1
|
Ashique S, Mukherjee T, Mohanty S, Garg A, Mishra N, Kaushik M, Bhowmick M, Chattaraj B, Mohanto S, Srivastava S, Taghizadeh-Hesary F. Blueberries in focus: Exploring the phytochemical potentials and therapeutic applications. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 18:101300. [DOI: 10.1016/j.jafr.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
|
2
|
Klingbeil EA, Schade R, Lee SH, Kirkland R, de La Serre CB. Manipulation of feeding patterns in high fat diet fed rats improves microbiota composition dynamics, inflammation and gut-brain signaling. Physiol Behav 2024; 285:114643. [PMID: 39059597 DOI: 10.1016/j.physbeh.2024.114643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/29/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Chronic consumption of high fat (HF) diets has been shown to increase meal size and meal frequency in rodents, resulting in overeating. Reducing meal frequency and establishing periods of fasting, independently of caloric intake, may improve obesity-associated metabolic disorders. Additionally, diet-driven changes in microbiota composition have been shown to play a critical role in the development and maintenance of metabolic disorders. In this study, we used a pair-feeding paradigm to reduce meal frequency and snacking episodes while maintaining overall intake and body weight in HF fed rats. We hypothesized that manipulation of feeding patterns would improve microbiota composition and metabolic outcomes. Male Wistar rats were placed in three groups consuming either a HF, low fat diet (LF, matched for sugar), or pair-fed HF diet for 7 weeks (n = 11-12/group). Pair-fed animals received the same amount of food consumed by the HF fed group once daily before dark onset (HF-PF). Rats underwent oral glucose tolerance and gut peptide cholecystokinin sensitivity tests. Bacterial DNA was extracted from the feces collected during both dark and light cycles and sequenced via Illumina MiSeq sequencing of the 16S V4 region. Our pair-feeding paradigm reduced meal numbers, especially small meals in the inactive phase, without changing total caloric intake. This shift in feeding patterns reduced relative abundances of obesity-associated bacteria and maintained circadian fluctuations in microbial abundances. These changes were associated with improved gastrointestinal (GI) function, reduced inflammation, and improved glucose tolerance and gut to brain signaling. We concluded from these data that targeting snacking may help improve metabolic outcomes, independently of energy content of the diet and hyperphagia.
Collapse
Affiliation(s)
- E A Klingbeil
- Department of Nutritional Sciences, The University of Texas at Austin, United States
| | - R Schade
- Department of Microbiology and Immunology, Stanford University School of Medicine, United States
| | - S H Lee
- Department of Food Sciences, Sun Moon University, South Korea
| | - R Kirkland
- Office of Research, University of Georgia, United States
| | - C B de La Serre
- Department of Nutritional Sciences, University of Georgia, United States; Department of Biomedical Sciences, Colorado State University, United States.
| |
Collapse
|
3
|
Lima GS, Lima NM, Balbino NS, Sousa JCP, Santos GF, Vaz BG. Anthocyanin Profiles in the Tropical Fruits Eugenia jambolana and Inga edulis: A Comparative Study Using Paper Spray Ionization (PSI-MS), Tissue Spray Ionization (TSI-MS), and Direct Infusion (DI-MS). Chem Biodivers 2024; 21:e202400318. [PMID: 39073233 DOI: 10.1002/cbdv.202400318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Paper spray ionization (PSI-MS) and tissue spray ionization (TSI-MS) mass spectrometry are simple and rapid ambient ionization mass spectrometry techniques that offer numerous advantages over conventional analysis methods. This study aims to analyze the efficiency of detecting anthocyanins from Eugenia jambolana fruit peel and Inga edulis seeds using PSI-MS, TSI-MS, and DI-MS (direct infusion). DI-MS exhibited high efficiency, detecting all compounds in abundance, with anthocyanins malvidin 3,5-O-diglucoside (1) and petunidin 3,5-O-diglucoside (2) being the most prevalent. PSI-MS, however, struggled to detect delphinidin 3-O-glucoside and showed lower abundances for compounds 1, 2, 3 (delphinidin 3,5-O-diglucoside), and 4 (petunidin 3-O-glucoside) compared to DI-MS, attributed to the technique's challenges with molecular weight and polarity. TSI-MS was least effective, detecting only compounds 1, 2, and 3 at low intensities. The overall unique compounds identified across techniques were 134, emphasizing the importance of comprehensively employing multiple methods to analyze anthocyanins in these edible plants.
Collapse
Affiliation(s)
- Gesiane S Lima
- Chemistry Institute, Federal University of Goias, 74690-900, Goiania (GO), Brazil
| | - Nerilson M Lima
- Chemistry Institute, Federal University of Goias, 74690-900, Goiania (GO), Brazil
| | - Naará S Balbino
- Chemistry Institute, Federal University of Goias, 74690-900, Goiania (GO), Brazil
| | - Jean C P Sousa
- Chemistry Institute, Federal University of Goias, 74690-900, Goiania (GO), Brazil
| | - Gabriel F Santos
- Chemistry Institute, Federal University of Goias, 74690-900, Goiania (GO), Brazil
| | - Boniek G Vaz
- Chemistry Institute, Federal University of Goias, 74690-900, Goiania (GO), Brazil
| |
Collapse
|
4
|
Qin B, Li Z, Zhu Q, Chen T, Lan W, Cui Y, Azad MAK, Kong X. Dietary Fermented Blueberry Pomace Supplementation Improves Small Intestinal Barrier Function and Modulates Cecal Microbiota in Aged Laying Hens. Animals (Basel) 2024; 14:2786. [PMID: 39409735 PMCID: PMC11475786 DOI: 10.3390/ani14192786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
This study aimed to investigate the effects of fermented blueberry pomace (FBP) on the intestinal barrier function and cecal microbiome of aged laying hens. A total of 320 Yukou Jingfen No. 8 laying hens (345-day-old) were randomly divided into a control group, 0.25% FBP group, 0.5% FBP group, or 1.0% FBP group. The results showed that the villus height (VH) in the jejunum of the 0.25-0.5% FBP groups and villus surface area in the jejunum of the 0.25% FBP group were higher (p < 0.05), while 0.25% FBP supplementation displayed a higher (p = 0.070) VH in the ileum compared to the control group. Mucin-2 expression was upregulated (p < 0.05) in the jejunum of the 0.5% FBP group and the ileum of the 0.25-0.5% FBP groups. Compared to the control group, interleukin (IL)-4 and IL-13 expressions were upregulated (p < 0.05) in the 1.0% FBP group. Microbiota analysis revealed that Prevotella abundance in the cecum of the 0.5-1.0% FBP groups was higher (p < 0.05) than in the 0.25% FBP group. In addition, microbial function prediction analysis showed that cecal microbiota in the 0.25% FBP group were mainly enriched by alanine/aspartate/glutamate metabolism and methane metabolism. Moreover, Spearman's correlation analysis revealed the potential correlations between the abundance of the cecal microbiota and intestinal-barrier-function-related gene expressions, as well as the short-chain fatty acid content, of laying hens. In summary, dietary FBP supplementation enhanced intestinal barrier function by improving intestinal morphology, upregulating gene expressions related to barrier function, and altering the cecal microbiota of aged laying hens.
Collapse
Affiliation(s)
- Binghua Qin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (B.Q.); (Z.L.); (Q.Z.); (T.C.)
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China; (W.L.); (Y.C.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (B.Q.); (Z.L.); (Q.Z.); (T.C.)
| | - Qian Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (B.Q.); (Z.L.); (Q.Z.); (T.C.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (B.Q.); (Z.L.); (Q.Z.); (T.C.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China; (W.L.); (Y.C.)
| | - Yadong Cui
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China; (W.L.); (Y.C.)
| | - Md. Abul Kalam Azad
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (B.Q.); (Z.L.); (Q.Z.); (T.C.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (B.Q.); (Z.L.); (Q.Z.); (T.C.)
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China; (W.L.); (Y.C.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Alghamdi SA, Hindi EA, Abuljadayel L, Alwafi H, Bagher AM, Khunkar S, Bakhsh N, Ali S, Mirza L, Alrafiah AR, Alsomali NI. Red Bull Energy Drink Impact on Salivary Glands in Wistar Rats: Can Blueberry Extract Reverse the Damage? Nutrients 2024; 16:2958. [PMID: 39275275 PMCID: PMC11397545 DOI: 10.3390/nu16172958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024] Open
Abstract
Energy drink (ED) consumption has become increasingly popular. Due to a lack of evidence, it was crucial to assess the effects of Red Bull (RB) consumption on the rat submandibular salivary gland and the potential therapeutic impact of blueberry (BB). Thirty rats were randomly assigned to five groups. Group 1 (Control) received distilled water. Group 2 (RB) received RB (10 mL/100 g/day) for 8 weeks. Group 3 (BB) rats were administered BB (500 mg/day for 8 weeks). Group 4 (RB + BB (L)) received RB for 8 weeks, and from the 5th week, were concurrently given BB (250 mg/day) for 4 weeks. Group 5 (RB + BB (H)) received RB for 8 weeks, and from the 5th week, were concurrently given BB (500 mg/day) for 4 weeks. At the end of the experiment, blood samples were collected, the animals were euthanized, and their submandibular salivary glands were harvested. Oxidative stress markers (MDA, GPx, CAT, and SOD) were assessed in both serum and tissue. Inflammatory markers (TNF-α, IL-6, and IL-10) were quantified in tissue. Submandibular gland specimens were prepared for light microscopy, and immunohistochemical staining was performed using anti-α-SMA. RB consumption resulted in a significant increase in MDA, TNF-α, IL-6, and IL-10, while GPx, CAT, and SOD levels decreased significantly. Degenerative changes in the gland's structure were observed in the RB group. A significant increase in α-SMA immunoreaction was detected in myoepithelial cells. Administration of BB, particularly at a high dose, ameliorated the aforementioned findings. In conclusion, blueberry administration exhibited therapeutic effects due to its antioxidative and anti-inflammatory properties.
Collapse
Affiliation(s)
- Samar A Alghamdi
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Emad A Hindi
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Layla Abuljadayel
- Department of Dental Public Health, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hanadi Alwafi
- Department of Pediatric and Prevention Dentistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Amina M Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sahar Khunkar
- Department of Restorative, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Nadia Bakhsh
- AGD Department, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Soad Ali
- Department of Histology and Cell Biology, Faculty of Medicine, Assuit University, Assuit 98467, Egypt
| | - Linda Mirza
- King Abdullah Medical Complex, Ministry of Health, Jeddah 23816, Saudi Arabia
| | - Aziza R Alrafiah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nimah I Alsomali
- Research Center, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| |
Collapse
|
6
|
Chamberlin ML, Peach JT, Wilson SMG, Miller ZT, Bothner B, Walk ST, Yeoman CJ, Miles MP. Polyphenol-Rich Aronia melanocarpa Fruit Beneficially Impact Cholesterol, Glucose, and Serum and Gut Metabolites: A Randomized Clinical Trial. Foods 2024; 13:2768. [PMID: 39272533 PMCID: PMC11395532 DOI: 10.3390/foods13172768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Polyphenol-rich Aronia fruits have great potential as a functional food with anti-inflammatory, hypolipidemic, and hypoglycemic biologic activities. However, clinical intervention trials investigating the impact of Aronia fruit consumption on human health are limited. A randomized, controlled, double-blinded, parallel intervention trial was conducted using 14 human subjects who ingested either 0 mL or 100 mL of Aronia juice daily for 30 days. Anthropometric measurements, fasting, and postprandial measures of glucose and lipid metabolism and inflammation, 16S rRNA fecal microbial composition data, and mass spectrometry-acquired serum and fecal metabolomic data were collected before and after the intervention period. Data were analyzed using general linear models, ANOVA, and t-tests. Daily consumption of Aronia prevented a rise in cholesterol levels (β = -0.50, p = 0.03) and reduced postprandial glucose (β = -3.03, p < 0.01). No difference in microbial community composition by condition was identified at any taxonomic level, but a decrease (β = -18.2, p = 0.04) in microbial richness with Aronia was detected. Serum and fecal metabolomic profiles indicated shifts associated with central carbon and lipid metabolism and decreases in pro-inflammatory metabolites. Our study further informs the development of polyphenol-based dietary strategies to lower metabolic disease risk.
Collapse
Affiliation(s)
- Morgan L Chamberlin
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA
| | - Jesse T Peach
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Stephanie M G Wilson
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA
- United States Department of Agriculture, Agricultural Research Service Western Human Nutrition Research Center, Davis, CA 95616, USA
- Institute for Advancing Health through Agriculture, Texas A&M, College Station, TX 77845, USA
| | - Zachary T Miller
- Department of Research Centers, Montana State University, Bozeman, MT 59717, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Seth T Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Carl J Yeoman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Mary P Miles
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
7
|
Chan HTL, Chan KM, Abhreet-Kaur, Sam SW, Chan SW. A Review of the Pharmacological Effects of Solanum muricatum Fruit (Pepino Melon). Foods 2024; 13:2740. [PMID: 39272505 PMCID: PMC11394486 DOI: 10.3390/foods13172740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Solanaceae, commonly known as nightshade, is a diverse family of flowering plants comprising around 90 genera and an estimated 3000-4000 species. Solanaceae spp. and its various fruits, including pepino (Solanum muricatum), commonly known as pepino melon, are widely recognized by the public for their nutritional value and pharmacological effects. Pepino melon, in particular, is often enjoyed as a fresh dessert or salad due to its juicy flesh. Given its beneficial properties, the potential of pepino melon to be developed as a functional food has been extensively studied. This review aims to provide a comprehensive summary of the reported pharmacological effects of the active compounds found in pepino plant and melon. Among these compounds, polyphenols, notably quercetin, and vitamin C have demonstrated notable antioxidant properties such as scavenging free radicals, effectively protecting against free-radical damage. Moreover, these active ingredients provide pepino with anti-inflammatory properties by inhibiting the expression of proinflammatory cytokines and enzymes, thereby reducing nitric oxide production. Additionally, they have shown promise in selectively targeting cancer cells, exhibiting anti-cancer properties. Furthermore, the active compounds such as quercetin in pepino have been associated with anti-diabetic effects, improving insulin sensitivity and inhibiting insulin resistance. Overall, this review highlights the diverse and significant pharmacological effects of the active compounds found in pepino melon, emphasizing its potential as a valuable functional food.
Collapse
Affiliation(s)
- Hei-Tung Lydia Chan
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| | - Ka-Man Chan
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| | - Abhreet-Kaur
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| | - Sze-Wing Sam
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| | - Shun-Wan Chan
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| |
Collapse
|
8
|
Rodrigues EL, Santana LF, do Nascimento VA, Arakaki MA, Cardoso CAL, Filiú WFDO, Guimarães RDCA, Hiane PA, Freitas KDC. Use of Guazuma ulmifolia Lam. Stem Bark Extracts to Prevent High-Fat Diet Induced Metabolic Disorders in Mice. Int J Mol Sci 2024; 25:8889. [PMID: 39201576 PMCID: PMC11354271 DOI: 10.3390/ijms25168889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
This study aimed to evaluate the effects of supplementation with ethanolic and aqueous extracts from the bark of the stem of Guazuma ulmifolia in mice submitted to a high-fat diet as well as to evaluate the chemical composition of these extracts. The chemical composition and antioxidant potential was evaluated in aqueous and ethanolic extracts of the stem bark. The in vivo test consisted of evaluating the effects of the aqueous and ethanolic extracts of the stem bark on C57BL/6 mice receiving a high-fat diet. The animals were evaluated for weight gain, feed consumption, visceral adiposity, serum, and inflammatory and hormonal parameters. The results of the chemical analyses corroborate those obtained by the literature, which reported gallocatechin, epigallocatechin and epigallocatechin gallate. Compared with the ethanolic extract, the aqueous extract showed greater antioxidant capacity. Both extracts resulted in lower feed consumption in the animals, but they did not influence weight gain or visceral adiposity and resulted in varied changes in the lipid profile. In addition, they did not influence glucose tolerance, insulin sensitivity, or fasting blood glucose. Furthermore, the leptin levels increased, which may have contributed to satiety, but this was shown to have a negative impact on other inflammatory and hormonal parameters. Therefore, under the conditions of this study, the biologically active compounds present in the plant species Guazuma ulmifolia were not able to contribute to the treatment of metabolic changes related to the consumption of a high-fat diet.
Collapse
Affiliation(s)
- Elisana Lima Rodrigues
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79070-900, MS, Brazil; (E.L.R.); (V.A.d.N.); (R.d.C.A.G.); (P.A.H.); (K.d.C.F.)
| | | | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79070-900, MS, Brazil; (E.L.R.); (V.A.d.N.); (R.d.C.A.G.); (P.A.H.); (K.d.C.F.)
| | - Marcel Asato Arakaki
- Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | | | - Wander Fernando de Oliveira Filiú
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79079-900, MS, Brazil;
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79070-900, MS, Brazil; (E.L.R.); (V.A.d.N.); (R.d.C.A.G.); (P.A.H.); (K.d.C.F.)
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79070-900, MS, Brazil; (E.L.R.); (V.A.d.N.); (R.d.C.A.G.); (P.A.H.); (K.d.C.F.)
| | - Karine de Cássia Freitas
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79070-900, MS, Brazil; (E.L.R.); (V.A.d.N.); (R.d.C.A.G.); (P.A.H.); (K.d.C.F.)
| |
Collapse
|
9
|
Jeong E, Eun S, Chae S, Lee S. Prebiotic Potential of Goji Berry ( Lycium barbarum) in Improving Intestinal Integrity and Inflammatory Profiles via Modification of the Gut Microbiota in High-Fat Diet-Fed Rats. J Med Food 2024; 27:704-712. [PMID: 38949912 DOI: 10.1089/jmf.2024.k.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
Background: Imbalances in gut microbiota and subsequent destabilization of intestinal barrier equilibrium have been related to the evolution of metabolic disorders. Goji berries (Lycium barbarum; GB) and their fermented counterpart (FGB) have been identified for their prebiotic capacity in managing intestinal barrier functions and inflammatory profiles Consequently, this research was designed to investigate the effects of supplementing GB and FGB on intestinal integrity, inflammation, and changes in the composition of gut microbiota in high-fat (HF)-fed rats. Materials and Methods: Thirty-two male Sprague-Dawley rats (6 weeks old, 8 per group) were divided into four categories based on their weight and provided with either respective diets over a 6-week period: low-fat (LF; 10% of calories from fat), HF (45% of calories from fat), and HF diets supplemented with either GB or FGB at a 2% (w/w). Results: Supplementation of GB and FGB resulted in compositional changes in the gut microbiota, denoted by a distinct abundance of Faecalibacterium prausnitzii with GB and Akkermansia muciniphila species with FGB, which have been linked to ameliorated obesity phenotypes and metabolic parameters. These alterations were correlated with enhancements in gut barrier integrity, thereby protecting against local and systemic inflammation induced by a HF diet. Supplementation with GB and FGB also mitigated lipopolysaccharide-induced inflammation through inhibition of its downstream pathway. Conclusion: These findings indicate that both GB and FGB supplementation can improve gut barrier function and inflammatory profiles in HF-fed rats via modulation of the microbial composition of the gut, supporting the potential application of GB and FGB in improving gut barrier function and managing inflammation amid metabolic challenges.
Collapse
Affiliation(s)
- Eunji Jeong
- Department of Food Science, Sun Moon University, Asan, Korea
| | - Sungjin Eun
- Department of Food Science, Sun Moon University, Asan, Korea
| | - Seoyeon Chae
- Department of Food Science, Sun Moon University, Asan, Korea
| | - Sunhye Lee
- Department of Food Science, Sun Moon University, Asan, Korea
| |
Collapse
|
10
|
Visvanathan R, Houghton MJ, Barber E, Williamson G. Structure-function relationships in (poly)phenol-enzyme binding: Direct inhibition of human salivary and pancreatic α-amylases. Food Res Int 2024; 188:114504. [PMID: 38823880 DOI: 10.1016/j.foodres.2024.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
(Poly)phenols inhibit α-amylase by directly binding to the enzyme and/or by forming starch-polyphenol complexes. Conventional methods using starch as the substrate measure inhibition from both mechanisms, whereas the use of shorter oligosaccharides as substrates exclusively measures the direct interaction of (poly)phenols with the enzyme. In this study, using a chromatography-based method and a short oligosaccharide as the substrate, we investigated the detailed structural prerequisites for the direct inhibition of human salivary and pancreatic α-amylases by over 50 (poly)phenols from the (poly)phenol groups: flavonols, flavones, flavanones, flavan-3-ols, polymethoxyflavones, isoflavones, anthocyanidins and phenolic acids. Despite being structurally very similar (97% sequence homology), human salivary and pancreatic α-amylases were inhibited to different extents by the tested (poly)phenols. The most potent human salivary α-amylase inhibitors were luteolin and pelargonidin, while the methoxylated anthocyanidins, peonidin and petunidin, significantly blocked pancreatic enzyme activity. B-ring methoxylation of anthocyanidins increased inhibition against both human α-amylases while hydroxyl groups at C3 and B3' acted antagonistically in human salivary inhibition. C4 carbonyl reduction, or the positive charge on the flavonoid structure, was the key structural feature for human pancreatic inhibition. B-ring glycosylation did not affect salivary enzyme inhibition, but increased pancreatic enzyme inhibition when compared to its corresponding aglycone. Overall, our findings indicate that the efficacy of interaction with human α-amylase is mainly influenced by the type and placement of functional groups rather than the number of hydroxyl groups and molecular weight.
Collapse
Affiliation(s)
- Rizliya Visvanathan
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Michael J Houghton
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Elizabeth Barber
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia.
| |
Collapse
|
11
|
Helm MM, Basu A, Richardson LA, Chien LC, Izuora K, Alman AC, Snell-Bergeon JK. Longitudinal Three-Year Associations of Dietary Fruit and Vegetable Intake with Serum hs-C-Reactive Protein in Adults with and without Type 1 Diabetes. Nutrients 2024; 16:2058. [PMID: 38999806 PMCID: PMC11243559 DOI: 10.3390/nu16132058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
High-sensitivity C-reactive protein (hs-CRP) is a widely used clinical biomarker of systemic inflammation, implicated in many chronic conditions, including type 1 diabetes (T1D). Despite the increasing emphasis on dietary intake as a modifiable risk factor for systemic inflammation, the association of hs-CRP with fruit and vegetable consumption is relatively underexplored in T1D. To address this gap, we investigated the longitudinal associations of dietary pattern-derived fruit and vegetable scores with hs-CRP in adults with and without T1D. Additionally, we examined the impact of berry consumption as a distinct food group. Data were collected in the Coronary Artery Calcification in Type 1 Diabetes study over two visits that were three years apart. At each visit, participants completed a food frequency questionnaire, and hs-CRP was measured using a particle-enhanced immunonephelometric assay. Mixed effect models were used to examine the three-year association of fruit and vegetable scores with hs-CRP. Adjusted models found a significant inverse association between blueberry intake and hs-CRP in the nondiabetic (non-DM) group. Dietary Approaches to Stop Hypertension- and Alternative Healthy Eating Index-derived vegetable scores were also inversely associated with hs-CRP in the non-DM group (all p-values ≤ 0.05). Conversely, no significant associations were observed in the T1D group. In conclusion, dietary pattern-derived vegetable scores are inversely associated with hs-CRP in non-DM adults. Nonetheless, in T1D, chronic hyperglycemia and related metabolic abnormalities may override the cardioprotective features of these food groups at habitually consumed servings.
Collapse
Affiliation(s)
- Macy M. Helm
- Department of Kinesiology and Nutrition Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA; (M.M.H.); (L.A.R.)
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA; (M.M.H.); (L.A.R.)
| | - Leigh Ann Richardson
- Department of Kinesiology and Nutrition Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA; (M.M.H.); (L.A.R.)
| | - Lung-Chang Chien
- Department of Epidemiology and Biostatistics, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA;
| | - Kenneth Izuora
- Section of Endocrinology, School of Medicine, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA;
| | - Amy C. Alman
- College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| | - Janet K. Snell-Bergeon
- Barbara Davis Center for Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
12
|
Stull AJ, Cassidy A, Djousse L, Johnson SA, Krikorian R, Lampe JW, Mukamal KJ, Nieman DC, Porter Starr KN, Rasmussen H, Rimm EB, Stote KS, Tangney C. The state of the science on the health benefits of blueberries: a perspective. Front Nutr 2024; 11:1415737. [PMID: 38919390 PMCID: PMC11196611 DOI: 10.3389/fnut.2024.1415737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Mounting evidence indicates that blueberry consumption is associated with a variety of health benefits. It has been suggested that regular consumption of blueberries can support and/or protect against cardiovascular disease and function, pre-diabetes and type 2 diabetes, and brain and cognitive function in individuals with health conditions and age-related decline. Further, mechanistic investigations highlight the role of blueberry anthocyanins in mediating these health benefits, in part through interactions with gut microbiota. Also, nutritional interventions with blueberries have demonstrated the ability to improve recovery following exercise-induced muscle damage, attributable to anti-inflammatory effects. Despite these advancements in blueberry health research, research gaps persist which affects the generalizability of findings from clinical trials. To evaluate the current state of knowledge and research gaps, a blueberry health roundtable with scientific experts convened in Washington, DC (December 6-7, 2022). Discussions centered around five research domains: cardiovascular health, pre-diabetes and diabetes, brain health and cognitive function, gut health, and exercise recovery. This article synthesizes the outcomes of a blueberry research roundtable discussion among researchers in these domains, offering insights into the health benefits of blueberries and delineating research gaps and future research directions.
Collapse
Affiliation(s)
- April J. Stull
- Department of Human Sciences and Design, Baylor University, Waco, TX, United States
| | - Aedín Cassidy
- Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - Luc Djousse
- Department of Medicine at Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Sarah A. Johnson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, United States
| | - Robert Krikorian
- Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati Academic Health Center, Cincinnati, OH, United States
| | - Johanna W. Lampe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Kenneth J. Mukamal
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - David C. Nieman
- Human Performance Laboratory, North Carolina Research Campus, Appalachian State University, Kannapolis, NC, United States
| | - Kathryn N. Porter Starr
- Department of Medicine, Duke University School of Medicine and Geriatric, Research, Education and Clinical Center, Durham VA Health Care System, Durham, NC, United States
| | - Heather Rasmussen
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eric B. Rimm
- Departments of Epidemiology & Nutrition, Harvard T.H. Chan School of Public Health, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Kim S. Stote
- Albany Stratton VA Medical Center, Albany, NY, United States
| | - Christy Tangney
- Department of Clinical Nutrition, Rush University, Chicago, IL, United States
| |
Collapse
|
13
|
Trajkovska B, Nakov G, Prabhat ST, Badgujar PC. Effect of Blueberry Pomace Addition on Quality Attributes of Buttermilk-Based Fermented Drinks during Cold Storage. Foods 2024; 13:1770. [PMID: 38890998 PMCID: PMC11171537 DOI: 10.3390/foods13111770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The fruit and beverage industry faces challenges related to waste management and environmental pollution due to rapid industrial expansion. Fruit industry waste, such as blueberry pomace, holds the promise of enhancing gut health and providing valuable antioxidants. Concurrently, buttermilk, a prominent dairy product, offers nutritional and technological benefits but remains underutilized. This study aimed to evaluate the incorporation of blueberry pomace (0%, 2%, 4%, 6%, 8%, and 10%) into buttermilk at varying levels and assess its impact on the physicochemical, antioxidant, microbiological, and sensory characteristics of the buttermilk. Buttermilk samples were supplemented with different concentrations of blueberry pomace and subjected to analysis over a two-week storage period (4 ± 1 °C). The addition of blueberry pomace led to alterations in the pH, dry matter, water holding capacity, color parameters, total phenolic content, and antioxidant activity. Microbiological analysis revealed the absence of Enterobacteriaceae, yeast, or molds. Sensory evaluation indicated significant differences among samples, with the highest scores observed for the buttermilk supplemented with 2% and 4% blueberry pomace. Incorporating blueberry pomace improved the overall acceptability and sensory properties. This research highlights the potential of fruit industry by-products to enhance the functionality and health benefits of dairy products, which is a promising way to effectively utilize waste.
Collapse
Affiliation(s)
- Biljana Trajkovska
- Faculty of Biotechnical Sciences—Bitola, University “St. Kliment Ohridski”—Bitola, 7000 Bitola, North Macedonia
| | - Gjore Nakov
- College of Sliven, Technical University of Sofia, 8800 Sliven, Bulgaria;
| | - Sari Thachappully Prabhat
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India; (S.T.P.); (P.C.B.)
| | - Prarabdh C. Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India; (S.T.P.); (P.C.B.)
| |
Collapse
|
14
|
de Assis BBT, Pimentel TC, Vidal H, Dos Santos Lima M, de Sousa Galvão M, Madruga MS, Noronha MF, Cabral L, Magnani M. Mangaba pulp fermented with Lacticaseibacillus casei 01 has improved chemical, technological, and sensory properties and positively impacts the colonic microbiota of vegan adults. Food Res Int 2024; 186:114403. [PMID: 38729705 DOI: 10.1016/j.foodres.2024.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
This study aimed to evaluate the functional, technological, and sensory aspects of mangaba (Hancornia speciosa Gomes) fruit pulp fermented with the probiotic Lacticaseibacillus casei 01 (LC1) during refrigerated storage (7 °C, 28 days). The effects of the fermented mangaba pulp on the modulation of the intestinal microbiota of healthy vegan adults were also assessed. Mangaba pulp allowed high viability of LC1 during storage and after simulated gastrointestinal conditions (≥7 log CFU/g). The fermented mangaba pulp showed lower pH and total soluble solids, and higher titratable acidity, and concentrations of lactic, acetic, citric, and propionic acids during storage compared to non-fermented pulp. Also, it presented a higher concentration of bioaccessible phenolics and volatiles, and improved sensory properties (yellow color, brightness, fresh appearance, and typical aroma and flavor). Fermented mangaba pulp added to in vitro cultured colonic microbiota of vegan adults decreased the pH values and concentrations of maltose, glucose, and citric acid while increasing rhamnose and phenolic contents. Fermented mangaba pulp promoted increases in the abundance of Dorea, Romboutsia, Faecalibacterium, Lachnospira, and Lachnospiraceae ND3007 genera and positively impacted the microbial diversity. Findings indicate that mangaba pulp fermented with LC1 has improved chemical composition and functionality, inducing changes in the colonic microbiota of vegan adults associated with potential benefits for human health.
Collapse
Affiliation(s)
- Bianca Beatriz Torres de Assis
- Laboratory of Microbial Process in Foods, Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Hubert Vidal
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Claude Bernard Lyon-1, Pierre Bénite, France
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, Brazil
| | | | - Marta Suely Madruga
- Laboratory of Flavor, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Melline Fontes Noronha
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Lucélia Cabral
- Institute of Biological Sciences, University of Brasília-UnB, Brasília, DF, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Process in Foods, Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
15
|
Wang K, Lai W, Min T, Wei J, Bai Y, Cao H, Guo J, Su Z. The Effect of Enteric-Derived Lipopolysaccharides on Obesity. Int J Mol Sci 2024; 25:4305. [PMID: 38673890 PMCID: PMC11050189 DOI: 10.3390/ijms25084305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Endotoxin is a general term for toxic substances in Gram-negative bacteria, whose damaging effects are mainly derived from the lipopolysaccharides (LPS) in the cell walls of Gram-negative bacteria, and is a strong pyrogen. Obesity is a chronic, low-grade inflammatory condition, and LPS are thought to trigger and exacerbate it. The gut flora is the largest source of LPS in the body, and it is increasingly believed that altered intestinal microorganisms can play an essential role in the pathology of different diseases. Today, the complex axis linking gut flora to inflammatory states and adiposity has not been well elucidated. This review summarises the evidence for an interconnection between LPS, obesity, and gut flora, further expanding our understanding of LPS as a mediator of low-grade inflammatory disease and contributing to lessening the effects of obesity and related metabolic disorders. As well as providing targets associated with LPS, obesity, and gut flora, it is hoped that interventions that combine targets with gut flora address the individual differences in gut flora treatment.
Collapse
Affiliation(s)
- Kai Wang
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiwen Lai
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianqi Min
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jintao Wei
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China;
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
16
|
Liu Y, Wang X, Podio NS, Wang X, Xu S, Jiang S, Wei X, Han Y, Cai Y, Chen X, Jin F, Li X, Gong ES. Research progress on the regulation of oxidative stress by phenolics: the role of gut microbiota and Nrf2 signaling pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1861-1873. [PMID: 37851871 DOI: 10.1002/jsfa.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 10/20/2023]
Abstract
In recent years, the increase in high-calorie diets and sedentary lifestyles has made obesity a global public health problem. An unbalanced diet promotes the production of proinflammatory cytokines and causes redox imbalance in the body. Phenolics have potent antioxidant activity and cytoprotective ability. They can scavenge free radicals and reactive oxygen species, and enhance the activity of antioxidant enzymes, thus combating the body's oxidative stress. They can also improve the body's inflammatory response, enhance the enzyme activity of lipid metabolism, and reduce the contents of cholesterol and triglyceride. Most phenolics are biotransformed and absorbed into the blood after the action by gut microbiota; these metabolites then undergo phase I and II metabolism and regulate oxidative stress by scavenging free radicals and increasing expression of antioxidant enzymes. Phenolics induce the expression of genes encoding antioxidant enzymes and phase II detoxification enzymes by stimulating Nrf2 to enter the nucleus and bind to the antioxidant response element after uncoupling from Keap1, thereby promoting the production of antioxidant enzymes and phase II detoxification enzymes. The absorption rate of phenolics in the small intestine is extremely low. Most phenolics reach the colon, where they interact with the microbiota and undergo a series of metabolism. Their metabolites will reach the liver via the portal vein and undergo conjugation reactions. Subsequently, the metabolites reach the whole body to exert biological activity by traveling with the systemic circulation. Phenolics can promote the growth of probiotics, reduce the ratio of Firmicutes/Bacteroidetes (F/B), and improve intestinal microecological imbalance. This paper reviews the nutritional value, bioactivity, and antioxidant mechanism of phenolics in the body, aiming to provide a scientific basis for the development and utilization of natural antioxidants and provide a reference for elucidating the mechanism of action of phenolics for regulating oxidative stress in the body. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Xiaoling Wang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Natalia S Podio
- ICYTAC (Instituto de Ciencia y Tecnología de Alimentos Córdoba), CONICET and Universidad Nacional de Córdoba, Bv. Dr. Juan Filloy s/n; Cdad. Universitaria, Argentina
| | - Xiaoyin Wang
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Shuyan Xu
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Suhang Jiang
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Xia Wei
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Yuna Han
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Yunyan Cai
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Xingyu Chen
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Fan Jin
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Xianbao Li
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Er Sheng Gong
- School of Public Health and Health Management, Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Jiangxi, China
| |
Collapse
|
17
|
Estrada-Sierra NA, Gonzalez-Avila M, Urias-Silvas JE, Rincon-Enriquez G, Garcia-Parra MD, Villanueva-Rodriguez SJ. The Effect of Opuntia ficus Mucilage Pectin and Citrus aurantium Extract Added to a Food Matrix on the Gut Microbiota of Lean Humans and Humans with Obesity. Foods 2024; 13:587. [PMID: 38397564 PMCID: PMC10887714 DOI: 10.3390/foods13040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Experimental studies have provided evidence that physicochemical interactions in the food matrix can modify the biologically beneficial effects of bioactive compounds, including their effect on gut microbiota. This work aimed to evaluate the effect of a food gel matrix with Opuntia ficus cladodes mucilage pectin and Citrus Aurantium extract on the growth of four beneficial gut bacteria obtained from the fecal microbiota of people who are lean or who have obesity after digestion in the upper digestive system. To accomplish this, a base formulation of Opuntia ficus cladodes mucilage with or without C. aurantium extract was submitted to an ex vivo fecal fermentation in an automatic and robotic intestinal system. The changes in the intestinal microbiota were determined by means of plate culture and 16S sequencing, while short-chain fatty acids (SCFA) produced in the colon were determined via gas chromatography. In the presence of the extract in formulation, greater growth of Bifidobacterium spp. (+1.6 Log10 Colonic Forming Unit, UFC) and Lactobacillus spp. (+2 Log10 UFC) in the microbiota of lean people was observed. Only the growth in Salmonella spp. (-1 Log10 UFC) from both microbiota was affected in the presence of the extract, which decreased in the ascending colon. SCFA was mainly produced by the microbiota of people who were lean rather than those who had obesity in the presence of the extract, particularly in the ascending colon. The effect of sour orange extract seems to depend on the origin of the microbiota, whether in people who have obesity (25 mM/L) or are lean (39 mM/L).
Collapse
Affiliation(s)
| | | | | | | | | | - Socorro Josefina Villanueva-Rodriguez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C (CIATEJ), Guadalajara 44270, Mexico; (N.A.E.-S.); (M.G.-A.); (J.-E.U.-S.); (G.R.-E.); (M.D.G.-P.)
| |
Collapse
|
18
|
Zhang L, Muscat JE, Chinchilli VM, Kris-Etherton PM, Al-Shaar L, Richie JP. Consumption of Berries and Flavonoids in Relation to Mortality in NHANES, 1999-2014. J Nutr 2024; 154:734-743. [PMID: 38184200 DOI: 10.1016/j.tjnut.2024.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Berries are foods that are abundant in nutrients, especially flavonoids, that promote good health; however, the effects of total berries on mortality are not well characterized. OBJECTIVES We evaluated whether intakes of total berries and specific berry types including blueberries, strawberries, cranberries, flavonoids, and subclasses of flavonoids (anthocyanidins, flavonols, flavones, flavanones, flavan-3-ols, and isoflavones) in relation to mortality risk in United States adults. METHODS A nationally representative sample of the United States adult population was obtained using data from the 1994-2014 NHANES (n = 37,232). Intake of berries was estimated using 24-h food recalls (1999-2014), and flavonoids intake was calculated using the matched USDA's expanded flavonoid database. Mortality outcomes based on 8 y of follow-up were obtained using linked death certificates. RESULTS Compared with nonconsumers, the multivariable-adjusted hazard ratio for all-cause mortality was 0.79 [95% confidence intervals (CI): 0.7, 0.89] for any berry consumption, 0.86 (0.75, 0.99) for strawberry consumption 0.79 (0.66, 0.95) for blueberries, and 0.69 (0.51, 0.93) for cranberries. Compared with the lower median of intake, risk of all-cause mortality for greater intake was 0.85 (0.74, 0.97) for total flavonoids, 0.85 (0.76, 0.95) for anthocyanidins, 0.9 (0.82, 0.99) for flavan-3-ols, 0.89 (0.79, 0.9) for flavanols, and 0.89 (0.8, 0.99) for flavones. There was a dose-response relationship between intakes of total flavonoids, anthocyanidins, and flavones and lower all-cause mortality risks (Ptrend < 0.05). Risk for cardiometabolic mortality was 0.75 (0.58, 0.98) for berry consumers and 0.49 (0.25, 0.98) for cranberry consumers. For respiratory disease mortality, risk was 0.41 (0.2, 0.86), compared with blueberry nonconsumers. CONCLUSION Higher intakes of berries and flavonoids were associated with a lower overall mortality risk in adult Americans. Few adults regularly consume berries, indicating that increased intake of berries and flavonoid-rich foods may be beneficial to health.
Collapse
Affiliation(s)
- Li Zhang
- Department of Public Health Sciences, Penn State College of Medicine, Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, United States.
| | - Joshua E Muscat
- Department of Public Health Sciences, Penn State College of Medicine, Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, United States
| | - Vernon M Chinchilli
- Department of Public Health Sciences, Penn State College of Medicine, Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, United States
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Laila Al-Shaar
- Department of Public Health Sciences, Penn State College of Medicine, Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, United States
| | - John P Richie
- Department of Public Health Sciences, Penn State College of Medicine, Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
19
|
Coutinho-Wolino KS, Melo MFS, Mota JC, Mafra D, Guimarães JT, Stockler-Pinto MB. Blueberry, cranberry, raspberry, and strawberry as modulators of the gut microbiota: target for treatment of gut dysbiosis in chronic kidney disease? From current evidence to future possibilities. Nutr Rev 2024; 82:248-261. [PMID: 37164634 DOI: 10.1093/nutrit/nuad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Gut dysbiosis is common in patients with chronic kidney disease (CKD) and is associated with uremic toxin production, inflammation, oxidative stress, and cardiovascular disease development. Therefore, healthy dietary patterns are essential modulators of gut microbiota. In this context, studies suggest that consuming berry fruits, rich in polyphenols and nutrients, may positively affect the gut microbiota, promoting the selective growth of beneficial bacteria and improving clinical status. However, studies on the effects of berry fruits on gut microbiota in CKD are scarce, and a better understanding of the possible mechanisms of action of berry fruits on gut microbiota is needed to guide future clinical studies and clinical practice in CKD. The objective was to discuss how berry fruits (blueberry, cranberry, raspberry, and strawberry) could be a therapeutic strategy to modulate the gut microbiota and possibly reverse the dysbiosis in CKD. Overall, available evidence shows that berry fruits can promote an increase in diversity by affecting the abundance of mucus-producing bacteria and short-chain fatty acids. Moreover, these fruits can increase the expression of mRNA involved in tight junctions in the gut such as occludin, tight junction protein 1 (TJP1), and mucin. Studies on the exact amount of berries leading to these effects show heterogeneous findings. However, it is known that, with 5 mg/day, it is already possible to observe some effects in animal models. Wild berries could possibly improve the uremic condition by reducing the levels of uremic toxins via modulation of the gut microbiota. In the long term, this could be an excellent strategy for patients with CKD. Therefore, clinical studies are encouraged to evaluate better these effects on CKD as well as the safe amount of these fruits in order to promote a better quality of life or even the survival of these patients.
Collapse
Affiliation(s)
- Karen S Coutinho-Wolino
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Manuela F S Melo
- Graduate Program in Nutrition, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
| | - Jessica C Mota
- Graduate Program in Nutrition, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
| | - Denise Mafra
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
- Postgraduate Program in Medical Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Milena B Stockler-Pinto
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
- Postgraduate Program in Pathology, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
20
|
Flores-Félix JD, Gonçalves AC, Meirinho S, Nunes AR, Alves G, Garcia-Viguera C, Moreno DA, Silva LR. Differential response of blueberry to the application of bacterial inoculants to improve yield, organoleptic qualities and concentration of bioactive compounds. Microbiol Res 2024; 278:127544. [PMID: 37988818 DOI: 10.1016/j.micres.2023.127544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
The application of bacterial biofortifiers is an increasingly common technique. In recent years, some strains have been shown to improve the nutraceutical qualities of crops. This work analyses the impact of biofortification with 3 bacterial strains of the genera Rhizobium, Paenibacillus and Lactiplantibacillus on the nutritional characteristics and organic composition of blueberry in Portugal. Paenibacillus sp. VMFR46 treatment showed increase of 71.36 % and 79.88 % in total production. Biofortified treatments were able to increase Brix degree, maturity index (up to 48.05 % for cv. Legacy and up to 26.04 % for cv. Duke) and CIEL*a*b* index respect to uninoculated control. In this way, (poly)phenolic compounds concentration increased in biofortified treatment, and their (poly)phenolic profile was modified, some compounds such as myricetin aglycone or myricetin derivative are exclusive of the fruits from biofortified plants, with increases in (poly)phenolic concentrations related with R. laguerreae PEPV16 or Paenibacillus sp. VMFR46 inoculation in cv. Legacy. These modifications resulted in the improvement of the nutraceutical characteristics of the fruits obtained.
Collapse
Affiliation(s)
- José David Flores-Félix
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal.
| | - Ana Carolina Gonçalves
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Sara Meirinho
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Ana Raquel Nunes
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, 3004-504 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Cristina Garcia-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC, Campus Universitario de Espinardo -25, 30100 Murcia, Spain
| | - Diego A Moreno
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC, Campus Universitario de Espinardo -25, 30100 Murcia, Spain
| | - Luís R Silva
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; CPIRN-UDI/IPG - Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, Guarda, Portugal; University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua, Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| |
Collapse
|
21
|
Kanner J. Food Polyphenols as Preventive Medicine. Antioxidants (Basel) 2023; 12:2103. [PMID: 38136222 PMCID: PMC10740609 DOI: 10.3390/antiox12122103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Reactive oxygen species (ROS) are the initiators in foods and in the stomach of oxidized dietary lipids, proteins, and lipid-oxidation end-products (ALEs), inducing in humans the development of several chronic diseases and cancer. Epidemiological, human clinical and animal studies supported the role of dietary polyphenols and derivatives in prevention of development of such chronic diseases. There is much evidence that polyphenols/derivatives at the right timing and concentration, which is critical, acts mostly in the aerobic stomach and generally in the gastrointestinal tract as reducing agents, scavengers of free radicals, trappers of reactive carbonyls, modulators of enzyme activity, generators of beneficial gut microbiota and effectors of cellular signaling. In the blood system, at low concentration, they act as generators of electrophiles and low concentration of H2O2, acting mostly as cellular signaling, activating the PI3K/Akt-mediated Nrf2/eNOS pathways and inhibiting the inflammatory transcription factor NF-κB, inducing the cells, organs and organism for eustress, adaptation and surviving.
Collapse
Affiliation(s)
- Joseph Kanner
- Department of Food Science, ARO, Volcani Center, Bet-Dagan 7505101, Israel; or
- Institute of Biochemistry, Food Science and Nutrtion, Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190501, Israel
| |
Collapse
|
22
|
Zhang S, Wang Q, Ye J, Fan Q, Lin X, Gou Z, Azzam MM, Wang Y, Jiang S. Transcriptome and proteome profile of jejunum in chickens challenged with Salmonella Typhimurium revealed the effects of dietary bilberry anthocyanin on immune function. Front Microbiol 2023; 14:1266977. [PMID: 38053560 PMCID: PMC10694457 DOI: 10.3389/fmicb.2023.1266977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/13/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction The present study investigated the effects of bilberry anthocyanin (BA) on immune function when alleviating Salmonella Typhimurium (S. Typhimurium) infection in chickens. Methods A total of 180 newly hatched yellow-feathered male chicks were assigned to three groups (CON, SI, and SI + BA). Birds in CON and SI were fed a basal diet, and those in SI + BA were supplemented with 100 mg/kg BA for 18 days. Birds in SI and SI + BA received 0.5 ml suspension of S. Typhimurium (2 × 109 CFU/ml) by oral gavage at 14 and 16 days of age, and those in CON received equal volumes of sterile PBS. Results At day 18, (1) dietary BA alleviated weight loss of chickens caused by S. Typhimurium infection (P < 0.01). (2) Supplementation with BA reduced the relative weight of the bursa of Fabricius (P < 0.01) and jejunal villus height (P < 0.05) and increased the number of goblet cells (P < 0.01) and the expression of MUC2 (P < 0.05) in jejunal mucosa, compared with birds in SI. (3) Supplementation with BA decreased (P < 0.05) the concentration of immunoglobulins and cytokines in plasma (IgA, IL-1β, IL-8, and IFN-β) and jejunal mucosa (IgG, IgM, sIgA, IL-1β, IL-6, IL-8, TNF-α, IFN-β, and IFN-γ) of S. Typhimurium-infected chickens. (4) BA regulated a variety of biological processes, especially the defense response to bacteria and humoral immune response, and suppressed cytokine-cytokine receptor interaction and intestinal immune network for IgA production pathways by downregulating 6 immune-related proteins. Conclusion In summary, the impaired growth performance and disruption of jejunal morphology caused by S. Typhimurium were alleviated by dietary BA by affecting the expression of immune-related genes and proteins, and signaling pathways are related to immune response associated with immune cytokine receptors and production in jejunum.
Collapse
Affiliation(s)
- Sheng Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Qin Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Jinling Ye
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Qiuli Fan
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Xiajing Lin
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Zhongyong Gou
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Mahmoud M. Azzam
- Department of Animal Production College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Yibing Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Shouqun Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Liu Y, Wang Q, Wu K, Sun Z, Tang Z, Li X, Zhang B. Anthocyanins' effects on diabetes mellitus and islet transplantation. Crit Rev Food Sci Nutr 2023; 63:12102-12125. [PMID: 35822311 DOI: 10.1080/10408398.2022.2098464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The incidence of diabetes mellitus is dramatically increasing every year, causing a huge global burden. Moreover, existing anti-diabetic drugs inevitably bring adverse reactions, and the application of islet transplantation is often limited by the damage caused by oxidative stress after transplantation. Thus, new approaches are needed to combat the growing burden of diabetes mellitus. Anthocyanins are of great nutritional interest and have been documented that have beneficial effects on chronic diseases, including diabetes mellitus. Here, we describe the health effects of anthocyanins on diabetes mellitus and islet transplantation. Epidemiological studies demonstrated that moderate intake of anthocyanins leading to a reduction in risk of diabetes mellitus. Numerous experiments both animal and clinical studies also showed positive effects of anthocyanins on prevention and treatment of diabetes and diabetic complications. These effects of anthocyanins may be related to mechanisms of improving glucose and lipid metabolism and insulin resistance, antioxidant, and anti-inflammatory activities. In addition, damage and function of pancreatic islets after transplantation are also improved by anthocyanins. These findings suggest that daily intake of anthocyanins may not only improve nutritional metabolism in healthy individuals to prevent from diabetes, but also as a supplementary treatment of diabetes mellitus and islet transplantation. Thus, more evidence is needed to better understand the potential health benefits of anthocyanins.
Collapse
Affiliation(s)
- Yang Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Qianwen Wang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Kangze Wu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhouyi Sun
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Zhe Tang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Zhou D, Zhong J, Huang Y, Cheng Y. Effect of free and bound polyphenols from Rosa roxburghii Tratt distiller's grains on moderating fecal microbiota. Food Chem X 2023; 19:100747. [PMID: 37780293 PMCID: PMC10534110 DOI: 10.1016/j.fochx.2023.100747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 10/03/2023] Open
Abstract
Rosa roxburghii Tratt distiller's grains (R. roxburghii DGs), the main by-product of wine processing, showed functional value and potential for high-value usage which benefited from their rich polyphenols. In this study, the free and bound polyphenols from R. roxburghii DGs were extracted and their potential effect on modulating fecal microbiota was investigated using in vitro fecal fermentation. The free polyphenols (26.32-26.45 mg GAE/g) showed higher antioxidant activity compared to the bound polyphenols (8.76-9.01 mg GAE/g). The free and bound polyphenols significantly improved the fecal microbiota community structure and enhanced short chain fatty acids concentrations after the stimulated colonic fermentation for 24 h. Furthermore, the effect of R. roxburghii DGs polyphenols on modulating fecal microbiota was primarily attributed to quercetin, catechin, kaempferol, cyanidin and baicalin. This research suggests that R. roxburghii DGs are a promising source of natural antioxidants and prebiotic foods.
Collapse
Affiliation(s)
- Die Zhou
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Jiang Zhong
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Yongguang Huang
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Yuxin Cheng
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| |
Collapse
|
25
|
Tang Y, Zhang Z, Weng M, Shen Y, Lai W, Hao T, Yao C, Bu X, Du J, Li Y, Mai K, Ai Q. Glycerol monolaurate improved intestinal barrier, antioxidant capacity, inflammatory response and microbiota dysbiosis in large yellow croaker (Larimichthys crocea) fed with high soybean oil diets. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109031. [PMID: 37640122 DOI: 10.1016/j.fsi.2023.109031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Glycerol monolaurate (GML) is a potential candidate for regulating metabolic syndrome and inflammatory response. However, the role of GML in modulating intestinal health in fish has not been well determined. In this study, a 70-d feeding trial was conducted to evaluate the effect of GML on intestinal barrier, antioxidant capacity, inflammatory response and microbiota community of large yellow croaker (13.05 ± 0.09 g) fed with high level soybean oil (SO) diets. Two basic diets with fish oil (FO) or SO were formulated. Based on the SO group diet, three different levels of GML 0.02% (SO0.02), 0.04% (SO0.04) and 0.08% (SO0.08) were supplemented respectively. Results showed that intestinal villus height and perimeter ratio were increased in SO0.04 treatment compared with the SO group. The mRNA expressions of intestinal physical barrier-related gene odc and claudin-11 were significantly up-regulated in different addition of GML treatments compared with the SO group. Fish fed SO diet with 0.04% GML addition showed higher activities of acid phosphatase and lysozyme compared with the SO group. The content of malonaldehyde was significantly decreased and activities of catalase and superoxide dismutase were significantly increased in 0.02% and 0.04% GML groups compared with those in the SO group. The mRNA transcriptional levels of inflammatory response-related genes (il-1β, il-6, tnf-α and cox-2) in 0.04% GML treatment were notably lower than those in the SO group. Meanwhile, sequencing analysis of bacterial 16S rRNA V4-V5 region showed that GML addition changed gut microbiota structure and increased alpha diversity of large yellow croaker fed diets with a high level of SO. The correlation analysis results indicated that the change of intestinal microbiota relative abundance strongly correlated with intestinal health indexes. In conclusion, these results demonstrated that 0.02%-0.04% GML addition could improve intestinal morphology, physical barrier, antioxidant capacity, inflammatory response and microbiota dysbiosis of large yellow croaker fed diets with a high percentage of SO.
Collapse
Affiliation(s)
- Yuhang Tang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Zhou Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Miao Weng
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Yanan Shen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Wencong Lai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Chanwei Yao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Xianyong Bu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, PR China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, PR China.
| |
Collapse
|
26
|
Bima A, Eldakhakhny B, Alamoudi AA, Awan Z, Alnami A, Abo-Elkhair SM, Sakr H, Ghoneim FM, Elsamanoudy A. Molecular Study of the Protective Effect of a Low-Carbohydrate, High-Fat Diet against Brain Insulin Resistance in an Animal Model of Metabolic Syndrome. Brain Sci 2023; 13:1383. [PMID: 37891752 PMCID: PMC10605073 DOI: 10.3390/brainsci13101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Brain insulin resistance is linked to metabolic syndrome (MetS). A low-carbohydrate, high-fat (LCHF) diet has been proposed to have a protective effect. Therefore, this study aimed to investigate the brain insulin resistance markers in a rat animal model of MetS and the protective effects of the LCHF diet. Four groups of male rats (10/group) were created. Group I (Control) was fed a regular diet. Groups II-IV were injected with dexamethasone (DEX) to induce MetS. Group II received DEX with a regular diet. Group III (DEX + LCHF) rates were fed a low-carbohydrate, high-fat diet, while Group IV (DEX + HCLF) rats were fed a high-carbohydrate, low-fat (HCLF) diet. At the end of the four-week experiment, HOMA-IR was calculated. Moreover, cerebral gene expression analysis of S-100B, BDNF, TNF-α, IGF-1, IGF-1 R, IGFBP-2, IGFBP-5, Bax, Bcl-2, and caspase-3 was carried out. In the DEX group, rats showed a significant increase in the HOMA-IR and a decrease in the gene expression of IGF-1, IGF-1 R, IGFBP-2, IGFBP-5, BDNF, and Bcl2, with a concomitant rise in S100B, TNF-α, Bax, and caspase-3. The LCHF diet group showed a significantly opposite effect on all parameters. In conclusion, MetS is associated with dysregulated cerebral gene expression of BDNF, S100B, and TNF-α and disturbed IGF-1 signaling, with increased apoptosis and neuroinflammation. Moreover, the LCHF diet showed a protective effect, as evidenced by preservation of the investigated biochemical and molecular parameters.
Collapse
Affiliation(s)
- Abdulhadi Bima
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
| | - Basmah Eldakhakhny
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
- Food, Nutrition, and Lifestyle Research Unit, King Fahd for Medical Research Centre, King Abdulaziz University, Jeddah 21465, Saudi Arabia
| | - Aliaa A. Alamoudi
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
| | - Zuhier Awan
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
| | - Abrar Alnami
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
| | - Salwa Mohamed Abo-Elkhair
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Hussein Sakr
- Physiology Department, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman;
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Fatma Mohamed Ghoneim
- Faculty Development Unit, Physiological Science and Medical Education Department, Fakeeh College for Medical Sciences, Jeddah 23323, Saudi Arabia;
| | - Ayman Elsamanoudy
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
27
|
Lucia CMD, Oliveira LA, Dias KA, Pereira SMS, da Conceição AR, Babu PVA. Scientific Evidence for the Beneficial Effects of Dietary Blueberries on Gut Health: A Systematic Review. Mol Nutr Food Res 2023; 67:e2300096. [PMID: 37428472 PMCID: PMC10538750 DOI: 10.1002/mnfr.202300096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/10/2023] [Indexed: 07/11/2023]
Abstract
Emerging evidence indicates the association between an unhealthy gut and chronic diseases. A healthy gut comprises an intact gut epithelium and balanced gut microbes. Diet is one of the critical factors that modulate gut health by positively or negatively affecting the intestinal barrier and gut microbes. Blueberries are an excellent source of health-promoting bioactive components, and this systematic review is conducted to evaluate the effect of dietary blueberries on gut health. A literature search is conducted on PubMed/MEDLINE, Scopus, Web of Science, and Embase databases to review relevant studies published between 2011 and 2022 according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The Systematic Review Center for Laboratory Animal Experimentation Risk of Bias (SYRCLE-RoB) tool is used for methodological quality assessments. Sixteen studies included from four countries are reviewed and the results are synthesized narratively. This data analysis indicates that blueberry supplementation improves gut health by improving intestinal morphology, reducing gut permeability, suppressing oxidative stress, ameliorating gut inflammation, and modulating the composition and function of gut microbes. However, there are significant knowledge gaps in this field. These findings indicate that further studies are needed to establish the beneficial effects of blueberries on gut health.
Collapse
Affiliation(s)
- Ceres Mattos Della Lucia
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Livya Alves Oliveira
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Kelly Aparecida Dias
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
28
|
Zhu G, Zhao J, Zhang H, Wang G, Chen W. Gut Microbiota and its Metabolites: Bridge of Dietary Nutrients and Alzheimer's Disease. Adv Nutr 2023; 14:819-839. [PMID: 37075947 PMCID: PMC10334159 DOI: 10.1016/j.advnut.2023.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive impairment and neuroinflammation. Recent research has revealed the crucial role of gut microbiota and microbial metabolites in modulating AD. However, the mechanisms by which the microbiome and microbial metabolites affect brain function remain poorly understood. Here, we review the literature on changes in the diversity and composition of the gut microbiome in patients with AD and in animal models of AD. We also discuss the latest progress in understanding the pathways by which the gut microbiota and microbial metabolites from the host or diet regulate AD. By understanding the effects of dietary components on brain function, microbiota composition, and microbial metabolites, we examine the potential for manipulation of the gut microbiota through dietary intervention to delay the progression of AD. Although it is challenging to translate our understanding of microbiome-based approaches to dietary guidelines or clinical therapies, these findings provide an attractive target for promoting brain function.
Collapse
Affiliation(s)
- Guangsu Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China; National Engineering Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
29
|
Endres K, Friedland K. Talk to Me-Interplay between Mitochondria and Microbiota in Aging. Int J Mol Sci 2023; 24:10818. [PMID: 37445995 DOI: 10.3390/ijms241310818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The existence of mitochondria in eukaryotic host cells as a remnant of former microbial organisms has been widely accepted, as has their fundamental role in several diseases and physiological aging. In recent years, it has become clear that the health, aging, and life span of multicellular hosts are also highly dependent on the still-residing microbiota, e.g., those within the intestinal system. Due to the common evolutionary origin of mitochondria and these microbial commensals, it is intriguing to investigate if there might be a crosstalk based on preserved common properties. In the light of rising knowledge on the gut-brain axis, such crosstalk might severely affect brain homeostasis in aging, as neuronal tissue has a high energy demand and low tolerance for according functional decline. In this review, we summarize what is known about the impact of both mitochondria and the microbiome on the host's aging process and what is known about the aging of both entities. For a long time, bacteria were assumed to be immortal; however, recent evidence indicates their aging and similar observations have been made for mitochondria. Finally, we present pathways by which mitochondria are affected by microbiota and give information about therapeutic anti-aging approaches that are based on current knowledge.
Collapse
Affiliation(s)
- Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Kristina Friedland
- Department of Pharmacology and Toxicology, Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55128 Mainz, Germany
| |
Collapse
|
30
|
Frountzas M, Karanikki E, Toutouza O, Sotirakis D, Schizas D, Theofilis P, Tousoulis D, Toutouzas KG. Exploring the Impact of Cyanidin-3-Glucoside on Inflammatory Bowel Diseases: Investigating New Mechanisms for Emerging Interventions. Int J Mol Sci 2023; 24:ijms24119399. [PMID: 37298350 DOI: 10.3390/ijms24119399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Cyanidin-3-O-glucoside (C3G), the most widely distributed anthocyanin (ACN) in edible fruits, has been proposed for several bioactivities, including anti-inflammatory, neuro-protective, antimicrobial, anti-viral, anti-thrombotic and epigenetic actions. However, habitual intake of ACNs and C3G may vary widely among populations, regions, and seasons, among individuals with different education and financial status. The main point of C3G absorption occurs in the small and large bowel. Therefore, it has been supposed that the treating properties of C3G might affect inflammatory bowel diseases (IBD), such as ulcerative colitis (UC) and Crohn's disease (CD). IBDs develop through complex inflammatory pathways and sometimes may be resistant to conventional treatment strategies. C3G presents antioxidative, anti-inflammatory, cytoprotective, and antimicrobial effects useful for IBD management. In particular, different studies have demonstrated that C3G inhibits NF-κB pathway activation. In addition, C3G activates the Nrf2 pathway. On the other hand, it modulates the expression of antioxidant enzymes and cytoprotective proteins, such as NAD(P)H, superoxide dismutase, heme-oxygenase (HO-1), thioredoxin, quinone reductase-oxide 1 (NQO1), catalase, glutathione S-transferase and glutathione peroxidase. Interferon I and II pathways are downregulated by C3G inhibiting interferon-mediating inflammatory cascades. Moreover, C3G reduces reactive species and pro-inflammatory cytokines, such as C reactive protein, interferon-γ, tumor necrosis factor-α, interleukin (IL)-5, IL-9, IL-10, IL-12p70, and IL-17A in UC and CD patients. Finally, C3G modulates gut microbiota by inducing an increase in beneficial gut bacteria and increasing microbial abundances, thus mitigating dysbiosis. Thus, C3G presents activities that may have potential therapeutic and protective actions against IBD. Still, in the future, clinical trials should be designed to investigate the bioavailability of C3G in IBD patients and the proper therapeutic doses through different sources, aiming to the standardization of the exact clinical outcome and efficacy of C3G.
Collapse
Affiliation(s)
- Maximos Frountzas
- First Propaedeutic Department of Surgery, Hippocration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eva Karanikki
- Department of Clinical Nutrition, Hippocration General Hospital, 11527 Athens, Greece
| | - Orsalia Toutouza
- School of Medicine, Imperial College of London, London SW7 2AZ, UK
| | - Demosthenis Sotirakis
- First Propaedeutic Department of Surgery, Hippocration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Panagiotis Theofilis
- First Cardiology Department, "Hippocration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Dimitris Tousoulis
- First Cardiology Department, "Hippocration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Konstantinos G Toutouzas
- First Propaedeutic Department of Surgery, Hippocration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
31
|
Wilder-Smith CH, Materna A, Olesen SS. Blueberries Improve Abdominal Symptoms, Well-Being and Functioning in Patients with Functional Gastrointestinal Disorders. Nutrients 2023; 15:nu15102396. [PMID: 37242279 DOI: 10.3390/nu15102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Blueberries beneficially modulate physiologic mechanisms relevant to the pathogenesis of functional gastrointestinal disorders (FGID). Forty-three patients with FGID received freeze-dried blueberries (equivalent to 180 g fresh blueberries) or sugar and energy-matched placebo in a double-blind, randomized, cross-over study. After 6 weeks of treatment, the differences in Gastrointestinal Clinical Rating Scale (GSRS) scores and abdominal symptom relief were compared as primary outcome measures. The quality of life and life functioning ratings (OQ45.2 questionnaire), Bristol stool scales, and fructose breath test results constituted secondary outcome measures. Blueberry treatment resulted in more patients with relevant abdominal symptom relief compared to placebo (53% vs. 30%, p = 0.03). Total and pain GSRS scores improved insignificantly (mean treatment differences [95% CI]: -3.4 [-7.4 to 0.6] (p = 0.09) and -1.0 [-2.2 to 0.1] (p = 0.08), respectively). OQ45.2 scores improved during blueberry treatment compared to placebo (treatment difference -3.2 [95% CI: -5.6 to -0], p = 0.01). Treatment effect differences for the further measures did not reach statistical significance. Blueberries relieved abdominal symptoms and improved general markers of well-being, quality of life, and life functioning more than placebo in patients with FGID. Consequently, the polyphenol and fiber components of blueberries exert broad beneficial effects separate from the sugars present in both treatments.
Collapse
Affiliation(s)
- Clive H Wilder-Smith
- Brain-Gut Research Group, Gastroenterology Group Practice, 3011 Bern, Switzerland
| | - Andrea Materna
- Brain-Gut Research Group, Gastroenterology Group Practice, 3011 Bern, Switzerland
| | - Søren S Olesen
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, 5000 Aalborg, Denmark
| |
Collapse
|
32
|
Naz R, Saqib F, Awadallah S, Wahid M, Latif MF, Iqbal I, Mubarak MS. Food Polyphenols and Type II Diabetes Mellitus: Pharmacology and Mechanisms. Molecules 2023; 28:molecules28103996. [PMID: 37241737 DOI: 10.3390/molecules28103996] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Type II diabetes mellitus and its related complications are growing public health problems. Many natural products present in our diet, including polyphenols, can be used in treating and managing type II diabetes mellitus and different diseases, owing to their numerous biological properties. Anthocyanins, flavonols, stilbenes, curcuminoids, hesperidin, hesperetin, naringenin, and phenolic acids are common polyphenols found in blueberries, chokeberries, sea-buckthorn, mulberries, turmeric, citrus fruits, and cereals. These compounds exhibit antidiabetic effects through different pathways. Accordingly, this review presents an overview of the most recent developments in using food polyphenols for managing and treating type II diabetes mellitus, along with various mechanisms. In addition, the present work summarizes the literature about the anti-diabetic effect of food polyphenols and evaluates their potential as complementary or alternative medicines to treat type II diabetes mellitus. Results obtained from this survey show that anthocyanins, flavonols, stilbenes, curcuminoids, and phenolic acids can manage diabetes mellitus by protecting pancreatic β-cells against glucose toxicity, promoting β-cell proliferation, reducing β-cell apoptosis, and inhibiting α-glucosidases or α-amylase. In addition, these phenolic compounds exhibit antioxidant anti-inflammatory activities, modulate carbohydrate and lipid metabolism, optimize oxidative stress, reduce insulin resistance, and stimulate the pancreas to secrete insulin. They also activate insulin signaling and inhibit digestive enzymes, regulate intestinal microbiota, improve adipose tissue metabolism, inhibit glucose absorption, and inhibit the formation of advanced glycation end products. However, insufficient data are available on the effective mechanisms necessary to manage diabetes.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | | |
Collapse
|
33
|
Huang H, Luo Y, Wang Q, Zhang Y, Li Z, He R, Chen X, Dong Z. Vaccinium as Potential Therapy for Diabetes and Microvascular Complications. Nutrients 2023; 15:2031. [PMID: 37432140 DOI: 10.3390/nu15092031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus is one of the most critical global health concerns, with a fast-growing prevalence. The incidence of diabetic vascular complications is also rapidly increasing, exacerbating the burden on individuals with diabetes and the consumption of public medical resources. Despite the overall improvements in the prevention, diagnosis, and treatment of diabetic microvascular complications in recent years, safe and effective alternative or adjunctive therapies are urgently needed. The mechanisms underlying diabetic vascular complications are complex, with hyperglycemia-induced oxidative stress and inflammation being the leading causes. Therefore, glycemic control, antioxidation, and anti-inflammation are considered the main targets for the treatment of diabetes and its vascular comorbidities. Vaccinium L. (Ericaceae) is a genus of plants enriched with polyphenolic compounds in their leaves and fruits. Vaccinium and its extracts have demonstrated good bioactivity in reducing blood glucose, oxidative stress, and inflammation, making them excellent candidates for the management of diabetes and diabetic vascular complications. Here, we review recent preclinical and clinical studies on the potential effect of Vaccinium on ameliorating diabetes and diabetic complications, particularly diabetic kidney disease and diabetic retinopathy.
Collapse
Affiliation(s)
- Hui Huang
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yayong Luo
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Wang
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
| | - Yihan Zhang
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou 510663, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou 510663, China
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou 510663, China
| | - Xiangmei Chen
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zheyi Dong
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
| |
Collapse
|
34
|
Santamarina AB, Calder PC, Estadella D, Pisani LP. Anthocyanins ameliorate obesity-associated metainflammation: Preclinical and clinical evidence. Nutr Res 2023; 114:50-70. [PMID: 37201432 DOI: 10.1016/j.nutres.2023.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
The growing rates of obesity worldwide call for intervention strategies to help control the pathophysiological consequences of weight gain. The use of natural foods and bioactive compounds has been suggested as such a strategy because of their recognized antioxidant and anti-inflammatory properties. For example, polyphenols, especially anthocyanins, are candidates for managing obesity and its related metabolic disorders. Obesity is well known for the presence of metainflammation, which has been labeled as an inflammatory activation that leads to a variety of metabolic disorders, usually related to increased oxidative stress. Considering this, anthocyanins may be promising natural compounds able to modulate several intracellular mechanisms, mitigating oxidative stress and metainflammation. A wide variety of foods and extracts rich in anthocyanins have become the focus of research in the field of obesity. Here, we bring together the current knowledge regarding the use of anthocyanins as an intervention tested in vitro, in vivo, and in clinical trials to modulate metainflammation. Most recent research applies a wide variety of extracts and natural sources of anthocyanins, in diverse experimental models, which represents a limitation of the research field. However, the literature is sufficiently consistent to establish that the in-depth molecular analysis of gut microbiota, insulin signaling, TLR4-triggered inflammation, and oxidative stress pathways reveals their modulation by anthocyanins. These targets are interconnected at the cellular level and interact with one another, leading to obesity-associated metainflammation. Thus, the positive findings with anthocyanins observed in preclinical models might directly relate to the positive outcomes in clinical studies. In summary and based on the entirety of the relevant literature, anthocyanins can mitigate obesity-related perturbations in gut microbiota, insulin resistance, oxidative stress and inflammation and therefore may contribute as a therapeutic tool in people living with obesity.
Collapse
Affiliation(s)
- Aline B Santamarina
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Debora Estadella
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Luciana P Pisani
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil.
| |
Collapse
|
35
|
Cui M, Tang G, Yan F, Wang S, Wang X, Yao J, Xu X. Oral administration of heat-inactivated Escherichia coli during suckling alleviated Salmonella typhimurium-derived intestinal injury after rat weaning. Front Immunol 2023; 14:1119747. [PMID: 37090706 PMCID: PMC10114613 DOI: 10.3389/fimmu.2023.1119747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
IntroductionNewly weaned animals are susceptible to a wide range of microbial infections taking a high risk of developing post-weaning diarrhea. Trained immunity is the capacity of the innate immune system to produce a stronger and non-specific response against a secondary infection after the inflammatory response caused by previous stimulus has returned to normal state. The objective of this study was to evaluate if the heat-inactivated Escherichia coli (IEC) as an immunostimulant on suckling pups elicits a protective effect on the intestine of post-weaning rats challenged with Salmonella Typhimurium (S.Typhimurium). We adapted a newborn rat model for this purpose.MethodsSixty newborn pups were randomly separated into two groups: IEC group (n =30) orally administrated IEC during suckling, while the CON group received orally the same dose of saline. Both of the two group challenged with various doses of S.Typhimurium after experiencing a 4-week resting period. Twelve of individuals were selected to detect the survival rate, and ten of the rest were necropsied 48 hours post-challenge.Results and DiscussionThe results showed that oral administration of IEC during suckling alleviated the injury in ileal morphology induced by post-weaning S.Typhimurium infection via increasing the levels of two tight junction proteins [zonula occluden-1 (ZO-1) and Occludin-1] and several secreted proteins (Lysozyme, Mucin-2, and SIgA) in the intestinal mucosa. Furthermore, the pre-stimulation with IEC significantly increased cytokines tumor necrosis factor-alpha (TNF- α) and interleukin-1 beta (IL-1 β) expressions in an enhanced secondary reaction way after experiencing a 4-week resting period. This implicated the possible involvement of trained immunity. The 16S rDNA sequence results showed that pre-stimulation with IEC decreased the abundance of Clostridia, Prevotella, Christensenellaceae_R-7_group and Parabacteroides after intestinal infection of S.Typhimurium. Our results confirmed that the previous oral administration of IEC had a protective effect on S.Typhimurium-induced intestinal injury in weaned rats by inducing a robust immune response. The present study suggested a new strategy for preventing intestinal infection of newborn animals.
Collapse
|
36
|
Tobin I, Zhang G. Regulation of Host Defense Peptide Synthesis by Polyphenols. Antibiotics (Basel) 2023; 12:660. [PMID: 37107022 PMCID: PMC10135163 DOI: 10.3390/antibiotics12040660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The rise of antimicrobial resistance has created an urgent need for antibiotic-alternative strategies for disease control and prevention. Host defense peptides (HDPs), which have both antimicrobial and immunomodulatory properties, are an important component of the innate immune system. A host-directed approach to stimulate the synthesis of endogenous HDPs has emerged as a promising solution to treat infections with a minimum risk for developing antimicrobial resistance. Among a diverse group of compounds that have been identified as inducers of HDP synthesis are polyphenols, which are naturally occurring secondary metabolites of plants characterized by the presence of multiple phenol units. In addition to their well-known antioxidant and anti-inflammatory activities, a variety of polyphenols have been shown to stimulate HDP synthesis across animal species. This review summarizes both the in vitro and in vivo evidence of polyphenols regulating HDP synthesis. The mechanisms by which polyphenols induce HDP gene expression are also discussed. Natural polyphenols warrant further investigation as potential antibiotic alternatives for the control and prevention of infectious diseases.
Collapse
Affiliation(s)
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
37
|
Redondo-Castillejo R, Garcimartín A, Hernández-Martín M, López-Oliva ME, Bocanegra A, Macho-González A, Bastida S, Benedí J, Sánchez-Muniz FJ. Proanthocyanidins: Impact on Gut Microbiota and Intestinal Action Mechanisms in the Prevention and Treatment of Metabolic Syndrome. Int J Mol Sci 2023; 24:ijms24065369. [PMID: 36982444 PMCID: PMC10049473 DOI: 10.3390/ijms24065369] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The metabolic syndrome (MS) is a cluster of risk factors, such as central obesity, hyperglycemia, dyslipidemia, and arterial hypertension, which increase the probability of causing premature mortality. The consumption of high-fat diets (HFD) is a major driver of the rising incidence of MS. In fact, the altered interplay between HFD, microbiome, and the intestinal barrier is being considered as a possible origin of MS. Consumption of proanthocyanidins (PAs) has a beneficial effect against the metabolic disturbances in MS. However, there are no conclusive results in the literature about the efficacy of PAs in improving MS. This review allows a comprehensive validation of the diverse effects of the PAs on the intestinal dysfunction in HFD-induced MS, differentiating between preventive and therapeutic actions. Special emphasis is placed on the impact of PAs on the gut microbiota, providing a system to facilitate comparison between the studies. PAs can modulate the microbiome toward a healthy profile and strength barrier integrity. Nevertheless, to date, published clinical trials to verify preclinical findings are scarce. Finally, the preventive consumption of PAs in MS-associated dysbiosis and intestinal dysfunction induced by HFD seems more successful than the treatment strategy.
Collapse
Affiliation(s)
- Rocío Redondo-Castillejo
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Marina Hernández-Martín
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aránzazu Bocanegra
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (A.B.); (F.J.S.-M.); Tel.: +34-394-1700 (A.B.); +34-913-941-828 (F.J.S.-M.)
| | - Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sara Bastida
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco J. Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (A.B.); (F.J.S.-M.); Tel.: +34-394-1700 (A.B.); +34-913-941-828 (F.J.S.-M.)
| |
Collapse
|
38
|
Effects of Ethanolic and Aqueous Extracts of Garcinia gardneriana Leaves in an In Vivo Experimental Model Induced by a Hyperlipidic Diet. Nutrients 2023; 15:nu15061308. [PMID: 36986038 PMCID: PMC10051817 DOI: 10.3390/nu15061308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 03/09/2023] Open
Abstract
The study of medicinal plants, such as the genus Garcinia (Clusiaceae), in the treatment of non-communicable chronic diseases has aroused the interest of researchers. However, there are no studies in the literature that have investigated the effects of Garcinia gardneriana in experimental models of obesity for possible metabolic alterations. Swiss mice receiving a high-fat diet were supplemented with aqueous or ethanolic extract of G. gardneriana at doses of 200 or 400 mg/kg/day. It was found that there was a reduction in food consumption in experimental groups compared with the control groups, and the group supplemented with aqueous extract at a dose of 200 mg/kg/daydisplayed a reduction in weight. The results showed an increase in the values of high density lipoprotein (HDL-c), total cholesterol, triglycerides and fasting blood glucose. G. gardneriana did not protect against insulin resistance, and caused in an increase in monocyte chemoattractant protein-1 (MCP-1) concentrations and a reduction in interleukin 10 (IL-10). In addition, hepatic steatosis and microvesicular steatosis were indicated. It was revealed that, under the experimental conditions in the study, G. gardneriana did not prevent weight gain or comorbidities; that is, a different behavior was obtained from that described in the literature with regard to the medicinal potential of the Garcinia species, which is probably related to the phytochemical properties.
Collapse
|
39
|
Dietary Sources of Anthocyanins and Their Association with Metabolome Biomarkers and Cardiometabolic Risk Factors in an Observational Study. Nutrients 2023; 15:nu15051208. [PMID: 36904207 PMCID: PMC10005166 DOI: 10.3390/nu15051208] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
Anthocyanins (ACNs) are (poly)phenols associated with reduced cardiometabolic risk. Associations between dietary intake, microbial metabolism, and cardiometabolic health benefits of ACNs have not been fully characterized. Our aims were to study the association between ACN intake, considering its dietary sources, and plasma metabolites, and to relate them with cardiometabolic risk factors in an observational study. A total of 1351 samples from 624 participants (55% female, mean age: 45 ± 12 years old) enrolled in the DCH-NG MAX study were studied using a targeted metabolomic analysis. Twenty-four-hour dietary recalls were used to collect dietary data at baseline, six, and twelve months. ACN content of foods was calculated using Phenol Explorer and foods were categorized into food groups. The median intake of total ACNs was 1.6mg/day. Using mixed graphical models, ACNs from different foods showed specific associations with plasma metabolome biomarkers. Combining these results with censored regression analysis, metabolites associated with ACNs intake were: salsolinol sulfate, 4-methylcatechol sulfate, linoleoyl carnitine, 3,4-dihydroxyphenylacetic acid, and one valerolactone. Salsolinol sulfate and 4-methylcatechol sulfate, both related to the intake of ACNs mainly from berries, were inversely associated with visceral adipose tissue. In conclusion, plasma metabolome biomarkers of dietary ACNs depended on the dietary source and some of them, such as salsolinol sulfate and 4-methylcatechol sulfate may link berry intake with cardiometabolic health benefits.
Collapse
|
40
|
Li H, Xiao C, Wang F, Guo X, Zhou Z, Jiang Y. Blueberry-Mulberry Extract Alleviates Cognitive Impairment, Regulates Gut Metabolites, and Inhibits Inflammation in Aged Mice. Foods 2023; 12:foods12040860. [PMID: 36832936 PMCID: PMC9956669 DOI: 10.3390/foods12040860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/22/2023] Open
Abstract
Cognitive impairment is associated with aging; however, the underlying mechanism remains unclear. Our previous study found that polyphenol-rich blueberry-mulberry extract (BME) had an antioxidant capability and effectively alleviated cognitive impairment in a mouse model of Alzheimer's disease. Thus, we hypothesized that BME would improve cognitive performance in naturally aging mice and assessed its effects on related signaling pathways. Eighteen-month-old C57BL/6J mice were gavaged with 300 mg/kg/d of BME for 6 weeks. Behavioral phenotypes, cytokine levels, tight junction protein levels, and the histopathology of the brain were assessed, and 16S ribosomal RNA sequencing and targeted metabolome analyses were used for gut microbiota and metabolite measurements. Our results showed that the cognitive performance of aged mice in the Morris water maze test was improved after BME treatment, neuronal loss was reduced, IL-6 and TNF-α levels in the brain and intestine were decreased, and the levels of intestinal tight junction proteins (ZO-1 and occludin) were increased. Further, 16S sequencing showed that BME significantly increased the relative abundance of Lactobacillus, Streptococcus, and Lactococcus and decreased the relative abundance of Blautia, Lachnoclostridium, and Roseburia in the gut. A targeted metabolomic analysis showed that BME significantly increased the levels of 21 metabolites, including α-linolenic acid, vanillic acid, and N-acetylserotonin. In conclusion, BME alters the gut microbiota and regulates gut metabolites in aged mice, which may contribute to the alleviation of cognitive impairment and to inflammation inhibition in both the brain and the gut. Our results provide a basis for future research on natural antioxidant intervention as a treatment strategy for aging-related cognitive impairment.
Collapse
Affiliation(s)
- Hui Li
- Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Changhao Xiao
- Institute of Environmental and Operational Medicine, Tianjin 300050, China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Feng Wang
- Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xuqi Guo
- Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yugang Jiang
- Institute of Environmental and Operational Medicine, Tianjin 300050, China
- Correspondence: ; Tel.: +86-139-2077-0716
| |
Collapse
|
41
|
Eun S, Seo H, Suh HJ, Jeong S, Lee S. Modulation of Gut Microbiota and Intestinal Barrier Integrity and Inflammation Profile in High Fat-fed Rats. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0379-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
42
|
Phenolics from noni (Morinda citrifolia L.) fruit alleviate obesity in high fat diet-fed mice via modulating the gut microbiota and mitigating intestinal damage. Food Chem 2023; 402:134232. [DOI: 10.1016/j.foodchem.2022.134232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/27/2022] [Accepted: 09/11/2022] [Indexed: 11/22/2022]
|
43
|
Liu Y, Zhu D, Liu J, Sun X, Gao F, Duan H, Dong L, Wang X, Wu C. Pediococcus pentosaceus PR-1 modulates high-fat-died-induced alterations in gut microbiota, inflammation, and lipid metabolism in zebrafish. Front Nutr 2023; 10:1087703. [PMID: 36819708 PMCID: PMC9929557 DOI: 10.3389/fnut.2023.1087703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Obesity is a health issue worldwide. This study aimed to evaluate the beneficial effects of Pediococcus pentococcus PR-1 on the modulating of gut microbiota, inflammation and lipid metabolism in high-fat-diet (HFD)-fed zebrafish. Methods Adult zebrafish were fed a commercial (C), high fat (H, 25% fat), probiotic (P, 106 CFU/g), or high fat with probiotic (HP) diets twice daily for 5 weeks. Gut microbiota were analysed using 16S rRNA gene sequencing. Gene expressions of intestinal cytokine, intestinal TJ protein, and liver lipid metabolism were analysed by quantitative real-time polymerase chain reaction. Biochemical and histological analysis were also performed. Results and discussion P. pentosaceus PR-1 reduced body weight and BMI, indicating its anti-obesity effect. The 16S rRNA sequencing results showed HFD induced a distinct gut microbiota structure from C group, which was restored by probiotic. P. pentosaceus PR-1 improved gut health by decreasing the abundance of Ralstonia and Aeromonas which were increased induced by HFD. Moreover, probiotic restored abundance of Fusobacteria, Cetobacterium and Plesiomonas, which were decreased in HFD-fed zebrafish. The results of quantitative real-time polymerase chain reaction showed probiotic suppressed HFD-induced inflammation by decreasing the expressions of IL-1b and IL-6. Levels of hepatic TNF-α, IL-1ß, and IL-6 were reduced by probiotic in HFD-fed zebrafish. Probiotic also ameliorated gut barrier function by increasing the expressions of occludin, Claudin-1, and ZO-1. Probiotic exerted anti-adipogenic activity through regulating the expressions of SREBP1, FAS and LEPTIN. Levels of hepatic triglyceride, total cholesterol, low density lipoprotein were also reduced by probiotic. Histological analysis showed probiotic alleviated liver steatosis and injury induced by HFD. P. pentosaceus PR-1 might be useful as a dietary health supplement, especially for reducing obesity.
Collapse
Affiliation(s)
- Yue Liu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,*Correspondence: Yue Liu ✉
| | - Danxu Zhu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jiwen Liu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Xiaoxia Sun
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Feng Gao
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Huiping Duan
- Department of Internal Medicine, Fourth People's Hospital of Taiyuan, Taiyuan, China
| | - Lina Dong
- Central Laboratory, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,Changxin Wu ✉
| |
Collapse
|
44
|
Effect of anthocyanins on gut health markers, Firmicutes-Bacteroidetes ratio and short-chain fatty acids: a systematic review via meta-analysis. Sci Rep 2023; 13:1729. [PMID: 36720989 PMCID: PMC9889808 DOI: 10.1038/s41598-023-28764-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/24/2023] [Indexed: 02/02/2023] Open
Abstract
Researchers discovered that diets rich in anthocyanin-rich fruits and vegetables significantly impacted gut flora. To conclude, large-scale randomized controlled clinical trials are challenging to conduct; therefore, merging data from multiple small studies may aid. A systematic review collects and analyses all research on a particular subject and design. This comprehensive review and meta-analysis examined the influence of dietary anthocyanins on Firmicutes/Bacteroide (Fir/Bac) and short-chain fatty acids (SCFAs) content. The current meta-analysis followed the guidelines of PRISMA-the preferred reporting items for systematic reviews and meta-analyses. Diets high in anthocyanins substantially reduced the Fir/Bac ratio in the assessed trials. Among three SCFAs, the highest impact was observed on acetic acid, followed by propionic acid, and then butanoic acid. The meta-analysis results also obtained sufficient heterogeneity, as indicated by I2 values. There is strong evidence that anthocyanin supplementation improves rodent gut health biomarkers (Fir/Bac and SCFAs), reducing obesity-induced gut dysbiosis, as revealed in this systematic review/meta-analysis. Anthocyanin intervention duration and dosage significantly influenced the Fir/Bac ratio and SCFA. Anthocyanin-rich diets were more effective when consumed over an extended period and at a high dosage.
Collapse
|
45
|
Corrie L, Awasthi A, Kaur J, Vishwas S, Gulati M, Kaur IP, Gupta G, Kommineni N, Dua K, Singh SK. Interplay of Gut Microbiota in Polycystic Ovarian Syndrome: Role of Gut Microbiota, Mechanistic Pathways and Potential Treatment Strategies. Pharmaceuticals (Basel) 2023; 16:197. [PMID: 37259345 PMCID: PMC9967581 DOI: 10.3390/ph16020197] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 11/26/2023] Open
Abstract
Polycystic Ovarian Syndrome (PCOS) comprises a set of symptoms that pose significant risk factors for various diseases, including type 2 diabetes, cardiovascular disease, and cancer. Effective and safe methods to treat all the pathological symptoms of PCOS are not available. The gut microbiota has been shown to play an essential role in PCOS incidence and progression. Many dietary plants, prebiotics, and probiotics have been reported to ameliorate PCOS. Gut microbiota shows its effects in PCOS via a number of mechanistic pathways including maintenance of homeostasis, regulation of lipid and blood glucose levels. The effect of gut microbiota on PCOS has been widely reported in animal models but there are only a few reports of human studies. Increasing the diversity of gut microbiota, and up-regulating PCOS ameliorating gut microbiota are some of the ways through which prebiotics, probiotics, and polyphenols work. We present a comprehensive review on polyphenols from natural origin, probiotics, and fecal microbiota therapy that may be used to treat PCOS by modifying the gut microbiota.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600007, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | | | - Kamal Dua
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
46
|
Chen Y, Wang Y, Jiang S, Xu J, Wang B, Sun X, Zhang Y. Red-fleshed apple flavonoid extract alleviates CCl 4-induced liver injury in mice. Front Nutr 2023; 9:1098954. [PMID: 36742007 PMCID: PMC9890596 DOI: 10.3389/fnut.2022.1098954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023] Open
Abstract
In recent years, the global incidence of liver damage has increased. Despite the many known health benefits of red-fleshed apple flavonoids, their potential liver-protective effects have not yet been investigated. In this study, we analyzed the composition of red-fleshed apple flavonoid extract (RAFE) by high-performance liquid chromatography (HPLC). We then induced liver damage in mice with carbon tetrachloride (CCl4) and performed interventions with RAFE to analyze its effect on liver damage, using bifendate as a positive control. The results showed that catechin was the most abundant flavonoid in 'XJ4' RAFE (49.346 mg/100 g). In liver-injured mice, the liver coefficients converged to normal levels following RAFE intervention. Moreover, RAFE significantly reduced the enzymatic activity levels of glutamic oxaloacetic transaminase (ALT), glutamic alanine transaminase (AST), and alkaline phosphatase (ALP) in mouse serum. Furthermore, RAFE significantly increased the content or enzyme activity level of total glutathione, total antioxidant capacity, and superoxide dismutase, and significantly decreased the content of malondialdehyde in the liver of mice. In parallel, we performed histopathological observations of mouse livers for each group. The results showed that RAFE restored the pathological changes caused by CCl4 around the central hepatic vein in mice and resulted in tightly bound hepatocytes. The recovery effect of RAFE was dose-dependent in the liver tissue. Regarding intestinal microorganisms, we found that RAFE restored the microbial diversity in liver-injured mice, with a similar microbial composition in the RAFE intervention group and normal group. RAFE reduced the ratio of Firmicutes to Bacteroidetes, increased the levels of probiotic bacteria, such as Lactobacillus acidophilus, and Clostridium, and reduced the levels of harmful bacteria, such as Erysipelothrix Rosenbach. Therefore, RAFE ameliorated CCl4-induced liver damage by modulating the abundance and composition of intestinal microorganisms in mice. In conclusion, RAFE alleviated CCl4-induced liver damage in mice, with H-RAFE (5 mg kg-1) significantly improving liver damage in mice but M-RAFE (1 mg kg-1) significantly improving the imbalance of intestinal microorganisms in mice. Our research suggests that RAFE could be employed for the adjuvant treatment and prevention of liver damage, and may have important applications in food and medicine.
Collapse
Affiliation(s)
- Yizhou Chen
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China
| | - Yanbo Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Shenghui Jiang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jihua Xu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Bin Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Xiaohong Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
47
|
Naliyadhara N, Kumar A, Kumar Gangwar S, Nair Devanarayanan T, Hegde M, Alqahtani MS, Abbas M, Sethi G, Kunnumakara A. Interplay of dietary antioxidants and gut microbiome in human health: What has been learnt thus far? J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
48
|
de Oliveira MS, Pellenz FM, de Souza BM, Crispim D. Blueberry Consumption and Changes in Obesity and Diabetes Mellitus Outcomes: A Systematic Review. Metabolites 2022; 13:metabo13010019. [PMID: 36676944 PMCID: PMC9861336 DOI: 10.3390/metabo13010019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Low-grade inflammation and oxidative stress are key mechanisms involved in obesity and related disorders. Polyphenols from blueberry (BB) and bilberries (BiB) might protect against oxidative damage and inflammation. To summarize the effects of BiB or BB consumption in parameters related to obesity and its comorbidities, a search of the literature was performed in PubMed, Embase, and Cochrane Library repositories to identify all studies that evaluated associations of whole BB or BiB with obesity and associated disorders. Thirty-one studies were eligible for inclusion in this review: eight clinical trials and 23 animal studies. In humans, BB consumption only consistently decreased oxidative stress and improved endothelial function. In rodents, BB or BiB consumption caused positive effects on glucose tolerance, nuclear factor-kappa B (Nf-κb) activity, oxidative stress, and triglyceride (TG) content in the liver and hepatic steatosis. The high content of anthocyanins present in BB and BiB seems to attenuate oxidative stress. The decrease in oxidative stress may have a positive impact on glucose tolerance and endothelial function. Moreover, in rodents, these berries seem to protect against hepatic steatosis, through the decreased accumulation of hepatic TGs. BB and BiB might also attenuate inflammation by decreasing Nf-κb activity and immune cell recruitment into the adipose tissue.
Collapse
Affiliation(s)
- Mayara Souza de Oliveira
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil
| | - Felipe Mateus Pellenz
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil
| | - Bianca Marmontel de Souza
- Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Daisy Crispim
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil
- Correspondence:
| |
Collapse
|
49
|
Zhang M, Chen Y, Chen R, Wen Y, Huang Q, Liu Y, Zhao C. Research status of the effects of natural oligosaccharides on glucose metabolism. EFOOD 2022. [DOI: 10.1002/efd2.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Minjiao Zhang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Yaobin Chen
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Ruoxin Chen
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Yuxi Wen
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Department of Analytical and Food Chemistry, Nutrition and Bromatology Group, Faculty of Sciences Universidade de Vigo Ourense Spain
| | - Qihui Huang
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Department of Analytical and Food Chemistry, Nutrition and Bromatology Group, Faculty of Sciences Universidade de Vigo Ourense Spain
| | - Yuanyuan Liu
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Chao Zhao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
50
|
Santana LF, do Espirito Santo BLS, Tatara MB, Negrão FJ, Croda J, Alves FM, de Oliveira Filiú WF, Cavalheiro LF, Nazário CED, Asato MA, de Faria BB, do Nascimento VA, de Cássia Avellaneda Guimarães R, de Cássia Freitas K, Hiane PA. Effects of the Seed Oil of Carica papaya Linn on Food Consumption, Adiposity, Metabolic and Inflammatory Profile of Mice Using Hyperlipidic Diet. Molecules 2022; 27:6705. [PMID: 36235241 PMCID: PMC9570947 DOI: 10.3390/molecules27196705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Studies indicate that different parts of Carica papaya Linn have nutritional properties that mean it can be used as an adjuvant for the treatment of various pathologies. METHODS The fatty acid composition of the oil extracted from the seeds of Carica papaya Linn was evaluated by gas chromatography, and an acute toxicity test was performed. For the experiment, Swiss mice were fed a balanced or high-fat diet and supplemented with saline, soybean oil, olive oil, or papaya seed oil. Oral glucose tolerance and insulin sensitivity tests were performed. After euthanasia, adiposity, glycemia, total cholesterol and fractions, insulin, resistin, leptin, MCP-1, TNF-α, and IL-6 and the histology of the liver, pancreas, and adipose tissue were evaluated. RESULTS Papaya seed oil showed predominance of monounsaturated fatty acids in its composition. No changes were observed in the acute toxicity test. Had lower food intake in grams, and caloric intake and in the area of adipocytes without minimizing weight gain or adiposity and impacting the liver or pancreas. Reductions in total and non-HDL-c, LDL-c, and VLDL-c were also observed. The treatment had a hypoglycemic and protective effect on insulin resistance. Supplementation also resulted in higher leptin and lower insulin and cytokine resistance. CONCLUSIONS Under these experimental conditions, papaya seed oil led to higher amounts of monounsaturated fatty acids and had hypocholesterolemic, hypotriglyceridemic, and hypoglycemic effects.
Collapse
Affiliation(s)
- Lidiani Figueiredo Santana
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | - Bruna Larissa Spontoni do Espirito Santo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | - Mariana Bento Tatara
- Health Science Research Laboratory, Federal University of Grande Dourados, Dourados 79804-970, Brazil
| | - Fábio Juliano Negrão
- Health Science Research Laboratory, Federal University of Grande Dourados, Dourados 79804-970, Brazil
| | - Júlio Croda
- Oswaldo Cruz Foundation, Campo Grande 79074-460, Brazil
| | - Flávio Macedo Alves
- Laboratory of Botany, Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Wander Fernando de Oliveira Filiú
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79079-900, Brazil
| | | | | | - Marcel Arakaki Asato
- Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | | | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | - Karine de Cássia Freitas
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| |
Collapse
|