.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/15/2017] [Accepted: 02/03/2017] [Indexed: 02/08/2023]
|
19
|
Passerieux E, Hayot M, Jaussent A, Carnac G, Gouzi F, Pillard F, Picot MC, Böcker K, Hugon G, Pincemail J, Defraigne JO, Verrips T, Mercier J, Laoudj-Chenivesse D. Effects of vitamin C, vitamin E, zinc gluconate, and selenomethionine supplementation on muscle function and oxidative stress biomarkers in patients with facioscapulohumeral dystrophy: a double-blind randomized controlled clinical trial. Free Radic Biol Med 2015; 81:158-69. [PMID: 25246239 DOI: 10.1016/j.freeradbiomed.2014.09.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 12/29/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disease characterized by progressive weakness and atrophy of specific skeletal muscles. As growing evidence suggests that oxidative stress may contribute to FSHD pathology, antioxidants that might modulate or delay oxidative insults could help in maintaining FSHD muscle function. Our primary objective was to test whether oral administration of vitamin C, vitamin E, zinc gluconate, and selenomethionine could improve the physical performance of patients with FSHD. Adult patients with FSHD (n=53) were enrolled at Montpellier University Hospital (France) in a randomized, double-blind, placebo-controlled pilot clinical trial. Patients were randomly assigned to receive 500 mg vitamin C, 400mg vitamin E, 25mg zinc gluconate and 200 μg selenomethionine (n=26), or matching placebo (n=27) once a day for 17 weeks. Primary outcomes were changes in the two-minute walking test (2-MWT), maximal voluntary contraction, and endurance limit time of the dominant and nondominant quadriceps (MVCQD, MVCQND, TlimQD, and TlimQND, respectively) after 17 weeks of treatment. Secondary outcomes were changes in the antioxidant status and oxidative stress markers. Although 2-MWT, MVCQ, and TlimQ were all significantly improved in the supplemented group at the end of the treatment compared to baseline, only MVCQ and TlimQ variations were significantly different between groups (MVCQD: P=0.011; MVCQND: P=0.004; TlimQD: P=0.028; TlimQND: P=0.011). Similarly, the vitamin C (P<0.001), vitamin E as α-tocopherol (P<0.001), vitamin C/vitamin E ratio (P=0.017), vitamin E γ/α ratio (P=0.022) and lipid peroxides (P<0.001) variations were significantly different between groups. In conclusion, vitamin E, vitamin C, zinc, and selenium supplementation has no significant effect on the 2-MWT, but improves MVCQ and TlimQ of both quadriceps by enhancing the antioxidant defenses and reducing oxidative stress. This trial was registered at clinicaltrials.gov (number: NCT01596803).
Collapse
Affiliation(s)
- Emilie Passerieux
- University of Montpellier 1 and 2, INSERM Unit 1046, Montpellier, France
| | - Maurice Hayot
- University of Montpellier 1 and 2, INSERM Unit 1046, Montpellier, France and Department of Clinical Physiology, University Hospital, Montpellier, France
| | - Audrey Jaussent
- Department of Biostatistics and Epidemiology, University Hospital of Montpellier, Montpellier, France
| | - Gilles Carnac
- University of Montpellier 1 and 2, INSERM Unit 1046, Montpellier, France
| | - Fares Gouzi
- University of Montpellier 1 and 2, INSERM Unit 1046, Montpellier, France and Department of Clinical Physiology, University Hospital, Montpellier, France
| | - Fabien Pillard
- Department of Respiratory Exploration and Department of Sports Medicine, Larrey University Hospital, Toulouse CEDEX, France
| | - Marie-Christine Picot
- Department of Biostatistics and Epidemiology, University Hospital, Montpellier, France and CIC 1001-INSERM
| | - Koen Böcker
- Alan Turing Institute Almere, The Netherlands
| | - Gerald Hugon
- University of Montpellier 1 and 2, INSERM Unit 1046, Montpellier, France
| | - Joel Pincemail
- Department of cardiovascular Surgery and Department of CREDEC, University Hospital of Liege, Belgium
| | - Jean O Defraigne
- Department of cardiovascular Surgery and Department of CREDEC, University Hospital of Liege, Belgium
| | - Theo Verrips
- Utrecht University, Department of Biology, The Netherlands
| | - Jacques Mercier
- University of Montpellier 1 and 2, INSERM Unit 1046, Montpellier, France and Department of Clinical Physiology, University Hospital, Montpellier, France
| | - Dalila Laoudj-Chenivesse
- University of Montpellier 1 and 2, INSERM Unit 1046, Montpellier, France and Department of Clinical Physiology, University Hospital, Montpellier, France.
| |
Collapse
|
20
|
Siavash M, Amini M. Vitamin C may have similar beneficial effects to Gemfibrozil on serum high-density lipoprotein-cholesterol in type 2 diabetic patients. J Res Pharm Pract 2014; 3:77-82. [PMID: 25328896 PMCID: PMC4199195 DOI: 10.4103/2279-042x.141075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective: Type 2 diabetes mellitus (DM-T2) is commonly associated with increased triglycerides (TG), low-density lipoprotein cholesterol (LDL-C) and low high-density lipoprotein cholesterol (HDL-C) levels. Fibrates like gemfibrozil are frequently used in diabetic patients to decrease TG and increase HDL-C levels. We compared the efficacy of Vitamin C, an antioxidant vitamin, with gemfibrozil on serum HDL-C in diabetic patients. Methods: Type 2 diabetic patients, referred to our out-patient clinic were randomly divided into three groups. After 1 month of lifestyle and diet modifications, groups A, B, and C were prescribed 1000 mg Vitamin C, 600 mg gemfibrozil and combination of both, respectively. Before the study initiation and after 6th week of drug prescription, the blood samples were taken and analyzed for total cholesterol (Total-C), HDL-C, TG, fasting blood sugar (FBS), and hemoglobin A1c (HbA1c) levels. Findings: Sixty-seven patients entered, and 50 patients (18 male, 32 female) finished the study. Overall, serum HDL-C increased significantly from 39.8 to 45.2 mg/dL in the participants (P = 0.001). HDL-C increased 6.3, 4.4 and 5.0 mg/dL in groups A, B and C, respectively (related significances were 0.017, 0.022 and 0.033, respectively). Significant decrease of serum TG and Total-C occurred in gemfibrozil and combination groups, but not in Vitamin C group. Changes in serum HDL-C between three groups were not significant (P = 0.963). We found a significant decrease in TG and Total-C in the groups B and C (P < 0.05), but no significant changes of TG, Total-C, LDL-C, FBS and HbA1c in group A (P > 0.05). Conclusion: The results demonstrated that Vitamin C may have beneficial effects on HDL-C in diabetic patients without significant effects on plasma glucose or other lipid parameters; however, its role for the treatment of low HDL-C patients should be evaluated in larger studies.
Collapse
Affiliation(s)
- Mansour Siavash
- Department of Endocrinology, Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Amini
- Department of Endocrinology, Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
21
|
Lynch SM, Lorenz J, Klotz S. Inclusion of calcium during isolation of high-density lipoprotein from plasma maintains antioxidant function. Anal Biochem 2014; 454:41-3. [PMID: 24657818 DOI: 10.1016/j.ab.2014.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 11/17/2022]
Abstract
We investigated how inclusion of calcium during isolation of high-density lipoprotein (HDL) affected its antioxidant function. Following isolation, HDL was dialyzed against 0.154 M NaCl without or with added calcium (1mM). HDL's paraoxonase 1 activity was unaffected by calcium treatment (87 ± 11% of normal vs. 89 ± 16% of normal, P=0.826). In contrast, whereas HDL dialyzed with calcium inhibited oxidation of low-density lipoprotein (LDL) by 87 ± 10%, HDL dialyzed without calcium inhibited oxidation by only 58 ± 19% (P=0.004). Thus, inclusion of calcium during isolation is important for maintaining HDL's antioxidant function.
Collapse
Affiliation(s)
- Sean M Lynch
- Department of Biochemistry, Midwestern University, Downers Grove, IL 60515, USA.
| | - Joseph Lorenz
- Department of Biochemistry, Midwestern University, Downers Grove, IL 60515, USA
| | - Steven Klotz
- Department of Biochemistry, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
22
|
Ben Abdallah F, Fetoui H, Zribi N, Fakfakh F, Ammar-Keskes L. Antioxidant supplementations in vitro improve rat sperm parameters and enhance antioxidant enzyme activities against dimethoate-induced sperm damages. Andrologia 2011; 44 Suppl 1:272-9. [DOI: 10.1111/j.1439-0272.2011.01177.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
23
|
McRae MP. Vitamin C supplementation lowers serum low-density lipoprotein cholesterol and triglycerides: a meta-analysis of 13 randomized controlled trials. J Chiropr Med 2011; 7:48-58. [PMID: 19674720 DOI: 10.1016/j.jcme.2008.01.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 01/11/2008] [Accepted: 01/16/2008] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Vitamin C has been shown to be an effective therapeutic for reducing total serum cholesterol, but epidemiologic studies have determined that low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol are actually better predictive measures of coronary heart disease risk. Therefore, the purpose of this study was to provide a comprehensive meta-analysis of randomized controlled trials to investigate the effect of vitamin C supplementation on LDL and HDL cholesterol as well as triglycerides in patients with hypercholesterolemia. METHODS Thirteen randomized controlled trials published between 1970 and June 2007 were identified using Medline and a manual search. From the 13 trials, 14 separate group populations with hypercholesterolemia and who were supplemented with at least 500 mg/d of vitamin C for between 3 and 24 weeks were entered into the meta-analysis. This meta-analysis used a random-effects model; and the overall effect sizes were calculated for changes in LDL and HDL cholesterol, as well as triglyceride concentrations. RESULTS The pooled estimate of effect for vitamin C supplementation on LDL and HDL cholesterol was -7.9 mg/dL (95% confidence interval [CI], -12.3 to -3.5; P = .000) and 1.1 mg/dL (95% CI, -0.2 to 2.3; not significant), respectively. The pooled estimate of effect for vitamin C supplementation on triglycerides was -20.1 mg/dL (95% CI, -33.3 to -6.8; P < .003). CONCLUSION Supplementation with at least 500 mg/d of vitamin C, for a minimum of 4 weeks, can result in a significant decrease in serum LDL cholesterol and triglyceride concentrations. However, there was a nonsignificant elevation of serum HDL cholesterol.
Collapse
Affiliation(s)
- Marc P McRae
- Assistant Professor, Department of Physiology and Biochemistry, National University of Health Sciences, Lombard, IL 60148
| |
Collapse
|
24
|
Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011; 283:65-87. [PMID: 21414382 DOI: 10.1016/j.tox.2011.03.001] [Citation(s) in RCA: 2205] [Impact Index Per Article: 157.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 11/30/2022]
Abstract
Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha-tocopherol (vitamin E), glutathione (GSH), carotenoids, flavonoids, and other antioxidants) are capable of chelating metal ions reducing thus their catalytic activity to form ROS. A novel therapeutic approach to suppress oxidative stress is based on the development of dual function antioxidants comprising not only chelating, but also scavenging components. Parodoxically, two major antioxidant enzymes, superoxide dismutase (SOD) and catalase contain as an integral part of their active sites metal ions to battle against toxic effects of metal-induced free radicals. The aim of this review is to provide an overview of redox and non-redox metal-induced formation of free radicals and the role of oxidative stress in toxic action of metals.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University, SK-949 74 Nitra, Slovakia.
| | | |
Collapse
|
25
|
Nguyen SD, Sok DE. Effect of 3,4-dihydroxyphenylalanine on Cu2+-induced Inactivation of HDL-associated Paraoxonase1 and Oxidation of HDL; Inactivation of Paraoxonase1 Activity Independent of HDL Lipid Oxidation. Free Radic Res 2009; 38:969-76. [PMID: 15621715 DOI: 10.1080/10715760400000943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Paraoxonasel (PON1), one of HDL-asssociated antioxidant proteins, is known to be sensitive to oxidative stress. Here, the effect of endogenous reducing compounds on Cu(2+)-mediated inactivation of PON1 was examined. Cu(2+)-mediated inactivation of PON1 was enhanced remarkably by catecholamines, but not by uric acid or homocysteine. Furthermore, catecholamines such as 3,4-dihydroxyphenylalanine (DOPA), dopamine or norepinephrine were more effective than caffeic acid or pyrocatechol in promoting Cu(2+)-mediated inactivation of PON1, suggesting the importance of dihydroxybenzene group as well as amino group. DOPA at relatively low concentrations showed a concentration-dependent inactivation of PON1 in a concert with Cu2+, but not Fe2+. The DOPA/Cu(2+)-induced inactivation of PON1 was prevented by catalase, but not hydroxyl radical scavengers, consistent with Cu(2+)-catalyzed oxidation. A similar result was also observed when HDL-associated PON1 (HDL-PON1) was exposed to DOPA/Cu2+. Separately, it was found that DOPA at low concentrations (1-6 microM) acted as a pro-oxidant by enhancing Cu(2+)-induced oxidation of HDL, while it exhibited an antioxidant action at > or = 10 microM. In addition, Cu(2+)-oxidized HDL lost the antioxidant action against LDL oxidation. Meanwhile, the role of DOPA/Cu(2+)-oxidized HDL differed according to DOPA concentration; HDL oxidized with Cu2+ in the presence of DOPA (60 or 120 microM) maintained antioxidant activity of native HDL, in contrast to an adverse effect of DOPA at 3 or 6 microM. These data indicate that DOPA at micromolar level may act as a pro-oxidant in Cu(2+)-induced inactivation of PON1 as well as oxidation of HDL. Also, it is proposed that the oxidative inactivation of HDL-PON1 is independent of HDL oxidation.
Collapse
Affiliation(s)
- Su Duy Nguyen
- College of Pharmacy, Chungnam National University, Yuseong-Ku, Taejon 305-764, South Korea
| | | |
Collapse
|
26
|
Kunes JP, Cordero-Koning KS, Lee LH, Lynch SM. Vitamin C attenuates hypochlorite-mediated loss of paraoxonase-1 activity from human plasma. Nutr Res 2009; 29:114-22. [PMID: 19285602 DOI: 10.1016/j.nutres.2009.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 12/21/2022]
Abstract
Paraoxonase 1 (PON1) is a cardioprotective enzyme associated with high-density lipoprotein (HDL). We tested the hypothesis that vitamin C protects HDL and PON1 from deleterious effects of hypochlorous acid, a proinflammatory oxidant. In our experiments, HDL (from human plasma) or diluted human plasma was incubated with hypochlorite in either the absence (control) or presence of vitamin C before measuring chemical modification and PON1 activities. Vitamin C minimized chemical modification of HDL, as assessed by lysine modification and accumulation of chloramines. In the absence of vitamin C, chloramines accumulated to 114 +/- 4 micromol/L in HDL incubated with a 200-fold molar excess of hypochlorite; but addition of vitamin C (200 micromol/L) limited formation to 36 +/- 6 micromol/L (P < .001). In plasma exposed to hypochlorite, IC(50) values of 1.2 +/- 0.1, 9.5 +/- 1.0, and 5.0 +/- 0.6 mmol/L were determined for PON1's phosphotriesterase, arylesterase, and (physiologic) lactonase activities, respectively. Vitamin C lessened this inhibitory effect of hypochlorite on PON1 activities. In plasma supplemented with vitamin C (400 micromol/L), PON1 phosphotriesterase activity was 72% +/- 17% of normal after incubation with hypochlorite (2 mmol/L), compared with 42% +/- 6% for unsupplemented plasma (P < .05). Similar effects were seen for other PON1 activities. In some experiments, vitamin C also appeared to reverse hypochlorite-mediated loss of PON1 phosphotriesterase activity; but this effect was not observed for the other PON1 activities. In conclusion, vitamin C attenuated hypochlorite-mediated loss of PON1 activity in vitro and may, therefore, preserve cardioprotective properties of HDL during inflammation.
Collapse
Affiliation(s)
- Jacob P Kunes
- College of Health Sciences, Midwestern University, Downers Grove, IL 60515, USA
| | | | | | | |
Collapse
|
27
|
Modification with homocysteine does not increase susceptibility of human low-density lipoprotein to iron-mediated oxidation. Nutr Res 2008; 28:615-9. [PMID: 19083467 DOI: 10.1016/j.nutres.2008.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 05/22/2008] [Accepted: 05/23/2008] [Indexed: 11/20/2022]
Abstract
Oxidation of human low-density lipoprotein (LDL) is centrally involved in the development of cardiovascular diseases. This study investigated whether homocysteine-mediated thiolation of LDL rendered it more susceptible to oxidation by iron. After in vitro exposure to homocysteine thiolactone for 60 minutes, LDL's thiol content increased from 26 +/- 5 (control) to 224 +/- 20 nmol/mg of protein (thiolated; P < .0001). Control and thiolated LDL (0.2 mg of protein per milliliter) were incubated with either redox active iron (Fe(3+); 10 micromol/L) or, as a positive control, copper (Cu(2+); 10 micromol/L). Consistent with the observation of others, thiolation decreased Cu(2+)-dependent formation of lipid oxidation products in LDL (17 +/- 16 nmol/mg of protein formed in thiolated LDL, compared with 81 +/- 21 nmol/mg of protein in control, during 6 hours of incubation; P < .01). Thiolation had no effect, however, on Fe(3+)-mediated oxidation of LDL with lipid oxidation products remaining essentially nondetectable during prolonged incubation (up to 48 hours). Thiolation similarly had no effect on oxidation of LDL (0.2 mg of protein per milliliter) by heme-complexed iron (hemin; 10 micromol/L), with lipid oxidation products increasing to 24 +/- 1 and 27 +/- 4 nmol/mg of protein for control and thiolated LDL, respectively, during 6 hours of incubation (P > .05). Similar results were observed using LDL with varying degrees of thiolation (29 +/- 5, 85 +/- 14, 130 +/- 15, and 213 +/- 19 nmol of thiol per milligram of protein). In conclusion, these results demonstrate that thiolation has no effect on LDL's susceptibility to iron-mediated oxidation.
Collapse
|
28
|
Mier-Cabrera J, Genera-García M, De la Jara-Díaz J, Perichart-Perera O, Vadillo-Ortega F, Hernández-Guerrero C. Effect of vitamins C and E supplementation on peripheral oxidative stress markers and pregnancy rate in women with endometriosis. Int J Gynaecol Obstet 2007; 100:252-6. [DOI: 10.1016/j.ijgo.2007.08.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Revised: 08/03/2007] [Accepted: 08/07/2007] [Indexed: 11/29/2022]
|
29
|
Hung TM, Lee JP, Min BS, Choi JS, Na M, Zhang X, Ngoc TM, Lee I, Bae K. Magnoflorine from Coptidis Rhizoma protects high density lipoprotein during oxidant stress. Biol Pharm Bull 2007; 30:1157-60. [PMID: 17541173 DOI: 10.1248/bpb.30.1157] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of the present study was to investigate the beneficial properties of magnoflorine, an alkaloid isolated from coptidis rhizoma, on protecting human high density lipoprotein (HDL) against lipid peroxidation. Magnoflorine exerts an inhibitory effect against Cu2+-induced lipid peroxidation of HDL, as showed by prolongation of lag time from 62 to 123 min at the concentration of 3.0 microM. It also inhibits the generation of thiobarbituric acid reactive substances (TBARS) in the dose-dependent manners with IC50 values of 2.3+/-0.2 microM and 6.2+/-0.5 microM since HDL oxidation mediated by either catalytic Cu2+ or thermo-labile radical initiator (AAPH), respectively. Separately, Cu2+ oxidized HDL lost the antioxidant action but the inclusion of magnoflorine/Cu2+ oxidized HDL can protect LDL oxidation according to increasing magnoflorine concentration. The results suggest that magnoflorine may have a role to play in preventing the HDL oxidation.
Collapse
Affiliation(s)
- Tran Manh Hung
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Intra J, Kuo SM. Physiological levels of tea catechins increase cellular lipid antioxidant activity of vitamin C and vitamin E in human intestinal caco-2 cells. Chem Biol Interact 2007; 169:91-9. [PMID: 17603031 PMCID: PMC1965493 DOI: 10.1016/j.cbi.2007.05.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 05/24/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
Oxidative stress has been linked to the development of various chronic diseases. Vegetables and fruits, which contain polyphenols, were shown to have protective effects. (-)-Epigallocatechin-3-gallate (EGCG), a polyphenol abundant in tea, has been shown to have antioxidant activities in cell-free conditions and this study focused on the effect of cellular EGCG. Using an intestinal cell model to examine the oxidative stress induced by hydroxyl radicals, we report here that physiological concentrations (0.1-1 microM) of EGCG have dose- and incubation duration-dependent cell-associated lipid antioxidant activity (measuring malondialdehyde production). Vitamin E and vitamin C at 10-40 microM also showed cell-associated lipid antioxidant activities under shorter incubation durations. When EGCG was included in the incubation with vitamin E or C, more antioxidant activities were consistently observed than when vitamins were added alone. Catechin (widely present in fruits and vegetables) at 1 microM also significantly increased the antioxidant activity of vitamins E and C. Previous studies examining cell-associated activity of EGCG mainly focused on the 10-100 microM concentration range. Our results suggest that although the physiological level (0.1-1 microM) of dietary catechins is much lower than that of vitamins, they further contribute to the total antioxidant capacity even in the presence of vitamins.
Collapse
Affiliation(s)
- Janjira Intra
- Department of Exercise and Nutrition Sciences, University at Buffalo, 15 Farber Hall, Buffalo, NY 14214, USA
| | | |
Collapse
|
31
|
Calla MS, Lynch SM. Vitamin C preserves the cardio-protective paraoxonase activity of high-density lipoprotein during oxidant stress. Arch Biochem Biophys 2006; 452:129-37. [PMID: 16854368 DOI: 10.1016/j.abb.2006.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 06/01/2006] [Accepted: 06/13/2006] [Indexed: 02/02/2023]
Abstract
HDL-associated paraoxonase (PON) antioxidant enzyme activity is cardio-protective. We investigated whether vitamin C prevented loss of PON activity from HDL during oxidant stress. HDL was incubated with either hydrophilic or lipophilic peroxyl radical initiators in the absence (control) or presence of vitamin C (50 and 100 micromol/L). Regardless of the type of radical, accumulation of lipid oxidation products in HDL was similar in incubations lacking vitamin C. Loss of PON activity was greater in HDL exposed to hydrophilic, in contrast to lipophilic, radicals, but addition of vitamin C maintained enzyme activity. Vitamin C's capacity to attenuate loss of the HDL ability to prevent atherogenic modification of LDL (assessed as electrophoretic mobility) was, however, modest, and appeared limited only to those incubations in which HDL was exposed to lipophilic radicals. Our results indicate that vitamin C may, under some conditions, prevent loss of cardio-protective function from HDL during oxidant stress.
Collapse
Affiliation(s)
- Melody S Calla
- Department of Biochemistry, Midwestern University, Downers Grove, IL 60515, USA
| | | |
Collapse
|
32
|
Norata GD, Pirillo A, Catapano AL. Modified HDL: biological and physiopathological consequences. Nutr Metab Cardiovasc Dis 2006; 16:371-386. [PMID: 16829346 DOI: 10.1016/j.numecd.2006.01.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 01/03/2006] [Indexed: 01/26/2023]
Abstract
Epidemiological and clinical studies have demonstrated the inverse association between HDL cholesterol levels (HDL-C) and the risk of coronary heart disease (CHD). This correlation is believed to relate to the ability of HDL to promote reverse cholesterol transport. Remodeling of HDL due to chemical/physical modifications can dramatically affect its functions, leading to dysfunctional HDL that could promote atherogenesis. HDL modification can be achieved by different means: (i) non-enzymatic modifications, owing to the presence of free metal ions in the atherosclerotic plaques; (ii) cell-associated enzymes, which can degrade the apoproteins without significant changes in the lipid moiety, or can alternatively induce apoprotein cross-linking and lipid oxidation; (iii) association with acute phase proteins, whose circulating levels are significantly increased during inflammation which may modify HDL structure and functions; and (iv) metabolic modifications, such as glycation that occurs under hyperglycaemic conditions. Available data suggest that HDL can easily be modified losing their anti-atherogenic activities. These observation results mainly from in vitro studies, while few in vivo data, are available. Furthermore the in vivo mechanisms involved in HDL modification are ill understood. A better knowledge of these pathways may provide possible therapeutic target aimed at reducing HDL modification.
Collapse
|
33
|
Kaul D, Baba MI. Genomic effect of vitamin 'C' and statins within human mononuclear cells involved in atherogenic process. Eur J Clin Nutr 2005; 59:978-81. [PMID: 15970944 DOI: 10.1038/sj.ejcn.1602203] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Deregulated crosstalk within nuclear receptor/transcription factor family, comprising of peroxisome proliferator-activated receptors (PPARs) and liver X receptor-alpha (LXR-alpha), can give rise to cooperativity between lipid peroxidation and inflammation leading to atherogenic process. The present study addressed to explore the effect of statins and vitamin 'C' on transcriptional expression of genes coding for this nuclear receptor/transcription factor family within mononuclear cells revealed for the first time that both mevastatin and vitamin 'C' have common action in that they significantly downregulate the expression of PPARs (alpha, gamma) genes and upregulate LXR-alpha gene expression as compared to the control. The similar phenomenon was observed in mononuclear cells obtained from coronary heart disease (CHD) patients who were receiving atorvastatin treatment (20 mg HS). Further, the observed upregulatory effect of LXR-alpha gene expression was in conformity with the downregulatory effect of LXR-alpha on its effector gene matrix metalloproteinase-9. Based on these results, we propose that LXR-alpha-dependent signaling pathway may be a crucial target for the therapeutic intervention in human CHD, and in addition to statins, vitamin 'C' deserves a close scrutiny for the treatment of CHD.
Collapse
Affiliation(s)
- D Kaul
- Department of Experimental Medicine & Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | | |
Collapse
|