1
|
Azevedo-Pouly A, Hale MA, Swift GH, Hoang CQ, Deering TG, Xue J, Wilkie TM, Murtaugh LC, MacDonald RJ. Key transcriptional effectors of the pancreatic acinar phenotype and oncogenic transformation. PLoS One 2023; 18:e0291512. [PMID: 37796967 PMCID: PMC10553828 DOI: 10.1371/journal.pone.0291512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Proper maintenance of mature cellular phenotypes is essential for stable physiology, suppression of disease states, and resistance to oncogenic transformation. We describe the transcriptional regulatory roles of four key DNA-binding transcription factors (Ptf1a, Nr5a2, Foxa2 and Gata4) that sit at the top of a regulatory hierarchy controlling all aspects of a highly differentiated cell-type-the mature pancreatic acinar cell (PAC). Selective inactivation of Ptf1a, Nr5a2, Foxa2 and Gata4 individually in mouse adult PACs rapidly altered the transcriptome and differentiation status of PACs. The changes most emphatically included transcription of the genes for the secretory digestive enzymes (which conscript more than 90% of acinar cell protein synthesis), a potent anabolic metabolism that provides the energy and materials for protein synthesis, suppressed and properly balanced cellular replication, and susceptibility to transformation by oncogenic KrasG12D. The simultaneous inactivation of Foxa2 and Gata4 caused a greater-than-additive disruption of gene expression and uncovered their collaboration to maintain Ptf1a expression and control PAC replication. A measure of PAC dedifferentiation ranked the effects of the conditional knockouts as Foxa2+Gata4 > Ptf1a > Nr5a2 > Foxa2 > Gata4. Whereas the loss of Ptf1a or Nr5a2 greatly accelerated Kras-mediated transformation of mature acinar cells in vivo, the absence of Foxa2, Gata4, or Foxa2+Gata4 together blocked transformation completely, despite extensive dedifferentiation. A lack of correlation between PAC dedifferentiation and sensitivity to oncogenic KrasG12D negates the simple proposition that the level of differentiation determines acinar cell resistance to transformation.
Collapse
Affiliation(s)
- Ana Azevedo-Pouly
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michael A. Hale
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Galvin H. Swift
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chinh Q. Hoang
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tye G. Deering
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jumin Xue
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Thomas M. Wilkie
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - L. Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Raymond J. MacDonald
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
2
|
Bianco ME, Vu MH, Bain JR, Muehlbauer MJ, Ilkayeva OR, Scholtens DM, Josefson J, Lowe WL. Maternal and Cord Blood Serum Metabolite Associations with Childhood Adiposity and Body Composition Outcomes. Metabolites 2023; 13:749. [PMID: 37367907 PMCID: PMC10302619 DOI: 10.3390/metabo13060749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Maternal metabolites influence the size of newborns independently of maternal body mass index (BMI) and glycemia, highlighting the importance of maternal metabolism on offspring outcomes. This study examined associations of maternal metabolites during pregnancy with childhood adiposity, and cord blood metabolites with childhood adiposity using phenotype and metabolomic data from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study and the HAPO Follow-Up Study. The maternal metabolites analyses included 2324 mother-offspring pairs, while the cord blood metabolites analyses included 937 offspring. Multiple logistic and linear regression were used to examine associations between primary predictors, maternal or cord blood metabolites, and childhood adiposity outcomes. Multiple maternal fasting and 1 hr metabolites were significantly associated with childhood adiposity outcomes in Model 1 but were no longer significant after adjusting for maternal BMI and/or maternal glycemia. In the fully adjusted model, fasting lactose levels were negatively associated with child BMI z-scores and waist circumference, while fasting urea levels were positively associated with waist circumference. One-hour methionine was positively associated with fat-free mass. There were no significant associations between cord blood metabolites and childhood adiposity outcomes. Few metabolites were associated with childhood adiposity outcomes after adjusting for maternal BMI and glucose, suggesting that maternal BMI accounts for the association between maternal metabolites and childhood adiposity.
Collapse
Affiliation(s)
- Monica E. Bianco
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (M.E.B.); (J.J.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - My H. Vu
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.H.V.); (D.M.S.)
| | - James R. Bain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710, USA; (J.R.B.); (M.J.M.); (O.R.I.)
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710, USA; (J.R.B.); (M.J.M.); (O.R.I.)
| | - Olga R. Ilkayeva
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710, USA; (J.R.B.); (M.J.M.); (O.R.I.)
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, NC 27710, USA
| | - Denise M. Scholtens
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.H.V.); (D.M.S.)
| | - Jami Josefson
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (M.E.B.); (J.J.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - William L. Lowe
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Branched-Chain Amino Acids and Insulin Resistance, from Protein Supply to Diet-Induced Obesity. Nutrients 2022; 15:nu15010068. [PMID: 36615726 PMCID: PMC9824001 DOI: 10.3390/nu15010068] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
For more than a decade, there has been a wide debate about the branched-chain amino acids (BCAA) leucine, valine, and isoleucine, with, on the one hand, the supporters of their anabolic effects and, on the other hand, those who suspect them of promoting insulin resistance. Indeed, the role of leucine in the postprandial activation of protein synthesis has been clearly established, even though supplementation studies aimed at taking advantage of this property are rather disappointing. Furthermore, there is ample evidence of an association between the elevation of their plasma concentrations and insulin resistance or the risk of developing type 2 diabetes, although there are many confounding factors, starting with the level of animal protein consumption. After a summary of their metabolism and anabolic properties, we analyze in this review the factors likely to increase the plasma concentrations of BCAAs, including insulin-resistance. After an analysis of supplementation or restriction studies in search of a direct role of BCAAs in insulin resistance, we discuss an indirect role through some of their metabolites: branched-chain keto acids, C3 and C5 acylcarnitines, and hydroxyisobutyrate. Overall, given the importance of insulin in the metabolism of these amino acids, it is very likely that small alterations in insulin sensitivity are responsible for a reduction in their catabolism long before the onset of impaired glucose tolerance.
Collapse
|
4
|
Zhang B, Ning B, Chen X, Li C, Liu M, Yue Z, Liu L, Li F. Effects of the SLC38A2-mTOR Pathway Involved in Regulating the Different Compositions of Dietary Essential Amino Acids-Lysine and Methionine on Growth and Muscle Quality in Rabbits. Animals (Basel) 2022; 12:ani12233406. [PMID: 36496929 PMCID: PMC9740809 DOI: 10.3390/ani12233406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/10/2022] Open
Abstract
In recent years, ensuring food security has been an important challenge for the world. It is important to make good use of China’s domestic local feed resources to provide safe, stable, efficient, and high-quality rabbit meat products for China and the world. Lysine and methionine are the two most limiting essential amino acids in the rabbit diet. However, little is known about the rational composition of lysine and methionine in rabbit diets and the mechanisms that affect growth and development. Accordingly, in this study, we sought to address this knowledge gap by examining the effects of different compositions of lysine and methionine in rabbit diets. Subsequently, the growth status, nitrogen metabolism, blood biochemical indexes, muscle development, muscle quality, and the growth of satellite cells were evaluated in the animals. The results showed that diets containing 0.80% Lys and 0.40% Met improved average daily weight gain, feed conversion, nitrogen use efficiency, and muscle quality in the rabbits (p < 0.05). Additionally, it altered the amino acid transport potential in muscle by upregulating the expression of the SLC7A10 gene (p < 0.05). Meanwhile, the cell viability and the rate of division and migration of SCs in the 0.80% Lys/0.40 % Met composition group were increased (p < 0.05). SLC38A2 and P−mTOR protein expression was upregulated in the 0.80% lysine/0.40% methionine composition group (p < 0.05). In conclusion, 0.80% Lys/0.40% Met was the most suitable lysine and methionine composition in all tested diets. SLC38A2 acted as an amino acid sensor upstream of mTOR and was involved in the 0.80% Lys/0.40% Met regulation of muscle growth and development, thus implicating the mTOR signaling pathway in these processes.
Collapse
Affiliation(s)
- Bin Zhang
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian 271018, China
| | - Boyuan Ning
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian 271018, China
| | - Xiaoyang Chen
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian 271018, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Chenyang Li
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian 271018, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing 100083, China
| | - Mengqi Liu
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian 271018, China
| | - Zhengkai Yue
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian 271018, China
| | - Lei Liu
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian 271018, China
- Correspondence: (L.L.); (F.L.)
| | - Fuchang Li
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian 271018, China
- Correspondence: (L.L.); (F.L.)
| |
Collapse
|
5
|
Vanzant E, Frayman R, Hensley S, Rosenthal M. Should Anabolic Agents be Used for Resolving Catabolism in Post-ICU Recovery? CURRENT SURGERY REPORTS 2022. [DOI: 10.1007/s40137-022-00336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
6
|
Wang J, Liang XF, He S, Zhang YP, Li J, Huang K, Shi LJ, Ren P. Valine acts as a nutritional signal in brain to activate TORC1 and attenuate postprandial ammonia-N excretion in Chinese perch (Siniperca chuatsi). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2015-2025. [PMID: 32749664 DOI: 10.1007/s10695-020-00767-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
An emerging concept is that the hypothalamic nutrient sensor can regulate peripheral energy metabolism via a brain-liver circuit. Valine is an essential branched-chain amino acid (BCAA) that drives intracellular signaling cascades by the activation of target of rapamycin complex 1 (TORC1) which is critical to protein metabolism in mammals. However, in teleost fish, it remains scarce in this area especially about how the intraventricular (ICV) injection of valine can mediate the protein metabolism in peripheral organs. This study would tentatively explore the effects of ICV injection of valine on protein metabolism in peripheral organs through evaluating the postprandial ammonia-N excretion rate in Chinese perch. The control group was injected with 5-μL PBS, and the Val group was injected with 20-μg L valine dissolved into 5-μL PBS. The ammonia-N excretion rate of Val group was lower than control group at 4-, 12-, and 24-h postinjection, while the concertation of plasma glucose was increased sharply at 0.5-, 4-, 12-, and 24-h postinjection. We further checked both mRNA level and the enzyme activity of glutamate dehydrogenase (GDH) in the liver and adenosine monophosphate deaminase (AMPD) in muscle, and we found that they were obviously decreased in Val group at 4-, 12-, and 24-h postinjection. The phosphorylation level of ribosomal protein S6, a downstream target protein of TORC1, was markedly enhanced in the liver of Val group at 4-, 12-, and 24-h postinjection. Collectively, these results illustrated that ICV injection of valine can attenuate protein degradation in peripheral organs by depressing the GDH and AMPD enzyme activity; on the other hand, the injected valine can trigger the activation of TORC1 in the liver via a brain-liver circuit and then interdict proteolysis.
Collapse
Affiliation(s)
- Jie Wang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Yan-Peng Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Jiao Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Kang Huang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Lin-Jie Shi
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Ping Ren
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| |
Collapse
|
7
|
Guo Y, Huang Z, Sang D, Gao Q, Li Q. The Role of Nutrition in the Prevention and Intervention of Type 2 Diabetes. Front Bioeng Biotechnol 2020; 8:575442. [PMID: 33042976 PMCID: PMC7523408 DOI: 10.3389/fbioe.2020.575442] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes (T2D) is a rapidly growing epidemic, which leads to increased mortality rates and health care costs. Nutrients (namely, carbohydrates, fat, protein, mineral substances, and vitamin), sensing, and management are central to metabolic homeostasis, therefore presenting a leading factor contributing to T2D. Understanding the comprehensive effects and the underlying mechanisms of nutrition in regulating glucose metabolism and the interactions of diet with genetics, epigenetics, and gut microbiota is helpful for developing new strategies to prevent and treat T2D. In this review, we discuss different mechanistic pathways contributing to T2D and then summarize the current researches concerning associations between different nutrients intake and glucose homeostasis. We also explore the possible relationship between nutrients and genetic background, epigenetics, and metagenomics in terms of the susceptibility and treatment of T2D. For the specificity of individual, precision nutrition depends on the person’s genotype, and microbiota is vital to the prevention and intervention of T2D.
Collapse
Affiliation(s)
- Yajie Guo
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zihua Huang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dan Sang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qiong Gao
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qingjiao Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
8
|
Zeitz JO, Käding SC, Niewalda IR, Most E, Dorigam JCDP, Eder K. The influence of dietary leucine above recommendations and fixed ratios to isoleucine and valine on muscle protein synthesis and degradation pathways in broilers. Poult Sci 2020; 98:6772-6786. [PMID: 31250025 PMCID: PMC8913973 DOI: 10.3382/ps/pez396] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/13/2019] [Indexed: 01/30/2023] Open
Abstract
This study investigated the hypothesis that dietary supplementation of leucine (Leu) above actual recommendations activates protein synthesis and inhibits protein degradation pathways on the molecular level and supports higher muscle growth in broilers. Day-old male Cobb-500 broilers (n = 180) were allotted to 3 groups and phase-fed 3 different corn-wheat-soybean meal-based basal diets during periods 1 to 10, 11 to 21, and 22 to 35 D. The control group (L0) received the basal diet which met the broiler's requirements of nutrients and amino acids for maintenance and growth. Groups L1 and L2 received basal diets supplemented with Leu to exceed recommendations by 35 and 60%, respectively, and isoleucine (Ile) and valine (Val) were supplemented to keep Leu: Ile and Leu: Val ratios fixed. Samples of liver and breast muscle and pancreas were collected on days 10, 21, and 35. The gene expression and abundance of total and phosphorylated proteins involved in the mammalian target of rapamycin pathway of protein synthesis, in the ubiquitin-proteasome pathway and autophagy-lysosomal pathway of protein degradation, in the general control nonderepressible 2/eukaryotic translation initiation factor 2A pathway involved in the inhibition of protein synthesis, and in the myostatin-Smad2/3 pathway involved in myogenesis were evaluated in the muscle, as well as expression of genes involved in the growth hormone axis. Growth performance, feed intake, the feed conversion ratio, and carcass weights did not differ between the 3 groups (P > 0.05). Plasma concentrations of Leu, Ile, and Val and of their keto acids, and the activity of the branched-chain α-keto acid dehydrogenase in the pancreas increased dose dependently with increasing dietary Leu concentrations. In the breast muscle, relative mRNA abundances of genes and phosphorylation of selected proteins involved in all investigated pathways were largely uninfluenced by dietary Leu supplementation (P > 0.05). In summary, these data indicate that excess dietary Leu concentrations do not influence protein synthesis or degradation pathways, and subsequently do not increase muscle growth in broilers at fixed ratios to Ile and Val.
Collapse
Affiliation(s)
- Johanna O Zeitz
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| | - Stella-Christin Käding
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| | - Ines R Niewalda
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| | | | - Klaus Eder
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| |
Collapse
|
9
|
Tcherkez G, Carroll A, Abadie C, Mainguet S, Davanture M, Zivy M. Protein synthesis increases with photosynthesis via the stimulation of translation initiation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110352. [PMID: 31928674 DOI: 10.1016/j.plantsci.2019.110352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 05/09/2023]
Abstract
Leaf protein synthesis is an essential process at the heart of plant nitrogen (N) homeostasis and turnover that preferentially takes place in the light, that is, when N and CO2 fixation occur. The carbon allocation to protein synthesis in illuminated leaves generally accounts for ca. 1 % of net photosynthesis. It is likely that protein synthesis activity varies with photosynthetic conditions (CO2/O2 atmosphere composition) since changes in photorespiration and carbon provision should in principle impact on amino acid supply as well as metabolic regulation via leaf sugar content. However, possible changes in protein synthesis and translation activity when gaseous conditions vary are virtually unknown. Here, we address this question using metabolomics, isotopic techniques, phosphoproteomics and polysome quantitation, under different photosynthetic conditions that were varied with atmospheric CO2 and O2 mole fraction, using illuminated Arabidopsis rosettes under controlled gas exchange conditions. We show that carbon allocation to proteins is within 1-2.5 % of net photosynthesis, increases with photosynthesis rate and is unrelated to total amino acid content. In addition, photosynthesis correlates to polysome abundance and phosphorylation of ribosomal proteins and translation initiation factors. Our results demonstrate that translation activity follows photosynthetic activity, showing the considerable impact of metabolism (carboxylation-oxygenation balance) on protein synthesis.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Sciences, Australian National University, 2601, Canberra, ACT, Australia(1); Institut de Recherche en Horticulture et Semences, INRA, Université d'Angers, 42 rue Georges Morel, 49070, Beaucouzé, France(2).
| | - Adam Carroll
- Joint Mass Spectrometry Facility, Research School of Chemistry, Australian National University, 2601, Canberra, ACT, Australia
| | - Cyril Abadie
- Institut de Recherche en Horticulture et Semences, INRA, Université d'Angers, 42 rue Georges Morel, 49070, Beaucouzé, France(2)
| | - Samuel Mainguet
- Institute of Plant Sciences of Saclay, INRA, University Paris-Sud, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Marlène Davanture
- Plateforme d'Analyse de Protéomique Paris Sud-Ouest (PAPPSO), GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | - Michel Zivy
- Plateforme d'Analyse de Protéomique Paris Sud-Ouest (PAPPSO), GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Gjevestad GO, Holven KB, Rundblad A, Flatberg A, Myhrstad M, Karlsen K, Mutt SJ, Herzig KH, Ottestad I, Ulven SM. Increased protein intake affects pro-opiomelanocortin (POMC) processing, immune function and IGF signaling in peripheral blood mononuclear cells of home-dwelling old subjects using a genome-wide gene expression approach. GENES AND NUTRITION 2019; 14:32. [PMID: 31798754 PMCID: PMC6883584 DOI: 10.1186/s12263-019-0654-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022]
Abstract
Background Adequate protein intake among older adults is associated with better health outcomes such as immune function and metabolic regulation of skeletal muscle, but conflicting results make it difficult to define the optimal intake. To further understand the impact of protein intake on metabolic processes, the aim of the study was to explore genome-wide gene expression changes in peripheral blood mononuclear cells (PBMCs) in home-dwelling old subjects after increased protein intake for 12 weeks. Method In a parallel double-blind randomized controlled intervention study, subjects (≥ 70 years) received a protein-enriched milk (2 × 20 g protein/day, n = 14, mean (±SD) age 76.9 ± 4.9 years) or an isocaloric carbohydrate drink (n = 17, mean (±SD) age 77.7 ± 4.8 years) for breakfast and evening meal for 12 weeks. PBMCs were isolated before and after the intervention. Microarray analysis was performed using Illumina technology. Serum levels of gut peptides and insulin growth factor (IGF)-1 were also measured. Results In total 758 gene transcripts were regulated after increased protein intake, and 649 gene transcripts were regulated after intake of carbohydrates (p < 0.05). Forty-two of these genes were overlapping. After adjusting for multiple testing, 27 of the 758 gene transcripts were regulated (FDR, q-value < 0.25) after protein intake. Of these 25 were upregulated and two downregulated. In particular, genes and signaling pathways involved in pro-opiomelanocortin (POMC) processing, immune function, and IGF signaling were significantly altered. Conclusions PBMCs can be used to study gene expression changes after long-term protein intake, as many signaling pathways were regulated after increased protein intake. The functional significance of these findings needs to be further investigated. Trial registration ClinicalTrials.gov, ID no. NCT02218333. The study was registered on August 18, 2014.
Collapse
Affiliation(s)
- Gyrd O Gjevestad
- 1Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway.,2Innovation and marketing, TINE SA, Lakkegata 23, 0187 Oslo, Norway
| | - Kirsten B Holven
- 1Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway.,3National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
| | - Amanda Rundblad
- 1Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway
| | - Arnar Flatberg
- 4Department of Clinical and Molecular Medicine, Faculty of Medicine, Genomics Core Facility, Norwegian University of Sciences and Technology, Olav Kyrres gt. 9, 7489 Trondheim, Norway
| | - Mari Myhrstad
- 5Faculty of Health Sciences, Department of Nursing and Health Promotion, OsloMet - Oslo Metropolitan University, P.O. Box 4 St. Olavs plass, 0130 Oslo, Norway
| | - Karina Karlsen
- 1Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway
| | - Shivaprakash J Mutt
- 6Research Unit of Biomedicine, and Biocenter of Oulu, Oulu University Hospital and Medical Research Center Oulu, Oulu University, P.O Box 5000, 90014 Oulu, Finland
| | - Karl-Heinz Herzig
- 6Research Unit of Biomedicine, and Biocenter of Oulu, Oulu University Hospital and Medical Research Center Oulu, Oulu University, P.O Box 5000, 90014 Oulu, Finland.,7Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Inger Ottestad
- 1Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway
| | - Stine M Ulven
- 1Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway
| |
Collapse
|
11
|
Gruenbaum SE, Chen EC, Sandhu MRS, Deshpande K, Dhaher R, Hersey D, Eid T. Branched-Chain Amino Acids and Seizures: A Systematic Review of the Literature. CNS Drugs 2019; 33:755-770. [PMID: 31313139 DOI: 10.1007/s40263-019-00650-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Up to 40% of patients with epilepsy experience seizures despite treatment with antiepileptic drugs; however, branched-chain amino acid (BCAA) supplementation has shown promise in treating refractory epilepsy. OBJECTIVES The purpose of this systematic review was to evaluate all published studies that investigated the effects of BCAAs on seizures, emphasizing therapeutic efficacy and possible underlying mechanisms. METHODS On 31 January, 2017, the following databases were searched for relevant studies: MEDLINE (OvidSP), EMBASE (OvidSP), Scopus (Elsevier), the Cochrane Library, and the unindexed material in PubMed (National Library of Medicine/National Institutes of Health). The searches were repeated in all databases on 18 February, 2019. We only included full-length preclinical and clinical studies that were published in the English language that examined the effects of BCAA administration on seizures. RESULTS Eleven of 2045 studies met our inclusion criteria: ten studies were conducted in animal models and one study in human subjects. Seven seizure models were investigated: the strychnine (one study), pentylenetetrazole (two studies), flurothyl (one study), picrotoxin (two studies), genetic absence epilepsy in rats (one study), kainic acid (two studies), and methionine sulfoximine (one study) paradigms. Three studies investigated the effect of a BCAA mixture whereas the other studies explored the effects of individual BCAAs on seizures. In most animal models and in humans, BCAAs had potent anti-seizure effects. However, in the methionine sulfoximine model, long-term BCAA supplementation worsened seizure propagation and caused neuron loss, and in the genetic absence epilepsy in rats model, BCAAs exhibited pro-seizure effects. CONCLUSIONS The contradictory effects of BCAAs on seizure activity likely reflect differences in the complex mechanisms that underlie seizure disorders. Some of these mechanisms are likely mediated by BCAA's effects on glucose, glutamate, glutamine, and ammonia metabolism, activation of the mechanistic target of rapamycin signaling pathway, and their effects on aromatic amino acid transport and neurotransmitter synthesis. We propose that a better understanding of mechanisms by which BCAAs affect seizures and neuronal viability is needed to advance the field of BCAA supplementation in epilepsy.
Collapse
Affiliation(s)
- Shaun E Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, USA.
| | - Eric C Chen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Ketaki Deshpande
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Denise Hersey
- Lewis Science Library, Princeton University, Princeton, NJ, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Polakof S. Acides aminés à chaîne ramifiée et insulino-sensibilité : amis ou ennemis ? CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2019; 54:164-171. [DOI: 10.1016/j.cnd.2019.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Zeitz JO, Käding SC, Niewalda IR, Machander V, de Paula Dorigam JC, Eder K. Effects of leucine supplementation on muscle protein synthesis and degradation pathways in broilers at constant dietary concentrations of isoleucine and valine. Arch Anim Nutr 2019; 73:75-87. [PMID: 30821190 DOI: 10.1080/1745039x.2019.1583519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The present study investigated the hypothesis that dietary concentrations of leucine (Leu) in excess of the breeder´s recommendations activates protein synthesis and decreases protein degradation in muscle of broilers. Day-old male Ross 308 broilers (n = 450) were phase-fed corn-soybean meal-based diets during starter (d 1-10), grower (d 11-22), and finisher (d 23-34) period. The basal diets fed to the control group (L0) met the broilers' requirements for nutrients and amino acids, and contained Leu, Leu:isoleucine (Ile) and Leu:valine (Val) ratios, close to those recommended by the breeder (Leu:Ile: 100:54, 100:52, 100:51; Leu:Val 100:64, 100:61, 100:58; in starter, grower and finisher diet, resp.). Basal diets were supplemented with Leu to exceed the breeder's recommendations by 35% (group L35) and 60% (group L60). Growth performance during 34 d, and carcass weights, and breast and thigh muscle weights on d 34 were similar among groups. Hepatic and muscle mRNA levels of genes involved in the somatotropic axis [growth hormone receptor, insulin-like growth factor (IGF)-1, IGF binding protein 2, IGF receptor] on d 34 were not influenced by Leu. In the breast muscle, relative mRNA abundances of genes involved in the mammalian target of rapamycin (mTOR) pathway of protein synthesis (mTOR, ribosomal p70 S6 kinase) and the ubiquitin-proteasome pathway of protein degradation (F-box only protein 32, Forkhead box protein O1, Muscle RING-finger protein-1) on d 34 were largely similar among groups. Likewise, relative phosphorylation and thus activation of mTOR and ribosomal protein S6 involved in the mTOR pathway, and of eukaryotic translation initiation factor 2A (eIF2a) involved in the general control nonderepressible 2 (GCN2)/eIF2a pathway of protein synthesis inhibition, were not influenced. These data indicate that dietary Leu concentrations exceeding the broiler´s requirements up to 60% neither influence protein synthesis nor degradation pathways nor muscle growth in growing broilers.
Collapse
Affiliation(s)
- Johanna O Zeitz
- a Institute of Animal Nutrition and Nutritional Physiology , University of Giessen , Giessen , Germany
| | - Stella-Christin Käding
- a Institute of Animal Nutrition and Nutritional Physiology , University of Giessen , Giessen , Germany
| | - Ines R Niewalda
- a Institute of Animal Nutrition and Nutritional Physiology , University of Giessen , Giessen , Germany
| | | | | | - Klaus Eder
- a Institute of Animal Nutrition and Nutritional Physiology , University of Giessen , Giessen , Germany
| |
Collapse
|
14
|
de Proença ARG, Pereira KD, Meneguello L, Tamborlin L, Luchessi AD. Insulin action on protein synthesis and its association with eIF5A expression and hypusination. Mol Biol Rep 2019; 46:587-596. [PMID: 30519811 DOI: 10.1007/s11033-018-4512-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022]
Abstract
The hormone insulin plays a central role in the metabolism of carbohydrates, lipids, and proteins. In relation to protein metabolism, insulin stimulates amino acid uptake and activates protein synthesis in responsive cells by modulation of signal transduction pathways, such as associated to Akt/PkB, mTOR, S6Ks, 4E-BP1, and several translation initiation/elongation factors. In this context, there is no information on direct cellular treatment with insulin and effects on eukaryotic translation initiation factor 5A (eIF5A) regulation. The eIF5A protein contains an exclusive amino acid residue denominated hypusine, which is essential for its activity and synthesized by posttranslational modification of a specific lysine residue using spermidine as substrate. The eIF5A protein is involved in cellular proliferation and differentiation processes, as observed for satellite cells derived from rat muscles, revealing that eIF5A has an important role in muscle regeneration. The aim of this study was to determine whether eIF5A expression and hypusination are influenced by direct treatment of insulin on L6 myoblast cells. We observed that insulin increased the content of eIF5A transcripts. This effect occurred in cells treated or depleted of fetal bovine serum, revealing a positive insulin effect independent of other serum components. In addition, it was observed that hypusination follows the maintenance of eIF5A protein content in the serum depleted cells and treated with insulin. These results demonstrate that eIF5A is modulated by insulin, contributing the protein synthesis machinery control, as observed by puromycin incorporation in nascent proteins.
Collapse
Affiliation(s)
| | - Karina Danielle Pereira
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Leticia Meneguello
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Leticia Tamborlin
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Augusto Ducati Luchessi
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
- Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil.
- Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Rua Pedro Zaccaria, 1300, Limeira, São Paulo, 13484-350, Brazil.
| |
Collapse
|
15
|
Zeitz JO, Mohrmann S, Käding SC, Devlikamov M, Niewalda I, Whelan R, Helmbrecht A, Eder K. Effects of methionine on muscle protein synthesis and degradation pathways in broilers. J Anim Physiol Anim Nutr (Berl) 2018; 103:191-203. [PMID: 30460727 DOI: 10.1111/jpn.13026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023]
Abstract
This study investigated the hypothesis that supplementation of methionine (Met) to broiler diets increases muscle growth due to regulation of molecular pathways related to protein synthesis and degradation depending on the Met source. Day-old male Cobb-500 broilers (n = 240) were phase-fed three different wheat-soya bean meal-based basal diets during days 1-10, 11-21 and 22-35. Basal diets (Met- group, Met + Cys concentration 15% below NRC recommendations) were supplemented with 0.10% or 0.40% Met either as DL-Met (DLM) or DL-2-hydroxy-4-(methylthio) butanoic acid (DL-HMTBA) (equimolar comparison). Breast muscle weights were lower in the Met- group compared to all Met-supplemented groups and were lower in broilers supplemented with 0.10% of DL-HMTBA compared to the other groups fed Met-supplemented diets. However, the expression of genes or relative phosphorylation and thus activation state of proteins involved in the somatotropic axis, the mammalian target of rapamycin (mTOR) pathway of protein synthesis, the ubiquitin-proteasome pathway (UPP) and autophagy-lysosomal pathway of protein degradation, the GCN2/eIF2a pathway involved in the inhibition of protein synthesis and in the myostatin-Smad2/3 pathway involved in myogenesis were not affected by Met source. Feeding diets with suboptimum Met + Cys concentrations, however, decreased expression of GHR and IGF1 in liver and muscle and increased that of MURF1 involved in the UPP in the broiler's muscle at day 10 and 21, while that of FOXO and atrogin-1 and FOXO phosphorylation remained unaffected. Additionally, suboptimum dietary Met concentrations increased expression of the autophagy-related genes ATG5 and BECN1 at day 35. Met supplementation neither affected gene expression nor phosphorylation of proteins involved in the GNC2/eIF2a and mTOR pathways. These data indicate that protein synthesis was not affected on the molecular level, while protein degradation was marginally affected by dietary Met dosage.
Collapse
Affiliation(s)
- Johanna O Zeitz
- Institute of Animal Nutrition and Nutrition Physiology, University of Giessen, Giessen, Germany
| | - Sarah Mohrmann
- Institute of Animal Nutrition and Nutrition Physiology, University of Giessen, Giessen, Germany
| | - Stella C Käding
- Institute of Animal Nutrition and Nutrition Physiology, University of Giessen, Giessen, Germany
| | - Murat Devlikamov
- Institute of Animal Nutrition and Nutrition Physiology, University of Giessen, Giessen, Germany
| | - Ines Niewalda
- Institute of Animal Nutrition and Nutrition Physiology, University of Giessen, Giessen, Germany
| | - Rose Whelan
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang, Germany
| | | | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, University of Giessen, Giessen, Germany
| |
Collapse
|
16
|
van Attekum MHA, Terpstra S, Slinger E, von Lindern M, Moerland PD, Jongejan A, Kater AP, Eldering E. Macrophages confer survival signals via CCR1-dependent translational MCL-1 induction in chronic lymphocytic leukemia. Oncogene 2017; 36:3651-3660. [PMID: 28192408 PMCID: PMC5584520 DOI: 10.1038/onc.2016.515] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022]
Abstract
Protective interactions with bystander cells in micro-environmental niches, such as lymph nodes (LNs), contribute to survival and therapy resistance of chronic lymphocytic leukemia (CLL) cells. This is caused by a shift in expression of B-cell lymphoma 2 (BCL-2) family members. Pro-survival proteins B-cell lymphoma-extra large (BCL-XL), BCL-2-related protein A1 (BFL-1) and myeloid leukemia cell differentiation protein 1 (MCL-1) are upregulated by LN-residing T cells through CD40L interaction, presumably via nuclear factor (NF)-κB signaling. Macrophages (Mφs) also reside in the LN, and are assumed to provide important supportive functions for CLL cells. However, if and how Mφs are able to induce survival is incompletely known. We first established that Mφs induced survival because of an exclusive upregulation of MCL-1. Next, we investigated the mechanism underlying MCL-1 induction by Mφs in comparison with CD40L. Genome-wide expression profiling of in vitro Mφ- and CD40L-stimulated CLL cells indicated activation of the phosphoinositide 3-kinase (PI3K)-V-Akt murine thymoma viral oncogene homolog (AKT)-mammalian target of rapamycin (mTOR) pathway, which was confirmed in ex vivo CLL LN material. Inhibition of PI3K-AKT-mTOR signaling abrogated MCL-1 upregulation and survival by Mφs, as well as CD40 stimulation. MCL-1 can be regulated at multiple levels, and we established that AKT leads to increased MCL-1 translation, but does not affect MCL-1 transcription or protein stabilization. Furthermore, among Mφ-secreted factors that could activate AKT, we found that induction of MCL-1 and survival critically depended on C-C motif chemokine receptor-1 (CCR1). In conclusion, this study indicates that two distinct micro-environmental factors, CD40L and Mφs, signal via CCR1 to induce AKT activation resulting in translational stabilization of MCL-1, and hence can contribute to CLL cell survival.
Collapse
Affiliation(s)
- M H A van Attekum
- Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S Terpstra
- Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - E Slinger
- Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - M von Lindern
- Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
| | - P D Moerland
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A Jongejan
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A P Kater
- Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - E Eldering
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| |
Collapse
|
17
|
Sun K, Wu Z, Ji Y, Wu G. Glycine Regulates Protein Turnover by Activating Protein Kinase B/Mammalian Target of Rapamycin and by Inhibiting MuRF1 and Atrogin-1 Gene Expression in C2C12 Myoblasts. J Nutr 2016; 146:2461-2467. [DOI: 10.3945/jn.116.231266] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/15/2016] [Accepted: 09/19/2016] [Indexed: 01/01/2023] Open
Affiliation(s)
- KaiJi Sun
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
18
|
Effects of Whey Protein Alone or as Part of a Multi-ingredient Formulation on Strength, Fat-Free Mass, or Lean Body Mass in Resistance-Trained Individuals: A Meta-analysis. Sports Med 2016; 46:125-137. [PMID: 26403469 DOI: 10.1007/s40279-015-0403-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Even though the positive effects of whey protein-containing supplements for optimizing the anabolic responses and adaptations process in resistance-trained individuals have been supported by several investigations, their use continues to be controversial. Additionally, the administration of different multi-ingredient formulations where whey proteins are combined with carbohydrates, other protein sources, creatine, and amino acids or derivatives, has been extensively proposed as an effective strategy to maximize strength and muscle mass gains in athletes. OBJECTIVE We aimed to systematically summarize and quantify whether whey protein-containing supplements, administered alone or as a part of a multi-ingredient, could improve the effects of resistance training on fat-free mass or lean body mass, and strength in resistance-trained individuals when compared with other iso-energetic supplements containing carbohydrates or other sources of proteins. METHODS A structured literature search was conducted on PubMed, Science Direct, Web of Science, Cochrane Libraries, US National Institutes of Health clinicaltrials.gov, SPORTDiscus, and Google Scholar databases. Main inclusion criteria comprised randomized controlled trial study design, adults (aged 18 years and over), resistance-trained individuals, interventions (a resistance training program for a period of 6 weeks or longer, combined with whey protein supplementation administered alone or as a part of a multi-ingredient), and a calorie equivalent contrast supplement from carbohydrates or other non-whey protein sources. Continuous data on fat-free mass and lean body mass, and maximal strength were pooled using a random-effects model. RESULTS Data from nine randomized controlled trials were included, involving 11 treatments and 192 participants. Overall, with respect to the ingestion of contrast supplements, whey protein supplementation, administered alone or as part of a multi-ingredient, in combination with resistance training, was associated with small extra gains in fat-free mass or lean body mass, resulting in an effect size of g = 0.301, 95% confidence interval (CI) 0.032-0.571. Subgroup analyses showed less clear positive trends resulting in small to moderate effect size g = 0.217 (95% CI -0.113 to 0.547) and g = 0.468 (95% CI 0.003-0.934) in favor of whey and multi-ingredient, respectively. Additionally, a positive overall extra effect was also observed to maximize lower (g = 0.316, 95% CI 0.045-0.588) and upper body maximal strength (g = 0.458, 95% CI 0.161-0.755). Subgroup analyses showed smaller superiority to maximize strength gains with respect to the contrast groups for lower body (whey protein: g = 0.343, 95% CI -0.016 to 0.702, multi-ingredient: g = 0.281, 95% CI -0.135 to 0.697) while in the upper body, multi-ingredient (g = 0.612, 95% CI 0.157-1.068) seemed to produce more clear effects than whey protein alone (g = 0.343, 95% CI -0.048 to 0.735). LIMITATIONS Studies involving interventions of more than 6 weeks on resistance-training individuals are scarce and account for a small number of participants. Furthermore, no studies with an intervention longer than 12 weeks have been found. The variation regarding the supplementation protocol, namely the different doses criteria or timing of ingestion also add some concerns to the studies comparison. CONCLUSIONS Whey protein alone or as a part of a multi-ingredient appears to maximize lean body mass or fat-free mass gain, as well as upper and lower body strength improvement with respect to the ingestion of an iso-energetic equivalent carbohydrate or non-whey protein supplement in resistance-training individuals. This enhancement effect seems to be more evident when whey proteins are consumed within a multi-ingredient containing creatine.
Collapse
|
19
|
Yoon MS. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism. Nutrients 2016; 8:nu8070405. [PMID: 27376324 PMCID: PMC4963881 DOI: 10.3390/nu8070405] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/01/2016] [Accepted: 06/27/2016] [Indexed: 12/12/2022] Open
Abstract
Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs) belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or type 2 diabetes mellitus (T2DM). The activation of mammalian target of rapamycin complex 1 (mTORC1) by BCAAs has been suggested to cause insulin resistance. In addition, defective BCAA oxidative metabolism might occur in obesity, leading to a further accumulation of BCAAs and toxic intermediates. This review provides the current understanding of the mechanism of BCAA-induced mTORC1 activation, as well as the effect of mTOR activation on metabolic health in terms of insulin sensitivity. Furthermore, the effects of impaired BCAA metabolism will be discussed in detail.
Collapse
Affiliation(s)
- Mee-Sup Yoon
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Korea.
| |
Collapse
|
20
|
Sun H, Olson KC, Gao C, Prosdocimo DA, Zhou M, Wang Z, Jeyaraj D, Youn JY, Ren S, Liu Y, Rau CD, Shah S, Ilkayeva O, Gui WJ, William NS, Wynn RM, Newgard CB, Cai H, Xiao X, Chuang DT, Schulze PC, Lynch C, Jain MK, Wang Y. Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure. Circulation 2016; 133:2038-49. [PMID: 27059949 DOI: 10.1161/circulationaha.115.020226] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 03/28/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although metabolic reprogramming is critical in the pathogenesis of heart failure, studies to date have focused principally on fatty acid and glucose metabolism. Contribution of amino acid metabolic regulation in the disease remains understudied. METHODS AND RESULTS Transcriptomic and metabolomic analyses were performed in mouse failing heart induced by pressure overload. Suppression of branched-chain amino acid (BCAA) catabolic gene expression along with concomitant tissue accumulation of branched-chain α-keto acids was identified as a significant signature of metabolic reprogramming in mouse failing hearts and validated to be shared in human cardiomyopathy hearts. Molecular and genetic evidence identified the transcription factor Krüppel-like factor 15 as a key upstream regulator of the BCAA catabolic regulation in the heart. Studies using a genetic mouse model revealed that BCAA catabolic defect promoted heart failure associated with induced oxidative stress and metabolic disturbance in response to mechanical overload. Mechanistically, elevated branched-chain α-keto acids directly suppressed respiration and induced superoxide production in isolated mitochondria. Finally, pharmacological enhancement of branched-chain α-keto acid dehydrogenase activity significantly blunted cardiac dysfunction after pressure overload. CONCLUSIONS BCAA catabolic defect is a metabolic hallmark of failing heart resulting from Krüppel-like factor 15-mediated transcriptional reprogramming. BCAA catabolic defect imposes a previously unappreciated significant contribution to heart failure.
Collapse
Affiliation(s)
- Haipeng Sun
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Kristine C Olson
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Chen Gao
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Domenick A Prosdocimo
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Meiyi Zhou
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Zhihua Wang
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Darwin Jeyaraj
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Ji-Youn Youn
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Shuxun Ren
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Yunxia Liu
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Christoph D Rau
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Svati Shah
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Olga Ilkayeva
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Wen-Jun Gui
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Noelle S William
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - R Max Wynn
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Christopher B Newgard
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Hua Cai
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Xinshu Xiao
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - David T Chuang
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Paul Christian Schulze
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Christopher Lynch
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Mukesh K Jain
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Yibin Wang
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany.
| |
Collapse
|
21
|
Hu W, Sun L, Gong Y, Zhou Y, Yang P, Ye Z, Fu J, Huang A, Fu Z, Yu W, Zhao Y, Yang T, Zhou H. Relationship between Branched-Chain Amino Acids, Metabolic Syndrome, and Cardiovascular Risk Profile in a Chinese Population: A Cross-Sectional Study. Int J Endocrinol 2016; 2016:8173905. [PMID: 27528871 PMCID: PMC4977397 DOI: 10.1155/2016/8173905] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/28/2016] [Indexed: 02/07/2023] Open
Abstract
Objective. This study aimed to evaluate the relationship between branched-chain amino acids (BCAAs), metabolic syndrome (MS), and other cardiovascular (CV) risk factors in middle-aged and elderly Chinese population at high risk for the development of cardiovascular disease (CVD). Methods. 1302 subjects were enrolled from the Huai'an Diabetes Prevention Program. Results. BCAAs levels were positively correlated with MS, its components, and CV risk profile. The odds ratio (OR) for MS among subjects in the fourth quartile of BCAAs levels showed a 2.17-fold increase compared with those in the first quartile. BCAAs were independently associated with high Framingham risk score even after adjusting for MS and its components (P < 0.0001). Additionally, the OR for high CV risk was 3.20-fold (P < 0.0001) in participants in the fourth BCAAs quartile with MS compared with participants in the first BCAAs quartile without MS. Conclusions. Increased BCAAs levels are independent risk factors of MS and CVD in addition to the traditional factors in middle-aged and elderly Chinese population. The development of CVD in MS patients with high level BCAAs is accelerated. Intervention studies are needed to investigate whether the strategy of BCAAs reduction has impacts on endpoints in patients with higher CV risk. This study is registered with ChiCTR-TRC-14005029.
Collapse
Affiliation(s)
- Wen Hu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Department of Endocrinology and Metabolism, Huai'an Hospital Affiliated to Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an 223001, China
| | - Luning Sun
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yingyun Gong
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ying Zhou
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Panpan Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhengqin Ye
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jinxiang Fu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Aijie Huang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhenzhen Fu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Weinan Yu
- Department of Endocrinology and Metabolism, Huai'an Hospital Affiliated to Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an 223001, China
| | - Yang Zhao
- School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongwen Zhou
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- *Hongwen Zhou:
| |
Collapse
|
22
|
Pereira MG, Silva MT, da Cunha FM, Moriscot AS, Aoki MS, Miyabara EH. Leucine supplementation improves regeneration of skeletal muscles from old rats. Exp Gerontol 2015; 72:269-77. [DOI: 10.1016/j.exger.2015.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022]
|
23
|
Liu Y, Li F, Kong X, Tan B, Li Y, Duan Y, Blachier F, Hu CAA, Yin Y. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages. PLoS One 2015; 10:e0138277. [PMID: 26394157 PMCID: PMC4578863 DOI: 10.1371/journal.pone.0138277] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/27/2015] [Indexed: 01/23/2023] Open
Abstract
Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA) pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I) and longissimus dorsi muscle (LDM, type II) were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (P<0.05) gradually with increasing age. Bama mini-pigs had generally higher (P<0.05) muscle concentrations of flavor-related AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05) than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K), and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05). There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05) the levels for mTOR and p70S6K in Bama mini-pigs, but repressed (P<0.05) the level for p70S6K in Landrace pigs. The higher protein-NRC diet increased ratio of p-mTOR/mTOR in Landrace pigs. These findings indicated that the dynamic consequences of AA profile and protein deposition in muscle tissues are the concerted effort of distinctive genotype, nutrient status, age, and muscle type. Our results provide valuable information for animal feeding strategy.
Collapse
Affiliation(s)
- Yingying Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Animal Science and Veterinary Medicine Research Institute, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
- * E-mail: (XK); (YY)
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yinghui Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yehui Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - François Blachier
- INRA, CNRH-IdF, AgroParisTech, UMR 914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Chien-An A. Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, United States of America
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
- School of Biology, Hunan Normal Univesity, Hunan, Changsha City, 410018, China
- Changsha Lvye Biotechnology Limited Company, Guangdong Hinapharm Group and WangDa Academician Workstation, Hunan, Changsha City, 41019, P. R. China
- * E-mail: (XK); (YY)
| |
Collapse
|
24
|
Wang X, Wei H, Cao J, Li Z, He P. Metabolomics analysis of muscle from piglets fed low protein diets supplemented with branched chain amino acids using HPLC-high-resolution MS. Electrophoresis 2015; 36:2250-2258. [DOI: 10.1002/elps.201500007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/15/2015] [Accepted: 03/15/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Xian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology; China Agricultural University; Beijing P. R. China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology; Huazhong Agricultural University; Wuhan P. R. China
| | - Jingjing Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences; China Agricultural University; Beijing P. R. China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences; China Agricultural University; Beijing P. R. China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology; China Agricultural University; Beijing P. R. China
| |
Collapse
|
25
|
Layman DK, Anthony TG, Rasmussen BB, Adams SH, Lynch CJ, Brinkworth GD, Davis TA. Defining meal requirements for protein to optimize metabolic roles of amino acids. Am J Clin Nutr 2015; 101:1330S-1338S. [PMID: 25926513 PMCID: PMC5278948 DOI: 10.3945/ajcn.114.084053] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dietary protein provides essential amino acids (EAAs) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to postprandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signals that influence the rate of protein synthesis, inflammation responses, mitochondrial activity, and satiety, exerting their influence through signaling systems including mammalian/mechanistic target of rapamycin complex 1 (mTORC1), general control nonrepressed 2 (GCN2), glucagon-like peptide 1 (GLP-1), peptide YY (PYY), serotonin, and insulin. These signals represent meal-based responses to dietary protein. The best characterized of these signals is the leucine-induced activation of mTORC1, which leads to the stimulation of skeletal muscle protein synthesis after ingestion of a meal that contains protein. The response of this metabolic pathway to dietary protein (i.e., meal threshold) declines with advancing age or reduced physical activity. Current dietary recommendations for protein are focused on total daily intake of 0.8 g/kg body weight, but new research suggests daily needs for older adults of ≥1.0 g/kg and identifies anabolic and metabolic benefits to consuming at least 20-30 g protein at a given meal. Resistance exercise appears to increase the efficiency of EAA use for muscle anabolism and to lower the meal threshold for stimulation of protein synthesis. Applying this information to a typical 3-meal-a-day dietary plan results in protein intakes that are well within the guidelines of the Dietary Reference Intakes for acceptable macronutrient intakes. The meal threshold concept for dietary protein emphasizes a need for redistribution of dietary protein for optimum metabolic health.
Collapse
Affiliation(s)
- Donald K Layman
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| | - Tracy G Anthony
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| | - Blake B Rasmussen
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| | - Sean H Adams
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| | - Christopher J Lynch
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| | - Grant D Brinkworth
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| | - Teresa A Davis
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| |
Collapse
|
26
|
Overduin J, Guérin-Deremaux L, Wils D, Lambers TT. NUTRALYS(®) pea protein: characterization of in vitro gastric digestion and in vivo gastrointestinal peptide responses relevant to satiety. Food Nutr Res 2015; 59:25622. [PMID: 25882536 PMCID: PMC4400298 DOI: 10.3402/fnr.v59.25622] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/05/2015] [Accepted: 02/26/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Pea protein (from Pisum sativum) is under consideration as a sustainable, satiety-inducing food ingredient. OBJECTIVE In the current study, pea-protein-induced physiological signals relevant to satiety were characterized in vitro via gastric digestion kinetics and in vivo by monitoring post-meal gastrointestinal hormonal responses in rats. DESIGN Under in vitro simulated gastric conditions, the digestion of NUTRALYS(®) pea protein was compared to that of two dairy proteins, slow-digestible casein and fast-digestible whey. In vivo, blood glucose and gastrointestinal hormonal (insulin, ghrelin, cholecystokinin [CCK], glucagon-like peptide 1 [GLP-1], and peptide YY [PYY]) responses were monitored in nine male Wistar rats following isocaloric (11 kcal) meals containing 35 energy% of either NUTRALYS(®) pea protein, whey protein, or carbohydrate (non-protein). RESULTS In vitro, pea protein transiently aggregated into particles, whereas casein formed a more enduring protein network and whey protein remained dissolved. Pea-protein particle size ranged from 50 to 500 µm, well below the 2 mm threshold for gastric retention in humans. In vivo, pea-protein and whey-protein meals induced comparable responses for CCK, GLP-1, and PYY, that is, the anorexigenic hormones. Pea protein induced weaker initial, but equal 3-h integrated ghrelin and insulin responses than whey protein, possibly due to the slower gastric breakdown of pea protein observed in vitro. Two hours after meals, CCK levels were more elevated in the case of protein meals compared to that of non-protein meals. CONCLUSIONS These results indicate that 1) pea protein transiently aggregates in the stomach and has an intermediately fast intestinal bioavailability in between that of whey and casein; 2) pea-protein- and dairy-protein-containing meals were comparably efficacious in triggering gastrointestinal satiety signals.
Collapse
Affiliation(s)
- Joost Overduin
- Department of Health, NIZO Food Research, Ede, The Netherlands;
| | | | - Daniel Wils
- Nutrition Management, Roquette Frères, Lestrem, France
| | - Tim T Lambers
- Department of Health, NIZO Food Research, Ede, The Netherlands
| |
Collapse
|
27
|
Fjällström AK, Norrby M, Tågerud S. Expression and phosphorylation of eukaryotic translation initiation factor 4-gamma (eIF4G) in denervated atrophic and hypertrophic mouse skeletal muscle. Cell Biol Int 2015; 39:496-501. [PMID: 25623635 DOI: 10.1002/cbin.10402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/30/2014] [Indexed: 11/10/2022]
Abstract
The eukaryotic translation initiation factor 4-gamma (eIF4G) is important for the initiation of protein synthesis and phosphorylation on S1108 regulates this function of eIF4G. Thus, increased phosphorylation has been reported in conditions associated with increased protein synthesis such as meal feeding and insulin/IGF-1 treatment whereas decreased phosphorylation occurs following starvation, dexamethasone treatment, in sepsis and in atrophic denervated hind-limb muscle. The aim of the present study was to test the hypothesis that S1108 phosphorylation of eIF4G is differentially affected in denervated atrophic hind-limb muscles and denervated hypertrophic hemidiaphragm muscle. Protein expression and phosphorylation in innervated and 6-days denervated atrophic hind-limb muscles (pooled gastrocnemius and soleus) and hypertrophic hemidiaphragms were studied semi-quantitatively using Western blots. Total expression of eIF4G did not change in denervated hind-limb muscles but increased about 77% in denervated hemidiaphragm. S1108 phosphorylated eIF4G decreased about 64% in denervated hind-limb muscles but increased about 1.3-fold in denervated hemidiaphragm. The ratio of S1108 phosphorylated eIF4G to total eIF4G decreased about 60% in denervated hind-limb muscles but no statistically significant change was observed in denervated hemidiaphragm. The differential effect of denervation on eIF4G expression and S1108 phosphorylation in hemidiaphragm (hypertrophic) and hind-limb muscle (atrophic) may represent a regulatory mechanism that helps clarify the differential response of these muscles following denervation.
Collapse
Affiliation(s)
- Ann-Kristin Fjällström
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82, Kalmar, Sweden
| | | | | |
Collapse
|
28
|
Abstract
Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM.
Collapse
Affiliation(s)
- Christopher J Lynch
- Cellular and Molecular Physiology Department, The Pennsylvania State University, 500 University Drive, MC-H166, Hershey, PA 17033, USA
| | - Sean H Adams
- Arkansas Children's Nutrition Center, and Department of Pediatrics, University of Arkansas for Medical Sciences, 15 Children's Way, Little Rock, AR 72202, USA
| |
Collapse
|
29
|
Silva MT, Wensing LA, Brum PC, Câmara NO, Miyabara EH. Impaired structural and functional regeneration of skeletal muscles from β2-adrenoceptor knockout mice. Acta Physiol (Oxf) 2014; 211:617-33. [PMID: 24938737 PMCID: PMC4660878 DOI: 10.1111/apha.12329] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/09/2013] [Accepted: 06/12/2014] [Indexed: 12/28/2022]
Abstract
Aims β2-adrenergic stimulation causes beneficial effects on structure and function of regenerating muscles; thus, the β2-adrenoceptor may play an important role in the muscle regenerative process. Here, we investigated the role of the β2-adrenoceptor in skeletal muscle regeneration. Methods Tibialis anterior (TA) muscles from β2-adrenoceptor knockout (β2KO) mice were cryolesioned and analysed after 1, 3, 10 and 21 days. The role of β2-adrenoceptor on regenerating muscles was assessed through the analysis of morphological and contractile aspects, M1 and M2 macrophage profile, cAMP content, and activation of TGF-β signalling elements. Results Regenerating muscles from β2KO mice showed decreased calibre of regenerating myofibres and reduced muscle contractile function at 10 days when compared with those from wild type. The increase in cAMP content in muscles at 10 days post-cryolesion was attenuated in the absence of the β2-adrenoceptor. Furthermore, there was an increase in inflammation and in the number of macrophages in regenerating muscles lacking the β2-adrenoceptor at 3 and 10 days, a predominance of M1 macrophage phenotype, a decrease in TβR-I/Smad2/3 activation, and in the Smad4 expression at 3 days, while akirin1 expression increased at 10 days in muscles from β2KO mice when compared to those from wild type. Conclusions Our results suggest that the β2-adrenoceptor contributes to the regulation of the initial phases of muscle regeneration, especially in the control of macrophage recruitment in regenerating muscle through activation of TβR-I/Smad2/3 and reduction in akirin1 expression. These findings have implications for the future development of better therapeutic approaches to prevent or treat muscle injuries.
Collapse
Affiliation(s)
- M. T. Silva
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - L. A. Wensing
- Department of Immunology Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - P. C. Brum
- Department of Biodynamics School of Physical Education and Sport University of Sao Paulo Sao Paulo Brazil
| | - N. O. Câmara
- Department of Immunology Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - E. H. Miyabara
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| |
Collapse
|
30
|
Early body weight loss during concurrent chemo-radiotherapy for non-small cell lung cancer. J Cachexia Sarcopenia Muscle 2014; 5:127-37. [PMID: 24452446 PMCID: PMC4053563 DOI: 10.1007/s13539-013-0127-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/04/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Radiation-esophagitis and weight loss are frequently observed toxicities in patients treated with concurrent chemo-radiotherapy (CT-RT) for non-small cell lung cancer (NSCLC) and might be related. The purpose was to investigate whether weight loss already starts early after initiation of CT-RT and precedes radiation-esophagitis. MATERIALS AND METHODS In a retrospective cohort, weight and esophagitis grade ≥2 were assessed during the first weeks of (CT-)RT in patients treated with concurrent (n = 102) or sequential (n = 92) therapy. In a prospective validation study, data on body weight, esophagitis grade ≥2, nutritional intake and muscle strength were obtained before, during and following CT-RT. RESULTS In the retrospective cohort, early weight loss was observed in concurrently treated patients (p = 0.002), independent of esophagitis ≥ grade 2. Early weight loss was also observed in the prospective cohort (p = 0.003) and was not accompanied by decreases in nutritional intake. In addition lower limb muscle strength rapidly declined (p = 0.042). In the later weeks of treatment, further body weight loss occurred (p < 0.001) despite increased nutritional supplementation and body weight was only partly recovered after 4 weeks post CT-RT (p = 0.003). CONCLUSIONS Weight loss during concurrent CT-RT for NSCLC starts early and prior to onset of esophagitis, requiring timely and intense nutritional rehabilitation.
Collapse
|
31
|
Protein Modification During Ingredient Preparation and Food Processing: Approaches to Improve Food Processability and Nutrition. FOOD BIOPROCESS TECH 2014. [DOI: 10.1007/s11947-014-1326-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Pereira MG, Baptista IL, Carlassara EOC, Moriscot AS, Aoki MS, Miyabara EH. Leucine supplementation improves skeletal muscle regeneration after cryolesion in rats. PLoS One 2014; 9:e85283. [PMID: 24416379 PMCID: PMC3885703 DOI: 10.1371/journal.pone.0085283] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/25/2013] [Indexed: 12/31/2022] Open
Abstract
This study was undertaken in order to provide further insight into the role of leucine supplementation in the skeletal muscle regeneration process, focusing on myofiber size and strength recovery. Young (2-month-old) rats were subjected or not to leucine supplementation (1.35 g/kg per day) started 3 days prior to cryolesion. Then, soleus muscles were cryolesioned and continued receiving leucine supplementation until 1, 3 and 10 days later. Soleus muscles from leucine-supplemented animals displayed an increase in myofiber size and a reduction in collagen type III expression on post-cryolesion day 10. Leucine was also effective in reducing FOXO3a activation and ubiquitinated protein accumulation in muscles at post-cryolesion days 3 and 10. In addition, leucine supplementation minimized the cryolesion-induced decrease in tetanic strength and increase in fatigue in regenerating muscles at post-cryolesion day 10. These beneficial effects of leucine were not accompanied by activation of any elements of the phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin signalling pathway in the regenerating muscles. Our results show that leucine improves myofiber size gain and strength recovery in regenerating soleus muscles through attenuation of protein ubiquitination. In addition, leucine might have therapeutic effects for muscle recovery following injury and in some muscle diseases.
Collapse
Affiliation(s)
- Marcelo G. Pereira
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Igor L. Baptista
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Eduardo O. C. Carlassara
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Anselmo S. Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo S. Aoki
- School of Arts, Sciences and Humanities, University of Sao Paulo, Sao Paulo, Brazil
| | - Elen H. Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
33
|
Op den Kamp CM, Langen RC, Snepvangers FJ, de Theije CC, Schellekens JM, Laugs F, Dingemans AMC, Schols AM. Nuclear transcription factor κ B activation and protein turnover adaptations in skeletal muscle of patients with progressive stages of lung cancer cachexia. Am J Clin Nutr 2013; 98:738-48. [PMID: 23902785 DOI: 10.3945/ajcn.113.058388] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Experimental models of cancer cachexia have indicated that systemic inflammation induces muscle-protein breakdown and wasting via muscular nuclear transcription factor κB (NF-κB) activation. This process may limit the efficacy of nutritional intervention. OBJECTIVES We assessed muscle NF-κB activity and protein turnover signaling in progressive stages of clinical lung cancer cachexia and assessed whether circulating factors can induce muscular NF-κB activity. DESIGN Patients with lung cancer precachexia (n = 10) and cachexia (n = 16) were cross-sectionally compared with 22 healthy control subjects. mRNA transcripts of muscle proteolytic (ubiquitin proteasome system and autophagy lysosomal pathway) and myogenic markers and protein expression of PI3K/Akt, myostatin, and autophagy signaling were measured. A multiplex analysis showed the systemic inflammatory status, whereas plasma exposure to stable NF-κB-luciferase-reporter muscle cells revealed NF-κB inducibility. RESULTS Compared with healthy control subjects, cachectic patients had reduced (appendicular) muscle mass (-10%), muscle fiber atrophy (-27%), and decreased quadriceps strength (-31%). Subtle alterations in the muscle morphology were also detectable in precachectic patients, without changes in body composition. Despite increased Akt phosphorylation, downstream phosphosubstrates glycogen synthase kinase 3β, mammalian target of rapamycin, and Forkhead box protein were unaltered. The expression of autophagy effectors B cell lymphoma 2/adenovirus E1B 19-kDa protein-interacting protein 3 and microtubule-associated proteins 1A/1B light chain 3B gradually increased from precachectic to cachectic patients, without differences in E3 ubiquitin ligases. Systemic and local inflammation was evident in cachexia and intermediate in precachexia, but the plasma of both patients groups caused ex vivo muscle NF-κB activation. CONCLUSIONS In lung cancer, muscular NF-κB activity is induced by factors contained within the circulation. Autophagy may contribute to increased muscle proteolysis in lung cancer cachexia, whereas the absence of downstream changes in phosphosubstrates despite increased Akt phosphorylation suggests impaired anabolic signaling that may require targeted nutritional intervention.
Collapse
Affiliation(s)
- Céline M Op den Kamp
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu LY, Wang J, Huang Y, Pan HB, Zhang X, Huang ZX, Zhao SM, Gao SZ. The effect of dietary protein levels on the expression of genes coding for four selected protein translation initiation factors in muscle tissue of Wujin pig. J Anim Physiol Anim Nutr (Berl) 2013; 98:310-7. [PMID: 23718228 DOI: 10.1111/jpn.12081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/11/2013] [Indexed: 01/11/2023]
Abstract
The objective of this study was to investigate the regulatory mechanism underlying the increased muscle protein accumulation in pigs while were fed a high protein diet. The eukaryotic initiation factors (eIFs) have been reported to involve in muscle protein synthesis. We investigated the mRNA and protein expression levels of eIF2B1, 4A1, 4B and 4E in Wujin pigs fed either a high protein (HP: 18%) or a low protein (LP: 14%) diet at 30, 60 or 100 kg body weight, based on real-time PCR and western blotting analyses. Our results indicated that the expression levels of eIF2B1 mRNA and protein were increased by HP diet at all body weight. The HP diet showed higher mRNA and protein levels of eIF4B gene at 60 and 100 kg. The protein expression of eIF4E phosphorylation was increased by HP diet only at 30 kg. These data suggested that the HP diet promoted porcine muscle protein accumulation mainly by up-regulating eIF2B1, 4B and 4E rather than 4A1 expression along the growth stages.
Collapse
Affiliation(s)
- L Y Liu
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Leucine and protein metabolism in obese Zucker rats. PLoS One 2013; 8:e59443. [PMID: 23527196 PMCID: PMC3603883 DOI: 10.1371/journal.pone.0059443] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/14/2013] [Indexed: 12/15/2022] Open
Abstract
Branched-chain amino acids (BCAAs) are circulating nutrient signals for protein accretion, however, they increase in obesity and elevations appear to be prognostic of diabetes. To understand the mechanisms whereby obesity affects BCAAs and protein metabolism, we employed metabolomics and measured rates of [1-14C]-leucine metabolism, tissue-specific protein synthesis and branched-chain keto-acid (BCKA) dehydrogenase complex (BCKDC) activities. Male obese Zucker rats (11-weeks old) had increased body weight (BW, 53%), liver (107%) and fat (∼300%), but lower plantaris and gastrocnemius masses (−21–24%). Plasma BCAAs and BCKAs were elevated 45–69% and ∼100%, respectively, in obese rats. Processes facilitating these rises appeared to include increased dietary intake (23%), leucine (Leu) turnover and proteolysis [35% per g fat free mass (FFM), urinary markers of proteolysis: 3-methylhistidine (183%) and 4-hydroxyproline (766%)] and decreased BCKDC per g kidney, heart, gastrocnemius and liver (−47–66%). A process disposing of circulating BCAAs, protein synthesis, was increased 23–29% by obesity in whole-body (FFM corrected), gastrocnemius and liver. Despite the observed decreases in BCKDC activities per gm tissue, rates of whole-body Leu oxidation in obese rats were 22% and 59% higher normalized to BW and FFM, respectively. Consistently, urinary concentrations of eight BCAA catabolism-derived acylcarnitines were also elevated. The unexpected increase in BCAA oxidation may be due to a substrate effect in liver. Supporting this idea, BCKAs were elevated more in liver (193–418%) than plasma or muscle, and per g losses of hepatic BCKDC activities were completely offset by increased liver mass, in contrast to other tissues. In summary, our results indicate that plasma BCKAs may represent a more sensitive metabolic signature for obesity than BCAAs. Processes supporting elevated BCAA]BCKAs in the obese Zucker rat include increased dietary intake, Leu and protein turnover along with impaired BCKDC activity. Elevated BCAAs/BCKAs may contribute to observed elevations in protein synthesis and BCAA oxidation.
Collapse
|
36
|
Zhou T, Li G, Cao B, Liu L, Cheng Q, Kong H, Shan C, Huang X, Chen J, Gao N. Downregulation of Mcl-1 through inhibition of translation contributes to benzyl isothiocyanate-induced cell cycle arrest and apoptosis in human leukemia cells. Cell Death Dis 2013; 4:e515. [PMID: 23449451 PMCID: PMC3734843 DOI: 10.1038/cddis.2013.41] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Benzyl isothiocyanate (BITC) is one of the compounds of ITCs' family that has attracted a great deal of interest because of its ability to exhibit anticancer activity. In this study, we investigated the effects of BITC on cell cycle arrest and apoptosis in human leukemia cell lines, primary leukemia cells, and nude mice Jurkat xenograft. Exposure of Jurkat cells to BITC resulted in dose- and time-dependent increase in apoptosis, caspase activation, cytochrome c release, nuclear apoptosis-inducing factor (AIF) accumulation, Bcl2-associated X protein (Bax) translocation, and myeloid cell leukemia-1 (Mcl-1) downregulation. Treatment with these cells also resulted in cell cycle arrest at the G2/M phase. The G2/M-arrested cells are more sensitive to undergoing Mcl-1 downregulation and apoptosis mediated by BITC. BITC downregulates Mcl-1 expression through inhibition of translation, rather than through a transcriptional, post-translational, or caspase-dependent mechanism. Dephosphorylation of eukaryotic initiation factor 4G could contribute to the inhibition of Mcl-1 translation mediated by BITC. Furthermore, ectopic expression of Mcl-1 substantially attenuates BITC-mediated lethality in these cells, whereas knockdown of Mcl-1 through small interfering RNA significantly enhances BITC-mediated lethality. Finally, administration of BITC markedly inhibited tumor growth and induced apoptosis in Jurkat xenograft model in association with the downregulation of Mcl-1. Taken together, these findings represent a novel mechanism by which agents targeting Mcl-1 potentiate BITC lethality in transformed and primary human leukemia cells and inhibitory activity of tumor growth of Jurkat xenograft model.
Collapse
Affiliation(s)
- T Zhou
- Department of Pharmacognosy, School of Pharmacy, 3rd Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Millward DJ. Knowledge gained from studies of leucine consumption in animals and humans. J Nutr 2012; 142:2212S-2219S. [PMID: 23077184 DOI: 10.3945/jn.111.157370] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Leucine's wide-ranging metabolic influences have made it subject to special interest. It is abundant in the diet, especially in some milk and cereal proteins, in part due to its allocation of 6 codons in the genetic code, and individual dietary intakes range up to >250 mg · kg(-1) · d(-1). It influences many cell functions by various mechanisms, which include allosteric activation of enzymes, enabling ATP generation and insulin secretion from the pancreatic islet cell, and activation of signaling pathways. It is a mediator of the anabolic drive of dietary amino acids, stimulating anabolic hormone secretion and directly signaling protein deposition and growth through the stimulation of protein synthesis and restraint of proteolysis. Its signaling may involve the mammalian target of rapamycin complex and rapamycin-insensitive pathways responding to a leucine "transceptor," which combines leucine cellular transport, fueled by the intracellular-extracellular glutamine gradient, and a signaling response to changes in ionic and water balance and cell volume. In animal studies, dietary leucine supplementation has reversed many of the adverse influences of a high-fat diet, consistent with a benefit for healthy weight maintenance in humans for which evidence is accumulating. The implications for safety of leucine-supplemented diets are discussed in terms of adversely lowering valine and isoleucine concentrations and inducing hyperammonemia through overloading peripheral glutamine synthetic pathways. Finally, the apparently high human leucine requirement is explained in terms of both an adaptive metabolic demand model of requirements and the design and analysis of human studies, which may overestimate values.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK.
| |
Collapse
|
38
|
Miller BF, Robinson MM, Reuland DJ, Drake JC, Peelor FF, Bruss MD, Hellerstein MK, Hamilton KL. Calorie restriction does not increase short-term or long-term protein synthesis. J Gerontol A Biol Sci Med Sci 2012; 68:530-8. [PMID: 23105041 DOI: 10.1093/gerona/gls219] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Increased protein synthesis is proposed as a mechanism of life-span extension during caloric restriction (CR). We hypothesized that CR does not increase protein synthesis in all tissues and protein fractions and that any increased protein synthesis with CR would be due to an increased anabolic effect of feeding. We used short- (4 hours) and long-term (6 weeks) methods to measure in vivo protein synthesis in lifelong ad libitum (AL) and CR mice. We did not detect an acute effect of feeding on protein synthesis while liver mitochondrial protein synthesis was lower in CR mice versus AL mice. Mammalian target of rapamycin (mTOR) signaling was repressed in liver and heart from CR mice indicative of energetic stress and suppression of growth. Our main findings were that CR did not increase rates of mixed protein synthesis over the long term or in response to acute feeding, and protein synthesis was maintained despite decreased mTOR signaling.
Collapse
Affiliation(s)
- Benjamin F Miller
- Department of Health and Exercise Science, Colorado State University, Fort Collins CO 80523-1582, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yan K, Ito N, Nakajo A, Kurayama R, Fukuhara D, Nishibori Y, Kudo A, Akimoto Y, Takenaka H. The struggle for energy in podocytes leads to nephrotic syndrome. Cell Cycle 2012; 11:1504-11. [PMID: 22433955 DOI: 10.4161/cc.19825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Podocytes are terminally differentiated post-mitotic cells similar to neurons, and their damage leads to nephrotic syndrome, which is characterized by massive proteinuria associated with generalized edema. A recent functional genetic approach has identified the pathological relevance of several mutated proteins in glomerular podocytes to the mechanism of proteinuria in hereditary nephrotic syndrome. In contrast, the pathophysiology of acquired primary nephrotic syndrome, including minimal change disease, is still largely unknown. We recently demonstrated the possible linkage of an energy-consuming process in glomerular podocytes to the mechanism of proteinuria. Puromycin aminonucleoside nephrosis, a rat model of minimal change disease, revealed the activation of the unfolded protein response (UPR) in glomerular podocytes to be a cause of proteinuria. The pretreatment of puromycin aminonucleoside rat podocytes and cultured podocytes with the mammalian target of rapamycin (mTOR) inhibitor everolimus further revealed that mTOR complex 1 consumed energy, which was followed by UPR activation. In this paper, we will review nutritional transporters to summarize the energy uptake process in podocytes and review the involvement of the UPR in the pathogenesis of glomerular diseases. We will also present additional data that reveal how mTOR complex 1 acts upstream of the UPR. Finally, we will discuss the potential significance of targeting the energy metabolism of podocytes to develop new therapeutic interventions for acquired nephrotic syndrome.
Collapse
Affiliation(s)
- Kunimasa Yan
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zeanandin G, Balage M, Schneider SM, Dupont J, Hébuterne X, Mothe-Satney I, Dardevet D. Differential effect of long-term leucine supplementation on skeletal muscle and adipose tissue in old rats: an insulin signaling pathway approach. AGE (DORDRECHT, NETHERLANDS) 2012; 34:371-87. [PMID: 21472380 PMCID: PMC3312629 DOI: 10.1007/s11357-011-9246-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/24/2011] [Indexed: 05/15/2023]
Abstract
Leucine acts as a signal nutrient in promoting protein synthesis in skeletal muscle and adipose tissue via mTOR pathway activation, and may be of interest in age-related sarcopenia. However, hyper-activation of mTOR/S6K1 has been suggested to inhibit the first steps of insulin signaling and finally promote insulin resistance. The impact of long-term dietary leucine supplementation on insulin signaling and sensitivity was investigated in old rats (18 months old) fed a 15% protein diet supplemented (LEU group) or not (C group) with 4.5% leucine for 6 months. The resulting effects on muscle and fat were examined. mTOR/S6K1 signaling pathway was not significantly altered in muscle from old rats subjected to long-term dietary leucine excess, whereas it was increased in adipose tissue. Overall glucose tolerance was not changed but insulin-stimulated glucose transport was improved in muscles from leucine-supplemented rats related to improvement in Akt expression and phosphorylation in response to food intake. No change in skeletal muscle mass was observed, whereas perirenal adipose tissue mass accumulated (+45%) in leucine-supplemented rats. A prolonged leucine supplementation in old rats differently modulates mTOR/S6K pathways in muscle and adipose tissue. It does not increase muscle mass but seems to promote hypertrophy and hyperplasia of adipose tissue that did not result in insulin resistance.
Collapse
Affiliation(s)
- Gilbert Zeanandin
- Centre Hospitalier Universitaire de Nice, Pôle Digestif, Nice, F-06202 France
- Faculté de Médecine, Université de Nice Sophia–Antipolis, Nice, F-06107 France
- INSERM, U907, IFR50, Nice, F-06107 France
| | - Michèle Balage
- INRA, Centre Clermont-Ferrand—Theix, UMR 1019, Unité Nutrition Humaine, 63122 Saint Genès Champanelle, France
- Univ Clermont 1, UFR Médecine, UMR 1019 Unité Nutrition Humaine, 63001 Clermont-Ferrand, France
| | - Stéphane M. Schneider
- Centre Hospitalier Universitaire de Nice, Pôle Digestif, Nice, F-06202 France
- Faculté de Médecine, Université de Nice Sophia–Antipolis, Nice, F-06107 France
- INSERM, U907, IFR50, Nice, F-06107 France
| | - Joëlle Dupont
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Xavier Hébuterne
- Centre Hospitalier Universitaire de Nice, Pôle Digestif, Nice, F-06202 France
- Faculté de Médecine, Université de Nice Sophia–Antipolis, Nice, F-06107 France
| | - Isabelle Mothe-Satney
- Centre Hospitalier Universitaire de Nice, Pôle Digestif, Nice, F-06202 France
- Faculté de Médecine, Université de Nice Sophia–Antipolis, Nice, F-06107 France
- INSERM, U907, IFR50, Nice, F-06107 France
| | - Dominique Dardevet
- INRA, Centre Clermont-Ferrand—Theix, UMR 1019, Unité Nutrition Humaine, 63122 Saint Genès Champanelle, France
- Univ Clermont 1, UFR Médecine, UMR 1019 Unité Nutrition Humaine, 63001 Clermont-Ferrand, France
| |
Collapse
|
41
|
Hu SI, Katz M, Chin S, Qi X, Cruz J, Ibebunjo C, Zhao S, Chen A, Glass DJ. MNK2 inhibits eIF4G activation through a pathway involving serine-arginine-rich protein kinase in skeletal muscle. Sci Signal 2012; 5:ra14. [PMID: 22337810 DOI: 10.1126/scisignal.2002466] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skeletal muscle mass is regulated by activity, metabolism, and the availability of nutrients. During muscle atrophy, MNK2 expression increases. We found that MNK2 (mitogen-activated protein kinase-interacting kinase 2), but not MNK1, inhibited proteins involved in promoting protein synthesis, including eukaryotic translation initiation factor 4G (eIF4G) and mammalian target of rapamycin (mTOR). Phosphorylation at serine 1108 (Ser¹¹⁰⁸) of eIF4G, which is associated with enhanced protein translation, is promoted by insulin-like growth factor 1 and inhibited by rapamycin or starvation, suggesting that phosphorylation of this residue is regulated by mTOR. In cultured myotubes, small interfering RNA (siRNA) knockdown of MNK2 increased eIF4G Ser¹¹⁰⁸ phosphorylation and overcame rapamycin's inhibitory effect on this phosphorylation event. Phosphorylation of Ser¹¹⁰⁸ in eIF4G, in gastrocnemius muscle, was increased in mice lacking MNK2, but not those lacking MNK1, and this increased phosphorylation was maintained in MNK2-null animals under atrophy conditions and upon starvation. Conversely, overexpression of MNK2 decreased eIF4G Ser¹¹⁰⁸ phosphorylation. An siRNA screen revealed that serine-arginine-rich protein kinases linked increased MNK2 activity to decreased eIF4G phosphorylation. In addition, we found that MNK2 interacted with mTOR and inhibited phosphorylation of the mTOR target, the ribosomal kinase p70S6K (70-kD ribosomal protein S6 kinase), through a mechanism independent of the kinase activity of MNK2. These data indicate that MNK2 plays a unique role, not shared by its closest paralog MNK1, in limiting protein translation through its negative effect on eIF4G Ser¹¹⁰⁸ phosphorylation and p70S6K activation.
Collapse
Affiliation(s)
- Shou-Ih Hu
- Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Davoodi J, Markert CD, Voelker KA, Hutson SM, Grange RW. Nutrition strategies to improve physical capabilities in Duchenne muscular dystrophy. Phys Med Rehabil Clin N Am 2011; 23:187-99, xii-xiii. [PMID: 22239883 DOI: 10.1016/j.pmr.2011.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is no current cure for Duchenne muscular dystrophy (DMD), and palliative and prophylactic interventions to improve the quality of life of patients remain limited, with the exception of corticosteroids. This article describes 2 potential nutritional interventions for the treatment of DMD, green tea extract (GTE) and the branched-chain amino acid leucine, and their positive effects on physical activity. Both GTE and leucine are suitable for human consumption, are easily tolerated with no side effects, and, with appropriate preclinical data, could be brought forward to clinical trials rapidly.
Collapse
Affiliation(s)
- J Davoodi
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
43
|
Orellana RA, Wilson FA, Gazzaneo MC, Suryawan A, Davis TA, Nguyen HV. Sepsis and development impede muscle protein synthesis in neonatal pigs by different ribosomal mechanisms. Pediatr Res 2011; 69:473-8. [PMID: 21364490 PMCID: PMC3090498 DOI: 10.1203/pdr.0b013e3182176da1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In muscle, sepsis reduces protein synthesis (MPS) by restraining translation in neonates and adults. Even though protein accretion decreases with development as neonatal MPS rapidly declines by maturation, the changes imposed by development on the sepsis-associated decrease in MPS have not been described. Pigs at 7 and 26 d of age were infused for 8 h with lipopolysaccharide (LPS, endotoxin, 0 and 10 μg · kg⁻¹ · h⁻¹). Fractional MPS rates and translation eukaryotic initiation factor (eIF) activation in muscle were examined (n = 5-7/group). The LPS-induced decrease in MPS was associated with reduced ribosomal and translational efficiency, whereas the age-induced decrease in MPS occurred by decreasing ribosome number. Abundances of mammalian target of rapamycin (mTOR) and S6 decreased, and that of the repressor eIF4E · 4E-binding protein 1 (4EBP1) association increased in 26-d-old pigs--compared with 7-d-old pigs. LPS decreased the abundance of the active eIF4E ·eIF4G association and the phosphorylation of eIF4G across ages, whereas the abundance of eIF4G declined and eIF2α phosphorylation increased with age. Therefore, when lacking anabolic stimulation, the decrease in MPS induced by LPS is associated with reduced ribosomal efficiency and decreased eIF4E ·eIF4G assembly, whereas that induced by development involves reduced ribosomal number, translation factor abundance, and increased eIF2α phosphorylation.
Collapse
Affiliation(s)
- Renán A Orellana
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Sun H, Lu G, Ren S, Chen J, Wang Y. Catabolism of branched-chain amino acids in heart failure: insights from genetic models. Pediatr Cardiol 2011; 32:305-10. [PMID: 21210099 PMCID: PMC3051105 DOI: 10.1007/s00246-010-9856-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 12/03/2010] [Indexed: 12/13/2022]
Abstract
Genetic defects in amino acid metabolism are major causes of newborn diseases that often lead to abnormal development and function of the central nervous system. Their direct impact on cardiac development and function has rarely been investigated. Recently, the authors have established that a mitochondrial targeted 2C-type ser/thr protein phosphatase, PP2Cm, is the endogenous phosphatase of the branched-chain alpha keto acid-dehydrogenase complex (BCKD) and functions as a key regulator in branched-chain amino acid catabolism and homeostasis. Genetic inactivation of PP2Cm in mice leads to significant elevation in plasma concentrations of branched-chain amino acids and branched-chain keto acids at levels similar to those associated with intermediate mild forms of maple syrup urine disease. In addition to neuronal tissues, PP2Cm is highly expressed in cardiac muscle, and its expression is diminished in a heart under pathologic stresses. Whereas phenotypic features of heart failure are seen in PP2Cm-deficient zebra fish embryos, cardiac function in PP2Cm-null mice is compromised at a young age and deteriorates faster by mechanical overload. These observations suggest that the catabolism of branched-chain amino acids also has physiologic significance in maintaining normal cardiac function. Defects in PP2Cm-mediated catabolism of branched-chain amino acids can be a potential novel mechanism not only for maple syrup urine disease but also for congenital heart diseases and heart failure.
Collapse
Affiliation(s)
- Haipeng Sun
- Division of Molecular Medicine, Departments of Anesthesiology, Medicine and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine, CSH, Room BH 569, 650 Charles E. Young Drive, Los Angeles, CA 90095 USA
| | - Gang Lu
- Division of Molecular Medicine, Departments of Anesthesiology, Medicine and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine, CSH, Room BH 569, 650 Charles E. Young Drive, Los Angeles, CA 90095 USA
| | - Shuxun Ren
- Division of Molecular Medicine, Departments of Anesthesiology, Medicine and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine, CSH, Room BH 569, 650 Charles E. Young Drive, Los Angeles, CA 90095 USA
| | - Jaunian Chen
- Division of Molecular Medicine, Departments of Anesthesiology, Medicine and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine, CSH, Room BH 569, 650 Charles E. Young Drive, Los Angeles, CA 90095 USA
| | - Yibin Wang
- Division of Molecular Medicine, Departments of Anesthesiology, Medicine and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine, CSH, Room BH 569, 650 Charles E. Young Drive, Los Angeles, CA 90095 USA
| |
Collapse
|
45
|
Murgas Torrazza R, Suryawan A, Gazzaneo MC, Orellana RA, Frank JW, Nguyen HV, Fiorotto ML, El-Kadi S, Davis TA. Leucine supplementation of a low-protein meal increases skeletal muscle and visceral tissue protein synthesis in neonatal pigs by stimulating mTOR-dependent translation initiation. J Nutr 2010; 140:2145-52. [PMID: 20962152 PMCID: PMC2981001 DOI: 10.3945/jn.110.128421] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein synthesis and eukaryotic initiation factor (eIF) activation are increased in skeletal muscle of neonatal pigs parenterally infused with amino acids. Leucine appears to be the most effective single amino acid to trigger these effects. To examine the response to enteral leucine supplementation, overnight food-deprived 5-d-old pigs were gavage fed at 0 and 60 min a: 1) low-protein diet (LP); 2) LP supplemented with leucine (LP+L) to equal leucine in the high-protein diet (HP); or 3) HP diet. Diets were isocaloric and equal in lactose. Fractional protein synthesis rates and translation initiation control mechanisms were examined in skeletal muscles and visceral tissues 90 min after feeding. Protein synthesis rates in longissimus dorsi, gastrocnemius, and masseter muscles, heart, jejunum, kidney, and pancreas, but not liver, were greater in the LP+L group compared with the LP group and did not differ from the HP group. Feeding LP+L and HP diets compared with the LP diet increased phosphorylation of mammalian target of rapamycin (mTOR), 4E-binding protein 1, ribosomal protein S6 kinase-1, and eIF4G and formation of the active eIF4E·eIF4G complex in longissimus dorsi muscle. In all tissues except liver, activation of mTOR effectors increased in pigs fed LP+L and HP vs. LP diets. Our results suggest that leucine supplementation of a low-protein meal stimulates protein synthesis in muscle and most visceral tissues to a rate similar to that achieved by feeding a high-protein meal and this stimulation involves activation of mTOR downstream effectors.
Collapse
Affiliation(s)
- Roberto Murgas Torrazza
- USDA/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Agus Suryawan
- USDA/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Maria C. Gazzaneo
- USDA/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Renán A. Orellana
- USDA/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Jason W. Frank
- Department of Animal Science, University of Arkansas, Fayetteville, AR 72701
| | - Hanh V. Nguyen
- USDA/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Marta L. Fiorotto
- USDA/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Samer El-Kadi
- USDA/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Teresa A. Davis
- USDA/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Frost RA, Huber D, Pruznak A, Lang CH. Regulation of REDD1 by insulin-like growth factor-I in skeletal muscle and myotubes. J Cell Biochem 2010; 108:1192-202. [PMID: 19795384 DOI: 10.1002/jcb.22349] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Insulin-like growth factor-I (IGF-I) is a major anabolic hormone for skeletal muscle and a potent stimulus for protein synthesis and translation initiation. Recent studies suggest that translation can be inhibited by over expression of the mammalian target of rapamycin (mTOR) repressor REDD1. The purpose of the present study was to determine whether IGF-I alters the expression of REDD1 and whether this is associated with a concomitant change in protein synthesis in vitro. Subcutaneous injection of IGF-I or intravenous delivery of insulin for 3-4 h increased REDD1 mRNA in skeletal muscle 7-10-fold. A threefold increase in REDD1 was observed when C2C12 myotubes were treated with IGF-I. REDD1 protein continued to be expressed for up to 24 h after addition of IGF-I to cells. Withdrawal of IGF-I from myotubes lead to a rapid loss of REDD1 protein content. IGF-I-induced REDD1 mRNA and protein expression were prevented by inhibitors of transcription and translation. IGF-I had an additive effect with dexamethasone (Dex) on REDD1 protein content in myotubes. The PI3K inhibitor LY294002 blocked IGF-I but not Dex induced REDD1. IGF-I also stimulated REDD1 promoter activity. Although REDD1 protein was elevated 5-6 h after addition of IGF-I to myotubes, protein synthesis measured during this 1 h window was paradoxically greater in myotubes expressing more REDD1. In contrast to the IGF-I induced increase in REDD1 mRNA, REDD2 mRNA was decreased by IGF-I. We conclude that IGF-I stimulates REDD1 expression in skeletal muscle and myotubes but under these conditions the REDD1 response is not sufficient to repress protein synthesis.
Collapse
Affiliation(s)
- Robert A Frost
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | |
Collapse
|
47
|
Escobar J, Frank JW, Suryawan A, Nguyen HV, Van Horn CG, Hutson SM, Davis TA. Leucine and alpha-ketoisocaproic acid, but not norleucine, stimulate skeletal muscle protein synthesis in neonatal pigs. J Nutr 2010; 140:1418-24. [PMID: 20534881 PMCID: PMC2903301 DOI: 10.3945/jn.110.123042] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The branched-chain amino acid, leucine, acts as a nutrient signal to stimulate protein synthesis in skeletal muscle of young pigs. However, the chemical structure responsible for this effect has not been identified. We have shown that the other branched-chain amino acids, isoleucine and valine, are not able to stimulate protein synthesis when raised in plasma to levels within the postprandial range. In this study, we evaluated the effect of leucine, alpha-ketoisocaproic acid (KIC), and norleucine infusion (0 or 400 micromol kg(-1) h(-1) for 60 min) on protein synthesis and activation of translation initiation factors in piglets. Infusion of leucine, KIC, and norleucine raised plasma levels of each compound compared with controls. KIC also increased (P < 0.01) and norleucine reduced (P < 0.02) plasma levels of leucine compared with controls. Administration of leucine and KIC resulted in greater (P < 0.006) phosphorylation of eukaryotic initiation factor (eIF) 4E binding protein-1 (4E-BP1) and eIF4G, lower (P < 0.04) abundance of the inactive 4E-BP1.eIF4E complex, and greater (P < 0.05) active eIF4G.eIF4E complex formation in skeletal muscle compared with controls. Protein synthesis in skeletal muscle was greater (P < 0.02) in leucine- and KIC-infused pigs than in those in the control group. Norleucine infusion did not affect muscle protein synthesis or translation initiation factor activation. In liver, neither protein synthesis nor activation of translation initiation factors was affected by treatment. These results suggest that the ability of leucine to act as a nutrient signal to stimulate skeletal muscle protein synthesis is specific for leucine and/or its metabolite, KIC.
Collapse
Affiliation(s)
- Jeffery Escobar
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Jason W. Frank
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Agus Suryawan
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Hanh V. Nguyen
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Cynthia G. Van Horn
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Susan M. Hutson
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Teresa A. Davis
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Durham WJ, Casperson SL, Dillon EL, Keske MA, Paddon-Jones D, Sanford AP, Hickner RC, Grady JJ, Sheffield-Moore M. Age-related anabolic resistance after endurance-type exercise in healthy humans. FASEB J 2010; 24:4117-27. [PMID: 20547663 DOI: 10.1096/fj.09-150177] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Age-related skeletal muscle loss is thought to stem from suboptimal nutrition and resistance to anabolic stimuli. Impaired microcirculatory (nutritive) blood flow may contribute to anabolic resistance by reducing delivery of amino acids to skeletal muscle. In this study, we employed contrast-enhanced ultrasound, microdialysis sampling of skeletal muscle interstitium, and stable isotope methodology, to assess hemodynamic and metabolic responses of older individuals to endurance type (walking) exercise during controlled amino acid provision. We hypothesized that older individuals would exhibit reduced microcirculatory blood flow, interstitial amino acid concentrations, and amino acid transport when compared with younger controls. We report for the first time that aging induces anabolic resistance following endurance exercise, manifested as reduced (by ∼40%) efficiency of muscle protein synthesis. Despite lower (by ∼40-45%) microcirculatory flow in the older than in the younger participants, circulating and interstitial amino acid concentrations and phenylalanine transport into skeletal muscle were all equal or higher in older individuals than in the young, comprehensively refuting our hypothesis that amino acid availability limits postexercise anabolism in older individuals. Our data point to alternative mediators of age-related anabolic resistance and importantly suggest correction of these impairments may reduce requirements for, and increase the efficacy of, dietary protein in older individuals.
Collapse
Affiliation(s)
- William J Durham
- Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0460, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lang CH, Lynch CJ, Vary TC. Alcohol-induced IGF-I resistance is ameliorated in mice deficient for mitochondrial branched-chain aminotransferase. J Nutr 2010; 140:932-8. [PMID: 20237068 PMCID: PMC2855262 DOI: 10.3945/jn.109.120501] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acute alcohol intoxication decreases skeletal muscle protein synthesis by impairing mammalian target of rapamycin (mTOR). In 2 studies, we determined whether inhibition of branched-chain amino acid (BCAA) catabolism ameliorates the inhibitory effect of alcohol on muscle protein synthesis by raising the plasma BCAA concentrations and/or by improving the anabolic response to insulin-like growth factor (IGF)-I. In the first study, 4 groups of mice were used: wild-type (WT) and mitochondrial branched-chain aminotransferase (BCATm) knockout (KO) mice orally administered saline or alcohol (5 g/kg, 1 h). Protein synthesis was greater in KO mice compared with WT controls and was associated with greater phosphorylation of eukaryotic initiation factor (eIF)-4E binding protein-1 (4EBP1), eIF4E-eIF4G binding, and 4EBP1-regulatory associated protein of mTOR (raptor) binding, but not mTOR-raptor binding. Alcohol decreased protein synthesis in WT mice, a change associated with less 4EBP1 phosphorylation, eIF4E-eIF4G binding, and raptor-4EBP1 binding, but greater mTOR-raptor complex formation. Comparable alcohol effects on protein synthesis and signal transduction were detected in BCATm KO mice. The second study used the same 4 groups, but all mice were injected with IGF-I (25 microg/mouse, 30 min). Alcohol impaired the ability of IGF-I to increase muscle protein synthesis, 4EBP1 and 70-kilodalton ribosomal protein S6 kinase-1 phosphorylation, eIF4E-eIF4G binding, and 4EBP1-raptor binding in WT mice. However, in alcohol-treated BCATm KO mice, this IGF-I resistance was not manifested. These data suggest that whereas the sustained elevation in plasma BCAA is not sufficient to ameliorate the catabolic effect of acute alcohol intoxication on muscle protein synthesis, it does improve the anabolic effect of IGF-I.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Leucine does not only serve as a substrate for protein synthesis but is also recognized as a potent signal nutrient that regulates protein metabolism. Accordingly, leucine supplementation has been suggested to develop muscle mass or prevent protein loss in several conditions characterized by muscle protein wasting. In the present review, we reported the recent results related to the effect of dietary leucine or leucine-rich amino acid mixture and proteins on whole body composition. RECENT FINDINGS Although recent studies corroborate that increasing plasma leucine concentration generally induces an increase in muscle protein synthesis, long-term dietary leucine supplementation has been poorly investigated. Chronic free leucine supplementation alone did not improve lean body or muscle mass during resistance training or in elderly, whereas it was able to limit the weight loss induced by malnutrition. Contradictory data were also reported concerning the effect of leucine supplementation for weight management in obese patients. Leucine-rich amino acid mixture or proteins appeared more efficient than leucine alone to improve muscle mass and performance, suggesting the efficacy of leucine depends nevertheless on the presence of other amino acids. SUMMARY Until now, there is no evidence that chronic leucine supplementation is efficient in promoting muscle mass or preventing protein loss during catabolic states. Further studies are required to determine the duration and nutritional conditions of long-term leucine supplementation and to establish whether such nutritional interventions can help to prevent or treat muscle loss in various pathological or physiological conditions.
Collapse
Affiliation(s)
- Michèle Balage
- INRA, UMR 1019 Nutrition Humaine, Saint Genès Champanelle, France
| | | |
Collapse
|