1
|
Ngema LM, Adeyemi SA, Marimuthu T, Ubanako P, Wamwangi D, Choonara YE. Synthesis of Novel Conjugated Linoleic Acid (CLA)-Coated Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for the Delivery of Paclitaxel with Enhanced In Vitro Anti-Proliferative Activity on A549 Lung Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14040829. [PMID: 35456663 PMCID: PMC9031641 DOI: 10.3390/pharmaceutics14040829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 01/06/2023] Open
Abstract
The application of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as a nanomedicine for Non-Small Cell Lung Carcinoma (NSCLC) can provide effective delivery of anticancer drugs with minimal side-effects. SPIONs have the flexibility to be modified to achieve enhanced oading of hydrophobic anticancer drugs such as paclitaxel (PTX). The purpose of this study was to synthesize novel trans-10, cis-12 conjugated linoleic acid (CLA)-coated SPIONs loaded with PTX to enhance the anti-proliferative activity of PTX. CLA-coated PTX-SPIONs with a particle size and zeta potential of 96.5 ± 0.6 nm and −27.3 ± 1.9 mV, respectively, were synthesized. The superparamagnetism of the CLA-coated PTX-SPIONs was confirmed, with saturation magnetization of 60 emu/g and 29 Oe coercivity. CLA-coated PTX-SPIONs had a drug loading efficiency of 98.5% and demonstrated sustained site-specific in vitro release of PTX over 24 h (i.e., 94% at pH 6.8 mimicking the tumor microenvironment). Enhanced anti-proliferative activity was also observed with the CLA-coated PTX-SPIONs against a lung adenocarcinoma (A549) cell line after 72 h, with a recorded cell viability of 17.1%. The CLA-coated PTX-SPIONs demonstrated enhanced suppression of A549 cell proliferation compared to pristine PTX, thus suggesting potential application of the nanomedicine as an effective site-specific delivery system for enhanced therapeutic activity in NSCLC therapy.
Collapse
Affiliation(s)
- Lindokuhle M. Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (L.M.N.); (S.A.A.); (T.M.); (P.U.)
| | - Samson A. Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (L.M.N.); (S.A.A.); (T.M.); (P.U.)
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (L.M.N.); (S.A.A.); (T.M.); (P.U.)
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (L.M.N.); (S.A.A.); (T.M.); (P.U.)
| | - Daniel Wamwangi
- School of Physics, Materials Physics Research Institute, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa;
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (L.M.N.); (S.A.A.); (T.M.); (P.U.)
- Correspondence: ; Tel.: +27-11-717-2052
| |
Collapse
|
2
|
Ngema LM, Adeyemi SA, Marimuthu T, Choonara YE. A review on engineered magnetic nanoparticles in Non-Small-Cell lung carcinoma targeted therapy. Int J Pharm 2021; 606:120870. [PMID: 34245844 DOI: 10.1016/j.ijpharm.2021.120870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
There are growing appeals forthe design of efficacious treatment options for non-small-cell lung carcinoma (NSCLC) as it accrues to ~ 85% cases of lung cancer. Although platinum-based doublet chemotherapy has been the main therapeutic intervention in NSCLC management, this leads to myriad of problems including intolerability to the doublet regimens and detrimental side effects due to high doses. A new approach is therefore needed and warrants the design of targeted drug delivery systems that can halt tumor proliferation and metastasis by targeting key molecules, while exhibiting minimal side effects and toxicity. This review aims to explore the rational design of magnetic nanoparticles for the development of tumor-targeting systems for NSCLC. In the review, we explore the anticancer merits of conjugated linoleic acid (CLA) and provide a concise incursion into its application for the invention of functionalized magnetic nanoparticles in the targeted treatment of NSCLC. Recent nanoparticle-based targeted chemotherapies for targeting angiogenesis biomarkers in NSCLC will also be reviewed to further highlight versatility of magnetic nanoparticles. These developments through molecular tuning at the nanoscale and supported by comprehensive pre-clinical studies could lead to the establishment of precise nanosystems for tumor-homing cancer therapy.
Collapse
Affiliation(s)
- Lindokuhle M Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
3
|
Gao H, Yang B, Stanton C, Ross RP, Zhang H, Chen H, Chen W. Linoleic acid induces different metabolic modes in two Bifidobacterium breve strains with different conjugated linoleic acid-producing abilities. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Su H, Zhao W, Zhang F, Song M, Liu F, Zheng J, Ling M, Yang X, Yang Q, He H, Chen L, Lai X, Zhu X, Wang L, Gao P, Shu G, Jiang Q, Wang S. cis 9, trans 11, but not trans 10, cis 12 CLA isomer, impairs intestinal epithelial barrier function in IPEC-J2 cells and mice through activation of GPR120-[Ca 2+] i and the MLCK signaling pathway. Food Funct 2021; 11:3657-3667. [PMID: 32296804 DOI: 10.1039/d0fo00376j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aimed to investigate the effects of conjugated linoleic acid (CLA) on intestinal epithelial barrier function and explore the underlying mechanisms. IPEC-J2 cells and mice were treated with different CLA isomers. The intestinal epithelial barrier function determined by transepithelial electrical resistance (TEER), the expression of tight junction proteins, and the involvement of G-protein coupled receptor 120 (GPR120), intracellular calcium ([Ca2+]i) and myosin light chain kinase (MLCK) were assessed. In vitro, c9, t11-CLA, but not t10, c12-CLA isomer, impaired epithelial barrier function in IPEC-J2 by downregulating the expression of tight junction proteins. Meanwhile, c9, t11-CLA isomer enhanced GPR120 expression, while knockdown of GPR120 eliminated the impaired epithelial barrier function induced by c9, t11-CLA isomer. In addition, c9, t11-CLA isomer increased [Ca2+]i and activated the MLCK signaling pathway in a GPR120-dependent manner. However, chelation of [Ca2+]i reversed c9, t11-CLA isomer-induced MLCK activation and the epithelial barrier function impairment of IPEC-J2. Furthermore, inhibition of MLCK totally abolished the impairment of epithelial barrier function induced by c9, t11-CLA. In vivo, dietary supplementation of c9, t11-CLA rather than t10, c12-CLA isomer decreased the expression of intestinal tight junction proteins and GPR120, increased intestinal permeability, and activated the MLCK signaling pathway in mice. Taken together, our findings showed that c9, t11-CLA, but not t10, c12-CLA isomer, impaired intestinal epithelial barrier function in IPEC-J2 cells and mice through activation of GPR120-[Ca2+]i and the MLCK signaling pathway. These data provided new insight into the regulation of the intestinal epithelial barrier by different CLA isomers and more references for CLA application in humans and animals.
Collapse
Affiliation(s)
- Han Su
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Weijie Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Min Song
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fangfang Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Jisong Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Mingfa Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiaohua Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qiang Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Haiwen He
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xumin Lai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
5
|
|
6
|
Holgado F, García-Martínez MC, Velasco J, Ruiz-Méndez MV, Márquez-Ruiz G. Microencapsulation of Conjugated Linoleic Acid (CLA)-Rich Oil with Skimmed Milk Components Protects against Polymerization. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Francisca Holgado
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Department of Food Characterization, Quality and Safety; José Antonio Novais 10, 28040, Madrid Spain
| | - M. Carmen García-Martínez
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Department of Food Characterization, Quality and Safety; José Antonio Novais 10, 28040, Madrid Spain
| | - Joaquín Velasco
- Instituto de la Grasa (IG-CSIC), Department of Lipid Characterization and Quality; Campus Universidad Pablo de Olavide; Ctra. de Utrera km. 1, 41013, Seville Spain
| | - M. Victoria Ruiz-Méndez
- Instituto de la Grasa (IG-CSIC), Department of Lipid Characterization and Quality; Campus Universidad Pablo de Olavide; Ctra. de Utrera km. 1, 41013, Seville Spain
| | - Gloria Márquez-Ruiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Department of Food Characterization, Quality and Safety; José Antonio Novais 10, 28040, Madrid Spain
| |
Collapse
|
7
|
Yoon SY, Lee DY, Kim OY, Lee SY, Hur SJ. Development of Commercially Viable Method of Conjugated Linoleic Acid Synthesis Using Linoleic Acid Fraction Obtained from Pork By-products. Korean J Food Sci Anim Resour 2018; 38:693-702. [PMID: 30206428 PMCID: PMC6131374 DOI: 10.5851/kosfa.2018.e6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study was to develop a commercially viable method for synthesis of conjugated linoleic acid (CLA) using the linoleic acid fraction obtained from six pork by-products (liver, lung, heart, stomach, small intestine, and large intestine). The workflow of CLA synthesis from each by-product was as follows: washing→crude fat extraction→fractionation into saturated and unsaturated fatty acids→repeat unsaturated fatty acid fractionation→CLA synthesis. Cis-9, trans-11, and trans-10, cis-12 CLA was synthesized from pork by-products. The yield of CLA synthesis of pork by-products ranged from 1.55 to 11.18 g per 100 g of by-products. The amount of synthesized CLA was the highest in the small intestine and large intestine by-products. Fractionation of pork by-products nearly doubled the yield of CLA. We suggest that commercial fractionation methods could increase the yield of CLA at low cost, reduce waste, and improve the efficiency of by-product utilization.
Collapse
Affiliation(s)
| | | | | | | | - Sun Jin Hur
- Corresponding Author : Sun Jin Hur
Department of Animal Science and Technology, Chung-Ang University, Anseong
17546, Korea Tel: +82-31-670-4673 Fax:
+82-31-675-3108 E-mail:
| |
Collapse
|
8
|
Optimization of Ultrasound-Assisted Extraction of Oil from Canola Seeds with the Use of Response Surface Methodology. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1030-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Yang B, Gao H, Stanton C, Ross RP, Zhang H, Chen YQ, Chen H, Chen W. Bacterial conjugated linoleic acid production and their applications. Prog Lipid Res 2017; 68:26-36. [PMID: 28889933 DOI: 10.1016/j.plipres.2017.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/29/2017] [Accepted: 09/06/2017] [Indexed: 11/19/2022]
Abstract
Conjugated linoleic acid (CLA) has been shown to exert various potential physiological properties including anti-carcinogenic, anti-obesity, anti-cardiovascular and anti-diabetic activities, and consequently has been considered as a promising food supplement. Bacterial biosynthesis of CLA is an attractive approach for commercial production due to its high isomer-selectivity and convenient purification process. Many bacterial species have been reported to convert free linoleic acid (LA) to CLA, hitherto only the precise CLA-producing mechanisms in Propionibacterium acnes and Lactobacillus plantarum have been illustrated completely, prompting the development of recombinant technology used in CLA production. The purpose of the article is to review the bacterial CLA producers as well as the recent progress on describing the mechanism of microbial CLA-production. Furthermore, the advances and potential in the heterologous expression of CLA genetic determinants will be presented.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - He Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland; College of Science, Engineering and Food Science, University College Cork, Cork, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
10
|
Kanwar JR, Kanwar RK, Stathopoulos S, Haggarty NW, MacGibbon AKH, Palmano KP, Roy K, Rowan A, Krissansen GW. Comparative activities of milk components in reversing chronic colitis. J Dairy Sci 2016; 99:2488-2501. [PMID: 26805965 DOI: 10.3168/jds.2015-10122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/16/2015] [Indexed: 12/18/2022]
Abstract
Inflammatory bowel disease (IBD) is a poorly understood chronic immune disorder for which there is no medical cure. Milk and colostrum are rich sources of bioactives with immunomodulatory properties. Here we compared the therapeutic effects of oral delivery of bovine milk-derived iron-saturated lactoferrin (Fe-bLF), angiogenin, osteopontin (OPN), colostrum whey protein, Modulen IBD (Nestle Healthsciences, Rhodes, Australia), and cis-9,trans-11 conjugated linoleic acid (CLA)-enriched milk fat in a mouse model of dextran sulfate-induced colitis. The CLA-enriched milk fat significantly increased mouse body weights after 24d of treatment, reduced epithelium damage, and downregulated the expression of proinflammatory cytokines and nitrous oxide. Modulen IBD most effectively decreased the clinical score at d 12, and Modulen IBD and OPN most effectively lowered the inflammatory score. Myeloperoxidase activity that denotes neutrophil infiltration was significantly lower in mice fed Modulen IBD, OPN, angiogenin, and Fe-bLF. A significant decrease in the numbers of T cells, natural killer cells, dendritic cells, and a significant decrease in cytokine expression were observed in mice fed the treatment diets compared with dextran sulfate administered mice. The Fe-bLF, CLA-enriched milk fat, and Modulen IBD inhibited intestinal angiogenesis. In summary, each of the milk components attenuated IBD in mice, but with differing effectiveness against specific disease parameters.
Collapse
Affiliation(s)
- J R Kanwar
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia.
| | - R K Kanwar
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | | | - N W Haggarty
- Fonterra Research Centre, Palmerston North, New Zealand
| | | | - K P Palmano
- Fonterra Research Centre, Palmerston North, New Zealand
| | - K Roy
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - A Rowan
- Fonterra Research Centre, Palmerston North, New Zealand
| | - G W Krissansen
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
11
|
Yang B, Chen H, Stanton C, Ross RP, Zhang H, Chen YQ, Chen W. Review of the roles of conjugated linoleic acid in health and disease. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.050] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
12
|
Márquez‐Ruiz G. Volatile compounds in thermoxidized conjugated and unconjugated linoleic acids. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201400040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gloria Márquez‐Ruiz
- Instituto de Ciencia y Tecnología de Alimentos y NutriciónSpanish National Research Council (ICTAN‐CSIC)MadridSpain
| |
Collapse
|
13
|
Kim J, Park Y, Lee SH, Park Y. trans-10,cis-12 conjugated linoleic acid promotes bone formation by inhibiting adipogenesis by peroxisome proliferator activated receptor-γ-dependent mechanisms and by directly enhancing osteoblastogenesis from bone marrow mesenchymal stem cells. J Nutr Biochem 2013; 24:672-9. [PMID: 22832076 PMCID: PMC3482420 DOI: 10.1016/j.jnutbio.2012.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/07/2012] [Accepted: 03/19/2012] [Indexed: 12/14/2022]
Abstract
The bone undergoes continuous remodeling of osteoblastic bone formation and osteoclastic bone resorption to maintain proper bone mass. It is also reported that bone marrow adiposity has a reciprocal role in osteoblasts due to their same origin from mesenchymal stem cells. In addition, one of the key mediators of adipogenesis, peroxisome-proliferator activated receptor-γ (PPARγ), plays a significant role in osteoblastogenesis in bone marrow mesenchymal stem cells. One dietary component that is known to have significant impact on adiposity and bone mass is conjugated linoleic acid (CLA). However, the link between controlling adiposity to improving bone mass by CLA has not been studied intensively. Thus, the purpose of this study is to determine the role of CLA on bone marrow adiposity and bone formation using murine mesenchymal stem cells. The results confirmed that the trans-10,cis-12 CLA, but not the cis-9,trans-11 CLA isomer, significantly inhibited adipogenesis and promoted osteoblastogenesis from mesenchymal stem cells. The inhibition of adipogenesis by the trans-10,cis-12 CLA was mediated by PPARγ; however, the trans-10,cis-12 CLA had a direct effect on osteoblastogenesis which was independent to PPARγ in this model. The trans-10,cis-12 CLA also had significant effects on osteoclastogenesis inhibitory factor, which suggests potential influence of CLA on osteoclastogenesis. Overall, the results suggest that the trans-10,cis-12, but not the cis-9,trans-11 CLA isomer, has a positive impact on bone health by both PPARγ mediated and independent mechanisms in mesenchymal stem cells.
Collapse
Affiliation(s)
- Jonggun Kim
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
14
|
Aras U, Gandhi YA, Masso-Welch PA, Morris ME. Chemopreventive and anti-angiogenic effects of dietary phenethyl isothiocyanate in an N-methyl nitrosourea-induced breast cancer animal model. Biopharm Drug Dispos 2012; 34:98-106. [PMID: 23138465 DOI: 10.1002/bdd.1826] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/18/2012] [Accepted: 11/02/2012] [Indexed: 12/21/2022]
Abstract
The effect of phenethyl isothiocyanate (PEITC), a component of cruciferous vegetables, on the initiation and progression of cancer was investigated in a chemically induced estrogen-dependent breast cancer model. Breast cancer was induced in female Sprague Dawley rats (8 weeks old) by the administration of N-methyl nitrosourea (NMU). Animals were administered 50 or 150 µmol/kg oral PEITC and monitored for tumor appearance for 18 weeks. The PEITC treatment prolonged the tumor-free survival time and decreased the tumor incidence and multiplicity. The time to the first palpable tumor was prolonged from 69 days in the control, to 84 and 88 days in the 50 and 150 µmol/kg PEITC-treated groups. The tumor incidence in the control, 50 µmol/kg, and 150 µmol/kg PEITC-treated groups was 56.6%, 25.0% and 17.2%, while the tumor multiplicity was 1.03, 0.25 and 0.21, respectively. Differences were statistically significant (p < 0.05) from the control, but there were no significant differences between the two dose levels. The intratumoral capillary density decreased from 4.21 ± 0.30 vessels per field in the controls to 2.46 ± 0.25 in the 50 µmol/kg and 2.36 ± 0.23 in the 150 µmol/kg PEITC-treated animals. These studies indicate that supplementation with PEITC prolongs the tumor-free survival, reduces tumor incidence and burden, and is chemoprotective in NMU-induced estrogen-dependent breast cancer in rats. For the first time, it is reported that PEITC has anti-angiogenic effects in a chemically induced breast cancer animal model, representing a potentially significant mechanism contributing to its chemopreventive activity.
Collapse
Affiliation(s)
- Urvi Aras
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214-8033, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Conjugated linoleic acid (CLA) has drawn significant attention in the last two decades for its variety of biologically beneficial effects. CLA reduces body fat, cardiovascular diseases and cancer, and modulates immune and inflammatory responses as well as improves bone mass. It has been suggested that the overall effects of CLA are the results of interactions between two major isomers, cis-9,trans-11 and trans-10,cis-12. This review will primarily focus on current CLA publications involving humans, which are also summarized in the tables. Along with a number of beneficial effects of CLA, there are safety considerations for CLA supplementation in humans, which include effects on liver functions, milk fat depression, glucose metabolism, and oxidative stresses.
Collapse
Affiliation(s)
- Allison Dilzer
- Department of Food Science, University of Massachusetts, Amherst, Amherst , MA 01003, USA
| | | |
Collapse
|
16
|
Masso-Welch PA, Merhige PM, Veeranki OLM, Kuo SM. Loss of IL-10 decreases mouse postpubertal mammary gland development in the absence of inflammation. Immunol Invest 2012; 41:521-37. [PMID: 22594921 DOI: 10.3109/08820139.2012.684193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
IL-10 is a pleiotrophic anti-inflammatory cytokine. Decreased IL-10 expression is associated with an increased breast cancer risk but the mechanism is not clear. This study was designed to test the hypothesis that the loss of IL-10 alters mammary development, even in the absence of inflammation. Wild-type and IL-10-/- mouse littermates were similar in growth, development, and breeding success. Using whole-mounts and paraffin sections, mammary glands from pre-pubertal mice (d21) were found to not be affected by the IL-10 null genotype. However, after the onset of estrous cycling, ductal structure, but not lymph nodes or adipocytes, of IL-10 knockout mice were found to moderately decrease at day 55, 80, and 150 of age. This phenotype was not rescued by lactogenesis. At day 2 of lactation, IL-10 null mice had reduced lobular complexity and glandular area with the retention of adipocytes. These results support the hypothesis that absence of IL-10 reduces glandular development during postnatal development, at maturity, and during the early stages of lactation. Although our study cannot distinguish between a direct IL-10 effect on the epithelial cells and an indirect systemic effect, epithelial cell responses to IL-10 should be considered in the therapeutic applications of cytokines or cytokine ablation.
Collapse
Affiliation(s)
- Patricia A Masso-Welch
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
17
|
Krishnan S, Russell J, Bodziak M, Koury S, Masso-Welch P. Direct effects of conjugated linoleic acid isomers on P815 mast cells in vitro. Immunol Invest 2012; 41:399-411. [PMID: 22268590 DOI: 10.3109/08820139.2011.647187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Conjugated linoleic acid (CLA) is a dietary fatty acid which causes extensive remodeling and mast cell recruitment in the mouse mammary gland. Two CLA isomers, 9,11- and 10,12-CLA, have differing effects in vivo, with only 10,12-CLA increasing mast cell number. The purpose of this project is to test the hypothesis that CLA acts directly on the mast cell. The P815 mastocytoma cell line was assayed for the effects of CLA on mast cell number, proliferation, apoptosis, and differentiation. Both CLA isomers decreased viable mast cell number, with no effect on membrane integrity, or cell cycle distribution. 10,12-CLA induced an increase in apoptosis, assessed by Annexin-FITC binding. Both isomers increased mast cell granularity, and secretion of MMP-9. The complex effects of CLA isomers on mast cells in the mammary gland are distinct from direct effects on mast cells in vitro, and may require interactions between multiple cell types present in vivo.
Collapse
Affiliation(s)
- Siddharth Krishnan
- Department of Biotechnical and Clinical Laboratory Sciences, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| | | | | | | | | |
Collapse
|
18
|
Hsu YC, Ip MM. Conjugated linoleic acid-induced apoptosis in mouse mammary tumor cells is mediated by both G protein coupled receptor-dependent activation of the AMP-activated protein kinase pathway and by oxidative stress. Cell Signal 2011; 23:2013-20. [PMID: 21821121 DOI: 10.1016/j.cellsig.2011.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/30/2011] [Accepted: 07/13/2011] [Indexed: 12/19/2022]
Abstract
Conjugated linoleic acid (CLA) has shown chemopreventive activity in several tumorigenesis models, in part through induction of apoptosis. We previously demonstrated that the t10,c12 isomer of CLA induced apoptosis of TM4t mouse mammary tumor cells through both mitochondrial and endoplasmic reticulum (ER) stress pathways, and that the AMP-activated protein kinase (AMPK) played a critical role in the apoptotic effect. In the current study, we focused on the upstream pathways by which AMPK was activated, and additionally evaluated the contributing role of oxidative stress to apoptosis. CLA-induced activation of AMPK and/or induction of apoptosis were inhibited by infection of TM4t cells with an adenovirus expressing a peptide which blocks the interaction between the G protein coupled receptor (GPCR) and Gα(q), by the phospholipase C (PLC) inhibitor U73122, by the inositol trisphosphate (IP(3)) receptor inhibitor 2-APB, by the calcium/calmodulin-dependent protein kinase kinase α (CaMKK) inhibitor STO-609 and by the intracellular Ca(2+) chelator BAPTA-AM. This suggests that t10,c12-CLA may exert its apoptotic effect by stimulating GPCR through Gα(q) signaling, activation of phosphatidylinositol-PLC, followed by binding of the PLC-generated IP(3) to its receptor on the ER, triggering Ca(2+) release from the ER and finally stimulating the CaMKK-AMPK pathway. t10,c12-CLA also increased oxidative stress and lipid peroxidation, and antioxidants blocked its apoptotic effect, as well as the CLA-induced activation of p38 MAPK, a downstream effector of AMPK. Together these data elucidate two major pathways by which t10,c12-CLA induces apoptosis, and suggest a point of intersection of the two pathways both upstream and downstream of AMPK.
Collapse
Affiliation(s)
- Yung-Chung Hsu
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | |
Collapse
|
19
|
Ganesan P, Matsubara K, Ohkubo T, Tanaka Y, Noda K, Sugawara T, Hirata T. Anti-angiogenic effect of siphonaxanthin from green alga, Codium fragile. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:1140-1144. [PMID: 20637577 DOI: 10.1016/j.phymed.2010.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 03/26/2010] [Accepted: 05/21/2010] [Indexed: 05/29/2023]
Abstract
Since anti-angiogenic therapy has becoming a promising approach in the prevention of cancer and related diseases, the present study was aimed to examine the anti-angiogenic effect of siphonaxanthin from green alga (Codium fragile) in cell culture model systems and ex vivo approaches using human umbilical vein endothelial cells (HUVECs) and rat aortic ring, respectively. Siphonaxanthin significantly suppressed HUVEC proliferation (p<0.05) at the concentration of 2.5 μM (50% as compared with control) and above, while the effect on chemotaxis was not significant. Siphonaxanthin exhibited strong inhibitory effect on HUVEC tube formation. It suppressed the formation of tube length by 44% at the concentration of 10 μM, while no tube formation was observed at 25 μM, suggesting that it could be due to the suppression of angiogenic mediators. The ex vivo angiogenesis assay exhibited reduced microvessel outgrowth in a dose dependent manner and the reduction was significant at more than 2.5 μM. Our results imply a new insight on the novel function of siphonaxanthin in preventing angiogenesis related diseases.
Collapse
Affiliation(s)
- Ponesakki Ganesan
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Ke XY, Zhao BJ, Zhao X, Wang Y, Huang Y, Chen XM, Zhao BX, Zhao SS, Zhang X, Zhang Q. The therapeutic efficacy of conjugated linoleic acid - paclitaxel on glioma in the rat. Biomaterials 2010; 31:5855-64. [PMID: 20430438 DOI: 10.1016/j.biomaterials.2010.03.079] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 03/29/2010] [Indexed: 12/27/2022]
Abstract
Considering the effects of conjugated linoleic acid (CLA) on anti-tumor and anti-angiogenic in brain tumor, synergistic anti-tumor activity with taxane as well as potential activity for transporting chemotherapeutic agents across the blood-brain barrier (BBB), the purpose of this study was to synthesize CLA-paclitaxel (CLA-PTX) conjugate which could reach to the brain tissue and target brain tumor. The CLA was covalently linked to PTX. The conjugate was stable in PBS and rat plasma in vitro and had no microtubule assembly activity in solution and slight effect of arresting cell cycle progression at the G(2)-M phase. The in vitro cytotoxicity of conjugate was lower than that of PTX (p < 0.05). The conjugate showed higher cellular uptake efficiency on C6 glioma cells. The entire pharmacokinetic index revealed the significant enhancement of the conjugate pharmacokinetics compared with that in PTX (p < 0.01). The conjugate, unlike PTX, could distribute in brain tissue and retained higher concentrations throughout 360 h. The anti-tumor efficacy in brain tumor-bearing rats after administering conjugate was significantly higher than that after giving Taxol (p < 0.01). In conclusion, this CLA-PTX conjugate showed great potential to become a new prodrug of PTX and the methodology can be applied to other anticancer drugs.
Collapse
Affiliation(s)
- Xi-Yu Ke
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Eder K, Ringseis R. Metabolism and actions of conjugated linoleic acids on atherosclerosis-related events in vascular endothelial cells and smooth muscle cells. Mol Nutr Food Res 2010; 54:17-36. [PMID: 19760681 DOI: 10.1002/mnfr.200900042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Conjugated linoleic acids (CLAs) are biologically highly active lipid compounds that have attracted great scientific interest due to their ability to cause either inhibition of atherosclerotic plaque development or even regression of pre-established atherosclerotic plaques in mice, hamsters and rabbits. The underlying mechanisms of action, however, are only poorly understood. Since cell culture experiments are appropriate to gain insight into the mechanisms of action of a compound, the present review summarizes data from cell culture studies about the metabolism and the actions of CLAs on atherosclerosis-related events in endothelial cells (ECs) and smooth muscle cells (SMCs), which are important cells contributing to atherosclerotic lesion development. Based on these studies, it can be concluded that CLAs exert several beneficial actions including inhibition of inflammatory and vasoactive mediator release from ECs and SMCs, which may help explain the anti-atherogenic effect of CLAs observed in vivo. The observation that significant levels of CLA metabolites, which have been reported to have significant biological activities, are well detectable in ECs and SMCs indicates that the anti-atherogenic effects observed with CLAs are presumably mediated not only by CLAs themselves but also by their metabolites.
Collapse
Affiliation(s)
- Klaus Eder
- Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | | |
Collapse
|
22
|
Ko SN, Kim CJ, Kim CT, Kim Y, Kim IH. Effects of tocopherols and tocotrienols on the inhibition of autoxidation of conjugated linoleic acid. EUR J LIPID SCI TECH 2010. [DOI: 10.1002/ejlt.200900177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Hsu YC, Meng X, Ou L, Ip MM. Activation of the AMP-activated protein kinase-p38 MAP kinase pathway mediates apoptosis induced by conjugated linoleic acid in p53-mutant mouse mammary tumor cells. Cell Signal 2010; 22:590-9. [PMID: 19932174 PMCID: PMC2838459 DOI: 10.1016/j.cellsig.2009.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 11/13/2009] [Indexed: 12/20/2022]
Abstract
Conjugated linoleic acid (CLA) inhibits tumorigenesis and tumor growth in most model systems, an effect mediated in part by its pro-apoptotic activity. We previously showed that trans-10,cis-12 CLA induced apoptosis of p53-mutant TM4t mouse mammary tumor cells through both mitochondrial and endoplasmic reticulum stress pathways. In the current study, we investigated the role of AMP-activated protein kinase (AMPK), a key player in fatty acid metabolism, in CLA-induced apoptosis in TM4t cells. We found that t10,c12-CLA increased phosphorylation of AMPK, and that CLA-induced apoptosis was enhanced by the AMPK agonist 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and inhibited by the AMPK inhibitor compound C. The increased AMPK activity was not due to nutrient/energy depletion since ATP levels did not change in CLA-treated cells, and knockdown of the upstream kinase LKB1 did not affect its activity. Furthermore, our data do not demonstrate a role for the AMPK-modulated mTOR pathway in CLA-induced apoptosis. Although CLA decreased mTOR levels, activity was only modestly decreased. Moreover, rapamycin, which completely blocked the activity of mTORC1 and mTORC2, did not induce apoptosis, and attenuated rather than enhanced CLA-induced apoptosis. Instead, the data suggest that CLA-induced apoptosis is mediated by the AMPK-p38 MAPK-Bim pathway: CLA-induced phosphorylation of AMPK and p38 MAPK, and increased expression of Bim, occurred with a similar time course as apoptosis; phosphorylation of p38 MAPK was blocked by compound C; the increased Bim expression was blocked by p38 MAPK siRNA; CLA-induced apoptosis was attenuated by the p38 inhibitor SB-203580 and by siRNAs directed against p38 MAPK or Bim.
Collapse
Affiliation(s)
- Yung-Chung Hsu
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
24
|
|
25
|
Hur S, Whitcomb F, Rhee S, Park Y, Good DJ, Park Y. Effects of trans-10,cis-12 conjugated linoleic acid on body composition in genetically obese mice. J Med Food 2009; 12:56-63. [PMID: 19298196 DOI: 10.1089/jmf.2008.0110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conjugated linoleic acid (CLA) has shown a number of biologically beneficial effects, including prevention of obesity. The purpose of this study was to test effects of dietary supplementation of 0.5% trans-10,cis-12 CLA in a high fat diet in neuronal basic helix-loop-helix 2 knock-out animals (N2KO), which is a unique animal model representing adult-onset inactivity-related obesity. Eight wild-type (WT) and eight N2KO female mice were fed either 0.5% trans-10,cis-12 CLA-containing diet or control diet (with 20% soybean oil diet) for 12 weeks. Body weights, food intake, adipose tissue weights, body compositions, and blood parameters were analyzed. Overall, N2KO animals had greater body weights, food intake, adipose tissue weights, and body fat compared to WT animals. CLA supplementation decreased overall body weights and total fat, and the effect of dietary CLA on adipose tissue reduction was greater in N2KO than in WT mice. Serum leptin and triglyceride levels were reduced by CLA in both N2KO and WT animals compared to control animals, while there was no effect by CLA on serum cholesterol. The effect of CLA to lower fat mass, increase lean body mass, and lower serum leptin and triglycerides in sedentary mice supports the possibility of using CLA to prevent or alleviate ailments associated with obesity.
Collapse
Affiliation(s)
- Sunjin Hur
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | |
Collapse
|
26
|
García-Martínez M, Márquez-Ruiz G, Fontecha J, Gordon M. Volatile oxidation compounds in a conjugated linoleic acid-rich oil. Food Chem 2009. [DOI: 10.1016/j.foodchem.2008.08.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Modulation of proliferation and differentiation of C2C12 skeletal muscle cells by fatty acids. Life Sci 2009; 84:415-20. [DOI: 10.1016/j.lfs.2009.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 01/05/2009] [Accepted: 01/12/2009] [Indexed: 11/23/2022]
|
28
|
Wang LS, Huang YW, Liu S, Yan P, Lin YC. Conjugated linoleic acid induces apoptosis through estrogen receptor alpha in human breast tissue. BMC Cancer 2008; 8:208. [PMID: 18652667 PMCID: PMC2517598 DOI: 10.1186/1471-2407-8-208] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 07/24/2008] [Indexed: 12/21/2022] Open
Abstract
Background Conjugated linoleic acid (CLA), a naturally occurring fatty acid found in ruminant products such as milk and beef, has been shown to possess anti-cancer activities in in vivo animal models and in vitro cell culture systems. In human breast cancer, the overall duration of estrogen exposure is the most important risk factor for developing estrogen-responsive breast cancer. Accordingly, it has been suggested that estrogen exposure reduces apoptosis through the up-regulation of the anti-apoptosis protein, Bcl-2. Bcl-2, an anti-apoptotic protein, regulates apoptosis and plays a crucial role in the development and growth regulation of normal and cancerous cells. Our research interest is to examine the effects of CLA on the induction of apoptosis in human breast tissues. Methods The localization of Bcl-2 in both normal and cancerous human breast tissues was determined by immunohistochemical staining and the Bcl-2 protein expression was tested by western blot analysis. Co-culture of epithelial cells and stromal cells was carried out in the presence or absence of CLA to evaluate apoptosis in the context of a cell-cell interaction. Results The results showed that both normal and cancerous breast tissues were positive for Bcl-2 staining, which was higher overall in mammary ducts but very low in the surrounding stromal compartment. Interestingly, by quantifying the western blot data, basal Bcl-2 protein levels were higher in normal breast epithelial cells than in cancerous epithelial cells. Furthermore, treatment with 17β-estradiol (E2) stimulated growth and up-regulated Bcl-2 expression in estrogen responsive breast epithelial cells; however, these carcinogenic effects were diminished by either CLA or 4-Hydroxytamoxifen (Tam) and were suppressed further by the combination of CLA and Tam. In both one cell type cultured and co-culture systems, CLA induced cell apoptosis in ERα transfected MDA-MB-231 cells but not in the wild type MDA-MB-231 cells. Conclusion These data, therefore, demonstrate that ERα plays important roles in CLA induced apoptosis in human breast tissues.
Collapse
Affiliation(s)
- Li-Shu Wang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
29
|
Conjugated Linoleic Acid (CLA) inhibits new vessel growth in the mammalian brain. Brain Res 2008; 1213:35-40. [DOI: 10.1016/j.brainres.2008.01.096] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 01/24/2008] [Accepted: 01/25/2008] [Indexed: 11/17/2022]
|
30
|
Santos-Zago LF, Botelho AP, Oliveira ACD. Os efeitos do ácido linoléico conjugado no metabolismo animal: avanço das pesquisas e perspectivas para o futuro. REV NUTR 2008. [DOI: 10.1590/s1415-52732008000200008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Realizou-se uma revisão sistemática, sem restrição de data, sobre os efeitos fisiológicos do ácido linoléico conjugado sobre a regressão da carcinogênese, o estresse oxidativo, o metabolismo de lípides e glicose e a alteração da composição corporal. Objetivando estabelecer o aspecto histórico do avanço da pesquisa em ácido linoléico conjugado, consideraram-se artigos originais resultantes de trabalhos realizados com animais, com cultura de células e com humanos. Quanto às pesquisas sobre o efeito anticarcinogênico do ácido linoléico conjugado foram encontradas inúmeras evidências a esse respeito, especialmente na regressão dos tumores mamários e de cólon, induzida por ambos os isômeros os quais agem de maneiras distintas. Os pesquisadores se empenham em reinvestigar as propriedades antioxidantes do ácido linoléico conjugado. Embora tenham sido investigadas as propriedades antioxidantes, tem-se identificado efeito pró-oxidante, levando ao estresse oxidativo em humanos. Foram poucos os estudos que demonstraram efeito positivo significativo do ácido linoléico conjugado sobre o metabolismo dos lípides e da glicose e sobre a redução da gordura corporal, especialmente em humanos. Estudos sobre efeitos adversos foram também identificados. Há fortes indícios de que a ação deste ácido graxo conjugado sobre uma classe de fatores de transcrição - os receptores ativados por proliferadores de peroxissomo - e sobre a conseqüente modulação da expressão gênica, possa ser a explicação fundamental dos efeitos fisiológicos. Embora incipientes, os mais recentes estudos reforçam o conceito da nutrigenômica, ou seja, a modulação da expressão gênica induzida por compostos presentes na alimentação humana. O cenário atual estimula a comunidade científica a buscar um consenso sobre os efeitos do ácido linoléico conjugado em humanos, já que este está presente naturalmente em alguns alimentos, que, quando consumidos em quantidades adequadas e de forma freqüente, poderiam atuar como coadjuvantes na prevenção e no controle de inúmeras doenças crônicas.
Collapse
|
31
|
Bhat TA, Singh RP. Tumor angiogenesis – A potential target in cancer chemoprevention. Food Chem Toxicol 2008; 46:1334-45. [DOI: 10.1016/j.fct.2007.08.032] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 07/06/2007] [Accepted: 08/22/2007] [Indexed: 01/11/2023]
|
32
|
Ou L, Wu Y, Ip C, Meng X, Hsu YC, Ip MM. Apoptosis induced by t10,c12-conjugated linoleic acid is mediated by an atypical endoplasmic reticulum stress response. J Lipid Res 2008; 49:985-94. [PMID: 18263853 DOI: 10.1194/jlr.m700465-jlr200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Conjugated linoleic acid (CLA) inhibits rat mammary carcinogenesis, in part by inducing apoptosis of preneoplastic and neoplastic mammary epithelial cells. The current study focused on the mechanism by which apoptosis is induced. In TM4t mammary tumor cells, trans-10,cis-12 (t10,c12)-CLA induced proapoptotic C/EBP-homologous protein (CHOP) concurrent with the cleavage of poly(ADP-ribose) polymerase. Knockdown of CHOP attenuated t10,c12-CLA-induced apoptosis. Furthermore, t10,c12-CLA induced the cleavage of endoplasmic reticulum (ER)-resident caspase-12, and a selective inhibitor of caspase-12 significantly alleviated t10,c12-CLA-induced apoptosis. Using electron microscopy, we observed that t10,c12-CLA treatment resulted in marked dilatation of the ER lumen. Together, these data suggest that t10,c12-CLA induces apoptosis through ER stress. To further explore the ER stress pathway, we examined the expression of the following upstream ER stress signature markers in response to CLA treatment: X-box binding protein 1 (XBP1) mRNA (unspliced and spliced), phospho-eukaryotic initiation factor (eIF) 2 alpha, activating transcription factor 4 (ATF4), and BiP proteins. We found that t10,c12-CLA induced the expression and splicing of XBP1 mRNA as well as the phosphorylation of eIF2 alpha. In contrast, ATF4 was induced modestly, but not significantly, and BiP was not altered. In summary, our data demonstrate that apoptosis induced by t10,c12-CLA is mediated, at least in part, through an atypical ER stress response that culminates in the induction of CHOP and the cleavage of caspase-12.
Collapse
Affiliation(s)
- Lihui Ou
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | | | |
Collapse
|
33
|
Matsunaga N, Shimazawa M, Otsubo K, Hara H. Phosphatidylinositol inhibits vascular endothelial growth factor-A--induced migration of human umbilical vein endothelial cells. J Pharmacol Sci 2008; 106:128-35. [PMID: 18187933 DOI: 10.1254/jphs.fp0071166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Phosphatidylinositol (PI), a phospholipid in component of cell membranes, is widely distributed in animals, plants, and microorganisms. Here, we examined in vitro whether PI inhibits the angiogenesis induced by vascular endothelial growth factor-A (VEGF-A). PI concentration-relatedly and significantly (at 10 and 30 microg/ml) inhibited VEGF-A-induced tube formation in a co-culture of human umbilical vein endothelial cells (HUVECs) and fibroblasts. PI also inhibited the migration, but not proliferation, induced in HUVECs by VEGF-A. Furthermore, PI at 30 microg/ml inhibited the VEGF-A-induced phosphorylation of serine/threonine protein kinase family protein kinase B (Akt) and p38 mitogen activate kinase (p38MAPK), key molecules in cell migration, but not phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), a key molecule in cell proliferation. These findings indicate that PI inhibits VEGF-induced angiogenesis by inhibiting HUVECs migration and that inhibition of phosphorylated-Akt and -p38MAPK may be involved in the mechanism. Therefore, PI may be expected to prevent some diseases caused by angiogenesis.
Collapse
Affiliation(s)
- Nozomu Matsunaga
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | | |
Collapse
|
34
|
Tsuzuki T, Kawakami Y. Tumor angiogenesis suppression by α-eleostearic acid, a linolenic acid isomer with a conjugated triene system, via peroxisome proliferator-activated receptor γ. Carcinogenesis 2008; 29:797-806. [DOI: 10.1093/carcin/bgm298] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
35
|
Nutrition and breast cancer among sporadic cases and gene mutation carriers: An overview. ACTA ACUST UNITED AC 2008; 32:52-64. [DOI: 10.1016/j.cdp.2008.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2008] [Indexed: 11/22/2022]
|
36
|
Izuta H, Chikaraishi Y, Shimazawa M, Mishima S, Hara H. 10-Hydroxy-2-decenoic acid, a major fatty acid from royal jelly, inhibits VEGF-induced angiogenesis in human umbilical vein endothelial cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2007; 6:489-94. [PMID: 18955252 PMCID: PMC2781774 DOI: 10.1093/ecam/nem152] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vascular endothelial growth factor (VEGF) is reported to be a potent pro-angiogenic factor that plays a pivotal role in both physiological and pathological angiogenesis. Royal jelly (RJ) is a honeybee product containing various proteins, sugars, lipids, vitamins and free amino acids. 10-Hydroxy-2-decenoic acid (10HDA), a major fatty acid component of RJ, is known to have various pharmacological effects; its antitumor activity being especially noteworthy. However, the mechanism underlying this effect is unclear. We examined the effect of 10HDA on VEGF-induced proliferation, migration and tube formation in human umbilical vein endothelial cells (HUVECs). Our findings showed that, 10HDA at 20 µM or more significantly inhibited such proliferation, migration and tube formation. Similarly, 10 µM GM6001, a matrix metalloprotease inhibitor, prevented VEGF-induced migration and tube formation. These findings indicate that 10HDA exerts an inhibitory effect on VEGF-induced angiogenesis, partly by inhibiting both cell proliferation and migration. Further experiments will be needed to clarify the detailed mechanism.
Collapse
Affiliation(s)
- Hiroshi Izuta
- Department of Biofunctional Evaluation, Laboratory of Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | | | | |
Collapse
|
37
|
Park Y, Albright K, Storkson J, Liu W, Pariza M. Conjugated Linoleic Acid (CLA) Prevents Body Fat Accumulation and Weight Gain in an Animal Model. J Food Sci 2007; 72:S612-7. [DOI: 10.1111/j.1750-3841.2007.00477.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Tsuzuki T, Shibata A, Kawakami Y, Nakagaya K, Miyazawa T. Anti-angiogenic effects of conjugated docosahexaenoic acid in vitro and in vivo. Biosci Biotechnol Biochem 2007; 71:1902-10. [PMID: 17690464 DOI: 10.1271/bbb.70114] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The anti-angiogenic effects of conjugated docosahexaenoic acid (CDHA), which was prepared by an alkaline treatment of docosahexaenoic acid and contained conjugated double bonds, were investigated in vitro and in vivo. CDHA inhibited tube formation by the bovine aortic endothelial cell (BAEC), and also inhibited the proliferation of BAEC at a concentration of CDHA that suppressed tube formation, but did not influence cell migration. The inhibition of BAEC growth caused by CDHA was accompanied by a marked change in cellular morphology. Nuclear condensation and brightness were observed in Hoechst 33342-stained cells treated with CDHA, indicating that CDHA induced apoptosis in BAEC. We also evaluated the angiogenesis inhibition of CDHA in vivo. The vessel formation which was triggered by tumor cells was clearly suppressed in mice orally given CDHA. Our findings suggest that CDHA has potential use as a therapeutic dietary supplement for minimizing tumor angiogenesis.
Collapse
Affiliation(s)
- Tsuyoshi Tsuzuki
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| | | | | | | | | |
Collapse
|
39
|
Hur SJ, Park Y. Effect of conjugated linoleic acid on bone formation and rheumatoid arthritis. Eur J Pharmacol 2007; 568:16-24. [PMID: 17573069 DOI: 10.1016/j.ejphar.2007.04.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 04/19/2007] [Accepted: 04/25/2007] [Indexed: 11/26/2022]
Abstract
Conjugated linoleic acid (CLA) has shown a variety of biologically beneficial effects. Dietary CLA inhibits eddosteal bone resorption, increases endocortical bone formation, and modulates the action and expression of cyclooxygenase (COX) enzyme, thereby decreasing prostaglandin-dependent bone resorption. CLA also enhances calcium absorption and may improve bone formation in animals, although results are not consistent. Since CLA can also affect inflammatory cytokines, it is hypothesized that CLA may be a good tool for prevention or reduction of rheumatoid arthritis symptoms. The possible mechanisms by which CLA prevents rheumatoid arthritis as well as other inflammatory diseases is discussed.
Collapse
Affiliation(s)
- Sun Jin Hur
- Department of Food Science, University of Massachusetts Amherst, 100 Holdsworth Way, Amherst, MA 01003, United States
| | | |
Collapse
|
40
|
Russell JS, McGee SO, Ip MM, Kuhlmann D, Masso-Welch PA. Conjugated linoleic acid induces mast cell recruitment during mouse mammary gland stromal remodeling. J Nutr 2007; 137:1200-7. [PMID: 17449582 PMCID: PMC2447169 DOI: 10.1093/jn/137.5.1200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conjugated linoleic acid (CLA) is a dietary chemopreventive agent that induces apoptosis in the mammary adipose vascular endothelium and decreases mammary brown adipose tissue (BAT) and white adipose tissue (WAT). To determine onset and extent of stromal remodeling, we fed CD2F1/Cr mice diets supplemented with 1 or 2 g/100 g mixed CLA isomers for 1-7 wk. BAT loss, collagen deposition, and leukocyte recruitment occurred in the mouse mammary fat pad, coincident with an increase in parenchymal-associated mast cells in mice fed both levels of CLA. Feeding experiments with purified isomers (0.5 g/100 g diet) demonstrated that these changes were induced by trans-10, cis-12 CLA (10,12-CLA), but not by cis-9, trans-11 CLA (9,11-CLA). This stromal remodeling did not require tumor necrosis factor (TNF)-alpha, a major cytokine in mast cells, as TNF-alpha null mice demonstrated collagen deposition, increased leukocytes, and BAT loss in the mammary fat pad in response to 10,12-CLA. To test the hypothesis that mast cells recruited in response to 10,12-CLA were required for stromal remodeling, Steel mice (WBB6F1/J-kit(W)/kit(W-V)), which lack functional mast cells, were examined for their stromal response to 10,12-CLA. Both wild-type and Steel mice showed a significantly increased leukocytic adipose infiltrate, collagen deposition, and decreased adipocyte size, although BAT was maintained in Steel mice. These results demonstrate that 10,12-CLA induces an inflammatory and fibrotic phenotype in the mouse mammary gland stroma that is independent of TNF-alpha or mast cells and suggest caution in the use of 10,12-CLA for breast cancer chemoprevention.
Collapse
Affiliation(s)
- Joshua S. Russell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Sibel Oflazoglu McGee
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Margot M. Ip
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Dietrich Kuhlmann
- Department of Mathematics and Statistics, Canisius College, Buffalo, NY 14208
| | - Patricia A. Masso-Welch
- Department of Biotechnical and Clinical Laboratory Sciences, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14214
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Rodríguez-Alcalá LM, Fontecha J. Hot Topic: Fatty Acid and Conjugated Linoleic Acid (CLA) Isomer Composition of Commercial CLA-Fortified Dairy Products: Evaluation After Processing and Storage. J Dairy Sci 2007; 90:2083-90. [PMID: 17430905 DOI: 10.3168/jds.2006-693] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Conjugated linoleic acid (CLA) exerts a strong positive influence on human health but intake of these fatty acids is typically too low, and increased consumption of CLA is recommended. A good way to raise the CLA content in the diet without a radical change in eating habits seems to be the enrichment of commonly consumed food products with CLA supplements. This study analyzed the total fatty acid content and the CLA isomer composition of 6 commercially available CLA-fortified dairy products during processing and 10 wk of refrigerated storage. Research was carried out by combining gas chromatography and silver-ion HPLC. The tested samples were a CLA oil supplement, and several skim milk dairy products fortified with the supplement (milk, milk powder, fermented milk, yogurt, fresh cheese, and milk-juice blend). The CLA oil supplement was added such that the consumer received 2.4 g/d of CLA by consuming 2 servings. The predominant isomers present, C18:2 cis-9, trans-11 CLA and C18:2 cis-10, trans-12 CLA, were in at a similar ratio, which ranged from 0.97 to 1.05. These major isomers were not significantly affected by processing but a decrease in total CLA in fresh cheese samples was detected after 10 wk of refrigerated storage. Refrigerated storage and thermal treatment resulted in significant decreases or disappearance of some of the minor CLA isomers and a significant increase of trans, trans isomers from both cis, trans, trans, cis, and cis, cis isomers especially in CLA-fortified milk powder but also in fermented milk, yogurt, and milk-juice blend.
Collapse
Affiliation(s)
- L M Rodríguez-Alcalá
- Department of Dairy Products, Instituto del Frío (CSIC), José Antonio Novais 10, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | | |
Collapse
|
42
|
|
43
|
PARK YEONHWA, YANG MINGDER, STORKSON JAYNEM, ALBRIGHT KARENJ, LIU WEI, COOK MARKE, PARIZA MICHAELW. EFFECTS OF CONJUGATED LINOLEIC ACID ISOMERS ON SERUM TUMOR NECROSIS FACTOR-A CONCENTRATION IN MICE. J Food Biochem 2007. [DOI: 10.1111/j.1745-4514.2007.00110.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Ou L, Ip C, Lisafeld B, Ip MM. Conjugated linoleic acid induces apoptosis of murine mammary tumor cells via Bcl-2 loss. Biochem Biophys Res Commun 2007; 356:1044-9. [PMID: 17400188 PMCID: PMC1992442 DOI: 10.1016/j.bbrc.2007.03.096] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 03/16/2007] [Indexed: 10/23/2022]
Abstract
Conjugated linoleic acid (CLA) is a powerful anticancer agent in a number of tumor model systems; however, its precise mechanism of action remains elusive. Here, we report that t10,c12 CLA, a component of synthetic CLA supplements, induced apoptosis and G1 arrest of p53 mutant TM4t murine mammary tumor cells. Furthermore, t10,c12-CLA induced a time- and concentration-dependent cleavage of caspases-3 and -9, and release of cytochrome c from mitochondria to cytosol. Levels of Bcl-2 protein were decreased both in total cellular lysates and in mitochondria after t10,c12-CLA treatment; however, there was no significant change in Bax or Bak. Overexpression of Bcl-2 attenuated apoptosis in response to t10,c12-CLA treatment. These results demonstrate that t10,c12-CLA triggers apoptosis of p53 mutant murine mammary tumor cells through the mitochondrial pathway by targeting Bcl-2.
Collapse
Affiliation(s)
- Lihui Ou
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Clement Ip
- Department of Chemoprevention, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Barbara Lisafeld
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Margot M. Ip
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
- * Corresponding author. Fax: +1-716-845-5865. E-mail:
| |
Collapse
|
45
|
Tsuzuki T, Shibata A, Kawakami Y, Nakagawa K, Miyazawa T. Conjugated eicosapentaenoic acid inhibits vascular endothelial growth factor-induced angiogenesis by suppressing the migration of human umbilical vein endothelial cells. J Nutr 2007; 137:641-6. [PMID: 17311953 DOI: 10.1093/jn/137.3.641] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have previously shown that conjugated eicosapentaenoic acid (CEPA), which is prepared by alkaline treatment of eicosapentaenoic acid and contains conjugated double bonds, suppresses tumor growth in vivo. In this earlier study, blood vessels were observed on the tumor surface in control mice, whereas in CEPA-treated mice, no such vessels were observed and the inner part of the tumor was discolored. These observations suggest that CEPA might suppress cancer cell growth through malnutrition due to a suppressive effect on tumor angiogenesis. In this study, the antiangiogenic effects of CEPA were investigated in vitro. CEPA at 5 micromol/L inhibited vascular endothelial growth factor (VEGF)-stimulated tube formation by human umbilical vein endothelial cells (HUVEC) (P < 0.05) and also inhibited VEGF-stimulated migration of HUVEC at a concentration of CEPA that suppressed tube formation (P < 0.05) but did not influence cell proliferation. The antiangiogenic mechanism of CEPA was investigated in vitro by measuring the secretion and expression of well-characterized angiogenic factors associated with cell migration, such as matrix metalloproteinases (MMP). CEPA at a concentration that suppressed tube formation inhibited secretion and mRNA expression of MMP2 and MMP9 in VEGF-stimulated HUVEC (P < 0.05). Our findings suggest that CEPA has potential use as a therapeutic dietary supplement for minimizing tumor angiogenesis.
Collapse
Affiliation(s)
- Tsuyoshi Tsuzuki
- Food and Biodynamic Chemistry Lab, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| | | | | | | | | |
Collapse
|
46
|
Ip MM, McGee SO, Masso-Welch PA, Ip C, Meng X, Ou L, Shoemaker SF. The t10,c12 isomer of conjugated linoleic acid stimulates mammary tumorigenesis in transgenic mice over-expressing erbB2 in the mammary epithelium. Carcinogenesis 2007; 28:1269-76. [PMID: 17259656 PMCID: PMC2776704 DOI: 10.1093/carcin/bgm018] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Conjugated linoleic acid (CLA), a family of isomers of octadecadienoic acid, inhibits rat mammary carcinogenesis, angiogenesis, and lung metastasis from a transplantable mammary tumor. c9,t11-CLA, the predominant isomer in dairy products, and t10,c12-CLA, a component of CLA supplements, are equally effective. The objective of the current studies was to test the efficacy of these two CLA isomers in a clinically relevant breast cancer model. Transgenic mice over-expressing erbB2 in the mammary epithelium were fed control or 0.5% CLA-supplemented diets continuously from weaning. Unexpectedly, t10,c12-CLA stimulated lobular hyperplasia of the mammary epithelium and accelerated mammary tumor development, decreasing median tumor latency to 168 days of age compared with 256 and 270 days in the c9,t11-CLA and control groups, respectively. Metastasis was also increased by t10,c12-CLA, with percentage of tumor-bearing mice with lung metastasis 73, 14 and 31% in the t10,c12-CLA, c9,t11-CLA and control groups, respectively. A second study, in which CLA administration was initiated after puberty, confirmed the stimulatory effect of t10,c12-CLA on mammary tumor development and metastasis. Additionally, t10,c12-CLA, but not c9,t11-CLA, increased the size of the liver, heart, spleen and mammary lymph node. The effects of t10,c12-CLA were not specific to erbB2 transgenic mice, as t10,c12-CLA supplementation increased proliferation in the mammary epithelium of both wild-type FVB and FVB/erbB2 mice. Moreover, the number of terminal end buds, the mammary epithelial structures most sensitive to a carcinogenic insult, was increased 30-fold in FVB wild-type mice fed t10,c12-CLA. These data suggest that it would be prudent to avoid CLA supplements containing the t10,c12-CLA isomer. However, even though c9,t11-CLA was not efficacious in the erbB2 model, its ability to inhibit mammary tumor development in rat models suggests that it may have activity for prevention of some types of breast cancer.
Collapse
Affiliation(s)
- Margot M Ip
- Department of Pharmacology and Therapeutics and Department of Chemoprevention, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Tsuzuki T, Kawakami Y, Abe R, Nakagawa K, Koba K, Imamura J, Iwata T, Ikeda I, Miyazawa T. Conjugated linolenic acid is slowly absorbed in rat intestine, but quickly converted to conjugated linoleic acid. J Nutr 2006; 136:2153-9. [PMID: 16857834 DOI: 10.1093/jn/136.8.2153] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We showed previously that alpha-eleostearic acid (alpha-ESA; 9Z11E13E-18:3) is converted to 9Z11E-conjugated linoleic acid (CLA) in rats through a Delta13-saturation reaction. To investigate this further, we examined the absorption and metabolism of alpha-ESA in rat intestine using a lipid absorption assay in lymph from the thoracic duct. In this study, we used 4 test oils [tung oil, perilla oil, CLA-triacylglycerol (TG), and pomegranate seed oil, containing alpha-ESA, alpha-linolenic acid (LnA; 9Z12Z15Z-18:3), CLA, and punicic acid (PA; 9Z11E13Z-18:3), respectively]. Emulsions containing the test oils were administered to rats, and lymph from the thoracic duct was collected over 24 h. The positional and geometrical isomerism of CLA produced by PA metabolism was determined using GC-electron impact (EI)-MS and (13)C-NMR, respectively; the product was confirmed to be 9Z11E-CLA. A part of alpha-ESA and PA was converted to 9Z11E-CLA 1 h after administration; therefore the lymphatic recoveries of alpha-ESA and PA were modified by the amount of recovered CLA. Cumulative recovery of CLA, alpha-ESA, and PA was lower than that of LnA only during h 1 (P < 0.05), and cumulative recovery of alpha-ESA and PA was significantly lower than that of LnA and CLA for 8 h (P < 0.05). Therefore, the absorption rate was LnA > CLA > alpha-ESA = PA. The conversion ratio of alpha-ESA to 9Z11E-CLA was higher than that of PA to 9Z11E-CLA over 24 h (P < 0.05). These results indicated that alpha-ESA and PA are slowly absorbed in rat intestine, and a portion of these fatty acids is quickly converted to 9Z11E-CLA.
Collapse
Affiliation(s)
- Tsuyoshi Tsuzuki
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sulkowska M, Golaszewska J, Wincewicz A, Koda M, Baltaziak M, Sulkowski S. Leptin--from regulation of fat metabolism to stimulation of breast cancer growth. Pathol Oncol Res 2006; 12:69-72. [PMID: 16799705 DOI: 10.1007/bf02893446] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 03/05/2006] [Indexed: 01/12/2023]
Abstract
Leptin restricts intake of calories as a satiety hormone. It probably stimulates neoplastic proliferation in breast cancer, too. Growth of malignant cells could be regulated by various leptin-induced second messengers like STAT3 (signal transducers and activators of transcription 3), AP-1 (transcription activator protein 1), MAPK (mitogen-activated protein kinase) and ERKs (extracellular signal-regulated kinases). They seem to be involved in aromatase expression, generation of estrogens and activation of estrogen receptor alpha (ERalpha) in malignant breast epithelium. Leptin may maintain resistance to antiestrogen therapy. Namely, it increased activation of estrogen receptors, therefore, it was suspected to reduce or even overcome the inhibitory effect of tamoxifen on breast cell proliferation. Although several valuable reviews have been focused on the role of leptin in breast cancer, the status of knowledge in this field changes quickly and our insight should be continuously revised. In this summary, we provide refreshed interpretation of intensively reported scientific queries of the topic.
Collapse
Affiliation(s)
- Mariola Sulkowska
- Department of Pathology, Collegium Pathologicum, Medical University of Bialystok, Bialystok, 15-269, Poland
| | | | | | | | | | | |
Collapse
|
49
|
Miglietta A, Bozzo F, Bocca C, Gabriel L, Trombetta A, Belotti S, Canuto RA. Conjugated linoleic acid induces apoptosis in MDA-MB-231 breast cancer cells through ERK/MAPK signalling and mitochondrial pathway. Cancer Lett 2006; 234:149-57. [PMID: 15885890 DOI: 10.1016/j.canlet.2005.03.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 03/18/2005] [Accepted: 03/20/2005] [Indexed: 12/22/2022]
Abstract
We investigated the molecular mechanisms involved in the anti-proliferative activity exerted by conjugated linoleic acid (CLA) on the estrogen unresponsive MDA-MB-231 human breast cancer cell line. The effects on cell proliferation, cell cycle progression and induction of apoptosis were examined. CLA caused the reduction of cell proliferation along with the accumulation of cells in the S phase of the cycle. The occurrence of apoptosis in these cells was indicated by flow cytometry data and further confirmed by the onset of cells with morphological features typical of apoptosis. ERK1/2 reduction and upregulation of pro-apoptotic protein Bak were induced. These events were associated with: (a) reduced levels of the anti-apoptotic protein Bcl-x(L), (b) the translocation of cytochrome c from the mitochondria to the cytosol, (c) the cleavage of pro-caspase-9 and pro-caspase-3. From the above data, we are induced to think that CLA may trigger apoptosis in the estrogen unresponsive MDA-MB-231 cell line via mechanisms involving above all the mitochondrial pathway.
Collapse
Affiliation(s)
- Antonella Miglietta
- Department of Experimental Medicine and Oncology, University of Torino, Corso Raffaello 30, 10125 Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
50
|
Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G. Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 2006; 17:789-810. [PMID: 16650752 DOI: 10.1016/j.jnutbio.2006.02.009] [Citation(s) in RCA: 418] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 02/21/2006] [Accepted: 02/24/2006] [Indexed: 01/20/2023]
Abstract
Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of octadecadienoic acid [linoleic acid (LA), 18:2n-6] commonly found in beef, lamb and dairy products. The most abundant isomer of CLA in nature is the cis-9, trans-11 (c9t11) isomer. Commercially available CLA is usually a 1:1 mixture of c9t11 and trans-10, cis-12 (t10c12) isomers with other isomers as minor components. Conjugated LA isomer mixture and c9t11 and t10c12 isomers alone have been attributed to provide several health benefits that are largely based on animal and in vitro studies. Conjugated LA has been attributed many beneficial effects in prevention of atherosclerosis, different types of cancer, hypertension and also known to improve immune function. More recent literature with availability of purified c9t11 and t10c12 isomers suggests that t10c12 is the sole isomer involved in antiadipogenic role of CLA. Other studies in animals and cell lines suggest that the two isomers may act similarly or antagonistically to alter cellular function and metabolism, and may also act through different signaling pathways. The effect of CLA and individual isomers shows considerable variation between different strains (BALB/C mice vs. C57BL/6 mice) and species (e.g., rats vs. mice). The dramatic effects seen in animal studies have not been reflected in some clinical studies. This review comprehensively discusses the recent studies on the effects of CLA and individual isomers on body composition, cardiovascular disease, bone health, insulin resistance, mediators of inflammatory response and different types of cancer, obtained from both in vitro and animal studies. This review also discusses the latest available information from clinical studies in these areas of research.
Collapse
Affiliation(s)
- Arunabh Bhattacharya
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|