1
|
Khorashadizadeh S, Abbasifar S, Yousefi M, Fayedeh F, Moodi Ghalibaf A. The Role of Microbiome and Probiotics in Chemo-Radiotherapy-Induced Diarrhea: A Narrative Review of the Current Evidence. Cancer Rep (Hoboken) 2024; 7:e70029. [PMID: 39410854 PMCID: PMC11480522 DOI: 10.1002/cnr2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND In this article, we review the most recent research on probiotics effects on diarrhea in both human and animal models of the condition along with the therapeutic potential of these compounds based on their findings. RECENT FINDINGS Nearly 50%-80% of cancer patients experience chemotherapy-induced diarrhea (CID), serious gastrointestinal toxicity of chemotherapeutic and radiation regimens that leads to prolonged hospitalizations, cardiovascular problems, electrolyte imbalances, disruptions in cancer treatment, poor cancer prognosis, and death. CID is typically categorized as osmotic diarrhea. The depletion of colonic crypts and villi by radiotherapy and chemotherapy agents interferes with the absorptive function of the intestine, thereby decreasing the absorption of chloride and releasing water into the intestinal lumen. Probiotic supplements have been found to be able to reverse the intestinal damage caused by chemo-radiation therapy by promoting the growth of crypt and villi and reducing inflammatory pathways. In addition, they support the modulation of immunological and angiogenesis responses in the gut as well as the metabolism of certain digestive enzymes by altering the gut microbiota. CONCLUSION Beyond the benefits of probiotics, additional clinical research is required to clarify the most effective strain combinations and dosages for preventing chemotherapy and radiotherapy diarrhea.
Collapse
Affiliation(s)
| | - Sara Abbasifar
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | - Mohammad Yousefi
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | - Farzad Fayedeh
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | | |
Collapse
|
2
|
Kabiloglu A, Kocabagli N, Kekec AI. Effects of propolis extract on growth performance and health condition of dairy calves. Trop Anim Health Prod 2023; 55:115. [PMID: 36928524 DOI: 10.1007/s11250-023-03542-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
The aim of this study was to evaluate the effect of propolis ethanol extract, on performance, fecal structure, and general health status of calves during the preweaning phase. For this purpose, 24 Simmental calves that were given colostrum for the first 3 days after birth were enrolled in the study. The study started when the calves were 4 days old and finished when they were 60 days old. These calves were divided into two groups as propolis and control groups according to their weight and gender. Both groups were given the same ration and housed in individual calf huts under the same environmental conditions. Differently from the control group, the calves in the propolis group were given 4 mL of propolis extract (300 mg/mL) with an oral feeding syringe for 56 days after morning feeding. The amounts of feed intake and fecal scores of the calves were recorded daily. Health scores, rectal body temperature, fecal pH, body weight, and body measurements were recorded weekly. For the determination of the counts of Lactobacillus spp. and Bifidobacterium spp., fecal samples were collected at the beginning and at the end of the study. The results indicated that oral administration of propolis had positive effects in terms of some performance parameters, the number of days with diarrhea, and fecal scores. In this study, it was concluded that propolis extract had the potential to positively affect the growth performance and health status of preweaning calves.
Collapse
Affiliation(s)
- Ali Kabiloglu
- Institute of Graduate Studies, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey.
| | - Nese Kocabagli
- Department of Animal Nutrition and Nutritional Diseases, Istanbul University-Cerrahpasa, Buyukcekmece, Istanbul, Turkey
| | - Ayse Ilgin Kekec
- Department of Microbiology (Veterinary Faculty), Istanbul University-Cerrahpasa, Buyukcekmece, Istanbul, Turkey
| |
Collapse
|
3
|
Tong Y, Wang Q, Zhang J, Yang R. Orally Administered Xylo‐Oligosaccharides (XOS) Ameliorates Diarrhea Symptoms in Mice via Intestinal Barrier Improvement and Gut Microbiota Modulation. Mol Nutr Food Res 2022; 66:e2200171. [DOI: 10.1002/mnfr.202200171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/06/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yanjun Tong
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Qinyue Wang
- Affiliated Hospital of Jiangnan University Wuxi Jiangsu 214041 P. R. China
| | - Jieyu Zhang
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi Jiangsu 214122 P. R. China
| |
Collapse
|
4
|
Zhang H, Zhao H, Zhao Y, Sui L, Li F, Zhang H, Li J, Jiang Y, Cui W, Ding G, Zhou H, Wang L, Qiao X, Tang L, Wang X, Li Y. Auxotrophic Lactobacillus Expressing Porcine Rotavirus VP4 Constructed Using CRISPR-Cas9D10A System Induces Effective Immunity in Mice. Vaccines (Basel) 2022; 10:vaccines10091510. [PMID: 36146587 PMCID: PMC9504633 DOI: 10.3390/vaccines10091510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine rotavirus (PoRV) mainly causes acute diarrhea in piglets under eight weeks of age and has potentially high morbidity and mortality rates. As vaccine carriers for oral immunization, lactic acid bacteria (LAB) are an ideal strategy for blocking PoRV infections. However, the difficulty in knocking out specific genes, inserting foreign genes, and the residues of antibiotic selection markers are major challenges for the oral vaccination of LAB. In this study, the target gene, alanine racemase (alr), in the genome of Lactobacillus casei strain W56 (L. casei W56) was knocked out to construct an auxotrophic L. casei strain (L. casei Δalr W56) using the CRISPR-Cas9D10A gene editing system. A recombinant strain (pPG-alr-VP4/Δalr W56) was constructed using an electrotransformed complementary plasmid. Expression of the alr-VP4 fusion protein from pPG-alr-VP4/Δalr W56 was detected using Western blotting. Mice orally immunized with pPG-alr-VP4/Δalr W56 exhibited high levels of serum IgG and mucosal secretory immunoglobulin A (SIgA), which exhibited neutralizing effects against PoRV. Cytokines levels in serum detected using ELISA, indicated that the recombinant strain induced an immune response dominated by Th2 cells. Our data suggest that pPG-alr-VP4/Δalr W56, an antibiotic-resistance-free LAB, provides a safer vaccine strategy against PoRV infection.
Collapse
Affiliation(s)
- Hailin Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Haiyuan Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Jiangsu Hanswine Food Co., Ltd., Ma’anshan 243000, China
| | - Yuliang Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ling Sui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Fengsai Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huijun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Guojie Ding
- Harbin Vikeses Biological Technology Co., Ltd., Harbin 150030, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
- Correspondence: (X.W.); (Y.L.); Tel./Fax: +86-451-5519-0363 (Y.L.)
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
- Correspondence: (X.W.); (Y.L.); Tel./Fax: +86-451-5519-0363 (Y.L.)
| |
Collapse
|
5
|
Inchingolo AD, Malcangi G, Semjonova A, Inchingolo AM, Patano A, Coloccia G, Ceci S, Marinelli G, Di Pede C, Ciocia AM, Mancini A, Palmieri G, Barile G, Settanni V, De Leonardis N, Rapone B, Piras F, Viapiano F, Cardarelli F, Nucci L, Bordea IR, Scarano A, Lorusso F, Palermo A, Costa S, Tartaglia GM, Corriero A, Brienza N, Di Venere D, Inchingolo F, Dipalma G. Oralbiotica/Oralbiotics: The Impact of Oral Microbiota on Dental Health and Demineralization: A Systematic Review of the Literature. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1014. [PMID: 35883998 PMCID: PMC9323959 DOI: 10.3390/children9071014] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/17/2022]
Abstract
The oral microbiota plays a vital role in the human microbiome and oral health. Imbalances between microbes and their hosts can lead to oral and systemic disorders such as diabetes or cardiovascular disease. The purpose of this review is to investigate the literature evidence of oral microbiota dysbiosis on oral health and discuss current knowledge and emerging mechanisms governing oral polymicrobial synergy and dysbiosis; both have enhanced our understanding of pathogenic mechanisms and aided the design of innovative therapeutic approaches as ORALBIOTICA for oral diseases such as demineralization. PubMed, Web of Science, Google Scholar, Scopus, Cochrane Library, EMBEDDED, Dentistry & Oral Sciences Source via EBSCO, APA PsycINFO, APA PsyArticles, and DRUGS@FDA were searched for publications that matched our topic from January 2017 to 22 April 2022, with an English language constraint using the following Boolean keywords: ("microbio*" and "demineralization*") AND ("oral microbiota" and "demineralization"). Twenty-two studies were included for qualitative analysis. As seen by the studies included in this review, the balance of the microbiota is unstable and influenced by oral hygiene, the presence of orthodontic devices in the oral cavity and poor eating habits that can modify its composition and behavior in both positive and negative ways, increasing the development of demineralization, caries processes, and periodontal disease. Under conditions of dysbiosis, favored by an acidic environment, the reproduction of specific bacterial strains increases, favoring cariogenic ones such as Bifidobacterium dentium, Bifidobacterium longum, and S. mutans, than S. salivarius and A. viscosus, and increasing of Firmicutes strains to the disadvantage of Bacteroidetes. Microbial balance can be restored by using probiotics and prebiotics to manage and treat oral diseases, as evidenced by mouthwashes or dietary modifications that can influence microbiota balance and prevent or slow disease progression.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Alexandra Semjonova
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Chiara Di Pede
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Anna Maria Ciocia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giuseppe Barile
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Fabio Viapiano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Filippo Cardarelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 6, 80138 Naples, Italy;
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (F.L.)
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (F.L.)
| | - Andrea Palermo
- Implant Dentistry College of Medicine and Dentistry Birmingham, University of Birmingham, Birmingham B46BN, UK;
| | - Stefania Costa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Orthodontics, School of Dentistry, University of Messina, 98125 Messina, Italy;
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy;
- Department of Orthodontics, Faculty of Medicine, University of Milan, 20100 Milan, Italy
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (A.C.); (N.B.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (A.C.); (N.B.)
| | - Daniela Di Venere
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| |
Collapse
|
6
|
Determination of the available energy, standardized ileal digestibility of amino acids of fermented corn germ meal replacing soybean meal in growing pig diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:259-268. [PMID: 35600545 PMCID: PMC9097634 DOI: 10.1016/j.aninu.2021.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
Three experiments were conducted to compare the digestible (DE), metabolizable energy (ME), and standardized ileal digestibility (SID) of amino acids (AA) in fermented corn germ meal (FCGM) and soybean meal (SBM), and evaluate the effects of FCGM replacing SBM in growing pig diets. In Exp. 1, 18 barrows with initial body weight (BW) of 60.2 ± 3.40 kg were randomly allotted to 3 treatments with 6 replicates per treatment. The control diet used corn as the only energy ingredient, and 2 test diets were made by replacing 25.8% of corn with FCGM or SBM. The DE and ME of FCGM were less (P < 0.01) than those of SBM. In Exp. 2, 18 barrows (59.3 ± 2.52 kg BW) with ileal T-cannulas were randomly allotted to 3 treatments with 6 replicates per treatment. The SID of arginine, tryptophan and proline were greater (P < 0.05) and the tyrosine was less (P = 0.01) in SBM compared with FCGM. In Exp. 3, 144 growing pigs (56.1 ± 5.22 kg BW) were randomly allotted to 4 treatments with 6 pens per treatment (3 barrows and 3 gilts per pen). Four diets (FCGM0, FCGM10, FCGM20 and FCGM30) were formulated using FCGM to replace 0%, 10%, 20% and 30% of SBM, respectively. The ME and SID values of AA of SBM and FCGM were determined by Exp. 1 and 2. Results showed that increasing FCGM inclusion quadratically (P < 0.05) increased the average daily gain (ADG), average daily feed intake, and the levels of serum immunoglobulin G (IgG) and urea nitrogen, and linearly (P < 0.05) increased the serum IgM, the propanoic acid, butyric acid, total volatile fatty acid (VFA) and the Shannon index of microbiota in feces. Besides, the relative abundance of genus Streptococcus in FCGM0, Lactobacillus in FCGM10 and Lachnospiraceae in FCGM30 were increased (P < 0.05) compared with other treatments. In conclusion, we recommend replacing 11.80% of SBM with FCGM to obtain the optimal ADG of growing pigs. Moreover, as the ratio of FCGM replacing SBM increased in diet, the immunity, intestinal microbiota and total VFA composition of growing pigs were improved.
Collapse
|
7
|
Dynamics of Changes in the Gut Microbiota of Healthy Mice Fed with Lactic Acid Bacteria and Bifidobacteria. Microorganisms 2022; 10:microorganisms10051020. [PMID: 35630460 PMCID: PMC9144108 DOI: 10.3390/microorganisms10051020] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Probiotics are living microorganisms that provide numerous health benefits for their host. Probiotics have various effects on the body; for example, they change gut microbiota, improve the integrity of the epithelial barrier and have anti-inflammatory effects. The use of probiotic supplements that are based on lactic acid bacteria and bifidobacteria is one of the approaches that are used to balance gut microflora. In our study, we evaluated the effects of supplements, which were based on members of the Lactobacillaceae family and bifidobacteria, on the gut microbiome of healthy mice using the 16S rRNA sequencing method. The data that were obtained demonstrated that when mice received the probiotic supplements, statistically significant changes occurred in the composition of the microbiome at the phylum level, which were characterized by an increase in the number of Actinobacteriota, Bacteroidota, Verrucomicrobia and Proteobacteria, all of which have potentially positive effects on health. At the generic level, a decrease in the abundance of members of the Nocardioides, Helicobacter and Mucispirillum genus, which are involved in inflammatory processes, was observed for the group of mice that was fed with lactic acid bacteria. For the group of mice that was fed with bifidobacteria, a decrease was seen in the number of members of the Tyzzerella and Akkermansia genus. The results of our study contribute to the understanding of changes in the gut microbiota of healthy mice under the influence of probiotics. It was shown that probiotics that are based on members of the Lactobacillaceae family have a more positive effect on the gut microbiome than probiotics that are based on bifidobacteria.
Collapse
|
8
|
Li Q, Li L, Li Q, Wang J, Nie S, Xie M. Influence of Natural Polysaccharides on Intestinal Microbiota in Inflammatory Bowel Diseases: An Overview. Foods 2022; 11:foods11081084. [PMID: 35454671 PMCID: PMC9029011 DOI: 10.3390/foods11081084] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
The incidence of inflammatory bowel disease (IBD) has increased in recent years. Considering the potential side effects of conventional drugs, safe and efficient treatment methods for IBD are required urgently. Natural polysaccharides (NPs) have attracted considerable attention as potential therapeutic agents for IBD owing to their high efficiency, low toxicity, and wide range of biological activities. Intestinal microbiota and their fermentative products, mainly short-chain fatty acids (SCFAs), are thought to mediate the effect of NPs in IBDs. This review explores the beneficial effects of NPs on IBD, with a special focus on the role of intestinal microbes. Intestinal microbiota exert alleviation effects via various mechanisms, such as increasing the intestinal immunity, anti-inflammatory activities, and intestinal barrier protection via microbiota-dependent and microbiota-independent strategies. The aim of this paper was to document evidence of NP–intestinal microbiota-associated IBD prevention, which would be helpful for guidance in the treatment and management of IBD.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China; (Q.L.); (L.L.); (S.N.); (M.X.)
| | - Linyan Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China; (Q.L.); (L.L.); (S.N.); (M.X.)
| | - Qiqiong Li
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Junqiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China; (Q.L.); (L.L.); (S.N.); (M.X.)
- Correspondence:
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China; (Q.L.); (L.L.); (S.N.); (M.X.)
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China; (Q.L.); (L.L.); (S.N.); (M.X.)
| |
Collapse
|
9
|
Di Domenico M, Ballini A, Boccellino M, Scacco S, Lovero R, Charitos IA, Santacroce L. The Intestinal Microbiota May Be a Potential Theranostic Tool for Personalized Medicine. J Pers Med 2022; 12:523. [PMID: 35455639 PMCID: PMC9024566 DOI: 10.3390/jpm12040523] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
The human intestine is colonized by a huge number of microorganisms from the moment of birth. This set of microorganisms found throughout the human body, is called the microbiota; the microbiome indicates the totality of genes that the microbiota can express, i.e., its genetic heritage. Thus, microbiota participates in and influences the proper functioning of the organism. The microbiota is unique for each person; it differs in the types of microorganisms it contains, the number of each microorganism, and the ratio between them, but mainly it changes over time and under the influence of many factors. Therefore, the correct functioning of the human body depends not only on the expression of its genes but also on the expression of the genes of the microorganisms it coexists with. This fact makes clear the enormous interest of community science in studying the relationship of the human microbiota with human health and the incidence of disease. The microbiota is like a unique personalized "mold" for each person; it differs quantitatively and qualitatively for the microorganisms it contains together with the relationship between them, and it changes over time and under the influence of many factors. We are attempting to modulate the microbial components in the human intestinal microbiota over time to provide positive feedback on the health of the host, from intestinal diseases to cancer. These interventions to modulate the intestinal microbiota as well as to identify the relative microbiome (genetic analysis) can range from dietary (with adjuvant prebiotics or probiotics) to fecal transplantation. This article researches the recent advances in these strategies by exploring their advantages and limitations. Furthermore, we aim to understand the relationship between intestinal dysbiosis and pathologies, through the research of resident microbiota, that would allow the personalization of the therapeutic antibiotic strategy.
Collapse
Affiliation(s)
- Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (M.B.)
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (M.B.)
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (M.B.)
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Roberto Lovero
- AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, Clinical Pathology Unit, Policlinico University Hospital of Bari, 70124 Bari, Italy;
| | - Ioannis Alexandros Charitos
- Department of Emergency and Urgency, National Poisoning Centre, Riuniti University Hospital of Foggia, 71122 Foggia, Italy;
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
10
|
Huo J, Wu Z, Sun W, Wang Z, Wu J, Huang M, Wang B, Sun B. Protective Effects of Natural Polysaccharides on Intestinal Barrier Injury: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:711-735. [PMID: 35078319 DOI: 10.1021/acs.jafc.1c05966] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their minimal side effects and effective protection from oxidative stress, inflammation, and malignant growth, natural polysaccharides (NPs) are a potential adjuvant therapy for several diseases caused by intestinal barrier injury (IBI). More studies are accumulating on the protective effects of NPs with respect to IBI, but the underlying mechanisms remain unclear. Thus, this review aims to represent current studies that investigate the protective effects of NPs on IBI by directly maintaining intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression) and indirectly regulating intestinal immunity and microbiota. Furthermore, the mechanisms underlying IBI development are briefly introduced, and the structure-activity relationships of polysaccharides with intestinal barrier protection effects are discussed. Potential developments and challenges associated with NPs exhibiting protective effects against IBI have also been highlighted to guide the application of NPs in the treatment of intestinal diseases caused by IBI.
Collapse
Affiliation(s)
- Jiaying Huo
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Ziyan Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Bowen Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| |
Collapse
|
11
|
TORRE GERWINLOUISTDELA, BUNGAY ALICEALMAC. Lactobacillus acidophilus BIOTECH 1900 decreases the transepithelial mucosal-to-serosal transport of colchicine in an ex vivo non-everted gut sac model. AN ACAD BRAS CIENC 2022; 94:e20210766. [DOI: 10.1590/0001-3765202220210766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
|
12
|
Inatomi T, Honma M. Effects of probiotics on loperamide-induced constipation in rats. Sci Rep 2021; 11:24098. [PMID: 34916548 PMCID: PMC8677781 DOI: 10.1038/s41598-021-02931-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
The role of probiotics in mitigating constipation, gut immunity, and gut microbiota has not been well studied. We aimed to evaluate the effects of probiotics on loperamide (LP)-induced constipation in Sprague-Dawley rats. Altogether, 150 male Sprague-Dawley rats (age 8 weeks) were used in the experiments following a 12-day acclimatisation period and were randomly divided into three treatment groups (groups 1, 2, and 3). Spastic constipation was induced via oral LP administration (3 mg/kg) for 6 days, 1 h before administering each test compound in groups 1 and 2. A probiotic solution (4 mL/kg body weight) was orally administered once a day for 6 days in group 2. In group 1, a phosphate buffer solution was orally administered once a day for 6 days, 1 h after each LP administration. In group 3, a phosphate buffer solution was orally administered once a day for 6 days. In the probiotic group, faecal parameters improved; faecal n-butyric acid, acetic acid, and IgA concentrations were increased; intestinal transit time was shortened; and disturbance of intestinal microbiota was inhibited. Our findings suggest that this probiotic was useful in improving various symptoms caused by constipation.
Collapse
Affiliation(s)
- Takio Inatomi
- Inatomi Animal Hospital, 1-1-24 Denenchofu, Ota-ku, Tokyo, 145-0071, Japan.
| | - Mihoko Honma
- Kusama Animal Health Laboratory, 2240 Tsunehiro, Kashima-shi, Saga, 849-1301, Japan
| |
Collapse
|
13
|
Popov J, Caputi V, Nandeesha N, Rodriguez DA, Pai N. Microbiota-Immune Interactions in Ulcerative Colitis and Colitis Associated Cancer and Emerging Microbiota-Based Therapies. Int J Mol Sci 2021; 22:11365. [PMID: 34768795 PMCID: PMC8584103 DOI: 10.3390/ijms222111365] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic autoimmune disorder affecting the colonic mucosa. UC is a subtype of inflammatory bowel disease along with Crohn's disease and presents with varying extraintestinal manifestations. No single etiology for UC has been found, but a combination of genetic and environmental factors is suspected. Research has focused on the role of intestinal dysbiosis in the pathogenesis of UC, including the effects of dysbiosis on the integrity of the colonic mucosal barrier, priming and regulation of the host immune system, chronic inflammation, and progression to tumorigenesis. Characterization of key microbial taxa and their implications in the pathogenesis of UC and colitis-associated cancer (CAC) may present opportunities for modulating intestinal inflammation through microbial-targeted therapies. In this review, we discuss the microbiota-immune crosstalk in UC and CAC, as well as the evolution of microbiota-based therapies.
Collapse
Affiliation(s)
- Jelena Popov
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada;
- College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Valentina Caputi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Nandini Nandeesha
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland;
| | | | - Nikhil Pai
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
14
|
Jin Q, Cheng L, Zhu Y, Zhao X, Zhang W, Gao X, Xiong T, Guo L. Immune-related effects of compound astragalus polysaccharide and sulfated epimedium polysaccharide on newborn piglets. Anim Biotechnol 2021:1-12. [PMID: 34550852 DOI: 10.1080/10495398.2021.1979022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study aimed to evaluate the immune effects of compound astragalus polysaccharide and sulfated epimedium polysaccharide (APS-sEPS) on the peripheral blood lymphocyte and intestinal mucosa in newborn piglets. A total of 40 newborn piglets were randomly divided into four groups during a 25-day experiment, including APS-sEPS, APS, sEPS and control group. The results showed that supplementation with APS-sEPS to newborn piglets remarkably increased the physiological parameters, especially the WBC. In peripheral blood, piglets that received APS-sEPS showed the highest proliferation of T lymphocytes, the percentage of CD3 + CD4+ and CD3 + CD8+ cells were the highest on days 15 and 25 (p < 0.05). The serum concentrations of IFN-γ on days 7 and 15, and IL-4, IL-10, sIgA on days 7, 15 and 25 in APS-sEPS group were significantly higher than those in the control group (p < 0.05). Furthermore, the villus length and the ratio of villus length to crypt depth in APS-sEPS group were both significantly increased compared to that of control group (p < 0.05). In the duodenum, jejunum and illume, the concentrations of IFN-γ, IL-10, total IgG and sIgA in APS-sEPS group were all significantly higher than that in control group (p < 0.05). In intestinal mucosa, APS-sEPS significantly increased the expression of NF-κB and IRF-3 mRNA in each section of small intestine of piglets. Nevertheless, in the illume segment, the effect of APS-sEPS was more significant than that of APS and sEPS (p < 0.05). The expression of TLR4 was more significant than that of control group in duodenum only. The results from the present research provide evidence that the suckling piglets administered with APS-sEPS supplement exhibited enhanced immune function of peripheral blood lymphocyte and expression of specific antibodies, and ameliorated intestinal morphological development and increased activities of humoral immune response in the small intestine, which would be related to the activation of the TLR4-NF-κB signaling pathway and IRF3.
Collapse
Affiliation(s)
- Qing Jin
- The Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Animal Science, Yangtze University, Jingzhou, China
| | - Lei Cheng
- The Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Animal Science, Yangtze University, Jingzhou, China
| | - Yiling Zhu
- The Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Animal Science, Yangtze University, Jingzhou, China
| | - Xiaona Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Taìan, China
| | - Wei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Xuejun Gao
- The Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Animal Science, Yangtze University, Jingzhou, China
| | - Tao Xiong
- College of Life Science, Yangtze University, Jingzhou, China
| | - Liwei Guo
- The Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
15
|
Wu L, Shen F, Wang W, Qi C, Wang C, Shang A, Xuan S. The effect of multispecies probiotics on cognitive reactivity to sad mood in patients with Crohn’s disease. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
16
|
Gao Y, Niu M, Yu X, Bao T, Wu Z, Zhao X. Horizontally Acquired Polysaccharide-Synthetic Gene Cluster From Weissella cibaria Boosts the Probiotic Property of Lactiplantibacillus plantarum. Front Microbiol 2021; 12:692957. [PMID: 34234766 PMCID: PMC8256895 DOI: 10.3389/fmicb.2021.692957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Lactiplantibacillus plantarum are probiotic bacteria, maintaining the integrity of the gastrointestinal epithelial barrier, and preventing the infection of pathogenic bacteria. Exopolysaccharides (EPSs) are often involved in the probiotic property of L. plantarum. Here, we identified a new EPS-synthetic gene cluster, cpsWc, carrying 13 genes, laid on a large plasmid in a well-characterized probiotic L. plantarum strain LTC-113. The cpsWc gene cluster was horizontally acquired from Weissella cibaria, enhancing the biofilm formation ability of the host strain and its tolerance to harsh environmental stresses, including heat, acid, and bile. Transfer of cpsWc also conferred the probiotic properties to other L. plantarum strains. Moreover, cpsWc strengthened the adhesion of LTC-113 to intestinal epithelial cells. Both the cpsWc-carrying LTC-113 and its EPSs per se effectively attenuated the LPS-induced pro-inflammatory effect of intestinal epithelial cells, and inhibited the adhesion of pathogenic bacteria, such as S. typhimurium and E. coli by exclusion and competition. The newly identified cpsWc gene cluster emphasized the contribution of mobile EPS-synthetic element on the probiotic activity of L. plantarum, and shed a light on the engineering of probiotic bacteria.
Collapse
Affiliation(s)
- Yuqi Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling District, China
| | - Mingze Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling District, China
| | - Xiaohui Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling District, China
| | - Tingting Bao
- College of Animal Science and Technology, Northwest A&F University, Yangling District, China
| | - Zhaowei Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling District, China.,Department of Animal Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Anwar H, Iftikhar A, Muzaffar H, Almatroudi A, Allemailem KS, Navaid S, Saleem S, Khurshid M. Biodiversity of Gut Microbiota: Impact of Various Host and Environmental Factors. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5575245. [PMID: 34055983 PMCID: PMC8133857 DOI: 10.1155/2021/5575245] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
Human bodies encompass very important symbiotic and mutualistic relationships with tiny creatures known as microbiota. Trillions of these tiny creatures including protozoa, viruses, bacteria, and fungi are present in and on our bodies. They play important roles in various physiological mechanisms of our bodies. In return, our bodies provide them with the habitat and food necessary for their survival. In this review, we comprehend the gut microbial species present in various regions of the gut. We can get benefits from microbiota only if they are present in appropriate concentrations, as if their concentration is altered, it will lead to dysbiosis of microbiota which further contributes to various health ailments. The composition, diversity, and functionality of gut microbiota do not remain static throughout life as they keep on changing over time. In this review, we also reviewed the various biotic and abiotic factors influencing the quantity and quality of these microbiota. These factors serve a significant role in shaping the gut microbiota population.
Collapse
Affiliation(s)
- Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Arslan Iftikhar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Humaira Muzaffar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Soha Navaid
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Sana Saleem
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
18
|
Rodríguez-Sorrento A, Castillejos L, López-Colom P, Cifuentes-Orjuela G, Rodríguez-Palmero M, Moreno-Muñoz JA, Luise D, Trevisi P, Martín-Orúe SM. Effects of the Administration of Bifidobacterium longum subsp. infantis CECT 7210 and Lactobacillus rhamnosus HN001 and Their Synbiotic Combination With Galacto-Oligosaccharides Against Enterotoxigenic Escherichia coli F4 in an Early Weaned Piglet Model. Front Microbiol 2021; 12:642549. [PMID: 33935999 PMCID: PMC8086512 DOI: 10.3389/fmicb.2021.642549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/23/2021] [Indexed: 01/09/2023] Open
Abstract
We evaluated the potential of multi-strain probiotic (Bifidobacterium longum subsp. infantis CECT 7210 and Lactobacillus rhamnosus HN001) with or without galacto-oligosaccharides against enterotoxigenic Escherichia coli (ETEC) F4 infection in post-weaning pigs. Ninety-six piglets were distributed into 32 pens assigned to five treatments: one non-challenged (CTR+) and four challenged: control diet (CTR-), with probiotics (>3 × 1010 CFU/kg body weight each, PRO), prebiotic (5%, PRE), or their combination (SYN). After 1 week, animals were orally inoculated with ETEC F4. Feed intake, weight, and clinical signs were recorded. On days 4 and 8 post-inoculation (PI), one animal per pen was euthanized and samples from blood, digesta, and tissues collected. Microbiological counts, ETEC F4 real-time PCR (qPCR) quantification, fermentation products, serum biomarkers, ileal histomorphometry, and genotype for mucin 4 (MUC4) polymorphism were determined. Animals in the PRO group had similar enterobacteria and coliform numbers to the CTR+ group, and the ETEC F4 prevalence, the number of mitotic cells at day 4 PI, and villus height at day 8 PI were between that observed in the CTR+ and CTR- groups. The PRO group exhibited reduced pig major acute-phase protein (Pig-MAP) levels on day 4 PI. The PRE diet group presented similar reductions in ETEC F4 and Pig-MAP, but there was no effect on microbial groups. The SYN group showed reduced fecal enterobacteria and coliform counts after the adaptation week but, after the inoculation, the SYN group showed lower performance and more animals with high ETEC F4 counts at day 8 PI. SYN treatment modified the colonic fermentation differently depending on the MUC4 polymorphism. These results confirm the potential of the probiotic strains and the prebiotic to fight ETEC F4, but do not show any synergy when administered together, at least in this animal model.
Collapse
Affiliation(s)
- Agustina Rodríguez-Sorrento
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lorena Castillejos
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Paola López-Colom
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | - Diana Luise
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Susana María Martín-Orúe
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
19
|
Salvadori M, Tsalouchos A. Microbiota, renal disease and renal transplantation. World J Transplant 2021; 11:16-36. [PMID: 33816144 PMCID: PMC8009061 DOI: 10.5500/wjt.v11.i3.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Aim of this frontier review has been to highlight the role of microbiota in healthy subjects and in patients affected by renal diseases with particular reference to renal transplantation. The microbiota has a relevant role in conditioning the healthy status and the diseases. In particular gut microbiota is essential in the metabolism of food and has a relevant role for its relationship with the immune system. The indigenous microbiota in patients with chronic renal failure is completely different than that of the healthy subjects and pathobionts appear. This abnormality in microbiota composition is called dysbiosis and may cause a rapid deterioration of the renal function both for activating the immune system and producing large quantity of uremic toxins. Similarly, after renal trans-plantation the microbiota changes with the appearance of pathobionts, principally in the first period because of the assumption of immunosuppressive drugs and antibiotics. These changes may deeply interfere with the graft outcome causing acute rejection, renal infections, diarrhea, and renal interstitial fibrosis. In addition, change in the microbiota may modify the metabolism of immuno-suppressive drugs causing in some patients the need of modifying the immunosuppressant dosing. The restoration of the indigenous microbiota after transplantation is important, either to avoiding the complications that impair the normal renal graft, and because recent studies have documented the role of an indigenous microbiota in inducing tolerance towards the graft. The use of prebiotics, probiotics, smart bacteria and diet modification may restore the indigenous microbiota, but these studies are just at their beginning and more data are needed to draw definitive conclusions.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Transplantation Renal Unit, Careggi University Hospital, Florence 50139, Italy
| | - Aris Tsalouchos
- Nephrology and Dialysis Unit, Saints Cosmas and Damian Hospital, Pescia 51017, Italy
| |
Collapse
|
20
|
Pu J, Yuan Q, Yan H, Tian G, Chen D, He J, Zheng P, Yu J, Mao X, Huang Z, Luo J, Luo Y, Yu B. Effects of Chronic Exposure to Low Levels of Dietary Aflatoxin B 1 on Growth Performance, Apparent Total Tract Digestibility and Intestinal Health in Pigs. Animals (Basel) 2021; 11:336. [PMID: 33572697 PMCID: PMC7911249 DOI: 10.3390/ani11020336] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate the effects of chronic exposure to low levels of dietary aflatoxin B1 (AFB1) on growth performance, apparent total tract digestibility and intestinal health in pigs. In a 102-day experiment, fourteen barrows (Duroc×Landrace×Yorkshire, initial BW = 38.21 ± 0.45 kg) were randomly divided into control (CON, basal diet) and AFB1 groups (the basal diet supplemented with 280 μg/kg AFB1). Results revealed that the AFB1 exposure decreased the final BW, ADFI and ADG in pigs (p < 0.10). AFB1 exposure also decreased the apparent total tract digestibility of dry mater and gross energy at 50 to 75 kg and 105 to 135 kg stages, and decreased the apparent total tract digestibility of ether extract at 75 to 105 kg stage (p < 0.05). Meanwhile, AFB1 exposure increased serum diamine oxidase activity and reduced the mRNA abundance of sodium-glucose cotransporter 1, solute carrier family 7 member 1 and zonula occluden-1 in the jejunal mucosa (p < 0.05). Furthermore, AFB1 exposure decreased superoxide dismutase activity (p < 0.05) and increased 8-hydroxy-2'-deoxyguanosine content (p < 0.10) in jejunal mucosa. AFB1 exposure also increased tumor necrosis factor-α, interleukin-1β and transforming growth factor-β mRNA abundance in jejunal mucosa and upregulated Escherichia coli population in colon (p < 0.05). The data indicated that chronic exposure to low levels of dietary AFB1 suppressed growth performance, reduced the apparent total tract digestibility and damaged intestinal barrier integrity in pigs, which could be associated with the decreased intestinal antioxidant capacity and the increased pro-inflammatory cytokine production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Yaan 625014, China; (J.P.); (Q.Y.); (H.Y.); (G.T.); (D.C.); (J.H.); (P.Z.); (J.Y.); (X.M.); (Z.H.); (J.L.); (Y.L.)
| |
Collapse
|
21
|
Noonan S, Zaveri M, Macaninch E, Martyn K. Food & mood: a review of supplementary prebiotic and probiotic interventions in the treatment of anxiety and depression in adults. BMJ Nutr Prev Health 2020; 3:351-362. [PMID: 33521545 PMCID: PMC7841823 DOI: 10.1136/bmjnph-2019-000053] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background A bidirectional relationship exists between the brain and the gastrointestinal tract. Foods containing bacteria that positively influence the gastrointestinal microbiome are termed, probiotics; compounds that promote the flourishing of these bacteria are termed, prebiotics. Whether microbiome influencing therapies could treat psychiatric conditions, including depression and anxiety, is an area of interest. Presently, no established consensus for such treatment exists. Methods This systematic review analyses databases and grey literature sites to investigate pre and/or probiotics as treatments for depression and/or anxiety disorders. Articles included are from within 15 years. Pre-determined inclusion exclusion criteria were applied, and articles were appraised for their quality using a modified-CASP checklist. This review focuses specifically on quantitative measures from patients with clinical diagnoses of depression and/or anxiety disorders. Results 7 studies were identified. All demonstrated significant improvements in one or more of the outcomes measuring the of effect taking pre/probiotics compared with no treatment/placebo, or when compared to baseline measurements. Discussion Our review suggests utilising pre/probiotic may be a potentially useful adjunctive treatment. Furthermore, patients with certain co-morbidities, such as IBS, might experience greater benefits from such treatments, given that pre/probiotic are useful treatments for other conditions that were not the primary focus of this discourse. Our results are limited by several factors: sample sizes (adequate, though not robust); short study durations, long-term effects and propensity for remission undetermined. Conclusion Our results affirm that pre/probiotic therapy warrants further investigation. Efforts should aim to elucidate whether the perceived efficacy of pre/probiotic therapy in depression and/or anxiety disorders can be replicated in larger test populations, and whether such effects are maintained through continued treatment, or post cessation. Interventions should also be investigated in isolation, not combination, to ascertain where the observed effects are attributable to. Efforts to produce mechanistic explanations for such effect should be a priority.
Collapse
Affiliation(s)
| | | | - Elaine Macaninch
- Nutrition and dietetics, Brighton and Sussex University Hospitals NHS Trust, Brighton, East Sussex, UK
| | | |
Collapse
|
22
|
Reddy PRK, Elghandour M, Salem A, Yasaswini D, Reddy PPR, Reddy AN, Hyder I. Plant secondary metabolites as feed additives in calves for antimicrobial stewardship. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114469] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Li HL, Shi H, Zhao PY, Lei Y, Kim IH. Effects of dietary levan-type fructan on growth performance, blood profiles, fecal noxious gas emissions, and litter performance in lactating sows. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2018-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In total, 28 multiparous sows (n = 7) and their litters were used to determine the effects of levan-type fructan supplementation on growth performance, nutrient digestibility, blood profiles, and fecal noxious gas emissions. The dietary treatments included (1) CON, basal diet; (2) FC1, CON + 0.1% fructan; (3) FC2, CON + 0.2% fructan; and (4) FC3, CON + 0.3% fructan. No significant differences were observed (P > 0.05) in body weight (BW), average daily feed intake, or back fat loss in lactating sows among treatments. However, blood lymphocyte concentrates were higher (P < 0.05) in sows fed levan-containing diets than in those fed the CON diet. Weaning BW and overall average daily gain (ADG) of piglets in the FC3 treatment were higher (P < 0.05) than piglets in the CON treatment. Blood lymphocytes and nutrient digestibility of sows, as well as the weaning BW and the ADG of piglets were increased linearly (P < 0.05) as the concentration of levan increased in the diet. The diarrhea score of piglets and the fecal gas emissions of sows decreased linearly (P < 0.05) as dietary levan increased. In conclusion, levan supplementation did not affect feed intake or decrease back fat loss of lactating sows, but it improved nutrient digestibility and immune ability, decreased fecal noxious gas emissions of lactating sows, and it improved growth performance and reduced diarrhea in piglets.
Collapse
Affiliation(s)
- Han Lin Li
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 330-714, South Korea
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 330-714, South Korea
| | - Huan Shi
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 330-714, South Korea
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 330-714, South Korea
| | - Pin Yao Zhao
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 330-714, South Korea
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 330-714, South Korea
| | - Yan Lei
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 330-714, South Korea
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 330-714, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 330-714, South Korea
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 330-714, South Korea
| |
Collapse
|
24
|
Effect of Probiotics and Herbal Products on Intestinal Histomorphological and Immunological Development in Piglets. Vet Med Int 2020; 2020:3461768. [PMID: 32373310 PMCID: PMC7196157 DOI: 10.1155/2020/3461768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/25/2020] [Indexed: 01/21/2023] Open
Abstract
The aim of the study was to evaluate the effect of probiotics and herbal products on the intestinal histomorphological and immunological development in piglets. Accordingly, 2-week-old piglets were allocated in 4 groups: C (basal diet), Pro (basal diet + probiotics), Pro+B (basal diet + probiotics + buckwheat bran), and H (powder of herbs). After 6 weeks of the experiment, 4 piglets from each experimental group were randomly selected and slaughtered at a slaughterhouse. Samples of tissue and digestive content from the jejunum and colon were collected for bacteriological, histological, and immunohistochemical examination. The results showed that probiotics increased the number of Lactobacillus spp. in the small (p < 0.05) and large intestines. The intestinal histomorphology was improved (p < 0.05) in all experimental groups by an increased villus height, VH : CD ration, colon crypt depth, and number of Ki-67+ epithelial cells. A higher number (p < 0.05) of goblet cells and their acidification were observed in group Pro, while the density of goblet cells was decreased by the herbs. Probiotics increased (p < 0.05) the number of intraepithelial lymphocytes (IELs), density of CD3+ cells in Peyer's patches (PPs), and lamina propria (LP). In group H, a dual effect on the CD3+ cell distribution was observed. The herbs reduced (p < 0.05) the number of IELs and CD3+ in LP but increased the distribution of CD3+ cells in PPs. In the colon, herbs increased CD3+ cells in LP as well. It suggests that probiotics and herbs had influence on the intestinal histomorphology and the ability to modulate the mucosal immune system; however, the combination of probiotics and buckwheat bran was not so convincing, probably due to the inhibitory effect of the buckwheat bran on the probiotics used.
Collapse
|
25
|
Markowiak-Kopeć P, Śliżewska K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 2020; 12:nu12041107. [PMID: 32316181 PMCID: PMC7230973 DOI: 10.3390/nu12041107] [Citation(s) in RCA: 501] [Impact Index Per Article: 125.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
The relationship between diet and the diversity and function of the intestinal microbiome and its importance for human health is currently the subject of many studies. The type and proportion of microorganisms found in the intestines can determine the energy balance of the host. Intestinal microorganisms perform many important functions, one of which is participation in metabolic processes, e.g., in the production of short-chain fatty acids—SCFAs (also called volatile fatty acids). These acids represent the main carbon flow from the diet to the host microbiome. Maintaining intestinal balance is necessary to maintain the host’s normal health and prevent many diseases. The results of many studies confirm the beneficial effect of probiotic microorganisms on the balance of the intestinal microbiome and produced metabolites, including SCFAs. The aim of this review is to summarize what is known on the effects of probiotics on the production of short-chain fatty acids by gut microbes. In addition, the mechanism of formation and properties of these metabolites is discussed and verified test results confirming the effectiveness of probiotics in human nutrition by modulating SCFAs production by intestinal microbiome is presented.
Collapse
|
26
|
Abstract
Abstract
Weaning is a stressful period for the piglets and the sow. Stress during weaning is related to the change of diet which can affect the physiology of the gastrointestinal tract, as well as the microbial and immunological status of the animals. In the experiment a yeast-whey preparation was used to decrease the transient growth depression related to reduction of feed intake by the piglets. The piglets were assigned to three treatments. In the control group (I) the animals obtained standard feed mixture used routinely at the farm. In the case of piglets from II and III treatment, the yeast-whey preparation was added in the quantity of 4 and 7%, respectively.
Application of 7% yeast-whey preparation to the diet significantly increased the body weight of piglets (p<0.05) and in consequence the average daily body weight gain (p<0.01) in comparison with the control group of animals. Additionally, piglets which were fed the yeast-whey preparation diet had a higher feed intake (p<0.05) and better feed conversion ratio (p<0.05) than those fed a diet without the addition of this preparation. No significant differences were stated for most biological parameters (p>0.05), except for the blood urea level, which was significantly lower (p<0.05) in the treatments where the yeast-whey preparation was used. These results indicated that yeast-whey preparation efficiently suppressed post-weaning diarrhea and improved the performance of the animals.
Collapse
|
27
|
Ao X, Lei Y, Kim IH. Effect of flavor supplementation on growth performance, nutrient digestibility, blood profiles, and carcass quality in growing–finishing pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study was conducted to evaluate the effect of supplementation of different flavors (apple and anise) on growth performance, nutrient digestibility, blood profiles, and carcass quality in growing–finishing pigs. A total of 96 growing pigs [(Yorkshire × Landrace) × Duroc] with an average body weight (BW) of 28.2 ± 0.7 kg were randomly assigned to one of the following three treatments: (1) CON, basal diet; (2) APF, basal diet + 0.05% apple flavor; (3) ANF, basal diet + 0.05% anise flavor, according to their BW and sex in this 15 wk experiment. There were eight replications (pens) per treatment and four pigs per pen (two barrows and two gilts). During week 0–5, pigs fed ANF diets had greater (p < 0.05) average daily gain (ADG) and average daily feed intake than those fed CON and APF diets. Dietary ANF treatment increased (p < 0.05) ADG during 0–15 wk compared with CON treatment. At the end of 5 wk, the apparent total tract digestibility of nitrogen in ANF treatment was improved (p < 0.05) compared with that in CON treatment. Dietary treatments did not affect the studied traits of carcass and meat quality. The inclusion of anise flavor increased ADG, but apple flavor had no effect on growth performance in growing–finishing pigs.
Collapse
Affiliation(s)
- Xiang Ao
- Department of Animal Resource & Science, Dankook University, #29 Anseodong, Cheonan, Choognam 330-714, Korea
- Tie Qi Li Shi Group Co., Mianyang, Sichuan 621006, People’s Republic of China
| | - Yan Lei
- DadHank Biotechnology Corporation, Chengdu, Sichuan 611130, People’s Republic of China
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, #29 Anseodong, Cheonan, Choognam 330-714, Korea
| |
Collapse
|
28
|
Abstract
The aim of this study is to identify the effects of kefir, an alternative treatment method, on quality of life and sleep disturbances in postmenopausal women. In this study, it is seen that kefir has positive effects on sleep disturbances, depression, and quality of life in postmenopausal women.
Collapse
|
29
|
Wongsen S, Werawatganon D, Tumwasorn S. Lactobacillus plantarum B7 attenuates Salmonella typhimurium infection in mice: preclinical study in vitro and in vivo. ASIAN BIOMED 2019. [DOI: 10.1515/abm-2019-0022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
Background
Salmonella typhimurium is a cause of gastroenteritis including diarrhea. Lactobacillus plantarum is a probiotic widely used to prevent and treat diarrhea.
Objectives
To determine the protective effects of L. plantarum B7 on diarrhea in mice induced by S. typhimurium.
Methods
Inhibition of S. typhimurium growth by L. plantarum B7 was determined using an agar spot method. Mice were divided into 3 groups (n = 8 each): a control group, an S group administered 3 × 109 CFU/mL S. typhimurium, and an S + LP group administered 1 × 109 CFU/mL L. plantarum B7 and 3 × 109 CFU/mL S. typhimurium daily for 3 days. Counts of S. typhimurium and percentage of fecal moisture content (%FMC) were determined from stool samples. Serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and CXCL1 were determined.
Results
L. plantarum B7 produced a clear zone on S. typhimurium. There were significantly less S. typhimurium in the feces from mice in the S+LP group than in the S group. Serum levels of TNF-α, IL-6, and CXCL1 in mice from the S group were significantly higher than levels in the S+LP and control groups. Feces from mice in the S group were soft and loose, whereas in the S+LP group they were hard and rod shaped. The %FMC in the S+LP group was significantly less than in the S group.
Conclusions
L. plantarum B7 can inhibit growth of S. typhimurium, decrease levels of proinflammatory cytokines, and attenuate symptoms of diarrhea induced in mice by S. typhimurium.
Collapse
Affiliation(s)
- Siwaporn Wongsen
- Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases Research Unit, Department of Physiology, Faculty of Medicine, Chulalongkorn University , Bangkok 10330 , Thailand
| | - Duangporn Werawatganon
- Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases Research Unit, Department of Physiology, Faculty of Medicine, Chulalongkorn University , Bangkok 10330 , Thailand
| | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University , Bangkok 10330 , Thailand
| |
Collapse
|
30
|
Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 2019; 7:e7502. [PMID: 31440436 PMCID: PMC6699480 DOI: 10.7717/peerj.7502] [Citation(s) in RCA: 351] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Gut microbiota have important functions in the body, and imbalances in the composition and diversity of those microbiota can cause several diseases. The host fosters favorable microbiota by releasing specific factors, such as microRNAs, and nonspecific factors, such as antimicrobial peptides, mucus and immunoglobulin A that encourage the growth of specific types of bacteria and inhibit the growth of others. Diet, antibiotics, and age can change gut microbiota, and many studies have shown the relationship between disorders of the microbiota and several diseases and reported some ways to modulate that balance. In this review, we highlight how the host shapes its gut microbiota via specific and nonspecific factors, how environmental and nutritional factors affect it, and how to modulate it using prebiotics, probiotics, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Nihal Hasan
- Department of Microbiology, Northeast Forestry University, Harbin, Heilongjiang, China.,Faculty of Health Science, Al-Baath University, Homs, Syria
| | - Hongyi Yang
- Department of Microbiology, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
31
|
Nguyen Cong O, Taminiau B, Pham Kim D, Daube G, Nguyen Van G, Bindelle J, Abdulaye Fall P, Vu Dinh T, Hornick JL. Effect of increasing levels of rice distillers' by-product on growth performance, nutrient digestibility, blood profile and colonic microbiota of weaned piglets. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:788-801. [PMID: 31480165 PMCID: PMC7206405 DOI: 10.5713/ajas.19.0278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/06/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVE This study was conducted to evaluate the effects of diets containing different wet rice distillers' by-product (RDP) levels on growth performance, nutrient digestibility, blood profiles and gut microbiome of weaned piglets. METHODS A total of 48 weaned castrated male crossbred pigs, initial body weight 7.54±0.97 kg, and age about 4 wks, were used in this experiment. The piglets were randomly allocated into three iso-nitrogenous diet groups that were fed either a control diet, a diet with 15% RDP, or a diet with 30% RDP for a total of 35 days. Chromium oxide was used for apparent digestibility measurements. On d 14 and d 35, half of the piglets were randomly selected for hemato-biochemical and gut microbiota evaluations. RESULTS Increasing inclusion levels of RDP tended to linearly increase (p≤0.07) average daily gain on d 14 and d 35, and decreased (p = 0.08) feed conversion ratio on d 35. Empty stomach weight increased (p = 0.03) on d 35 while digestibility of diet components decreased. Serum globulin concentration decreased on d 14 (p = 0.003) and red blood cell count tended to decrease (p = 0.06) on d 35, parallel to increase RDP levels. Gene amplicon profiling of 16S rRNA revealed that the colonic microbiota composition of weaned pigs changed by inclusion of RDP over the period. On d 14, decreased proportions of Lachnospiraceae_ge, Ruminococcaceae_ge, Ruminococcaceae_UCG-005, and Bacteroidales_ge, and increased proportions of Prevotellaceae_ge, Prevotella_2, and Prevotella_9 were found with inclusion of RDP, whereas opposite effect was found on d 35. Additionally, the proportion of Lachnospiraceae_ge, Ruminococcaceae_ge, Ruminococcaceae_UCG-005, and Bacteroidales_ge in RDP diets decreased over periods in control diet but increased largely in diet with 30% RDP. CONCLUSION These results indicate that RDP in a favorable way modulate gastrointestinal microbiota composition and improve piglet performance despite a negative impact on digestibility of lipids and gross energy.
Collapse
Affiliation(s)
- Oanh Nguyen Cong
- Department of Veterinary Management of Animal Resources, FARAH Center, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium.,Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi Capital 100000, Vietnam
| | - Bernard Taminiau
- Department of Food Sciences, FARAH Center, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Dang Pham Kim
- Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi Capital 100000, Vietnam
| | - Georges Daube
- Department of Food Sciences, FARAH Center, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Giap Nguyen Van
- Faculty of Veterinary Medicine, Department of Microbiology-Infectious Diseases, Vietnam National University of Agriculture, Hanoi 100000, Vietnam
| | - Jérôme Bindelle
- Animal Science Unit, GemABT, University of Liège, 5030 Gembloux, Belgium
| | | | - Ton Vu Dinh
- Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi Capital 100000, Vietnam
| | - Jean-Luc Hornick
- Department of Veterinary Management of Animal Resources, FARAH Center, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
32
|
Reactive mechanism and the applications of bioactive prebiotics for human health: Review. J Microbiol Methods 2019; 159:128-137. [DOI: 10.1016/j.mimet.2019.02.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022]
|
33
|
Oral Administration of Lactobacillus delbrueckii during the Suckling Phase Improves Antioxidant Activities and Immune Responses after the Weaning Event in a Piglet Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6919803. [PMID: 30944695 PMCID: PMC6421809 DOI: 10.1155/2019/6919803] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/16/2018] [Indexed: 01/09/2023]
Abstract
Early colonization in the gut by probiotics influences the progressive development and maturity of antioxidant and immune system functionality in the future. This study investigated the impact of orally administrated Lactobacillus delbrueckii (LAB) during the suckling phase on future antioxidant and immune responses of the host, using a piglet model. One hundred neonatal piglets received saline (CON) or LAB at the amounts of 1, 2, 3, and 4 mL at 1, 3, 7, and 14 d of age, respectively. The piglets were weaned at the age of 21 d and fed until the age of 49 d. Serum, liver, and intestinal samples were obtained at 21, 28, and 49 d of age. The results showed that LAB tended to decrease serum 8-hydroxy-2-deoxyguanosine concentration and decreased the concentration of serum and hepatic malondialdehyde, but increased the activity of hepatic glutathione peroxidase on days 21, 28, and 49. The concentrations of secretory immunoglobulin A and some inflammatory cytokines and chemokines were increased (P < 0.05) in the intestinal mucosa of LAB-treated piglets on days 21, 28, and 49 compared to that of CON piglets. Likewise, protein expression of cyclooxygenase 2 and inducible nitric oxide synthase in the intestine of LAB-treated piglets was increased (P < 0.05) during the whole period. These results indicate that administration of LAB to the suckling piglet could improve antioxidant capacity and stimulate intestinal immune response, and these long-lasting effects are also observed up to 4 weeks after weaning. A proper utilization of LAB to neonates would be beneficial to human and animal's future health.
Collapse
|
34
|
Liu JB, Cao SC, Liu J, Xie YN, Zhang HF. Effect of probiotics and xylo-oligosaccharide supplementation on nutrient digestibility, intestinal health and noxious gas emission in weanling pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1660-1669. [PMID: 29642680 PMCID: PMC6127592 DOI: 10.5713/ajas.17.0908] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/01/2018] [Accepted: 03/13/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study was conducted to evaluate the effect of probiotics (Bacillus subtilis and Enterococcus faecium) and xylo-oligosaccharide (XOS) supplementation on growth performance, nutrient digestibility, serum profiles, intestinal health, fecal microbiota and noxious gas emission in weanling pigs. METHODS A total of 240 weanling pigs ([Yorkshire×Landrace]×Duroc) with an average body weight (BW) of 6.3±0.15 kg were used in this 28-day trial. Pigs were randomly allocated in 1 of the following 4 dietary treatments in a 2×2 factorial arrangement with 2 levels of probiotics (0 and 500 mg/kg probiotics) and XOS (0 and 200 mg/kg XOS) based on the BW and sex. RESULTS Administration of probiotics or XOS improved average daily gain (p<0.05) during 0 to 14 d and the overall period, while pigs that were treated with XOS had a greater average daily gain and feed efficiency (p<0.05) compared with unsupplemented treatments throughout 15 to 28 d and the whole experiment. Either probiotics or XOS treatments increased the apparent total tract digestibility of nutrients (p<0.05) during 0 to 14 d. No effects on serum profiles were observed among treatments. The XOS increased villus height: crypt depth ratio in jejunum (p<0.05). The supplementation of probiotics (500 mg/kg) or XOS (200 mg/kg) alone improved the apparent total tract digestibility of dry matter, nitrogen and gross energy on d 14, the activity of trypsin and decreased fecal NH3 concentration (p<0.05). Administration of XOS decreased fecal Escherichia coli counts (p<0.05), while increased lactobacilli (p<0.05) on d 14. There was no interaction between dietary supplementation of probiotics and XOS. CONCLUSION Inclusion of XOS at 200 mg/kg or probiotics (Bacillus subtilis and Enterococcus faecium) at 500 mg/kg in diets containing no antibiotics significantly improved the growth performance of weanling pigs. Once XOS is supplemented, further providing of probiotics is not needed since it exerts little additional effects.
Collapse
Affiliation(s)
- J B Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - S C Cao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - J Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Y N Xie
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - H F Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
35
|
Lan R, Kim I. Effects of organic acid and medium chain fatty acid blends on the performance of sows and their piglets. Anim Sci J 2018; 89:1673-1679. [PMID: 30270486 DOI: 10.1111/asj.13111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/21/2018] [Accepted: 08/09/2018] [Indexed: 01/07/2023]
Abstract
This study was aimed to evaluate the effects of organic acid (OA) and medium-chain fatty acid (MCFA) blends on production performance of sows and their litters. A total of 36 sows (Landrace × Yorkshire, average parity is 3.3, SE = 0.2) were randomly allocated to three treatments with 12 replicates. Dietary treatments were as follows: CON, basal diet; MC1, CON + 0.1% OA, and MCFA blends; MC2, CON + 0.2% OA, and MCFA blends. During lactation, no differences were observed in body weight (BW) loss, average daily feed intake, backfat thickness, digestibility of dry matter, nitrogen, or energy of sows. There were linear increase (p < 0.05) in BW and average daily gain of sucking piglets. On parturition and weaning day, there was a linear increase (p < 0.05) in fecal Lactobacillus counts, as well as a linear decrease (p < 0.05) in fecal Escherichia coli counts of sows on weaning day. The sucking piglets also had a linear increase (p < 0.05) in fecal Lactobacillus counts and a linear decrease (p < 0.05) in fecal E. coli counts. In conclusion, dietary supplementation of OA and MCFA blends in sows exerts beneficial effects to sows shifted fecal microbiota by increasing Lactobacillus and decreased E. coli counts. It also improved the performance of piglets.
Collapse
Affiliation(s)
- Ruixia Lan
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang, China.,Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Inho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
36
|
Yan T, Zhang F, He Y, Wang X, Jin X, Zhang P, Bi D. Enterococcus faeciumHDRsEf1 elevates the intestinal barrier defense against enterotoxigenicEscherichia coliand regulates occludin expression via activation of TLR-2 and PI3K signalling pathways. Lett Appl Microbiol 2018; 67:520-527. [DOI: 10.1111/lam.13067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Affiliation(s)
- T. Yan
- State Key Laboratory of Agricultural Microbiology; College of Veterinary Medicine; Huazhong Agricultural University; Wuhan China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province; College of Veterinary Medicine; Huazhong Agricultural University; Wuhan China
| | - F. Zhang
- State Key Laboratory of Agricultural Microbiology; College of Veterinary Medicine; Huazhong Agricultural University; Wuhan China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province; College of Veterinary Medicine; Huazhong Agricultural University; Wuhan China
| | - Y. He
- State Key Laboratory of Agricultural Microbiology; College of Veterinary Medicine; Huazhong Agricultural University; Wuhan China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province; College of Veterinary Medicine; Huazhong Agricultural University; Wuhan China
| | - X. Wang
- State Key Laboratory of Agricultural Microbiology; College of Veterinary Medicine; Huazhong Agricultural University; Wuhan China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province; College of Veterinary Medicine; Huazhong Agricultural University; Wuhan China
| | - X. Jin
- Hubei Provincial Institute of Veterinary Drug Control; Wuhan China
| | - P. Zhang
- Ezhou Animal Disease Prevention and Control Center; Ezhou China
| | - D. Bi
- State Key Laboratory of Agricultural Microbiology; College of Veterinary Medicine; Huazhong Agricultural University; Wuhan China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province; College of Veterinary Medicine; Huazhong Agricultural University; Wuhan China
| |
Collapse
|
37
|
Pu J, Chen D, Tian G, He J, Zheng P, Mao X, Yu J, Huang Z, Zhu L, Luo J, Luo Y, Yu B. Protective Effects of Benzoic Acid, Bacillus Coagulans, and Oregano Oil on Intestinal Injury Caused by Enterotoxigenic Escherichia coli in Weaned Piglets. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1829632. [PMID: 30225247 PMCID: PMC6129782 DOI: 10.1155/2018/1829632] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
Abstract
The use of antibiotics as growth promoters in feed has been fully or partially banned in several countries. The objective of this study was to investigate the effects of benzoic acid (A), bacillus coagulans (B) and oregano oil (O) combined supplementation on growth performance and intestinal barrier in piglets challenged with enterotoxigenic Escherichia coli (ETEC). Thirty piglets were randomly assigned to 6 treatments: (1) nonchallenged control (CON); (2) ETEC-challenged control (ETEC); (3) antibiotics + ETEC (AT); (4) A + B + ETEC (AB); (5) A + O + ETEC (AO); (6) A + B + O + ETEC (ABO). On day 22, piglets were orally challenged with ETEC or saline. The trial lasted 26 days. Dietary AO and ABO inhibited the reduction of growth performance and the elevation of diarrhoea incidence in piglets induced by ETEC (P<0.05). AB, AO, and ABO prevented the elevation of serum TNF-α and LPS concentrations in piglets induced by ETEC (P<0.05). ABO alleviated the elevation of TNF-α and IL-1β concentrations and the reduction of sIgA level in jejunal mucosa induced by ETEC (P<0.05). Furthermore, ABO upregulated mRNA expressions of Claudin-1 and Mucin2 (P<0.05), downregulated mRNA abundances of TLR4 and NOD2 signaling pathways related genes in jejunal mucosa (P<0.05), and improved the microbiota in jejunal and cecal digesta (P<0.05) compared with ETEC group. These results indicated that benzoic acid, bacillus coagulans, and oregano oil combined supplementation could improve growth performance and alleviate diarrhoea of piglets challenged with ETEC via improving intestinal mucosal barrier integrity, which was possibly associated with the improvement of intestinal microbiota and immune status. The combination of 3000 g/t benzoic acid + 400 g/t bacillus coagulans + 400 g/t oregano oil showed better effects than other treatments in improving growth performance and intestinal health of piglets, which could be used as a viable substitute for antibiotic.
Collapse
Affiliation(s)
- Junning Pu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Zhiqing Huang
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Ling Zhu
- Key Laboratory of Animal Biotechnology Center of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611134, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| |
Collapse
|
38
|
Makioka Y, Tsukahara T, Ijichi T, Inoue R. Oral supplementation of Bifidobacterium longum strain BR-108 alters cecal microbiota by stimulating gut immune system in mice irrespectively of viability. Biosci Biotechnol Biochem 2018; 82:1180-1187. [DOI: 10.1080/09168451.2018.1451738] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Effect on cecal microbiota and gene expression of various cytokines in ileal Peyer’s patches and cecal tissues were compared between viable and heat-killed Bifidobacterium longum strain BR-108 (BR-108) using a mouse model. Irrespectively of viability, oral supplementation of BR-108 altered the cecal microbiota and stimulated gene expression of cytokines such as IL-6 and IL-10 in ileal Peyer’s patches and cecal tissue of mice. In addition, BR-108 supplementation significantly affected the relative abundance of bacterial genera and family, Oscillospira, Bacteroides and S24-7. The abundance of these bacterial genera and family strongly correlated with gene expression induced by BR-108. This study demonstrated that the effect of heat-killed BR-108 on the mouse cecal microbiota is similar to that of viable BR-108, most likely due to stimulation of the gut immune system by both heat-killed and viable BR-108 is also similar.
Collapse
Affiliation(s)
- Yuko Makioka
- Functional Foods, Combi Corporation , Saitama, Japan
| | | | - Tetsuo Ijichi
- Functional Foods, Combi Corporation , Saitama, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto, Japan
| |
Collapse
|
39
|
Nath A, Haktanirlar G, Varga Á, Molnár MA, Albert K, Galambos I, Koris A, Vatai G. Biological Activities of Lactose-Derived Prebiotics and Symbiotic with Probiotics on Gastrointestinal System. ACTA ACUST UNITED AC 2018; 54:medicina54020018. [PMID: 30344249 PMCID: PMC6037253 DOI: 10.3390/medicina54020018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Lactose-derived prebiotics provide wide ranges of gastrointestinal comforts. In this review article, the probable biochemical mechanisms through which lactose-derived prebiotics offer positive gastrointestinal health are reported along with the up-to-date results of clinical investigations; this might be the first review article of its kind, to the best of our knowledge. Lactose-derived prebiotics have unique biological and functional values, and they are confirmed as ‘safe’ by the Food and Drug Administration federal agency. Medical practitioners frequently recommend them as therapeutics as a pure form or combined with dairy-based products (yoghurt, milk and infant formulas) or fruit juices. The biological activities of lactose-derived prebiotics are expressed in the presence of gut microflora, mainly probiotics (Lactobacillus spp. in the small intestine and Bifidobacterium spp. in the large intestine). Clinical investigations reveal that galacto-oligosaccharide reduces the risks of several types of diarrhea (traveler’s diarrhea, osmotic diarrhea and Clostridium difficile associated relapsing diarrhea). Lactulose and lactosucrose prevent inflammatory bowel diseases (Crohn’s disease and ulcerative colitis). Lactulose and lactitol reduce the risk of hepatic encephalopathy. Furthermore, lactulose, galacto-oligosaccharide and lactitol prevent constipation in individuals of all ages. It is expected that the present review article will receive great attention from medical practitioners and food technologists.
Collapse
Affiliation(s)
- Arijit Nath
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
- Soós Ernő Water Technology Research Centre, Faculty of Engineering, University of Pannonia, Zrínyi M. u. 18, H-8800 Nagykanizsa, Hungary.
| | - Gokce Haktanirlar
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Áron Varga
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Máté András Molnár
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Krisztina Albert
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Ildikó Galambos
- Soós Ernő Water Technology Research Centre, Faculty of Engineering, University of Pannonia, Zrínyi M. u. 18, H-8800 Nagykanizsa, Hungary.
| | - András Koris
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Gyula Vatai
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| |
Collapse
|
40
|
Hatanaka M, Yamamoto K, Suzuki N, Iio S, Takara T, Morita H, Takimoto T, Nakamura T. Effect of Bacillus subtilis C-3102 on loose stools in healthy volunteers. Benef Microbes 2018; 9:357-365. [PMID: 29482338 DOI: 10.3920/bm2017.0103] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ingestion of Bacillus subtilis C-3102 spores (C-3102) has relieved the symptoms of diarrhoea in piglets and changed the composition of gut microbiota in humans. Recently, it was suggested that the composition of the human gut microbiota affects stool consistency. In this study, a double-blind, randomised, placebo-controlled trial was conducted to assess the preventive effects of chronic diarrhoea in healthy volunteers with loose stools by ingestion of C-3102. The results showed that oral doses of C-3102 tablets significantly decreased the Bristol Stool Scale score and stool frequency, and also significantly improved abdominal sounds. With regard to gut microbiota, the relative abundance of Lachnospira, Actinomyces and SMB53 were significantly changed. This study shows that C-3102 could be effective for treating loose stools (Trial registration: UMIN000022583, http://tinyurl.com/ya4refqn ).
Collapse
Affiliation(s)
- M Hatanaka
- 1 Department of Microbiological Flora Techinology, Core Technology Laboratories, Asahi group holdings Ltd., 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi 252-0206, Kanagawa, Japan
| | - K Yamamoto
- 2 R&D Department, Orthomedico Inc., 2F Sumitomo Fudosan Korakuen Bldg., 1-4-1 Koishikawa, Bunkyo-ku, Tokyo 112-0002, Japan
| | - N Suzuki
- 2 R&D Department, Orthomedico Inc., 2F Sumitomo Fudosan Korakuen Bldg., 1-4-1 Koishikawa, Bunkyo-ku, Tokyo 112-0002, Japan
| | - S Iio
- 2 R&D Department, Orthomedico Inc., 2F Sumitomo Fudosan Korakuen Bldg., 1-4-1 Koishikawa, Bunkyo-ku, Tokyo 112-0002, Japan
| | - T Takara
- 3 Medical Corporation Seishinkai, Takara Clinic, 9F Tasei Building, 2-3-2 Higashi-gotanda, Shinagawa-ku, Tokyo 141-0022, Japan
| | - H Morita
- 1 Department of Microbiological Flora Techinology, Core Technology Laboratories, Asahi group holdings Ltd., 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi 252-0206, Kanagawa, Japan
| | - T Takimoto
- 1 Department of Microbiological Flora Techinology, Core Technology Laboratories, Asahi group holdings Ltd., 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi 252-0206, Kanagawa, Japan
| | - T Nakamura
- 1 Department of Microbiological Flora Techinology, Core Technology Laboratories, Asahi group holdings Ltd., 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi 252-0206, Kanagawa, Japan
| |
Collapse
|
41
|
Akal HC, Öztürkoğlu Budak Ş, Yetisemiyen A. Potential Probiotic Microorganisms in Kefir. MICROBIAL CULTURES AND ENZYMES IN DAIRY TECHNOLOGY 2018. [DOI: 10.4018/978-1-5225-5363-2.ch015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Probiotic microorganisms are defined as living microorganisms that provide health benefits on the host when administered in adequate amounts. The benefits include improvement of microbial balance immune system and oral health, provision of cholesterol-lowering effect, and antimicrobial activity against a wide variety of bacteria and some fungi. Kefir microbiota contains active living microorganisms. Many researches were carried out that potential probiotic bacteria such as Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus kefir, Lactobacillus kefiranofaciens, Leuconostoc mesenteroides, or yeasts like microorganisms such as Saccharomyces cerevisiae, Kluyveromyces lactis, and Kluyveromyces marxianus were isolated from kefir grains. This chapter presents the data both on the probiotic bacteria isolated from kefir grains or kefir and the probiotic properties of kefir produced with these microorganisms.
Collapse
|
42
|
Yin J, Kim HS, Kim YM, Kim IH. Effects of dietary fermented red ginseng marc and red ginseng extract on growth performance, nutrient digestibility, blood profile, fecal microbial, and noxious gas emission in weanling pigs. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1466708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jia Yin
- Department of Animal Resource and Science, Dankook University, Cheonan-si, South Korea
| | - Hyun Soo Kim
- Department of Animal Resource and Science, Dankook University, Cheonan-si, South Korea
| | - Yong Min Kim
- Department of Animal Resource and Science, Dankook University, Cheonan-si, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan-si, South Korea
| |
Collapse
|
43
|
Kim BK, Choi IS, Kim J, Han SH, Suh HJ, Hwang JK. Effects of Fermented Milk with Mixed Strains as a Probiotic on the Inhibition of Loperamide-Induced Constipation. Korean J Food Sci Anim Resour 2017; 37:906-916. [PMID: 29725213 PMCID: PMC5932940 DOI: 10.5851/kosfa.2017.37.6.906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 12/21/2022] Open
Abstract
To investigate the effects of a single bacterium and a mixture of bacteria as probiotics in loperamide-treated animal models, loperamide (3 mg/kg) was administered to SD rats to induce constipation. The individual lactic acid bacterial doses, Enterococcus faecium (EF), Lactobacillus acidophilus (LA), Streptococcus thermophilus (ST), Bifidobacterium bifidum (BB), Bifidobacterium lactis (BL), Pediococcus pentosaceus (PP), and a mixture of the bacteria were orally administered to loperamide-induced constipated rats at a concentration of 108 CFU/kg for 14 days. The weights and water contents of their stools were found to be significantly higher in PP, CKDB (mixture of 5 strains except PP), and CKDBP (CKDB+PP) groups than in the normal (constipation not induced) and the control (constipation-induced) groups (p<0.05). The intestinal transit ratio was significantly higher in all probiotic-treated groups than in the control group, and was the highest in the CKDBP group (p<0.05). The mucosal length and mucus secretion were significantly improved in all probiotic-treated-groups, as compared to that in the control group, and the CKDBP group was found to be the most effective according to immunohistochemistry (IHC) staining and total short chain fatty acid content analysis (p<0.05). Lastly, PP, CKDB, and CKDBP showed relatively higher Lactobacillus sp. ratios of 61.94%, 60.31% and 51.94%, respectively, compared to the other groups, based on metagenomic analysis.
Collapse
Affiliation(s)
- Byoung-Kook Kim
- Chong Kun Dang Bio Research Institute, Gyeonggi-do 15064, Korea
| | - In Suk Choi
- Chong Kun Dang Bio Research Institute, Gyeonggi-do 15064, Korea
| | - Jihee Kim
- Chong Kun Dang Bio Research Institute, Gyeonggi-do 15064, Korea
| | - Sung Hee Han
- BK21Plus, College of Health Science, Korea University, Seoul 02841, Korea
| | - Hyung Joo Suh
- Department of Public Health Sciences, Graduate School, Korea University, Seoul 02841, Korea
| | - Jae-Kwan Hwang
- Department of Biotechnology & Department of Biomaterials Science and Engineering, Yonsei University, Seoul 03722, Korea.,Chong Kun Dang Bio Research Institute, Gyeonggi-do 15064, Korea.,BK21Plus, College of Health Science, Korea University, Seoul 02841, Korea.,Department of Public Health Sciences, Graduate School, Korea University, Seoul 02841, Korea
| |
Collapse
|
44
|
Lei XJ, Yun HM, Kang JS, Kim IH. Effects of Herbiotic FS supplementation on growth performance, nutrient digestibility, blood profiles, and faecal scores in weanling pigs. JOURNAL OF APPLIED ANIMAL RESEARCH 2017. [DOI: 10.1080/09712119.2017.1386108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xin Jian Lei
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Hyeok Min Yun
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam, Republic of Korea
| | | | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam, Republic of Korea
| |
Collapse
|
45
|
Effects of Non-Starch Polysaccharides on Inflammatory Bowel Disease. Int J Mol Sci 2017; 18:ijms18071372. [PMID: 28654020 PMCID: PMC5535865 DOI: 10.3390/ijms18071372] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/12/2017] [Accepted: 06/18/2017] [Indexed: 12/24/2022] Open
Abstract
The incidence of inflammatory bowel disease (IBD) has increased considerably over the past few decades. In the present review, we discuss several disadvantages existing in the treatment of IBD and current understandings of the structures, sources, and natures of various kinds of non-starch polysaccharides (NSPs). Available evidences for the use of different sources of NSPs in IBD treatment both in vitro and in vivo are analyzed, including glucan from oat bran, mushroom, seaweed, pectin, gum, prebiotics, etc. Their potential mechanisms, especially their related molecular mechanism of protective action in the treatment and prevention of IBD, are also summarized, covering the anti-inflammation, immune-stimulating, and gut microbiota-modulating activities, as well as short-chain fatty acids (SCFAs) production, anti-oxidative stress accompanied with inflammation, the promotion of gastric epithelial cell proliferation and tissue healing, and the reduction of the absorption of toxins of NSPs, thus ameliorating the symptoms and reducing the reoccurrence rate of IBD. In summary, NSPs exhibit the potential to be promising agents for an adjuvant therapy and for the prevention of IBD. Further investigating of the crosstalk between immune cells, epithelial cells, and gut microorganisms in addition to evaluating the effects of different kinds and different molecular weights of NSPs will lead to well-designed clinical intervention trials and eventually improve the treatment and prevention of IBD.
Collapse
|
46
|
Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics Antimicrob Proteins 2017; 9:111-122. [DOI: 10.1007/s12602-017-9264-z] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Lan R, Tran H, Kim I. Effects of probiotic supplementation in different nutrient density diets on growth performance, nutrient digestibility, blood profiles, fecal microflora and noxious gas emission in weaning pig. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1335-1341. [PMID: 27342952 DOI: 10.1002/jsfa.7871] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/25/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Probiotics can serve as alternatives to antibiotics to increase the performance of weaning pigs, and the intake of probiotics is affected by dietary nutrient density. The objective of this study was to evaluate the effects of a probiotic complex in different nutrient density diets on growth performance, digestibility, blood profiles, fecal microflora and noxious gas emission in weaning pigs. RESULTS From day 22 to day 42, both high-nutrient-density and probiotic complex supplementation diets increased (P < 0.05) the average daily gain. On day 42, the apparent total tract digestibility (ATTD) of dry matter, nitrogen and gross energy (GE), blood urea nitrogen concentration and NH3 and H2 S emissions were increased (P < 0.05) in pigs fed high-nutrient-density diets. Pigs fed probiotic complex supplementation diets had higher (P < 0.05) ATTD of GE than pigs fed non-supplemented diets. Fecal Lactobacillus counts were increased whereas Escherichia coli counts and NH3 and H2 S emissions were decreased (P < 0.05) in pigs fed probiotic complex supplementation diets. Interactive effects on average daily feed intake (ADFI) were observed from day 22 to day 42 and overall, where probiotic complex improved ADFI more dramatically in low-nutrient-density diets. CONCLUSION The beneficial effects of probiotic complex (Bacillus coagulans, Bacillus licheniformis, Bacillus subtilis and Clostridium butyricum) supplementation on ADFI is more dramatic with low-nutrient-density diets. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruixia Lan
- Department of Animal Resource & Science, Dankook University, Cheonan, Chungnam, 330-714, South Korea
| | - Hoainam Tran
- Department of Animal Resource & Science, Dankook University, Cheonan, Chungnam, 330-714, South Korea
| | - Inho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, Chungnam, 330-714, South Korea
| |
Collapse
|
48
|
Lan R, Koo J, Kim I. Effects of Lactobacillus acidophilus supplementation on growth performance, nutrient digestibility, fecal microbial and noxious gas emission in weaning pigs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1310-1315. [PMID: 27342084 DOI: 10.1002/jsfa.7866] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Antibiotics used as growth promoters in livestock have been banned in the European Union since 2006. Antibiotics alternatives have focused on probiotics, such as Lactobacillus acidophilus. The concentration of L. acidophilus is considered crucial for obtaining the desired effects. However, limited studies have been conducted to test the dose-dependent effects of L. acidophilus. Therefore, the present study aimed to test the dose-dependent effects of L. acidophilus on growth performance, nutrient digestibility, fecal microbial flora and fecal noxious gas emission in weaning pigs. RESULTS Lactobacillus acidophilus supplementation increased (P < 0.05) average daily gain, average daily feed intake, apparent nutrient digestibility of dry matter, nitrogen and gross energy, and Lactobacillus counts compared to the basal diet treatment, and a linear effect (P < 0.05) was observed on those criteria. Escherichia coli counts and NH3 emission were decreased (P < 0.05) by L. acidophilus supplementation, and a linear effect (P < 0.05) was observed on E. coli counts. CONCLUSION These results suggest that L. acidophilus could be used as an antibiotic alternative by improving growth performance, nutrient digestibility and gut balance (i.e. increased Lactobacillus counts and decreased E. coli counts), and decreasing NH3 emission, of weaning pigs. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruixia Lan
- Department of Animal Resource & Science, Dankook University, Cheonan, Choongnam 330-714, South Korea
| | - Jinmo Koo
- Department of Animal Resource & Science, Dankook University, Cheonan, Choongnam 330-714, South Korea
| | - Inho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, Choongnam 330-714, South Korea
| |
Collapse
|
49
|
Abstract
Kefir is fermented milk produced from grains that comprise a specific and complex mixture of bacteria and yeasts that live in a symbiotic association. The nutritional composition of kefir varies according to the milk composition, the microbiological composition of the grains used, the time/temperature of fermentation and storage conditions. Kefir originates from the Caucasus and Tibet. Recently, kefir has raised interest in the scientific community due to its numerous beneficial effects on health. Currently, several scientific studies have supported the health benefits of kefir, as reported historically as a probiotic drink with great potential in health promotion, as well as being a safe and inexpensive food, easily produced at home. Regular consumption of kefir has been associated with improved digestion and tolerance to lactose, antibacterial effect, hypocholesterolaemic effect, control of plasma glucose, anti-hypertensive effect, anti-inflammatory effect, antioxidant activity, anti-carcinogenic activity, anti-allergenic activity and healing effects. A large proportion of the studies that support these findings were conducted in vitro or in animal models. However, there is a need for systematic clinical trials to better understand the effects of regular use of kefir as part of a diet, and for their effect on preventing diseases. Thus, the present review focuses on the nutritional and microbiological composition of kefir and presents relevant findings associated with the beneficial effects of kefir on human and animal health.
Collapse
|
50
|
Wang L, Hu L, Xu Q, Yin B, Fang D, Wang G, Zhao J, Zhang H, Chen W. Bifidobacterium adolescentis Exerts Strain-Specific Effects on Constipation Induced by Loperamide in BALB/c Mice. Int J Mol Sci 2017; 18:ijms18020318. [PMID: 28230723 PMCID: PMC5343854 DOI: 10.3390/ijms18020318] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022] Open
Abstract
Constipation is one of the most common gastrointestinal complaints worldwide. This study was performed to determine whether Bifidobacterium adolescentis exerts inter-strain differences in alleviating constipation induced by loperamide in BALB/c mice and to analyze the main reasons for these differences. BALB/c mice underwent gavage with B. adolescentis (CCFM 626, 667, and 669) once per day for 17 days. The primary outcome measures included related constipation indicators, and the secondary outcome measures were the basic biological characteristics of the strains, the concentration changes of short-chain fatty acids in feces, and the changes in the fecal flora. B. adolescentis CCFM 669 and 667 relieved constipation symptoms by adhering to intestinal epithelial cells, growing quickly in vitro and increasing the concentrations of propionic and butyric acids. The effect of B. adolescentis on the gut microbiota in mice with constipation was investigated via 16S rRNA metagenomic analysis. The results revealed that the relative abundance of Lactobacillus increased and the amount of Clostridium decreased in the B. adolescentis CCFM 669 and 667 treatment groups. In conclusion, B. adolescentis exhibits strain-specific effects in the alleviation of constipation, mostly due to the strains’ growth rates, adhesive capacity and effects on the gut microbiome and microenvironment.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China.
| | - Lujun Hu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China.
| | - Qi Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China.
| | - Boxing Yin
- Kangyuan Dairy Co., Ltd., Yangzhou University, Yangzhou 225004, China.
| | - Dongsheng Fang
- Kangyuan Dairy Co., Ltd., Yangzhou University, Yangzhou 225004, China.
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China.
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|