1
|
Kujawowicz K, Mirończuk-Chodakowska I, Witkowska AM. Sirtuin 1 as a potential biomarker of undernutrition in the elderly: a narrative review. Crit Rev Food Sci Nutr 2024; 64:9532-9553. [PMID: 37229564 DOI: 10.1080/10408398.2023.2214208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Undernutrition and inflammatory processes are predictors of early mortality in the elderly and require a rapid and accurate diagnosis. Currently, there are laboratory markers for assessing nutritional status, but new markers are still being sought. Recent studies suggest that sirtuin 1 (SIRT1) has the potential to be a marker for undernutrition. This article summarizes available studies on the association of SIRT1 and undernutrition in older people. Possible associations between SIRT1 and the aging process, inflammation, and undernutrition in the elderly have been described. The literature suggests that low SIRT1 levels in the blood of older people may not be associated with physiological aging processes, but with an increased risk of severe undernutrition associated with inflammation and systemic metabolic changes.
Collapse
Affiliation(s)
- Karolina Kujawowicz
- Department of Food Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
2
|
Liu X, Sun J, Ge B, Pan C, Yan H, Sun X, Peng J, Wang W, Lin Y, Zhang D, Ning F. Association between famine exposure during infancy and childhood and the risk of chronic kidney disease in adulthood. Intern Med J 2024; 54:1310-1319. [PMID: 38465389 DOI: 10.1111/imj.16367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Famine exposure in childhood is proven to be associated with multiple chornic disease in adult but has not been studied with chronic kidney disease (CKD). AIMS This study was conducted to identify the relationship between famine exposure during infancy and childhood - specifically, the Chinese famine of 1959-1961 - and the risk of adult-onset chronic kidney disease (CKD) among Chinese individuals. METHODS This study included 2937 individuals from the Qingdao Diabetes Prevention Program. They were stratified by birth year into infancy-exposed (1956-1958), childhood-exposed (1950-1955) and unexposed (1963-1971) groups. The estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration equation. CKD was defined as an eGFR of <90 mL/min/1.73 m2. RESULTS The mean eGFR values for the infancy-exposed and childhood-exposed groups were 107.23 ± 12.53 and 103.23 ± 12.44 mL/min/1.73 m2, respectively, both of which were lower than that of the unexposed group (114.82 ± 13.39 mL/min/1.73 m2; P < 0.05). In the crude model, the odds ratio (OR) for CKD was 2.00 (95% confidence interval (CI): 1.39-2.88) in the infancy-exposed group and 2.92 (95% CI: 2.17-3.93) in the childhood-exposed group. Further adjustments for urban/rural residence, body mass index, age, current smoking, type 2 diabetes, systolic blood pressure, diastolic blood pressure and total cholesterol did not significantly alter the association between famine exposure and CKD. The corresponding ORs were 1.71 (95% CI: 1.17-2.50) and 2.48 (95% CI: 1.81-3.40) for the infancy-exposed and childhood-exposed groups respectively. CONCLUSIONS Famine exposure during infancy and childhood is associated with a long-term decline in eGFR and an increased adult-onset CKD risk. Early intervention for high-risk individuals may mitigate the risk of adult-onset CKD.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong, China
| | - Junhui Sun
- The Second People's Hospital of Jimo, Qingdao, Shandong, China
| | - Bing Ge
- Qingdao Centers for Disease Control and Prevention, Qingdao, Shandong, China
| | - Chi Pan
- Huangdao District Centers for Disease Control and Prevention, Qingdao, Shandong, China
| | - Hongxuan Yan
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong, China
| | - Xiaohui Sun
- Qingdao Centers for Disease Control and Prevention, Qingdao, Shandong, China
| | - Jiahui Peng
- Qingdao Centers for Disease Control and Prevention, Qingdao, Shandong, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong, China
| | - Yongfeng Lin
- Qingdao Centers for Disease Control and Prevention, Qingdao, Shandong, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong, China
| | - Feng Ning
- Qingdao Centers for Disease Control and Prevention, Qingdao, Shandong, China
| |
Collapse
|
3
|
Lecoutre S, Maqdasy S, Lambert M, Breton C. The Impact of Maternal Obesity on Adipose Progenitor Cells. Biomedicines 2023; 11:3252. [PMID: 38137473 PMCID: PMC10741630 DOI: 10.3390/biomedicines11123252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The concept of Developmental Origin of Health and Disease (DOHaD) postulates that adult-onset metabolic disorders may originate from suboptimal conditions during critical embryonic and fetal programming windows. In particular, nutritional disturbance during key developmental stages may program the set point of adiposity and its associated metabolic diseases later in life. Numerous studies in mammals have reported that maternal obesity and the resulting accelerated growth in neonates may affect adipocyte development, resulting in persistent alterations in adipose tissue plasticity (i.e., adipocyte proliferation and storage) and adipocyte function (i.e., insulin resistance, impaired adipokine secretion, reduced thermogenesis, and higher inflammation) in a sex- and depot-specific manner. Over recent years, adipose progenitor cells (APCs) have been shown to play a crucial role in adipose tissue plasticity, essential for its development, maintenance, and expansion. In this review, we aim to provide insights into the developmental timeline of lineage commitment and differentiation of APCs and their role in predisposing individuals to obesity and metabolic diseases. We present data supporting the possible implication of dysregulated APCs and aberrant perinatal adipogenesis through epigenetic mechanisms as a primary mechanism responsible for long-lasting adipose tissue dysfunction in offspring born to obese mothers.
Collapse
Affiliation(s)
- Simon Lecoutre
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, F-75013 Paris, France
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet Hospital, C2-94, 14186 Stockholm, Sweden;
| | - Mélanie Lambert
- U978 Institut National de la Santé et de la Recherche Médicale, F-93022 Bobigny, France;
- Université Sorbonne Paris Nord, Alliance Sorbonne Paris Cité, Labex Inflamex, F-93000 Bobigny, France
| | - Christophe Breton
- Maternal Malnutrition and Programming of Metabolic Diseases, Université de Lille, EA4489, F-59000 Lille, France
- U1283-UMR8199-EGID, Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
4
|
Abstract
Large brains provide adaptive cognitive benefits but require unusually high, near-constant energy inputs and become fully functional well after their growth is completed. Consequently, young of most larger-brained endotherms should not be able to independently support the growth and development of their own brains. This paradox is solved if the evolution of extended parental provisioning facilitated brain size evolution. Comparative studies indeed show that extended parental provisioning coevolved with brain size and that it may improve immature survival. The major role of extended parental provisioning supports the idea that the ability to sustain the costs of brains limited brain size evolution.
Collapse
|
5
|
Glazier DS. How Metabolic Rate Relates to Cell Size. BIOLOGY 2022; 11:1106. [PMID: 35892962 PMCID: PMC9332559 DOI: 10.3390/biology11081106] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/19/2022]
Abstract
Metabolic rate and its covariation with body mass vary substantially within and among species in little understood ways. Here, I critically review explanations (and supporting data) concerning how cell size and number and their establishment by cell expansion and multiplication may affect metabolic rate and its scaling with body mass. Cell size and growth may affect size-specific metabolic rate, as well as the vertical elevation (metabolic level) and slope (exponent) of metabolic scaling relationships. Mechanistic causes of negative correlations between cell size and metabolic rate may involve reduced resource supply and/or demand in larger cells, related to decreased surface area per volume, larger intracellular resource-transport distances, lower metabolic costs of ionic regulation, slower cell multiplication and somatic growth, and larger intracellular deposits of metabolically inert materials in some tissues. A cell-size perspective helps to explain some (but not all) variation in metabolic rate and its body-mass scaling and thus should be included in any multi-mechanistic theory attempting to explain the full diversity of metabolic scaling. A cell-size approach may also help conceptually integrate studies of the biological regulation of cellular growth and metabolism with those concerning major transitions in ontogenetic development and associated shifts in metabolic scaling.
Collapse
|
6
|
Harvey KM, Cooke RF, Moriel P. Impacts of Nutritional Management During Early Postnatal Life on Long-Term Physiological and Productive Responses of Beef Cattle. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.730356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Effective early postnatal nutritional management is a crucial component of livestock production systems, and nutrient manipulation during this period has been shown to exert long-term consequences on beef cattle growth and physiology. Metabolic imprinting defines these biological responses to a nutritional intervention early in life that permanently alter physiological outcomes later in life. Early weaning has been used to study metabolic imprinting effects, given that it allows for nutritional manipulation of animals at a young age. This practice has been shown to enhance carcass characteristics in feedlot cattle and accelerate reproductive development of females. Another strategy to study the effects of metabolic imprinting without the need for early weaning is to provide supplements via creep feeding. Providing creep feed to nursing cattle has resulted in transient and long-term alterations in cattle metabolism, contributing to increased reproductive performance of developing heifers and enhanced carcass quality of feeder cattle. Collectively, results described herein demonstrate nutrient manipulation during early postnatal life exerts long-term consequences on beef cattle productivity and may be a strategy to optimize production efficiency in beef cattle systems.
Collapse
|
7
|
Musa TH, Akintunde TY, Musa HH, Ghimire U, Gatasi G. Malnutrition Research Output: A Bibliometric Analysis for articles Index in Web of Science between 1900 and 2020. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2021. [DOI: 10.29333/ejgm/10840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Rocha MLM, Fernandes PP, Tenório F, Manhães AC, Barradas PC. Malnourishment during early lactation disrupts the ontogenetic distribution of the CART and α-MSH anorexigenic molecules in the arcuate/paraventricular pathway and lateral hypothalamus in male rats. Brain Res 2020; 1743:146906. [PMID: 32473258 DOI: 10.1016/j.brainres.2020.146906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/20/2020] [Accepted: 05/25/2020] [Indexed: 11/19/2022]
Abstract
Developmental malnourishment impacts the energetic metabolism control throughout life. In rat offspring, a 0% protein diet during the first 10 days of lactation results in leptin resistance and in alterations in: feeding behavior, serum leptin and neuropeptide Y (NPY) levels in the hypothalamic arcuate nucleus (ARC)/paraventricular (PVN) pathway. Here, the distributions of alpha-melanocyte stimulating hormone (α-MSH) and cocaine and amphetamine regulated transcript (CART), anorexigenic molecules, were immunohistochemically assessed in the ARC, PVN and lateral hypothalamus (LH) nuclei. Rat dams were subjected to one of the following diet protocols from postnatal day (P) 1-10: 1) Protein-free (PFG, 0% protein chow); 2) Pair-fed (UFG, normoprotein chow); 3) Control group (CG, normoprotein chow). PFG, UFG and CG male offspring were analyzed at different time points, from P5 to P180. In the ARC, PFG α-MSH and CART were increased from P10 to P45 when compared to CG and UFG. In the PVN, α-MSH and CART peaks in PFG animals were delayed from P20 to P30 when compared to CG. In the LH, CART was more intense in PFG animals than in UFG and CG ones by P20, and, by P30, UFG immunostaining became less intense than in CG. In conclusion, aproteic diet altered the ontogenetic distribution of both anorexigenic molecules. In the PVN, the peak was delayed to P30, which coincides with the leptin peak and follows the previously described NPY (orexigenic) peak in this model. The permanent LH CART and α-MSH increase may be associated with the previously observed PFG hypophagia.
Collapse
Affiliation(s)
- Michael L M Rocha
- Laboratório de Neurobiologia do Desenvolvimento, Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscilla P Fernandes
- Laboratório de Neurobiologia do Desenvolvimento, Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frank Tenório
- Laboratório de Neurobiologia do Desenvolvimento, Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Penha C Barradas
- Laboratório de Neurobiologia do Desenvolvimento, Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Wells JC, Sawaya AL, Wibaek R, Mwangome M, Poullas MS, Yajnik CS, Demaio A. The double burden of malnutrition: aetiological pathways and consequences for health. Lancet 2020; 395:75-88. [PMID: 31852605 PMCID: PMC7613491 DOI: 10.1016/s0140-6736(19)32472-9] [Citation(s) in RCA: 408] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022]
Abstract
Malnutrition has historically been researched and addressed within two distinct silos, focusing either on undernutrition, food insecurity, and micronutrient deficiencies, or on overweight, obesity, and dietary excess. However, through rapid global nutrition transition, an increasing proportion of individuals are exposed to different forms of malnutrition during the life course and have the double burden of malnutrition (DBM) directly. Long-lasting effects of malnutrition in early life can be attributed to interconnected biological pathways, involving imbalance of the gut microbiome, inflammation, metabolic dysregulation, and impaired insulin signalling. Life-course exposure to early undernutrition followed by later overweight increases the risk of non-communicable disease, by imposing a high metabolic load on a depleted capacity for homoeostasis, and in women increases the risk of childbirth complications. These life-course trajectories are shaped both by societal driving factors-ie, rapidly changing diets, norms of eating, and physical activity patterns-and by broader ecological factors such as pathogen burden and extrinsic mortality risk. Mitigation of the DBM will require major societal shifts regarding nutrition and public health, to implement comprehensive change that is sustained over decades, and scaled up into the entire global food system.
Collapse
Affiliation(s)
- Jonathan C Wells
- Childhood Nutrition Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK.
| | - Ana Lydia Sawaya
- Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | - Rasmus Wibaek
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; Clinical Epidemiology, Steno Diabetes Center Copenhagen, Copenhagen, Denmark
| | - Martha Mwangome
- Kenya Medical Research Institute Wellcome Trust Research Program, Kilifi, Kenya
| | - Marios S Poullas
- Childhood Nutrition Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Alessandro Demaio
- School of Global Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; EAT Foundation, Oslo, Norway; Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia; VicHealth, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Dana K, Finik J, Koenig S, Motter J, Zhang W, Linaris M, Brumberg JC, Nomura Y. Prenatal Exposure to Famine and Risk for Development of Psychopathology in Adulthood: A Meta-Analysis. ACTA ACUST UNITED AC 2019; 3:227-240. [PMID: 32219197 PMCID: PMC7098697 DOI: 10.26502/jppd.2572-519x0077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prenatal famine, resulting in intrauterine malnutrition, impacts offspring psychopathology later in adulthood. In addition, the specific impact of intrauterine malnutrition of different psychopathology differs by the timing of the exposure. Using a meta-analysis, the current study assessed the specific risk of developing affective, psychotic, and personality disorders. Studies were identified using PubMed and PsycINFO. Studies met the following criteria for inclusion in the analysis: availability in peer-reviewed English journals, use of human subjects, prenatal exposure to famine, and psychopathology in adulthood defined by diagnostic criteria as an outcome. Fixed effect relative risks (RRs) were calculated for affective, psychotic, and personality domains. Furthermore, timing of exposure was assessed as an effect modifier in our analysis, defined by the index trimester at the height of famine. Our meta-analysis found that adults exposed in utero during the 1st trimester were at a significant increased risk of psychotic disorders (RR=1.46, 95% CI=1.08, 1.97, p=0.014), and personality disorders (RR=2.31, 95% CI=1.36, 3.92, p=0.002). Those exposed during the 2nd trimester were at a significant increased risk of affective disorders (RR=1.45, 95% CI=1.22, 1.72, p<0.0001), and psychotic disorders (RR=1.46, 95% CI=1.13, 1.89, p=0.004). Similarly, those exposed in the 3rd trimester were at a significant increased risk of affective disorders (RR=1.33, 95% CI=1.13, 1.57, p=0.0001), and psychotic disorders RR=1.47, 95% CI=1.10, 1.97, p=0.010). Our findings suggest that there is differential risk across the different domains of psychopathology by trimester of exposures. This meta-analysis underscores the need for further investigation into the mechanisms underlying prenatal maternal nutrition and offspring psychopathology where magnitude of elevated risk differs by the exposure timing during pregnancy.
Collapse
Affiliation(s)
- K. Dana
- Queens College, CUNY, Psychology, New York, NY, USA
- The Graduate Center, CUNY, New York, NY, USA
| | - J. Finik
- Queens College, CUNY, Psychology, New York, NY, USA
- Graduate School of Public Health and Health Policy, CUNY, Epidemiology & Biostatistics, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, Psychiatry, New York, NY, USA
- Memorial Sloan-Kettering Cancer Center, Department of Psychiatry and Behavioral Sciences, New York, NY, USA
| | - S. Koenig
- The Graduate Center, CUNY, New York, NY, USA
| | - J. Motter
- Queens College, CUNY, Psychology, New York, NY, USA
- The Graduate Center, CUNY, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - W. Zhang
- Queens College, CUNY, Psychology, New York, NY, USA
| | - M. Linaris
- Queens College, CUNY, Psychology, New York, NY, USA
- Macaulay Honors College at Queens College, CUNY, New York, NY, USA
| | - J. C. Brumberg
- Queens College, CUNY, Psychology, New York, NY, USA
- The Graduate Center, CUNY, New York, NY, USA
| | - Y. Nomura
- Queens College, CUNY, Psychology, New York, NY, USA
- The Graduate Center, CUNY, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, Psychiatry, New York, NY, USA
- Corresponding Author: Dr. Yoko Nomura, Queens College, CUNY, Department of Psychology, 65-30 Kissena Blvd, Flushing, NY 11367, USA, Tel: 718-7973164;
| |
Collapse
|
11
|
Vieira S, Moran E. Effects of egg of origin and chick post-hatch nutrition on broiler live performance and meat yields. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps19990009] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- S.L. Vieira
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 7712, C.P. 776, Porto Alegre 91501–970, Brazil
| | - E.T. Moran
- Department of Poultry Science, Auburn University, Auburn, Alabama 36849–5416, USA
| |
Collapse
|
12
|
Affiliation(s)
- F.J.G. Schreurs
- Institute for Animal Science and Health, P O Box 65, 8200 AB Lelystad, The Netherlands
| |
Collapse
|
13
|
Lin CY, Friars GW, Moran ET. Genetic and Environmental Aspects of Obesity in Broilers. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps19800005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- C. Y. Lin
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada, N1G 2WI
| | - G. W. Friars
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada, N1G 2WI
| | - E. T. Moran
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada, N1G 2WI
| |
Collapse
|
14
|
Affiliation(s)
- A.K. Zubair
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - S. Leeson
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
15
|
Mortola JP. Prenatal catch-up growth: A study in avian embryos. Mech Dev 2019; 156:32-40. [PMID: 30936002 DOI: 10.1016/j.mod.2019.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/09/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
Whether the growth of embryos after a period of stunt becomes accelerated (Catch-Up Growth, CUGr), as it occurs postnatally, has rarely been examined experimentally in any class of animals. Here, hypoxia or cold of different degrees and durations caused growth retardation in chicken embryos during the first or second week of incubation. On average, on the day of removal of the growth-inhibition, the weight of the experimental groups was 73% (wet) and 61% (dry) of control embryos, while near end-incubation (embryonic day E18) their weight averaged significantly more, respectively, 80% and 84% of controls (P < 0.001). When compared as function of developmental time, the post-intervention growth of experimental embryos was faster than that of controls. The faster growth was fully accounted for by their smaller weight at end-intervention, because embryonic growth is higher the smaller the weight. Hence, their growth was appropriate for their weight, rather than for their age. In fact, out of eight different models of growth based on age and weight (wet or dry) in various combination, the model based on embryonic wet weight at end-intervention, and weight alone, was the best predictor of the embryo's post-intervention growth. The oxygen consumption of the experimental embryos during CUGr was appropriate for their weight. In conclusion, in this experimental model of CUGr, the embryo's weight at the end of a stunt could fully predict and explain the rate of growth during the post-intervention recovery period.
Collapse
Affiliation(s)
- Jacopo P Mortola
- Dept. Physiology, McGill Univ., room 1121, 3655 Sir William Osler promenade, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
16
|
Abstract
Fluoride, one of the most celebrated ingredients for the prevention of dental caries in the 20th century, has also been controversial for its use in dentifrices and other applications. In the current review, we have concentrated primarily on early-life exposure to fluoride and how it may affect the various organs. The most recent controversial aspects of fluoride are related to toxicity of the developing brain and how it may possibly result in the decrease of intelligence quotient (IQ), autism, and calcification of the pineal gland. In addition, it has been reported to have possible effects on bone and thyroid glands. If nutritional stress is applied during a critical period of growth and development, the organ(s) and/or body will never recover once they pass through the critical period. For example, if animals are force-fed during experiments, they will simply get fat but never reach the normal size. Although early-life fluoride exposure causing fluorosis is well reported in the literature, the dental profession considers it primarily as an esthetic rather than a serious systemic problem. In the current review, we wanted to raise the possibility of future disease as a result of early-life exposure to fluoride. It is not currently known how fluoride will become a cause of future disease. Studies of other nutritional factors have shown that the effects of early nutritional stress are a cause of disease in later life.
Collapse
|
17
|
OLIVEIRA ECD, SANTOS RCD, BECKER LK, COELHO DB, PEDROSA ML, SILVA ME. Physical exercise improves body weight gain and liver function in malnourished rats without disturbing the redox balance. REV NUTR 2018. [DOI: 10.1590/1678-98652018000500002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ABSTRACT Objective To study the relationship between exercise and malnourishment because recent evidence suggests that exercise can cause the beneficial adaptation of antioxidant systems, whereas malnourishment can cause harmful adaptation of these systems. Methods Thirty-two female Fischer rats were equally divided into Sedentary Control, Trained Control, Sedentary Malnourished and Trained Malnourished groups. The training protocol consisted of swimming for 30 minutes continuously for 5 days/week for 8 weeks. Results It was demonstrated that aspartate aminotransferase and alanine aminotransferase activities increased in malnourished rats, but physical training reversed these effects by lowering the raised levels. The glutathione level was diminished by malnourishment whereas physical training increased the levels of liver carbonyl protein and increased the levels of thiobarbituric acid reactive substances that were diminished by malnourishment. In addition, Trained Malnourished rats had a higher average body weight than Sedentary Malnourished ones (62.77g vs. 55.08g, respectively). Conclusion The data show that exercise was able to reverse or reduce damage caused by malnourishment, such as weight loss and liver dysfunction by a pathway independent of the participation of enzymes involved in antioxidant defense and that there is no interaction between exercise and malnutrition.
Collapse
|
18
|
Nichols BL. 90th Anniversary Commentary: Malnutrition Affects Cellular Growth and Competency; Propositions by Myron Winick. J Nutr 2018; 148:1650-1651. [PMID: 30281111 DOI: 10.1093/jn/nxy137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/14/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Buford L Nichols
- Professor Emeritus, Department of Pediatrics and Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
| |
Collapse
|
19
|
Hosseini M, Beheshti F, Sohrabi F, Vafaee F, Shafei MN, Reza Sadeghnia H. Feeding Vitamin C during Neonatal and Juvenile Growth Improves Learning and Memory of Rats. J Diet Suppl 2018; 15:715-727. [PMID: 29172882 DOI: 10.1080/19390211.2017.1386749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We investigated the effects of feeding vitamin C (Vit C) during neonatal and juvenile growth on learning and memory of rats. Rats after delivery were randomly divided into four groups and treated. Group 1, control group, received normal drinking water. Groups 2-4 received Vit C 10, 100, and 500 mg/kg, respectively, from the first day. After 8 weeks, 10 male offspring of each group were randomly selected and tested in the Morris water maze (MWM) and passive avoidance (PA) tests. Finally, the brains were removed for biochemical measurement. In MWM, 10-500 mg/kg Vit C reduced the latency and traveled distance and increased time spent in the target quadrant. In PA, 10 and 100 mg/kg of Vit C increased the latency; 10-500 mg/kg of Vit C decreased the malondialdehyde (MDA) in the brain tissues and increased thiol and catalase (CAT) activity compared to the control group. We showed that feeding rats Vit C during neonatal and juvenile growth has positive effects on learning and memory.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- a Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center , Mashhad University of Medical Sciences , Mashhad , Iran.,b Neurogenic Inflammation Research Center , Mashhad University of Medical Sciences , Iran
| | - Farimah Beheshti
- a Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Farzaneh Sohrabi
- a Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Farzaneh Vafaee
- b Neurogenic Inflammation Research Center , Mashhad University of Medical Sciences , Iran
| | - Mohammad Naser Shafei
- b Neurogenic Inflammation Research Center , Mashhad University of Medical Sciences , Iran
| | - Hamid Reza Sadeghnia
- c Pharmacological Research Center of Medicinal Plants , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
20
|
Christoforidou Z, Burt R, Mulder I, Gill BP, Pluske J, Kelly D, Stokes CR, Bailey M, Lewis MC. Development of Immune Cells in the Intestinal Mucosa Can Be Affected by Intensive and Extensive Farm Environments, and Antibiotic Use. Front Immunol 2018; 9:1061. [PMID: 29868021 PMCID: PMC5964130 DOI: 10.3389/fimmu.2018.01061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/27/2018] [Indexed: 12/30/2022] Open
Abstract
Epidemiological studies have demonstrated that exposure to farm environments during childhood can be linked to reductions in the incidence of immune disorders, but generating an appropriate model is difficult. 108 half-sibling piglets were born on either extensive (outdoor) or intensive (indoor) farms: at 1 day old, a subset of piglets from each litter were transferred to a high-hygiene isolator facility to create differences in rearing environment either during birth/first day or during the subsequent 56 days of life. Interactions between CD14, CD16, MHCIIDR, and capillary endothelium were assessed using four-color quantitative fluorescence immunohistology. Effects of birth and rearing environment on the antigen-presenting microenvironment of the proximal and distal jejunum (professional and stromal) were apparent at 5, 28, and 56 days after birth However, effects on CD4+CD25+Foxp3+ regulatory T-cells (Tregs) in the intestinal mucosa were apparent around weaning at 28 days but had disappeared by 56 days. These Tregs were reduced in the isolator piglets compared to their farm-reared siblings, but this effect was less marked in piglets born on the extensive farm and required administration of antibiotics. Our results suggest that there may be at least two windows of opportunity in which different farm environments were influencing immune development: one during the perinatal period (up to the first day of life), and one during later infancy. Furthermore, the differences on Tregs suggest that the effects of early life influences may be particularly critical around weaning.
Collapse
Affiliation(s)
- Zoe Christoforidou
- Infection and Immunity, School of Veterinary Science, University of Bristol, Langford, United Kingdom
| | - Rachel Burt
- Infection and Immunity, School of Veterinary Science, University of Bristol, Langford, United Kingdom
| | - Imke Mulder
- Gut Immunology Group, Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Bhupinder P Gill
- Agricultural and Horticultural Development Board, Milton Keynes, United Kingdom
| | - John Pluske
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Denise Kelly
- Gut Immunology Group, Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Christopher R Stokes
- Infection and Immunity, School of Veterinary Science, University of Bristol, Langford, United Kingdom
| | - Michael Bailey
- Infection and Immunity, School of Veterinary Science, University of Bristol, Langford, United Kingdom
| | - Marie C Lewis
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| |
Collapse
|
21
|
Mandy M, Nyirenda M. Developmental Origins of Health and Disease: the relevance to developing nations. Int Health 2018; 10:66-70. [PMID: 29528398 PMCID: PMC5856182 DOI: 10.1093/inthealth/ihy006] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/22/2018] [Indexed: 12/15/2022] Open
Abstract
Low- and middle-income countries (LMICs), particularly those in sub-Saharan Africa, are experiencing rapid increases in the prevalence of non-communicable diseases (NCDs), which may not be fully explained by urbanization and associated traditional risk factors such as tobacco smoking, excessive alcohol consumption, poor diet or physical inactivity. In this commentary, we draw attention to the concept of Developmental Origins of Health and Disease (DOHaD), where environmental insults in early life can contribute to long-term risk of NCDs, the impact of which would be particularly important in LMICs where poverty, malnutrition, poor sanitation and infections are still prevalent.
Collapse
Affiliation(s)
- Mirembe Mandy
- Medical Research Council/Uganda Virus Research Institute Uganda Research Unit on AIDS, P Box 49, Entebbe, Uganda
| | - Moffat Nyirenda
- Medical Research Council/Uganda Virus Research Institute Uganda Research Unit on AIDS, P Box 49, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
22
|
Lewis MC, Merrifield CA, Berger B, Cloarec O, Duncker S, Mercenier A, Nicholson JK, Holmes E, Bailey M. Early intervention with Bifidobacterium lactis NCC2818 modulates the host-microbe interface independent of the sustained changes induced by the neonatal environment. Sci Rep 2017; 7:5310. [PMID: 28706260 PMCID: PMC5509696 DOI: 10.1038/s41598-017-05689-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/31/2017] [Indexed: 12/26/2022] Open
Abstract
Inflammatory and metabolic diseases can originate during early-life and have been correlated with shifts in intestinal microbial ecology. Here we demonstrate that minor environmental fluctuations during the early neonatal period had sustained effects on the developing porcine microbiota and host-microbe interface. These inter-replicate effects appear to originate during the first day of life, and are likely to reflect very early microbiota acquisition from the environment. We statistically link early systemic inflammation with later local increases in inflammatory cytokine (IL-17) production, which could have important enteric health implications. Immunity, intestinal barrier function, host metabolism and host-microbiota co-metabolism were further modified by Bifidobacterium lactis NCC2818 supplementation, although composition of the in situ microbiota remained unchanged. Finally, our robust model identified novel, strong correlations between urinary metabolites (eg malonate, phenylacetylglycine, alanine) and mucosal immunoglobulin (IgM) and cytokine (IL-10, IL-4) production, thus providing the possibility of the development of urinary ‘dipstick’ tests to assess non-accessible mucosal immune development and identify early precursors (biomarkers) of disease. These results have important implications for infants exposed to neonatal factors including caesarean delivery, antibiotic therapy and delayed discharge from hospital environments, which may predispose to the development of inflammatory and metabolic diseases in later life.
Collapse
Affiliation(s)
- Marie C Lewis
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, RG6 6AP, UK.
| | - Claire A Merrifield
- Biomolecular Medicine, Department of Surgery and Cancer, Imperial College London, SW7 2AZ, London, UK
| | - Bernard Berger
- Nestlé Research Centre, Vers-chez-les-Blanc, 1000, Lausanne 26, Switzerland
| | | | - Swantje Duncker
- Nestlé Research Centre, Vers-chez-les-Blanc, 1000, Lausanne 26, Switzerland
| | - Annick Mercenier
- Nestlé Research Centre, Vers-chez-les-Blanc, 1000, Lausanne 26, Switzerland
| | - Jeremy K Nicholson
- Biomolecular Medicine, Department of Surgery and Cancer, Imperial College London, SW7 2AZ, London, UK
| | - Elaine Holmes
- Biomolecular Medicine, Department of Surgery and Cancer, Imperial College London, SW7 2AZ, London, UK
| | - Mick Bailey
- Infection and Immunity, Department of Clinical Veterinary Science, University of Bristol, Langford House, Langford, North Somerset, BS40 5DU, UK
| |
Collapse
|
23
|
Rhoads RP, Baumgard LH, El-Kadi SW, Zhao LD. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Roles for insulin-supported skeletal muscle growth. J Anim Sci 2017; 94:1791-802. [PMID: 27285676 DOI: 10.2527/jas.2015-0110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Basic principles governing skeletal muscle growth and development, from a cellular point of view, have been realized for several decades. Skeletal muscle is marked by the capacity for rapid hypertrophy and increases in protein content. Ultimately, skeletal muscle growth is controlled by 2 basic means: 1) myonuclear accumulation stemming from satellite cell (myoblast) proliferation and 2) the balance of protein synthesis and degradation. Each process underlies the rapid changes in lean tissue accretion evident during fetal and neonatal growth and is particularly sensitive to nutritional manipulation. Although multiple signals converge to alter skeletal muscle mass, postprandial changes in the anabolic hormone insulin link feed intake with enhanced rates of protein synthesis in the neonate. Indeed, a consequence of insulin-deficient states such as malnutrition is reduced myoblast activity and a net loss of body protein. A well-characterized mechanism mediating the anabolic effect of insulin involves the phosphatidylinositol 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling pathway. Activation of mTOR leads to translation initiation control via the phosphorylation of downstream targets. Modulation of this pathway by insulin, as well as by other hormones and nutrients, accounts for enhanced protein synthesis leading to efficient lean tissue accretion and rapid skeletal muscle gain in the growing animal. Dysfunctional insulin activity during fetal and neonatal stages likely alters growth through cellular and protein synthetic capacities.
Collapse
|
24
|
Lima J, de Oliveira L, Almeida S. Effects of Early Concurrent Protein Malnutrition and Environmental Stimulation on the Central Nervous System and Behavior. Nutr Neurosci 2016; 1:439-48. [DOI: 10.1080/1028415x.1998.11747254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Abstract
The observation that low birth weight is associated with cardiovascular disease and its risk factors has formed the basis for the ‘developmental origins' hypothesis. This hypothesis suggests that the operation of adverse influences during intrauterine life leads to permanent alterations in structure and physiology of the adult phenotype which predispose to a range of common adult diseases. The process is known as developmental plasticity or programming and is strongly supported by studies in experimental animals. Recent evidence suggests that the same processes may affect the development of the immune system and play a part in the pathogenesis of autoimmune disease. Animal studies show that the intrauterine environment has powerful and long-lasting effects on many aspects of immune function. The corresponding human evidence, though preliminary, suggests that birth weight or other markers of the early environment are associated with a range of autoimmune diseases.
Collapse
Affiliation(s)
- D I W Phillips
- MRC Resource Centre, Southampton General Hospital, Southampton, UK.
| |
Collapse
|
26
|
Hales CN, Barker DJP. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. 1992. Int J Epidemiol 2016; 42:1215-22. [PMID: 24159065 DOI: 10.1093/ije/dyt133] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- C N Hales
- Department of Clinical Biochemistry, Addenbrooke's Hospital, Cambridge, UK and MRC Environmental Epidemiology Unit, University of Southampton, Southampton General Hospital, UK
| | | |
Collapse
|
27
|
Keomanivong FE, Camacho LE, Lemley CO, Kuemper EA, Yunusova RD, Borowicz PP, Kirsch JD, Vonnahme KA, Caton JS, Swanson KC. Effects of realimentation after nutrient restriction during mid- to late gestation on pancreatic digestive enzymes, serum insulin and glucose levels, and insulin-containing cell cluster morphology. J Anim Physiol Anim Nutr (Berl) 2016; 101:589-604. [PMID: 27079549 DOI: 10.1111/jpn.12480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/29/2015] [Indexed: 11/29/2022]
Abstract
This study examined effects of stage of gestation and nutrient restriction with subsequent realimentation on maternal and foetal bovine pancreatic function. Dietary treatments were assigned on day 30 of pregnancy and included: control (CON; 100% requirements; n = 18) and restricted (R; 60% requirements; n = 30). On day 85, cows were slaughtered (CON, n = 6; R, n = 6), remained on control (CC; n = 12) and restricted (RR; n = 12), or realimented to control (RC; n = 11). On day 140, cows were slaughtered (CC, n = 6; RR, n = 6; RC, n = 5), remained on control (CCC, n = 6; RCC, n = 5) or realimented to control (RRC, n = 6). On day 254, the remaining cows were slaughtered and serum samples were collected from the maternal jugular vein and umbilical cord to determine insulin and glucose concentrations. Pancreases from cows and foetuses were removed, weighed, and subsampled for enzyme and histological analysis. As gestation progressed, maternal pancreatic α-amylase activity decreased and serum insulin concentrations increased (p ≤ 0.03). Foetal pancreatic trypsin activity increased (p < 0.001) with advancing gestation. Foetal pancreases subjected to realimentation (CCC vs. RCC and RRC) had increased protein and α-amylase activity at day 254 (p ≤ 0.02), while trypsin (U/g protein; p = 0.02) demonstrated the opposite effect. No treatment effects were observed for maternal or foetal pancreatic insulin-containing cell clusters. Foetal serum insulin and glucose levels were reduced with advancing gestation (p ≤ 0.03). The largest maternal insulin-containing cell cluster was not influenced by advancing gestation, while foetal clusters grew throughout (p = 0.01). These effects indicate that maternal digestive enzymes are influenced by nutrient restriction and there is a potential for programming of increased foetal digestive enzyme production resulting from previous maternal nutrient restriction.
Collapse
Affiliation(s)
- F E Keomanivong
- NDSU Animal Sciences Department, North Dakota State University, Fargo, ND, USA
| | - L E Camacho
- NDSU Animal Sciences Department, North Dakota State University, Fargo, ND, USA.,School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - C O Lemley
- NDSU Animal Sciences Department, North Dakota State University, Fargo, ND, USA.,Animal and Dairy Sciences, Mississippi State University, Mailstop, MS, USA
| | - E A Kuemper
- NDSU Animal Sciences Department, North Dakota State University, Fargo, ND, USA
| | - R D Yunusova
- NDSU Animal Sciences Department, North Dakota State University, Fargo, ND, USA
| | - P P Borowicz
- NDSU Animal Sciences Department, North Dakota State University, Fargo, ND, USA
| | - J D Kirsch
- NDSU Animal Sciences Department, North Dakota State University, Fargo, ND, USA
| | - K A Vonnahme
- NDSU Animal Sciences Department, North Dakota State University, Fargo, ND, USA
| | - J S Caton
- NDSU Animal Sciences Department, North Dakota State University, Fargo, ND, USA
| | - K C Swanson
- NDSU Animal Sciences Department, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
28
|
Arnoldussen IA, Zerbi V, Wiesmann M, Noordman RH, Bolijn S, Mutsaers MP, Dederen PJ, Kleemann R, Kooistra T, van Tol EA, Gross G, Schoemaker MH, Heerschap A, Wielinga PY, Kiliaan AJ. Early intake of long-chain polyunsaturated fatty acids preserves brain structure and function in diet-induced obesity. J Nutr Biochem 2016; 30:177-88. [DOI: 10.1016/j.jnutbio.2015.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/13/2015] [Accepted: 12/16/2015] [Indexed: 12/28/2022]
|
29
|
Shabani F, Kumar L, Nojoumian AH, Esmaeili A, Toghyani M. Projected future distribution of date palm and its potential use in alleviating micronutrient deficiency. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1132-40. [PMID: 25847224 DOI: 10.1002/jsfa.7195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 01/08/2015] [Accepted: 03/30/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Micronutrient deficiency develops when nutrient intake does not match nutritional requirements for maintaining healthy tissue and organ functions which may have long-ranging effects on health, learning ability and productivity. Inadequacy of iron, zinc and vitamin A are the most important micronutrient deficiencies. Consumption of a 100 g portion of date flesh from date palm (Phoenix dactylifera L.) has been reported to meet approximately half the daily dietary recommended intake of these micronutrients. This study investigated the potential distribution of P. dactylifera under future climates to address its potential long-term use as a food commodity to tackle micronutrient deficiencies in some developing countries. RESULTS Modelling outputs indicated large shifts in areas conducive to date palm cultivation, based on global-scale alteration over the next 60 years. Most of the regions suffering from micronutrient deficiencies were projected to become highly conducive for date palm cultivation. CONCLUSIONS These results could inform strategic planning by government and agricultural organizations by identifying areas to cultivate this nutritionally important crop in the future to support the alleviation of micronutrient deficiencies.
Collapse
Affiliation(s)
- Farzin Shabani
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Lalit Kumar
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Amir Hadi Nojoumian
- Faculty of the Professions, School of Rural Medicine, University of New England, Armidale, NSW, 2351, Australia
| | - Atefeh Esmaeili
- Soil Science Department, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Mehdi Toghyani
- Department of Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
- Young Researchers and Elite Club, Khorasgan Branch, Islamic Azad University, Isfahan, 81595-158, Iran
| |
Collapse
|
30
|
Neonatal environment exerts a sustained influence on the development of the intestinal microbiota and metabolic phenotype. ISME JOURNAL 2015; 10:145-57. [PMID: 26066712 DOI: 10.1038/ismej.2015.90] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 04/14/2014] [Accepted: 04/24/2015] [Indexed: 12/28/2022]
Abstract
The postnatal environment, including factors such as weaning and acquisition of the gut microbiota, has been causally linked to the development of later immunological diseases such as allergy and autoimmunity, and has also been associated with a predisposition to metabolic disorders. We show that the very early-life environment influences the development of both the gut microbiota and host metabolic phenotype in a porcine model of human infants. Farm piglets were nursed by their mothers for 1 day, before removal to highly controlled, individual isolators where they received formula milk until weaning at 21 days. The experiment was repeated, to create two batches, which differed only in minor environmental fluctuations during the first day. At day 1 after birth, metabolic profiling of serum by (1)H nuclear magnetic resonance spectroscopy demonstrated significant, systemic, inter-batch variation which persisted until weaning. However, the urinary metabolic profiles demonstrated that significant inter-batch effects on 3-hydroxyisovalerate, trimethylamine-N-oxide and mannitol persisted beyond weaning to at least 35 days. Batch effects were linked to significant differences in the composition of colonic microbiota at 35 days, determined by 16 S pyrosequencing. Different weaning diets modulated both the microbiota and metabolic phenotype independently of the persistent batch effects. We demonstrate that the environment during the first day of life influences development of the microbiota and metabolic phenotype and thus should be taken into account when interrogating experimental outcomes. In addition, we suggest that intervention at this early time could provide 'metabolic rescue' for at-risk infants who have undergone aberrant patterns of initial intestinal colonisation.
Collapse
|
31
|
Feeding of Nigella sativa during neonatal and juvenile growth improves learning and memory of rats. J Tradit Complement Med 2015; 6:146-52. [PMID: 27114937 PMCID: PMC4833462 DOI: 10.1016/j.jtcme.2014.11.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/28/2014] [Accepted: 10/28/2014] [Indexed: 01/11/2023] Open
Abstract
The positive roles of antioxidants on brain development and learning and memory have been suggested. Nigella sativa (NS) has been suggested to have antioxidant and neuroprotective effects. This study was done to investigate the effects of feeding by the hydro-alcoholic extract of NS during neonatal and juvenile growth on learning and memory of rats. The pregnant rats were kept in separate cages. After delivery, they were randomly divided into four Groups including: (1) control; (2) NS 100 mg/kg (NS 100); (3) NS 200 mg/kg (NS 200); and (4) NS 400 mg/kg (NS 400). Rats in the control group (Group 1) received normal drinking water, whereas Groups 2, 3, and 4 received the same drinking water supplemented with the hydro-alcoholic extract of NS (100 mg/kg, 200 mg/kg, and 400 mg/kg, respectively) from the 1st day after birth through the first 8 weeks of life. After 8 weeks, 10 male offspring from each group were randomly selected and tested in the Morris water maze (MWM) and passive avoidance (PA) test. Finally, the brains were removed and total thiol groups and malondialdehyde (MDA) concentrations were determined. In the MWM, treatment by 400 mg/kg extract reduced both the time latency and the distance traveled to reach the platform compared to the control group (p < 0.05–p < 0.01). Both 200 mg/kg and 400 mg/kg of the extract increased the time spent in the target quadrant (p < 0.05–p < 0.01). In the PA test, the treatment of the animals by 200 mg/kg and 400 mg/kg of NS extract significantly increased the time latency for entering the dark compartment (p < 0.05–p < 0.001). Pretreatment of the animals with 400 mg/kg of NS extract decreased the MDA concentration in hippocampal tissues whereas it increased the thiol content compared to the control group (p < 0.001). These results allow us to propose that feeding of the rats by the hydro-alcoholic extract of NS during neonatal and juvenile growth has positive effects on learning and memory. The effects might be due to the antioxidant effects.
Collapse
|
32
|
Brooks NE, Myburgh KH. Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways. Front Physiol 2014; 5:99. [PMID: 24672488 PMCID: PMC3955994 DOI: 10.3389/fphys.2014.00099] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/27/2014] [Indexed: 12/25/2022] Open
Abstract
Maintenance of skeletal muscle is essential for health and survival. There are marked losses of skeletal muscle mass as well as strength and physiological function under conditions of low mechanical load, such as space flight, as well as ground based models such as bed rest, immobilization, disuse, and various animal models. Disuse atrophy is caused by mechanical unloading of muscle and this leads to reduced muscle mass without fiber attrition. Skeletal muscle stem cells (satellite cells) and myonuclei are integrally involved in skeletal muscle responses to environmental changes that induce atrophy. Myonuclear domain size is influenced differently in fast and slow twitch muscle, but also by different models of muscle wasting, a factor that is not yet understood. Although the myonuclear domain is 3-dimensional this is rarely considered. Apoptosis as a mechanism for myonuclear loss with atrophy is controversial, whereas cell death of satellite cells has not been considered. Molecular signals such as myostatin/SMAD pathway, MAFbx, and MuRF1 E3 ligases of the ubiquitin proteasome pathway and IGF1-AKT-mTOR pathway are 3 distinctly different contributors to skeletal muscle protein adaptation to disuse. Molecular signaling pathways activated in muscle fibers by disuse are rarely considered within satellite cells themselves despite similar exposure to unloading or low mechanical load. These molecular pathways interact with each other during atrophy and also when various interventions are applied that could alleviate atrophy. Re-applying mechanical load is an obvious method to restore muscle mass, however how nutrient supplementation (e.g., amino acids) may further enhance recovery (or reduce atrophy despite unloading or ageing) is currently of great interest. Satellite cells are particularly responsive to myostatin and to growth factors. Recently, the hibernating squirrel has been identified as an innovative model to study resistance to atrophy.
Collapse
Affiliation(s)
- Naomi E Brooks
- Health and Exercise Science Research Group, School of Sport, University of Stirling Stirling, UK
| | - Kathryn H Myburgh
- Muscle Research Group, Department of Physiological Sciences, Stellenbosch University Stellenbosch, South Africa
| |
Collapse
|
33
|
Early undernutrition and later hippocampal damage: Effects on spontaneous behaviors and reversal learning. ACTA ACUST UNITED AC 2013. [DOI: 10.3758/bf03326806] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Cortés-Barberena E, Ceballos-Olvera I, González-Márquez H, Ortiz-Muñiz R. Moderate and severe malnutrition alters proliferation of spleen cells in rats. Cell Prolif 2013; 46:164-71. [PMID: 23510471 DOI: 10.1111/cpr.12019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/09/2012] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Previous studies have shown alterations in bone marrow cell proliferation in malnourished rats, during lactation. The objective of this study was to determine in vivo effects of moderate and severe malnutrition on spleen cell proliferation in 21-day-old rat pups. MATERIALS AND METHODS Spleen cell proliferation was determined following administration of bromodeoxyuridine (BrdUrd) over a time course of 2, 4, 6 and 8 h. Incorporation of BrdUrd was detected using FITC-conjugated anti-BrdUrd monoclonal antibodies and total DNA content was detected and evaluated using propidium iodide using flow cytometry. RESULTS Proportions of cells in S and G2 /M were reduced in the rats with moderate (MN2(nd) ) and severe (MN3(rd) ) malnutrition. BrdUrd incorporation was lower in both groups of malnourished rat. In cells of MN2nd individuals, length of G1 became shorter, while length of S-phase increased. In contrast, fraction of cells in proliferation was significantly lower in both groups of malnourished rat, with MN3rd group having lowest percentage of cell population growth. In this study, severe malnutrition did not significantly affect duration of phases of the cell cycle, although fractions of proliferating cells were dramatically reduced. CONCLUSION Moderate malnutrition increased time of cells in DNA synthesis and time of total cell cycle and severe malnutrition reduced growth fraction of spleen cells in malnourished rats during lactation.
Collapse
Affiliation(s)
- E Cortés-Barberena
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F, México.
| | | | | | | |
Collapse
|
35
|
Abstract
Strong epidemiological evidence suggests that slow prenatal or postnatal growth is associated with an increased risk of CVD and other metabolic diseases. However, little is known whether early growth affects postprandial metabolism and, especially, the appetite regulatory hormone system. Therefore, we investigated the impact of early growth on postprandial appetite regulatory hormone responses to two high-protein and two high-fat content meals. Healthy, 65–75-year-old volunteers from the Helsinki Birth Cohort Study were recruited; twelve with a slow increase in BMI during the first year of life (SGI group) and twelve controls. Subjects ate a test meal (whey meal, casein meal, SFA meal and PUFA meal) once in a random order. Plasma glucose, insulin, TAG, NEFA, ghrelin, peptide tyrosine-tyrosine (PYY), glucose-dependent insulinotropic peptide, glucagon-like peptide-1 and a satiety profile were measured in the fasting state and for 4 h after each test meal. Compared with the controls, the SGI group had about 1·5-fold higher insulin responses after the whey meal (P= 0·037), casein meal (P= 0·023) and PUFA meal (P= 0·002). TAG responses were 34–69 % higher for the SGI group, but only the PUFA-meal responses differed significantly between the groups. The PYY response of the SGI group was 44 % higher after the whey meal (P= 0·046) and 115 % higher after the casein meal (P= 0·025) compared with the controls. No other statistically significant differences were seen between the groups. In conclusion, early growth may have a role in programming appetite regulatory hormone secretion in later life. Slow early growth is also associated with higher postprandial insulin and TAG responses but not with incretin levels.
Collapse
|
36
|
Monk C, Georgieff MK, Osterholm EA. Research review: maternal prenatal distress and poor nutrition - mutually influencing risk factors affecting infant neurocognitive development. J Child Psychol Psychiatry 2013; 54:115-30. [PMID: 23039359 PMCID: PMC3547137 DOI: 10.1111/jcpp.12000] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Accumulating data from animal and human studies indicate that the prenatal environment plays a significant role in shaping children's neurocognitive development. Clinical, epidemiologic, and basic science research suggests that two experiences relatively common in pregnancy - an unhealthy maternal diet and psychosocial distress - significantly affect children's future neurodevelopment. These prenatal experiences exert their influence in the context of one another and yet, almost uniformly, are studied independently. SCOPE AND METHOD OF REVIEW In this review, we suggest that studying neurocognitive development in children in relation to both prenatal exposures is ecologically most relevant, and methodologically most sound. To support this approach, we selectively review two research topics that demonstrate the need for dual exposure studies, including exemplar findings on (a) the associations between pregnant women's inadequate maternal intake of key nutrients - protein, fat, iron, zinc, and choline - as well as distress in relation to overlapping effects on children's neurocognitive development; and (b) cross-talk between the biology of stress and nutrition that can amplify each experience for the mother and fetus,. We also consider obstacles to this kind of study design, such as questions of statistical methods for 'disentangling' the exposure effects, and aim to provide some answers. CONCLUSION Studies that specifically include both exposures in their design can begin to determine the relative and/or synergistic impact of these prenatal experiences on developmental trajectories - and thereby contribute most fully to the understanding of the early origins of health and disease.
Collapse
Affiliation(s)
- Catherine Monk
- Psychiatry and Obstetrics & Gynecology, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
37
|
Perälä MM, Eriksson JG. Early growth and postprandial glucose, insulin, lipid and inflammatory responses in adulthood. Curr Opin Lipidol 2012; 23:327-33. [PMID: 22617752 DOI: 10.1097/mol.0b013e3283541da6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Epidemiological findings suggest that prenatal and postnatal growth is associated with later health outcomes including cardiovascular disease and type 2 diabetes. It has been suggested that these associations are mediated through classical risk factors, for example dyslipidemia. Despite extensive epidemiological investigations, only limited data are available on the long-term influences of early growth on postprandial responses, although postprandial levels of many risk factors have been proposed to be more important than fasting levels in disease process. This review focuses on recent studies evaluating the effect of early growth on postprandial responses. RECENT FINDINGS Current evidence from postprandial studies shows that individuals who were small at birth or grew slowly during infancy have elevated postprandial insulin and triglyceride responses. However, early growth does not seem to affect postprandial inflammatory markers. It is likely that both liver programming and abnormalities in insulin-sensitive tissues play key roles in explaining these elevated responses. SUMMARY Recent studies suggest that slow growth during early life has an adverse effect on postprandial metabolism, and predicts higher insulin and triglyceride responses. These elevated postprandial responses might be one underlying mechanism explaining the increased risk of cardiovascular disease and type 2 diabetes associated with nonoptimal early growth.
Collapse
Affiliation(s)
- Mia-Maria Perälä
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, University of Helsinki, Helsinki University Central Hospital, Unit of General Practice, Vaasa, Finland.
| | | |
Collapse
|
38
|
Alexander LS, Seabolt BS, Rhoads RP, Stahl CH. Neonatal phosphate nutrition alters in vivo and in vitro satellite cell activity in pigs. Nutrients 2012; 4:436-48. [PMID: 22822445 PMCID: PMC3397345 DOI: 10.3390/nu4060436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 12/02/2022] Open
Abstract
Satellite cell activity is necessary for postnatal skeletal muscle growth. Severe phosphate (PO4) deficiency can alter satellite cell activity, however the role of neonatal PO4 nutrition on satellite cell biology remains obscure. Twenty-one piglets (1 day of age, 1.8 ± 0.2 kg BW) were pair-fed liquid diets that were either PO4 adequate (0.9% total P), supra-adequate (1.2% total P) in PO4 requirement or deficient (0.7% total P) in PO4 content for 12 days. Body weight was recorded daily and blood samples collected every 6 days. At day 12, pigs were orally dosed with BrdU and 12 h later, satellite cells were isolated. Satellite cells were also cultured in vitro for 7 days to determine if PO4 nutrition alters their ability to proceed through their myogenic lineage. Dietary PO4 deficiency resulted in reduced (P < 0.05) sera PO4 and parathyroid hormone (PTH) concentrations, while supra-adequate dietary PO4 improved (P < 0.05) feed conversion efficiency as compared to the PO4 adequate group. In vivo satellite cell proliferation was reduced (P < 0.05) among the PO4 deficient pigs, and these cells had altered in vitro expression of markers of myogenic progression. Further work to better understand early nutritional programming of satellite cells and the potential benefits of emphasizing early PO4 nutrition for future lean growth potential is warranted.
Collapse
Affiliation(s)
- Lindsey S. Alexander
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (L.S.A.); (B.S.S.)
| | - Brynn S. Seabolt
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (L.S.A.); (B.S.S.)
| | - Robert P. Rhoads
- Department of Animal & Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Chad H. Stahl
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (L.S.A.); (B.S.S.)
- Author to whom correspondence should be addressed; ; Tel.: +1-919-513-1512; Fax: +1-919-515-6884
| |
Collapse
|
39
|
Proos L, Gustafsson J. Is early puberty triggered by catch-up growth following undernutrition? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:1791-809. [PMID: 22754473 PMCID: PMC3386588 DOI: 10.3390/ijerph9051791] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/19/2012] [Accepted: 04/30/2012] [Indexed: 12/25/2022]
Abstract
Undernutrition during fetal and postnatal life is still a major problem in many low- and middle-income countries. Even in high-income countries malnutrition may exist in cases of intrauterine growth retardation, as well as in chronic conditions such as anorexia nervosa and inflammatory bowel disease. Children adopted from developing countries are often chronically malnourished. Nutritional rehabilitation, resulting in catch-up growth, is often complicated by influences originating in fetal life as well as during postnatal growth. This may result in hormonal and metabolic changes as well as alterations in pubertal development. The present review focuses on fetal, postnatal and fetal-postnatal undernutrition and subsequent catch-up growth as well as catch-up growth in relation to pubertal development. Catch-up growth in children can be associated with early puberty following fetal or combined fetal-postnatal undernutrition. However, early puberty does not seem to occur following catch-up growth after isolated postnatal undernutrition. Gonadotropins have been reported to be elevated in prepubertal adopted girls as well as during catch-up growth in animals. Even if other factors may contribute, linear catch-up growth seems to be associated with the timing of pubertal development. The mechanisms behind this are still unknown. Future research may elucidate how to carry out nutritional rehabilitation without risk for early pubertal development.
Collapse
Affiliation(s)
- Lemm Proos
- Department of Women's and Children's Health, Uppsala University, SE-751 85 Uppsala, Sweden.
| | | |
Collapse
|
40
|
Rehan VK, Sakurai R, Li Y, Karadag A, Corral J, Bellusci S, Xue YY, Belperio J, Torday JS. Effects of maternal food restriction on offspring lung extracellular matrix deposition and long term pulmonary function in an experimental rat model. Pediatr Pulmonol 2012; 47:162-71. [PMID: 22058072 PMCID: PMC3258334 DOI: 10.1002/ppul.21532] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/17/2011] [Indexed: 12/26/2022]
Abstract
Intrauterine growth restriction (IUGR) increases the risk of respiratory compromise throughout postnatal life. However, the molecular mechanism(s) underlying the respiratory compromise in offspring following IUGR is not known. We hypothesized that IUGR following maternal food restriction (MFR) would affect extracellular matrix deposition in the lung, explaining the long-term impairment in pulmonary function in the IUGR offspring. Using a well-established rat model of MFR during gestation to produce IUGR pups, we found that at postnatal day 21, and at 9 months (9M) of age the expression and abundance of elastin and alpha smooth muscle actin (αSMA), two key extracellular matrix proteins, were increased in IUGR lungs when compared to controls (P < 0.05, n = 6), as determined by both Western and immunohistochemistry analyses. Compared to controls, the MFR group showed no significant change in pulmonary resistance at baseline, but did have significantly decreased pulmonary compliance at 9M (P < 0.05 vs. control, n = 5). In addition, MFR lungs exhibited increased responsiveness to methacholine challenge. Furthermore, exposing cultured fetal rat lung fibroblasts to serum deprivation increased the expression of elastin and elastin-related genes, which was blocked by serum albumin supplementation, suggesting protein deficiency as the predominant mechanism for increased pulmonary elastin deposition in IUGR lungs. We conclude that accompanying the changes in lung function, consistent with bronchial hyperresponsiveness, expression of the key alveolar extracellular matrix proteins elastin and αSMA increased in the IUGR lung, thus providing a potential explanation for the compromised lung function in IUGR offspring.
Collapse
Affiliation(s)
- Virender K Rehan
- Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA, David Geffen School of Medicine at UCLA, Torrance, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vallejo D, Hidalgo MA. Growth variations in OF1 mice following chronic exposure of parental and filial generations to a 15 μT, 50 Hz magnetic field. Electromagn Biol Med 2012; 31:19-33. [PMID: 22240077 DOI: 10.3109/15368378.2011.620203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The growth of a first filial generation (F1) of OF1 mice was studied following chronic exposure of their mothers and themselves to a magnetic field of 15 μT (rms) and 50 Hz. The parental generation (F0) remained for 98 days in this field, after that time they were mated, went through pregnancy, birth, lactation, and the weaning of their offspring in this field. The latter remained exposed to this field until reaching adulthood (220 days). Control animals were treated in the same way but were exposed only to the Earth's magnetic field. The growth data for the offspring were analyzed using a generalization of Koop's equation. Using this model, four phases were identified: lactation growth acceleration, post-weaning growth acceleration, growth stabilization, and a stationary phase. Exposure to the artificial magnetic field was associated with a marked increase in maximum growth rate in the exposed animals during the post-weaning growth acceleration phase, and with a reduction in mass gain in the F1 mice (especially in males) during the third of these phases. In addition, the growth stabilization phase was more extended in exposed females and shorter in exposed males than in the control animals. Furthermore, statistically significant differences were seen between the mean body masses of exposed and control F1 males from 49-123 days. Exposure to the artificial magnetic field might have been associated with the stimulated growth rate seen over the noticeably shortened second and third growth phases (leaving these animals lighter by the stationary phase compared to controls) and a possible acceleration of aging. Both processes could be responsible for the stationary phase being reached at an earlier age, especially in males.
Collapse
Affiliation(s)
- D Vallejo
- Departament of Physiology, University of Alcalá, Alcalá de Henares, Madrid, Spain.
| | | |
Collapse
|
42
|
Jimenez AG, Kinsey ST. Nuclear DNA content variation associated with muscle fiber hypertrophic growth in fishes. J Comp Physiol B 2011; 182:531-40. [DOI: 10.1007/s00360-011-0635-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 11/28/2022]
|
43
|
Perälä MM, Valsta LM, Kajantie E, Leiviskä J, Eriksson JG. Impact of early growth on postprandial responses in later life. PLoS One 2011; 6:e24070. [PMID: 21904606 PMCID: PMC3164134 DOI: 10.1371/journal.pone.0024070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/29/2011] [Indexed: 12/15/2022] Open
Abstract
Background Low birth weight and slow growth during infancy are associated with increased rates of chronic diseases in adulthood. Associations with risk factors such as fasting glucose and lipids concentrations are weaker than expected based on associations with disease. This could be explained by differences in postprandial responses, which, however, have been little studied. Our aim was to examine the impact of growth during infancy on postprandial responses to a fast-food meal (FF-meal) and a meal, which followed the macro-nutrient composition of the dietary guidelines (REC-meal). Methodology/Principal Findings We recruited 24 overweight 65–75 year-old subjects, 12 with slow growth during infancy (SGI-group) and 12 with normal early growth. All the subjects were born at term. The study meals were isocaloric and both meals were consumed once. Plasma glucose, insulin, triglycerides (TG) and free fatty acids (FFA) were measured in fasting state and over a 4-h period after both meals. Subjects who grew slowly during infancy were also smaller at birth. Fasting glucose, insulin or lipid concentrations did not differ significantly between the groups. The TG responses were higher for the SGI-group both during the FF-meal (P = 0.047) and the REC-meal (P = 0.058). The insulin responses were significantly higher for the SGI-group after the FF-meal (P = 0.036). Glucose and FFA responses did not differ significantly between the groups. Conclusions Small birth size and slow early growth predict postprandial TG and insulin responses. Elevated responses might be one explanation why subjects who were small at birth and experiencing slow growth in infancy are at an increased risk of developing cardiovascular diseases in later life.
Collapse
Affiliation(s)
- Mia-Maria Perälä
- Department of Chronic Disease Prevention, The National Institute for Health and Welfare, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
44
|
Fraga MC, Moura EG, Silva JO, Bonomo IT, Filgueiras CC, Abreu-Villaça Y, Passos MCF, Lisboa PC, Manhães AC. Maternal prolactin inhibition at the end of lactation affects learning/memory and anxiety-like behaviors but not novelty-seeking in adult rat progeny. Pharmacol Biochem Behav 2011; 100:165-73. [PMID: 21777608 DOI: 10.1016/j.pbb.2011.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 12/13/2022]
Abstract
Maternal hypoprolactinemia at the end of lactation in rats reduces milk production and is associated with offspring's malnutrition. Since malnutrition during development is also known to have long lasting effects on cognition and emotion, in the present study we tested the hypothesis that maternal hypoprolactinemia, induced by bromocriptine treatment, at the end of the lactating period affects memory/learning, novelty-seeking and anxiety-like behaviors in adult male Wistar rats using, respectively, the radial arm water maze (RAWM), the hole board (HB) arena and the elevated plus-maze (EPM). We also analyzed serum corticosterone and thyroid hormone levels at postnatal day (PN) 21. Lactating dams were treated with bromocriptine (BRO, 1mg twice a day, inhibiting prolactin) or saline from PN19 to 21 (the last 3 days of lactation). BRO offspring had hypercorticosteronemia and hypothyroidism at PN21. In the RAWM, reductions in latency observed in CON rats were initially more accentuated than in BRO ones. By the end of the testing period, latencies became similar between groups. No difference was observed between groups regarding the number of nose-pokes in the HB. In the EPM, BRO rats stayed less time in and had fewer entries into the open-arms than CON ones. This pattern of results indicates that maternal bromocriptine treatment at the end of the lactating period results in poorer memory/learning performance and in higher levels of anxiety-like behavior in the adult offspring, demonstrating that even a relatively short period of malnutrition during development can have long lasting detrimental effects regarding cognition and emotion.
Collapse
Affiliation(s)
- Mabel C Fraga
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Recent studies have begun to provide insight into a long-standing mystery in biology-why body growth in animals is rapid in early life but then progressively slows, thus imposing a limit on adult body size. This growth deceleration in mammals is caused by potent suppression of cell proliferation in multiple tissues and is driven primarily by local, rather than systemic, mechanisms. Recent evidence suggests that this progressive decline in proliferation results from a genetic program that occurs in multiple organs and involves the down-regulation of a large set of growth-promoting genes. This program does not appear to be driven simply by time, but rather depends on growth itself, suggesting that the limit on adult body size is imposed by a negative feedback loop. Different organs appear to use different types of information to precisely target their adult size. For example, skeletal and cardiac muscle growth are negatively regulated by myostatin, the concentration of which depends on muscle mass itself. Liver growth appears to be modulated by bile acid flux, a parameter that reflects organ function. In pancreas, organ size appears to be limited by the initial number of progenitor cells, suggesting a mechanism based on cell-cycle counting. Further elucidation of the fundamental mechanisms suppressing juvenile growth is likely to yield important insights into the pathophysiology of childhood growth disorders and of the unrestrained growth of cancer. In addition, improved understanding of these growth-suppressing mechanisms may someday allow their therapeutic suspension in adult tissues to facilitate tissue regeneration.
Collapse
Affiliation(s)
- Julian C Lui
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
46
|
Burdge GC, Lillycrop KA. Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu Rev Nutr 2010; 30:315-39. [PMID: 20415585 DOI: 10.1146/annurev.nutr.012809.104751] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is considerable evidence for induction of differential risk of noncommunicable diseases in humans by variation in the quality of the early life environment. Studies in animal models show that induction and stability of induced changes in the phenotype of the offspring involve altered epigenetic regulation by DNA methylation and covalent modifications of histones. These findings indicate that such epigenetic changes are highly gene specific and function at the level of individual CpG dinucleotides. Interventions using supplementation with folic acid or methyl donors during pregnancy, or folic acid after weaning, alter the phenotype and epigenotype induced by maternal dietary constraint during gestation. This suggests a possible means for reducing risk of induced noncommunicable disease, although the design and conduct of such interventions may require caution. The purpose of this review is to discuss recent advances in understanding the mechanism that underlies the early life origins of disease and to place these studies in a broader life-course context.
Collapse
Affiliation(s)
- Graham C Burdge
- Institute of Human Nutrition, University of Southampton School of Medicine, Southampton, SO16 6YD, United Kingdom.
| | | |
Collapse
|
47
|
The effects of birth weight and level of feeding in early life on growth and development of muscle and adipose tissue in the young pig. ACTA ACUST UNITED AC 2010. [DOI: 10.1017/s0003356100027343] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ABSTRACTForty-two piglets were used to study the effects of heavy and light birth weight, and of four levels of feeding, ranging from 37 to 91 g dry matter per kg M0 75 per day, on growth between 5 days of age and 6·5kg live weight, and on body composition, and the cellularity of muscle and subcutaneous adipose tissue, at the latter weight. The effects of birth weight and level of feeding to 6·5 kg on performance between 6·5 and 11 -5 kg, and on body composition at 11·5 kg, were also investigated.Light birth weight piglets grew more slowly to 6·5 kg than those of heavy birth weight (P < 0·05). However, birth weight had no effect on food conversion efficiency or on body composition.Each increment in feeding level resulted in increases in growth rate (P < 0·01), body fat content (P < 0·01) and average fat-cell diameter (P < 0·01) at 6·5 kg, but in decreases in body protein and water (P < 0·01).The weight of the m. semitendinosus at 6·5 kg was unaffected by either birth weight or level of feeding. However, the deoxyribonucleic acid content of the muscle at both 6·5 and 11·5 kg was less in light birth weight piglets fed at the lowest level prior to 6·5 kg (P < 0·05). These piglets also exhibited poorer growth performance subsequent to 6·5 kg than their heavier birth weight counterparts.Nevertheless, piglets of both light and heavy birth weight, fed at the lowest level to 6·5 kg, grew faster and more effficiently between 6·5 and 11·5kg (P < 0·05), and were leaner at 11·5kg than those previously fed at the highest level (P < 0·01). Average fat-cell diameter at 11·5kg was also less in pigs fed at the lowest level prior to 6·5kg (P < 0·01). Total deoxyribonucleic acid in subcutaneous adipose tissue at 11·5kg was unaffected by either birth weight or level of feeding prior to 6·5 kg.
Collapse
|
48
|
Cornejo S, Pokniak J, González E, Donoso E, Robinson DW. Cambios en las concentraciones de DNA, RNA y proteína en hígado y músculos de polios broiler durante su vida productive normal. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1439-0442.1980.tb01874.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Erickson K, Kritz-Silverstein D, Wingard DL, Barrett-Connor E. Birth weight and cognitive performance in older women: the Rancho Bernardo study. Arch Womens Ment Health 2010; 13:141-6. [PMID: 19711148 PMCID: PMC2841284 DOI: 10.1007/s00737-009-0102-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 08/07/2009] [Indexed: 11/07/2022]
Abstract
Low birth weight is associated with poorer cognitive function from infancy through early adulthood, but little is known about low birth weight and cognitive performance in the elderly. This study examines the association of birth weight with cognitive function in community-dwelling older women. Participants were 292 community-dwelling women aged 55-89 (median = 71 years) who attended a 1988-91 clinic visit when cognitive function was assessed, and responded to a 1991 mailed questionnaire assessing birth weight. All analyses were adjusted for age and education. Birth weight ranged from 2 to 12 pounds (lbs; mean = 7.4 +/- 1.9). When birth weight was categorized into tertiles (2-6.9 lbs, 7-8 lbs, and 8.1-12.4 lbs), women in the lowest tertile had significantly lower ("poorer") scores on Serial 7's, a test of concentration and calculation (p < 0.05). Other birth weight categorizations (lowest quartile or quintile, or birth weight <5.5 lbs vs. 5.6-8.9 lbs and >or=9 lbs) did not improve the prediction of poor performance on Serial 7's. Birth weight as a continuous variable was significantly and positively associated with Serial 7's test scores (p = 0.04). Results suggest that small decrements in cognitive function tasks involving calculation may persist throughout life in women who were of relatively low birth weight. Although this association could be spurious, it deserves further evaluation.
Collapse
Affiliation(s)
- Kirsten Erickson
- Department of Family & Preventive Medicine, University of California, San Diego, San Diego, CA USA
| | - Donna Kritz-Silverstein
- Department of Family & Preventive Medicine, University of California, San Diego, San Diego, CA USA
| | - Deborah L. Wingard
- Department of Family & Preventive Medicine, University of California, San Diego, San Diego, CA USA
| | - Elizabeth Barrett-Connor
- Department of Family & Preventive Medicine, University of California, San Diego, San Diego, CA USA
| |
Collapse
|
50
|
Jimenez AG, Kinsey ST, Dillaman RM, Kapraun DF. Nuclear DNA content variation associated with muscle fiber hypertrophic growth in decapod crustaceans. Genome 2010; 53:161-71. [DOI: 10.1139/g09-095] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We tested the hypothesis that hypertrophic muscle growth in decapod crustaceans is associated with increases in both the number of nuclei per fiber and nuclear DNA content. The DNA-localizing fluorochrome DAPI (4′,6-diamidino-2-phenylindole) and chicken erythrocyte standards were used with static microspectrophotometry and image analysis to estimate nuclear DNA content in hemocytes and muscle fibers from eight decapod crustacean species: Farfantepenaeus aztecus , Palaemonetes pugio , Panulirus argus , Homarus americanus , Procambarus clarkii , Cambarus bartonii , Callinectes sapidus , and Menippe mercenaria . Mean diploid (2C) values in hemocytes ranged from 3.6 to 11.7 pg. Hemocyte 2C estimates were used to extrapolate ploidy level in the multinucleated skeletal muscle tissue of juvenile and adult animals. Across all species, mean muscle fiber diameters from adult animals were significantly larger than those in juveniles, and nuclear domains were greater in larger fibers. The number of nuclei per fiber increased with increasing fiber size, as hypothesized. Maximum nuclear DNA content per species in muscle ranged from 4C to 32C, consistent with endopolyploidy. Two patterns of body- and fiber-size-dependent shifts in ploidy were observed: four species had a significantly higher ploidy in the larger fibers of adults, while three species exhibited a significantly lower ploidy in adults than in juveniles. Thus, across species, there was no systematic relationship between nuclear domain size and nuclear DNA content.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403, USA
| | - Stephen T. Kinsey
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403, USA
| | - Richard M. Dillaman
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403, USA
| | - Donald F. Kapraun
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403, USA
| |
Collapse
|