1
|
Zhang M, Xia L, Peng W, Xie G, Li F, Zhang C, Syeda MZ, Hu Y, Lan F, Yan F, Jin Z, Du X, Han Y, Lv B, Wang Y, Li M, Fei X, Zhao Y, Chen K, Chen Y, Li W, Chen Z, Zhou Q, Zhang M, Ying S, Shen H. CCL11/CCR3-dependent eosinophilia alleviates malignant pleural effusions and improves prognosis. NPJ Precis Oncol 2024; 8:138. [PMID: 38951159 PMCID: PMC11217290 DOI: 10.1038/s41698-024-00608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/09/2024] [Indexed: 07/03/2024] Open
Abstract
Malignant pleural effusion (MPE) is a common occurrence in advanced cancer and is often linked with a poor prognosis. Eosinophils were reported to involve in the development of MPE. However, the role of eosinophils in MPE remains unclear. To investigate this, we conducted studies using both human samples and mouse models. Increased eosinophil counts were observed in patients with MPE, indicating that the higher the number of eosinophils is, the lower the LENT score is. In our animal models, eosinophils were found to migrate to pleural cavity actively upon exposure to tumor cells. Intriguingly, we discovered that a deficiency in eosinophils exacerbated MPE, possibly due to their anti-tumor effects generated by modifying the microenvironment of MPE. Furthermore, our experiments explored the role of the C-C motif chemokine ligand 11 (CCL11) and its receptor C-C motif chemokine receptor 3 (CCR3) in MPE pathology. As a conclusion, our study underscores the protective potential of eosinophils against the development of MPE, and that an increase in eosinophils through adoptive transfer of eosinophils or increasing their numbers improved MPE.
Collapse
Affiliation(s)
- Min Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Lixia Xia
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Wenbei Peng
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guogang Xie
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Fei Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Chao Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Madiha Zahra Syeda
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yue Hu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Fen Lan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Fugui Yan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Zhangchu Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xufei Du
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yinling Han
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Baihui Lv
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yuejue Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Miao Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xia Fei
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yun Zhao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Kaijun Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yan Chen
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Zhihua Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China.
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- State Key Lab for Respiratory Diseases, National Clinical Research Centre for Respiratory Disease, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
2
|
Piggott LM, Hayes C, Greene J, Fitzgerald DB. Malignant pleural disease. Breathe (Sheff) 2023; 19:230145. [PMID: 38351947 PMCID: PMC10862126 DOI: 10.1183/20734735.0145-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Malignant pleural disease represents a growing healthcare burden. Malignant pleural effusion affects approximately 1 million people globally per year, causes disabling breathlessness and indicates a shortened life expectancy. Timely diagnosis is imperative to relieve symptoms and optimise quality of life, and should give consideration to individual patient factors. This review aims to provide an overview of epidemiology, pathogenesis and suggested diagnostic pathways in malignant pleural disease, to outline management options for malignant pleural effusion and malignant pleural mesothelioma, highlighting the need for a holistic approach, and to discuss potential challenges including non-expandable lung and septated effusions.
Collapse
Affiliation(s)
- Laura M. Piggott
- Department of Respiratory Medicine, Tallaght University Hospital, Dublin, Ireland
- Department of Respiratory Medicine, St. James's Hospital, Dublin, Ireland
- These authors contributed equally
| | - Conor Hayes
- Department of Respiratory Medicine, Tallaght University Hospital, Dublin, Ireland
- Department of Respiratory Medicine, St. James's Hospital, Dublin, Ireland
- These authors contributed equally
| | - John Greene
- Department of Oncology, Tallaght University Hospital, Dublin, Ireland
| | | |
Collapse
|
3
|
Hu X, Yu L, Bian Y, Zeng X, Luo S, Wen Q, Chen P. Paclitaxel-loaded tumor cell-derived microparticles improve radiotherapy efficacy in triple-negative breast cancer by enhancing cell killing and stimulating immunity. Int J Pharm 2023; 632:122560. [PMID: 36586632 DOI: 10.1016/j.ijpharm.2022.122560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/03/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous tumor characterized by high recurrence and metastasis, with a very poor prognosis, and there are still great challenges in its clinical treatment. Here, we describe the development of a novel modality for the treatment of TNBC with tumor cell-derived microparticles loaded with paclitaxel (MP-PTX) in combination with radiotherapy. We show that MP can deliver agents to tumor cells by homologous targeting, thereby increasing the absorption rate of the chemotherapeutic agent and enhancing its killing effects on tumor cells. We further demonstrate that MP-PTX combined with radiotherapy shows a synergistic antitumor effect by enhancing the inhibition of tumor cell proliferation, promoting tumor cell apoptosis, reducing the immunosuppressive microenvironment at the tumor site, and activating the antitumor immune response. Altogether, this study provides a referable and optional method for the clinical treatment of refractory tumors such as TNBC based on the combination of T-MP-delivered chemotherapeutic drugs and radiotherapy. Chemical compounds: paclitaxel (PTX), paclitaxel-loaded tumor cell-derived microparticles (MP-PTX).
Collapse
Affiliation(s)
- Xiao Hu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Li Yu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yuan Bian
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaonan Zeng
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shan Luo
- Chengdu Institute of Biological Products Co., Ltd, Chengdu 610023, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China.
| | - Ping Chen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China.
| |
Collapse
|
4
|
Stenberg K, Gensby L, Cremer SE, Nielsen MM, Bjørnvad CR. Analytical performance of a canine ELISA monocyte chemoattractant protein-1 assay for use in cats and evaluation of circulating levels in normal weight and obese cats. Acta Vet Scand 2022; 64:22. [PMID: 36064726 PMCID: PMC9446815 DOI: 10.1186/s13028-022-00640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In human and murine obesity, adipose tissue dwelling macrophages and adipocytes produce monocyte chemoattractant protein-1 (MCP-1) leading to systemic low-grade inflammation. The aim of the study was to validate a canine MCP-1 ELISA assay for use in cats and to investigate whether a difference in MCP-1 concentrations could be detected between: a) cats having normal or elevated circulating serum amyloid A (SAA) levels and b) normal weight and obese cats. Serum obtained from 36 client-owned cats of various breed, age and sex with normal (n = 20) to elevated SAA (n = 16) was used for the validation of the canine MCP-1 ELISA assay. As no golden standard exists for measurement of inflammation, circulating MCP-1 concentrations were compared to SAA measurements, as an indicator of systemic inflammation. Analytical precision, dilution recovery and detection limit were calculated. A possible correlation between MCP-1 concentrations and obesity related measures (body fat percentage (BF%), insulin sensitivity and cytokine expression) were investigated in another population of 73 healthy, lean to obese, neutered domestic short-haired cats. RESULTS Intra- (2.7-4.1%) and inter-assay (2.2-3.6%) coefficient of variation and dilution recovery were acceptable, and the detection limit was 27.1 pg/mL. MCP-1 did not correlate with SAA, and there was no difference between the inflammatory (SAA > 20 mg/L) and non-inflammatory group, due to a marked overlap in MCP-1 concentrations. Circulating MCP-1 concentrations were unaffected by BF% (r2 = 2.7 × 10-6, P = 0.21) and other obesity-related markers. CONCLUSIONS The present canine ELISA assay seems to be able to measure circulating feline MCP-1. However, further studies are needed to determine its possible use for detecting inflammation in relation to disease processes or obesity-related low-grade inflammation in cats.
Collapse
Affiliation(s)
- Kathrine Stenberg
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
| | - Line Gensby
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
- Present Address: AniCura Vangede Animal Hospital, Plantevej 2, 2870 Dyssegård, Denmark
| | - Signe Emilie Cremer
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
- Present Address: Coloplast, Holtedam 1-3, 3050 Humlebæk, Denmark
| | - Michelle Møller Nielsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
| | - Charlotte Reinhard Bjørnvad
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
| |
Collapse
|
5
|
Luo L, Deng S, Tang W, Hu X, Yin F, Ge H, Tang J, Liao Z, Feng J, Li X, Mo B. Monocytes subtypes from pleural effusion reveal biomarker candidates for the diagnosis of tuberculosis and malignancy. J Clin Lab Anal 2022; 36:e24579. [PMID: 35819097 PMCID: PMC9396188 DOI: 10.1002/jcla.24579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/08/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022] Open
Abstract
Background Pleural effusion is a common clinical condition caused by several respiratory diseases, including tuberculosis and malignancy. However, rapid and accurate diagnoses of tuberculous pleural effusion (TPE) and malignant pleural effusion (MPE) remain challenging. Although monocytes have been confirmed as an important immune cell in tuberculosis and malignancy, little is known about the role of monocytes subpopulations in the diagnosis of pleural effusion. Methods Pleural effusion samples and peripheral blood samples were collected from 40 TPE patients, 40 MPE patients, and 24 transudate pleural effusion patients, respectively. Chemokines (CCL2, CCL7, and CX3CL1) and cytokines (IL‐1β, IL‐17, IL‐27, and IFN‐γ) were measured by ELISA. The monocytes phenotypes were analyzed by flow cytometry. The chemokines receptors (CCR2 and CX3CR1) and cytokines above in different monocytes subsets were analyzed by real‐time PCR. Receiver operating characteristic curve analysis was performed for displaying differentiating power of intermediate and nonclassical subsets between tuberculous and malignant pleural effusions. Results CCL7 and CX3CL1 levels in TPE were significantly elevated in TPE compared with MPE and transudate pleural effusion. Cytokines, such as IL‐1β, IL‐17, IL‐27, and IFN‐γ, in TPE were much higher than in other pleural effusions. Moreover, CD14+CD16++ nonclassical subset frequency in TPE was remarkably higher than that in MPE, while CD14++CD16+ intermediate subset proportion in MPE was found elevated. Furthermore, CX3CL1‐CX3CR1 axis‐mediated infiltration of nonclassical monocytes in TPE was related to CX3CL1 and IFN‐γ expression in TPE. Higher expression of cytokines (IL‐1β, IL‐17, IL‐27, and IFN‐γ) were found in nonclassical monocytes compared with other subsets. Additionally, the proportions of intermediate and nonclassical monocytes in pleural effusion have the power in discriminating tuberculosis from malignant pleural effusion. Conclusions CD14 and CD16 markers on monocytes could be potentially used as novel diagnostic markers for diagnosing TPE and MPE.
Collapse
Affiliation(s)
- Lisha Luo
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Tang
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Feifei Yin
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Ge
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Jiale Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhonghua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Juntao Feng
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Biwen Mo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.,Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Guilin, China
| |
Collapse
|
6
|
Karpathiou G, Péoc’h M, Sundaralingam A, Rahman N, Froudarakis ME. Inflammation of the Pleural Cavity: A Review on Pathogenesis, Diagnosis and Implications in Tumor Pathophysiology. Cancers (Basel) 2022; 14:1415. [PMID: 35326567 PMCID: PMC8946533 DOI: 10.3390/cancers14061415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Pleural effusions are a common respiratory condition with many etiologies. Nonmalignant etiologies explain most pleural effusions and despite being nonmalignant, they can be associated with poor survival; thus, it is important to understand their pathophysiology. Furthermore, diagnosing a benign pleural pathology always harbors the uncertainty of a false-negative diagnosis for physicians and pathologists, especially for the group of non-specific pleuritis. This review aims to present the role of the inflammation in the development of benign pleural effusions, with a special interest in their pathophysiology and their association with malignancy.
Collapse
Affiliation(s)
- Georgia Karpathiou
- Pathology Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| | - Michel Péoc’h
- Pathology Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| | - Anand Sundaralingam
- Oxford Centre for Respiratory Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; (A.S.); (N.R.)
| | - Najib Rahman
- Oxford Centre for Respiratory Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; (A.S.); (N.R.)
| | - Marios E. Froudarakis
- Pneumonology and Thoracic Oncology Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| |
Collapse
|
7
|
Li X, Wu G, Chen C, Zhao Y, Zhu S, Song X, Yin J, Lv T, Song Y. Intrapleural Injection of Anti-PD1 Antibody: A Novel Management of Malignant Pleural Effusion. Front Immunol 2021; 12:760683. [PMID: 34966384 PMCID: PMC8711587 DOI: 10.3389/fimmu.2021.760683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background Malignant tumors accompanied with malignant pleural effusion (MPE) often indicate poor prognosis. The therapeutic effect and mechanism of intrapleural injection of anti-programmed cell death protein 1 (PD1) on MPE need to be explored. Methods A preclinical MPE mouse model and a small clinical study were used to evaluate the effect of intrapleural injection of anti-PD1 antibody. The role of immune cells was observed via flow cytometry, RNA-sequencing, quantitative PCR, western blot, immunohistochemistry, and other experimental methods. Results Intrathoracic injection of anti-PD1 monoclonal antibody (mAb) has significantly prolonged the survival time of mice (P = 0.0098) and reduced the amount of effusion (P = 0.003) and the number of cancer nodules (P = 0.0043). Local CD8+ T cells participated in intrapleural administration of anti-PD1 mAb. The proportion of CD69+, IFN-γ+, and granzyme B+ CD8+ T cells in the pleural cavity was increased, and the expression of TNF-α and IL-1β in MPE also developed significantly after injection. Local injection promoted activation of the CCL20/CCR6 pathway in the tumor microenvironment and further elevated the expression of several molecules related to lymphocyte activation. Clinically, the control rate of intrathoracic injection of sintilimab (a human anti-PD1 mAb) for 10 weeks in NSCLC patients with MPE was 66.7%. Local injection improved the activity and function of patients' local cytotoxic T cells (CTLs). Conclusions Intrapleural injection of anti-PD1 mAb could control malignant pleural effusion and the growth of cancer, which may be achieved by enhancing local CTL activity and cytotoxicity.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Cell Line, Tumor
- Humans
- Injections
- Lung Neoplasms/drug therapy
- Lung Neoplasms/immunology
- Male
- Mice, Inbred C57BL
- Pleural Cavity/immunology
- Pleural Effusion, Malignant/drug therapy
- Pleural Effusion, Malignant/immunology
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Mice
Collapse
Affiliation(s)
- Xinying Li
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Guannan Wu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Cen Chen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Southern Medical University (Guangzhou), Nanjing, China
| | - Yuan Zhao
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xincui Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jie Yin
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| |
Collapse
|
8
|
Sun Y, Hu Y, Wan C, Lovell JF, Jin H, Yang K. Local biomaterial-assisted antitumour immunotherapy for effusions in the pleural and peritoneal cavities caused by malignancies. Biomater Sci 2021; 9:6381-6390. [PMID: 34582527 DOI: 10.1039/d1bm00971k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Malignant pleural effusion (MPE) and malignant ascites (MA), which are common but serious conditions caused by malignancies, are related to poor quality of life and high mortality. Current treatments, including therapeutic thoracentesis and indwelling pleural catheters or paracentesis and catheter drainage, are largely palliative. An effective treatment is urgently needed. MPE and MA are excellent candidates for intratumoural injections that have direct contact with tumour cells and kill tumour cells more effectively and efficiently with fewer side effects, and the fluid environment of MPE and MA can provide a homogeneous area for drug distribution. The immunosuppressive environments within the pleural and peritoneal cavities suggest the feasibility of local immunotherapy. In this review, we introduce the current management of MPE and MA, discuss the latest advances and challenges in utilizing local biomaterial-assisted antitumour therapies for the treatment of MPE and MA, and discuss further opportunities in this field.
Collapse
Affiliation(s)
- Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jonathan F Lovell
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York. Buffalo, New York, 14260, USA
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
9
|
Xu M, Wang Y, Xia R, Wei Y, Wei X. Role of the CCL2-CCR2 signalling axis in cancer: Mechanisms and therapeutic targeting. Cell Prolif 2021; 54:e13115. [PMID: 34464477 PMCID: PMC8488570 DOI: 10.1111/cpr.13115] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
The chemokine ligand CCL2 and its receptor CCR2 are implicated in the initiation and progression of various cancers. CCL2 can activate tumour cell growth and proliferation through a variety of mechanisms. By interacting with CCR2, CCL2 promotes cancer cell migration and recruits immunosuppressive cells to the tumour microenvironment, favouring cancer development. Over the last several decades, a series of studies have been conducted to explore the CCL2-CCR2 signalling axis function in malignancies. Therapeutic strategies targeting the CCL2- CCR2 axis have also shown promising effects, enriching our approaches for fighting against cancer. In this review, we summarize the role of the CCL2-CCR2 signalling axis in tumorigenesis and highlight recent studies on CCL2-CCR2 targeted therapy, focusing on preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Zhao L, Giannou AD, Xu Y, Shiri AM, Liebold I, Steglich B, Bedke T, Zhang T, Lücke J, Scognamiglio P, Kempski J, Woestemeier A, Chen J, Agalioti T, Zazara DE, Lindner D, Janning M, Hennigs JK, Jagirdar RM, Kotsiou OS, Zarogiannis SG, Kobayashi Y, Izbicki JR, Ghosh S, Rothlin CV, Bosurgi L, Huber S, Gagliani N. Efferocytosis fuels malignant pleural effusion through TIMP1. SCIENCE ADVANCES 2021; 7:7/33/eabd6734. [PMID: 34389533 PMCID: PMC8363144 DOI: 10.1126/sciadv.abd6734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 06/24/2021] [Indexed: 06/03/2023]
Abstract
Malignant pleural effusion (MPE) results from the capacity of several human cancers to metastasize to the pleural cavity. No effective treatments are currently available, reflecting our insufficient understanding of the basic mechanisms leading to MPE progression. Here, we found that efferocytosis through the receptor tyrosine kinases AXL and MERTK led to the production of interleukin-10 (IL-10) by four distinct pleural cavity macrophage (Mφ) subpopulations characterized by different metabolic states and cell chemotaxis properties. In turn, IL-10 acts on dendritic cells (DCs) inducing the production of tissue inhibitor of metalloproteinases 1 (TIMP1). Genetic ablation of Axl and Mertk in Mφs or IL-10 receptor in DCs or Timp1 substantially reduced MPE progression. Our results delineate an inflammatory cascade-from the clearance of apoptotic cells by Mφs, to production of IL-10, to induction of TIMP1 in DCs-that facilitates MPE progression. This inflammatory cascade offers a series of therapeutic targets for MPE.
Collapse
Affiliation(s)
- Lilan Zhao
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of General Thoracic Surgery, Fujian Provincial Hospital, Fujian Medical University, 350003 Fuzhou, People's Republic of China
| | - Anastasios D Giannou
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Yang Xu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Imke Liebold
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Babett Steglich
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tanja Bedke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tao Zhang
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jöran Lücke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Pasquale Scognamiglio
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jan Kempski
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anna Woestemeier
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jing Chen
- Department of Pharmacy, Dong Fang Hospital (900 Hospital of the Joint Logistics Team), School of Medicine, Xiamen University, 350025 Fuzhou, People's Republic of China
| | - Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dimitra E Zazara
- Center for Obstetrics and Pediatrics, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Diana Lindner
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 33 280, 69120 Heidelberg, Germany
| | - Melanie Janning
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim and Medical Faculty Mannheim, University of Heidelberg Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Jan K Hennigs
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Rajesh M Jagirdar
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Ourania S Kotsiou
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Yasushi Kobayashi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jacob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sourav Ghosh
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carla V Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lidia Bosurgi
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Protozoa Immunology, Bernard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
11
|
Lequeux A, Noman MZ, Xiao M, Van Moer K, Hasmim M, Benoit A, Bosseler M, Viry E, Arakelian T, Berchem G, Chouaib S, Janji B. Targeting HIF-1 alpha transcriptional activity drives cytotoxic immune effector cells into melanoma and improves combination immunotherapy. Oncogene 2021; 40:4725-4735. [PMID: 34155342 PMCID: PMC8282500 DOI: 10.1038/s41388-021-01846-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023]
Abstract
Hypoxia is a key factor responsible for the failure of therapeutic response in most solid tumors and promotes the acquisition of tumor resistance to various antitumor immune effectors. Reshaping the hypoxic immune suppressive tumor microenvironment to improve cancer immunotherapy is still a relevant challenge. We investigated the impact of inhibiting HIF-1α transcriptional activity on cytotoxic immune cell infiltration into B16-F10 melanoma. We showed that tumors expressing a deleted form of HIF-1α displayed increased levels of NK and CD8+ effector T cells in the tumor microenvironment, which was associated with high levels of CCL2 and CCL5 chemokines. We showed that combining acriflavine, reported as a pharmacological agent preventing HIF-1α/HIF-1β dimerization, dramatically improved the benefit of cancer immunotherapy based on TRP-2 peptide vaccination and anti-PD-1 blocking antibody. In melanoma patients, we revealed that tumors exhibiting high CCL5 are less hypoxic, and displayed high NK, CD3+, CD4+ and CD8+ T cell markers than those having low CCL5. In addition, melanoma patients with high CCL5 in their tumors survive better than those having low CCL5. This study provides the pre-clinical proof of concept for a novel triple combination strategy including blocking HIF-1α transcription activity along vaccination and PD-1 blocking immunotherapy.
Collapse
Affiliation(s)
- Audrey Lequeux
- Tumor Immunotherapy and Microenvironment (TIME) group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Muhammad Zaeem Noman
- Tumor Immunotherapy and Microenvironment (TIME) group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Malina Xiao
- Tumor Immunotherapy and Microenvironment (TIME) group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Kris Van Moer
- Tumor Immunotherapy and Microenvironment (TIME) group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Meriem Hasmim
- Tumor Immunotherapy and Microenvironment (TIME) group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Alice Benoit
- Tumor Immunotherapy and Microenvironment (TIME) group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Manon Bosseler
- Tumor Immunotherapy and Microenvironment (TIME) group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Elodie Viry
- Tumor Immunotherapy and Microenvironment (TIME) group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Tsolere Arakelian
- Tumor Immunotherapy and Microenvironment (TIME) group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Guy Berchem
- Tumor Immunotherapy and Microenvironment (TIME) group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
- Department of Hemato-oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, Villejuif, France
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment (TIME) group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg.
| |
Collapse
|
12
|
Changchien CY, Chang HH, Dai MS, Tsai WC, Tsai HC, Wang CY, Shen MS, Cheng LT, Lee HS, Chen Y, Tsai CL. Distinct JNK/VEGFR signaling on angiogenesis of breast cancer-associated pleural fluid based on hormone receptor status. Cancer Sci 2021; 112:781-791. [PMID: 33315285 PMCID: PMC7894017 DOI: 10.1111/cas.14772] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 01/13/2023] Open
Abstract
Malignant pleural effusion is a common complication in metastatic breast cancer (MBC); however, changes in the pleural microenvironment are poorly characterized, especially with respect to estrogen receptor status. Histologically, MBC presents with increased microvessels beneath the parietal and visceral pleura, indicating generalized angiogenic activity. Breast cancer‐associated pleural fluid (BAPF) was collected and cultured with HUVECs to recapitulate the molecular changes in subpleural endothelial cells. The clinical progression of triple‐negative breast cancer (TNBC) is much more aggressive than that of hormone receptor‐positive breast cancer (HPBC). However, BAPF from HPBC (BAPF‐HP) and TNBC (BAPF‐TN) homogeneously induced endothelial proliferation, migration, and angiogenesis. In addition, BAPF elicited negligible changes in the protein marker of endothelial‐mesenchymal transition. Both BAPF‐HP and BAPF‐TN exclusively upregulated JNK signaling among all MAPKs in HUVECs. By contrast, the response to the JNK inhibitor was insignificant in Transwell and tube formation assays of the HUVECs cultured with BAPF‐TN. The distinct contribution of p‐JNK to endothelial angiogenesis was consequently thought to be induced by BAPF‐HP and BAPF‐TN. Due to increased angiogenic factors in HUVECs cultured with BAPF, vascular endothelial growth factor receptor 2 (VEGFR2) inhibitor was applied accordingly. Responses to VEGFR2 blockade were observed in both BAPF‐HP and BAPF‐TN concerning endothelial migration and angiogenesis. In conclusion, the above results revealed microvessel formation in the pleura of MBC and the underlying activation of p‐JNK/VEGFR2 signaling. Distinct responses to blocking p‐JNK and VEGFR2 in HUVECs cultured with BAPF‐HP or BAPF‐TN could lay the groundwork for future investigations in treating MBC based on hormone receptor status.
Collapse
Affiliation(s)
- Chih-Ying Changchien
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Han Chang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Shen Dai
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hao-Chung Tsai
- Division of Chest Medicine, Department of Internal Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Chieh-Yung Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Sheng Shen
- Department of Internal Medicine, Taichung Armed Force General Hospital, Taichung, Taiwan
| | - Li-Ting Cheng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Herng-Sheng Lee
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chen-Liang Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
13
|
Yi FS, Zhang X, Zhai K, Huang ZY, Wu XZ, Wu MT, Shi XY, Pei XB, Dong SF, Wang W, Yang Y, Du J, Luo ZT, Shi HZ. TSAd Plays a Major Role in Myo9b-Mediated Suppression of Malignant Pleural Effusion by Regulating T H1/T H17 Cell Response. THE JOURNAL OF IMMUNOLOGY 2020; 205:2926-2935. [PMID: 33046503 DOI: 10.4049/jimmunol.2000307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/11/2020] [Indexed: 11/19/2022]
Abstract
Emerging evidence indicates that Myo9b is a cancer metastasis-related protein and functions in a variety of immune-related diseases. However, it is not clear whether and how Myo9b functions in malignant pleural effusion (MPE). In this study, our data showed that Myo9b expression levels correlated with lung cancer pleural metastasis, and nucleated cells in MPE from either patients or mice expressed a lower level of Myo9b than those in the corresponding blood. Myo9b deficiency in cancer cells suppressed MPE development via inhibition of migration. Myo9b deficiency in mice suppressed MPE development by decreasing TH1 cells and increasing TH17 cells. CD4+ naive T cells isolated from Myo9b-/- mouse spleens exhibited less TH1 cell differentiation and more TH17 cell differentiation in vitro. mRNA sequencing of nucleated cells showed that T cell-specific adaptor protein (TSAd) was downregulated in Myo9b-/- mouse MPE, and enrichment of the H3K27me3 mark in the TSAd promoter region was found in the Myo9b-/- group. Naive T cells purified from wild type mouse spleens transfected with TSAd-specific small interfering RNAs (siRNAs) also showed less TH1 cell differentiation and more TH17 cell differentiation than those from the siRNA control group. Furthermore, downregulation of TSAd in mice using cholesterol-conjugated TSAd-specific siRNA suppressed MPE development, decreased TH1 cells, and increased TH17 cells in MPE in vivo. Taken together, Myo9b deficiency suppresses MPE development not only by suppressing pleural cancer metastasis but also by regulating TH1/TH17 cell response via a TSAd-dependent pathway. This work suggests Myo9b and TSAd as novel candidates for future basic and clinical investigations of cancer.
Collapse
Affiliation(s)
- Feng-Shuang Yi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Kan Zhai
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhong-Yin Huang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiu-Zhi Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Min-Ting Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xin-Yu Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xue-Bin Pei
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Shu-Feng Dong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Wen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuan Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Juan Du
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zeng-Tao Luo
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
14
|
Lu CS, Shiau AL, Su BH, Hsu TS, Wang CT, Su YC, Tsai MS, Feng YH, Tseng YL, Yen YT, Wu CL, Shieh GS. Oct4 promotes M2 macrophage polarization through upregulation of macrophage colony-stimulating factor in lung cancer. J Hematol Oncol 2020; 13:62. [PMID: 32487125 PMCID: PMC7268452 DOI: 10.1186/s13045-020-00887-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/28/2020] [Indexed: 01/15/2023] Open
Abstract
Background Expression of Oct4 maintains cancer stem cell (CSC)-like properties in lung cancer cells and is correlated with poor prognosis of lung adenocarcinoma. M2-type tumor-associated macrophages (TAMs) promote cancer cell migration and metastasis. Tumor microenvironments promote monocyte differentiation into M2 TAMs via a complex cytokine-based connection. We explored the role of Oct4 in cytokine secretion in lung cancer and its impact on M2 TAM polarization. Methods Monocytes co-cultured with the conditioned medium from Oct4-overexpressing lung cancer cells were used to investigate M2 TAM differentiation. The inflammatory factors in the conditioned medium of Oct4-overexpressing A549 cells were examined using human inflammation antibody arrays. The correlations of Oct4, macrophage colony-stimulating factor (M-CSF), and M2 TAMs were validated in lung cancer cells, syngeneic mouse lung tumor models, and clinical samples of non-small cell lung cancer (NSCLC). Results Oct4-overexpressing A549 cells expressed elevated levels of M-CSF, which contributed to increased M2 macrophages and enhanced tumor migration. Overexpression of Oct4 enhanced tumor growth and reduced the survival of lung tumor-bearing mice, which was correlated with increased number of M2 macrophages in lung cancer. Notably, NSCLC patients with high expression levels of Oct4, M-CSF, and M2 TAMs had the poorest recurrence-free survival. A positive correlation between Oct4, M-CSF, and M2 TAMs was observed in the tumor tissue of NSCLC patient. Treatment with all-trans retinoic acid exerted anti-tumor effects and reduced M2 TAMs in tumor-bearing mice. Conclusions Our results indicate that Oct4 expressed by lung cancer cells promotes M2 macrophage polarization through upregulation of M-CSF secretion, leading to cancer growth and metastasis. Our findings also implicate that the Oct4/M-CSF axis in M2 macrophage polarization may be potential therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Chia-Sing Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, Taiwan
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bing-Hua Su
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Thoracic Surgery, Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsui-Shan Hsu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, Taiwan
| | - Chung-Teng Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chu Su
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, Taiwan
| | - Ming-Shian Tsai
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yin-Hsun Feng
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Yen
- Division of Thoracic Surgery, Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, Taiwan
| | - Gia-Shing Shieh
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, Taiwan. .,Department of Urology, Tainan Hospital, Ministry of Health and Welfare, Executive Yuan, Tainan, Taiwan.
| |
Collapse
|
15
|
Ruan X, Sun Y, Wang W, Ye J, Zhang D, Gong Z, Yang M. Multiplexed molecular profiling of lung cancer with malignant pleural effusion using next generation sequencing in Chinese patients. Oncol Lett 2020; 19:3495-3505. [PMID: 32269623 PMCID: PMC7115151 DOI: 10.3892/ol.2020.11446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most common type of cancer and the leading cause of cancer-associated death worldwide. Malignant pleural effusion (MPE), which is observed in ~50% of advanced non-small cell lung cancer (NSCLC) cases, and most frequently in lung adenocarcinoma, is a common complication of stage III-IV NSCLC, and it can be used to predict a poor prognosis. In the present study, multiple oncogene mutations were detected, including 17 genes closely associated with initiation of advanced lung cancer, in 108 MPE samples using next generation sequencing (NGS). The NGS data of the present study had broader coverage, deeper sequencing depth and higher capture efficiency compared with NGS findings of previous studies on MPE. In the present study, using NGS, it was demonstrated that 93 patients (86%) harbored EGFR mutations and 62 patients possessed mutations in EGFR exons 18-21, which are targets of available treatment agents. EGFR L858R and exon 19 indel mutations were the most frequently observed alterations, with frequencies of 31 and 25%, respectively. In 1 patient, an EGFR amplification was identified and 6 patients possessed a T790M mutation. ALK + EML4 gene fusions were identified in 6 patients, a ROS1 + CD74 gene fusion was detected in 1 patient and 10 patients possessed a BIM (also known as BCL2L11) 2,903-bp intron deletion. In 4 patients, significant KRAS mutations (G12D, G12S, G13C and A146T) were observed, which are associated with resistance to afatinib, icotinib, erlotinib and gefitinib. There were 83 patients with ERBB2 mutations, but only two of these mutations were targets of available treatments. The results of the present study indicate that MPE is a reliable specimen for NGS based detection of somatic mutations.
Collapse
Affiliation(s)
- Xingya Ruan
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yonghua Sun
- Shanghai YunYing Medical Technology Co., Ltd., Shanghai 201600, P.R. China
| | - Wei Wang
- Shanghai YunYing Medical Technology Co., Ltd., Shanghai 201600, P.R. China
| | - Jianwei Ye
- Shanghai YunYing Medical Technology Co., Ltd., Shanghai 201600, P.R. China
| | - Daoyun Zhang
- Shanghai YunYing Medical Technology Co., Ltd., Shanghai 201600, P.R. China
| | - Ziying Gong
- Shanghai YunYing Medical Technology Co., Ltd., Shanghai 201600, P.R. China
| | - Mingxia Yang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
16
|
Guo M, Wu F, Hu G, Chen L, Xu J, Xu P, Wang X, Li Y, Liu S, Zhang S, Huang Q, Fan J, Lv Z, Zhou M, Duan L, Liao T, Yang G, Tang K, Liu B, Liao X, Tao X, Jin Y. Autologous tumor cell-derived microparticle-based targeted chemotherapy in lung cancer patients with malignant pleural effusion. Sci Transl Med 2020; 11:11/474/eaat5690. [PMID: 30626714 DOI: 10.1126/scitranslmed.aat5690] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/21/2018] [Accepted: 12/10/2018] [Indexed: 11/02/2022]
Abstract
Cell membrane-derived microparticles (MPs), the critical mediators of intercellular communication, have gained much interest for use as natural drug delivery systems. Here, we examined the therapeutic potential of tumor cell-derived MPs (TMPs) in the context of malignant pleural effusion (MPE). TMPs packaging the chemotherapeutic drug methotrexate (TMPs-MTX) markedly restricted MPE growth and provided a survival benefit in MPE models induced by murine Lewis lung carcinoma and colon adenocarcinoma cells. On the basis of the potential benefit and minimal toxicity of TMPs-MTX, we conducted a human study of intrapleural delivery of a single dose of autologous TMPs packaging methotrexate (ATMPs-MTX) to assess their safety, immunogenicity, and clinical activity. We report our findings on 11 advanced lung cancer patients with MPE. We found that manufacturing and infusing ATMPs-MTX were feasible and safe, without evidence of toxic effects of grade 3 or higher. Evaluation of the tumor microenvironment in MPE demonstrated notable reductions in tumor cells and CD163+ macrophages in MPE after ATMP-MTX infusion, which then translated into objective clinical responses. Moreover, ATMP-MTX treatment stimulated CD4+ T cells to release IL-2 and CD8+ cells to release IFN-γ. Our initial experience with ATMPs-MTX in advanced lung cancer with MPE suggests that ATMPs targeting malignant cells and the immunosuppressive microenvironment may be a promising therapeutic platform for treating malignancies.
Collapse
Affiliation(s)
- Mengfei Guo
- Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Wu
- Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guorong Hu
- Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lian Chen
- Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Juanjuan Xu
- Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pingwei Xu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuan Wang
- Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yumei Li
- Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuqing Liu
- Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Zhang
- Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Huang
- Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinshuo Fan
- Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhilei Lv
- Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mei Zhou
- Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Limin Duan
- Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tingting Liao
- Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bifeng Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaofei Liao
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaonan Tao
- Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Jin
- Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
17
|
Kanellakis NI, Wrightson JM, Hallifax R, Bedawi EO, Mercer R, Hassan M, Asciak R, Hedley E, Dobson M, Dong T, Psallidas I, Rahman NM. Biological effect of tissue plasminogen activator (t-PA) and DNase intrapleural delivery in pleural infection patients. BMJ Open Respir Res 2019; 6:e000440. [PMID: 31673364 PMCID: PMC6797395 DOI: 10.1136/bmjresp-2019-000440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/07/2019] [Accepted: 09/12/2019] [Indexed: 11/03/2022] Open
Abstract
Background Pleural infection (PI) is a major global disease with an increasing incidence, and pleural fluid (PF) drainage is essential for the successful treatment. The MIST2 study demonstrated that intrapleural administration of tissue plasminogen activator (t-PA) and DNase, or t-PA alone increased the volume of drained PF. Mouse model studies have suggested that the volume increase is due to the interaction of the pleura with the t-PA via the monocyte chemoattractant protein 1 (MCP-1) pathway. We designed a study to determine the time frame of drained PF volume induction on intrapleural delivery of t-PA±DNase in humans, and to test the hypothesis that the induction is mediated by the MCP-1 pathway. Methods Data and samples from the MIST2 study were used (210 PI patients randomised to receive for 3 days either: t-PA and DNase, t-PA and placebo, DNase and placebo or double placebo). PF MCP-1 levels were measured by ELISA. One-way and two-way analysis of variance (ANOVA) with Tukey's post hoc tests were used to estimate statistical significance. Pearson's correlation coefficient was used to assess linear correlation. Results Intrapleural administration of t-PA±DNase stimulated a statistically significant rise in the volume of drained PF during the treatment period (days 1-3). No significant difference was detected between any groups during the post-treatment period (days 5-7). Intrapleural administration of t-PA increased MCP-1 PF levels during treatment; however, no statistically significant difference was detected between patients who received t-PA and those who did not. PF MCP-1 expression was not correlated to the drug given nor the volume of drained PF. Conclusions We conclude that the PF volume drainage increment seen with the administration of t-PA does not appear to act solely via activation of the MCP-1 pathway.
Collapse
Affiliation(s)
- Nikolaos I Kanellakis
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK.,Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK.,National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, Oxfordshire, UK
| | - John M Wrightson
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Rob Hallifax
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Eihab O Bedawi
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Rachel Mercer
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Maged Hassan
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Rachelle Asciak
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Emma Hedley
- Oxford Respiratory Trials Unit, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Melissa Dobson
- Oxford Respiratory Trials Unit, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Tao Dong
- Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ioannis Psallidas
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK.,Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Najib M Rahman
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK.,Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK.,National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
18
|
Wu XZ, Zhai K, Yi FS, Wang Z, Wang W, Wang Y, Pei XB, Shi XY, Xu LL, Shi HZ. IL-10 promotes malignant pleural effusion in mice by regulating T H 1- and T H 17-cell differentiation and migration. Eur J Immunol 2019; 49:653-665. [PMID: 30695099 DOI: 10.1002/eji.201847685] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 12/10/2018] [Accepted: 01/28/2019] [Indexed: 01/23/2023]
Abstract
The role of IL-10 in malignant pleural effusion (MPE) remains unknown. By using murine MPE models, we observed that an increase in pleural IL-10 was a significant predictor of increased risk of death. We noted that TH 1- and TH 17-cell content in MPE was higher in IL-10-/- mice than in WT mice, and IL-10 deficiency promoted differentiation into TH 1 but not into TH 17 cells. A higher fraction of TH 1 and TH 17 cells in the MPE of IL-10-/- mice expressed CXCR3 compared with WT mice. We also demonstrated that Lewis lung cancer and colon adenocarcinoma cells secreted large amounts of CXCL10, a ligand of CXCR3, which induced the migration of TH 1 and TH 17 cells into the MPE, and IFN-γ could promote this signaling cascade. Furthermore, intrapleural injection of mice with CXCL10-deficient tumor cells led to decreased TH 1- and TH 17-cell content in MPE, increased MPE volume, and reduced survival of MPE-bearing mice. Taken together, we demonstrated that IL-10 deficiency promoted T-cell differentiation into TH 1 cells and upregulated the CXCR3-CXCL10 signaling pathway that recruits TH 1 and TH 17 cells into MPE, ultimately resulting in decreased MPE formation and longer survival time of mice-bearing MPE.
Collapse
Affiliation(s)
- Xiu-Zhi Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Kan Zhai
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feng-Shuang Yi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yao Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xue-Bin Pei
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xin-Yu Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Li-Li Xu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Pappas AG, Magkouta S, Pateras IS, Skianis I, Moschos C, Vazakidou ME, Psarra K, Gorgoulis VG, Kalomenidis I. Versican modulates tumor-associated macrophage properties to stimulate mesothelioma growth. Oncoimmunology 2018; 8:e1537427. [PMID: 30713792 DOI: 10.1080/2162402x.2018.1537427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/25/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022] Open
Abstract
Versican promotes experimental tumor growth through cell- and non cell-autonomous mechanisms. Its role in mesothelioma progression has not been investigated so far. In this study we investigated the impact of tumor-derived versican in mesothelioma progression and the underlying mechanism of its action. For this purpose, versican-silenced or control ΑΕ17 and ΑΒ1 murine mesothelioma cells were intrapleuraly injected into syngeneic mice, in order to create pleural mesotheliomas and pleural effusions. Intratumoral and pleural immune subsets were assessed using flow cytometry. Mesothelioma cells were co-cultured with syngeneic macrophages to examine versican's impact on their interaction and endothelial cells to assess the effect of versican in endothelial permeability. Versican expression was assessed in human mesotheliomas and mesothelioma-related pleural effusions and benign pleural tissue and effusions. We observed that, versican silencing reduced mesothelioma mass and pleural fluid volume by affecting tumor cell proliferation and apoptosis in vivo, while tumor cell growth remained intact in vitro, and limited pleural vascular permeability. Mice harboring versican-deficient tumors presented fewer tumor/pleural macrophages and neutrophils, and fewer pleural T-regulatory cells, compared to the control animals. Macrophages co-cultured with versican-deficient mesothelioma cells were polarized towards M1 anti-tumor phenotype and demonstrated increased tumor cell phagocytic capacity, compared to macrophages co-cultured with control tumor cells. In co-culture, endothelial monolayer permeability was less effectively stimulated by versican-deficient cells than control cells. Versican was over-expressed in human mesothelioma tissue and mesothelioma-associated effusion. In conclusion, tumor cell-derived versican stimulates mesothelioma progression by shaping a tumor friendly inflammatory milieu, mainly by blunting macrophage anti-tumor activities.
Collapse
Affiliation(s)
- Apostolos G Pappas
- Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, "Evangelismos" Hospital, Athens, Greece
| | - Sophia Magkouta
- Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, "Evangelismos" Hospital, Athens, Greece
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National & Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Skianis
- Applied Econometrics & Data Analysis, Department of Statistics, Athens University of Economic & Business, Athens, Greece
| | - Charalampos Moschos
- Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, "Evangelismos" Hospital, Athens, Greece
| | - Maria Eleni Vazakidou
- Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, "Evangelismos" Hospital, Athens, Greece
| | - Katherina Psarra
- Department of Immunology - Histocompatibility, "Evangelismos" Hospital, Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National & Kapodistrian University of Athens, Athens, Greece.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ioannis Kalomenidis
- Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, "Evangelismos" Hospital, Athens, Greece
| |
Collapse
|
20
|
Wu XZ, Shi XY, Zhai K, Yi FS, Wang Z, Wang W, Pei XB, Xu LL, Wang Z, Shi HZ. Activated naïve B cells promote development of malignant pleural effusion by differential regulation of T H1 and T H17 response. Am J Physiol Lung Cell Mol Physiol 2018; 315:L443-L455. [PMID: 29847991 DOI: 10.1152/ajplung.00120.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inflammatory signaling networks between tumor cells and immune cells contribute to the development of malignant pleural effusion (MPE). B cells have been found in MPE; however, little is known about their roles there. In the present study, by using mouse MPE models, we noted that although the total B cells in MPE were decreased as compared with the corresponding blood and spleen, the percentage of activated naïve B cells expressing higher levels of CD80, CD86, myosin heavy chain-II, CD44, CD69, and programmed cell death-ligand 1 (PD-L1) molecules were increased in wild-type mouse MPE. Compared with wild-type mice, decreased T helper (TH)1 cells and increased TH17 cells were present in B cell-deficient mouse MPE, which paralleled to the reduced MPE volume and longer survival time. Adoptive transfer of activated naïve B cells into B cell-deficient mice was able to increase TH1 cells and decrease TH17 cells in MPE and shorten the survival of mice bearing MPE. Furthermore, we demonstrated that activated naïve B cells inhibited TH17-cell expansion via the PD-1/PD-L1 pathway and promoted naïve CD4+ T-cell differentiation into TH1/TH17 cells through secreting IL-27/IL-6 independent of the PD-1/PD-L1 pathway. Collectively, our data uncovered a mechanism by which naïve B cells promote MPE formation by regulating TH1/TH17 cell responses, making these B cells an attractive target for therapeutic intervention in the fight against cancer.
Collapse
Affiliation(s)
- Xiu-Zhi Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Xin-Yu Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Kan Zhai
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Feng-Shuang Yi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Zhen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Wen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Xue-Bin Pei
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Li-Li Xu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Zheng Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
21
|
Yoshimura T. The chemokine MCP-1 (CCL2) in the host interaction with cancer: a foe or ally? Cell Mol Immunol 2018; 15:335-345. [PMID: 29375123 DOI: 10.1038/cmi.2017.135] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022] Open
Abstract
Macrophages are one of the most abundant leukocyte populations infiltrating tumor tissues and can exhibit both tumoricidal and tumor-promoting activities. In 1989, we reported the purification of monocyte chemoattractant protein-1 (MCP-1) from culture supernatants of mitogen-activated peripheral blood mononuclear cells and tumor cells. MCP-1 is a potent monocyte-attracting chemokine, identical to the previously described lymphocyte-derived chemotactic factor or tumor-derived chemotactic factor, and greatly contributes to the recruitment of blood monocytes into sites of inflammatory responses and tumors. Because in vitro-cultured tumor cells often produce significant amounts of MCP-1, tumor cells are considered to be the main source of MCP-1. However, various non-tumor cells in the tumor stroma also produce MCP-1 in response to stimuli. Studies performed in vitro and in vivo have provided evidence that MCP-1 production in tumors is a consequence of complex interactions between tumor cells and non-tumor cells and that both tumor cells and non-tumor cells contribute to the production of MCP-1. Although MCP-1 production was once considered to be a part of host defense against tumors, it is now believed to regulate the vicious cycle between tumor cells and macrophages that promotes the progression of tumors.
Collapse
Affiliation(s)
- Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 700-8558, Kita-ku, Okayama, Japan.
| |
Collapse
|
22
|
Komissarov AA, Rahman N, Lee YCG, Florova G, Shetty S, Idell R, Ikebe M, Das K, Tucker TA, Idell S. Fibrin turnover and pleural organization: bench to bedside. Am J Physiol Lung Cell Mol Physiol 2018; 314:L757-L768. [PMID: 29345198 DOI: 10.1152/ajplung.00501.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent studies have shed new light on the role of the fibrinolytic system in the pathogenesis of pleural organization, including the mechanisms by which the system regulates mesenchymal transition of mesothelial cells and how that process affects outcomes of pleural injury. The key contribution of plasminogen activator inhibitor-1 to the outcomes of pleural injury is now better understood as is its role in the regulation of intrapleural fibrinolytic therapy. In addition, the mechanisms by which fibrinolysins are processed after intrapleural administration have now been elucidated, informing new candidate diagnostics and therapeutics for pleural loculation and failed drainage. The emergence of new potential interventional targets offers the potential for the development of new and more effective therapeutic candidates.
Collapse
Affiliation(s)
- Andrey A Komissarov
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Najib Rahman
- Oxford Pleural Unit and Oxford Respiratory Trials Unit, University of Oxford, Churchill Hospital; and National Institute of Health Research Biomedical Research Centre , Oxford , United Kingdom
| | - Y C Gary Lee
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital; Pleural Medicine Unit, Institute for Respiratory Health , Perth ; School of Medicine and Pharmacology, University of Western Australia , Perth , Australia
| | - Galina Florova
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Sreerama Shetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Richard Idell
- Department of Behavioral Health, Child and Adolescent Psychiatry, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Kumuda Das
- Department of Translational and Vascular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| |
Collapse
|
23
|
|
24
|
Yoshimura T. The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments. Cytokine 2017; 98:71-78. [DOI: 10.1016/j.cyto.2017.02.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/01/2017] [Indexed: 12/20/2022]
|
25
|
Wu DW, Chang WA, Liu KT, Yen MC, Kuo PL. Vascular endothelial growth factor and protein level in pleural effusion for differentiating malignant from benign pleural effusion. Oncol Lett 2017; 14:3657-3662. [PMID: 28927127 DOI: 10.3892/ol.2017.6631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
Pleural effusion is associated with multiple benign and malignant conditions. Currently no biomarkers differentiate malignant pleural effusion (MPE) and benign pleural effusion (BPE) sensitively and specifically. The present study identified a novel combination of biomarkers in pleural effusion for differentiating MPE from BPE by enrolling 75 patients, 34 with BPE and 41 with MPE. The levels of lactate dehydrogenase, glucose, protein, and total cell, neutrophil, monocyte and lymphocyte counts in the pleural effusion were measured. The concentrations of interleukin (IL)-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, tumor necrosis factor-α, interferon γ, transforming growth factor-β1, colony stimulating factor 2, monocyte chemoattractant protein-1 and vascular endothelial growth factor (VEGF) were detected using cytometric bead arrays. Protein and VEGF levels differed significantly between patients with BPE and those with MPE. The optimal cutoff value of VEGF and protein was 214 pg/ml and 3.35 g/dl respectively, according to the receiver operating characteristic curve. A combination of VEGF >214 pg/ml and protein >3.35 g/dl in pleural effusion presented a sensitivity of 92.6% and an accuracy of 78.6% for MPE, but was not associated with a decreased survival rate. These results suggested that this novel combination strategy may provide useful biomarkers for predicting MPE and facilitating early diagnosis.
Collapse
Affiliation(s)
- Da-Wei Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Kuan-Ting Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.,Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R.O.C
| |
Collapse
|
26
|
Wu XZ, Zhou Q, Lin H, Zhai K, Wang XJ, Yang WB, Shi HZ. Immune Regulation of Toll-Like Receptor 2 Engagement on CD4 + T Cells in Murine Models of Malignant Pleural Effusion. Am J Respir Cell Mol Biol 2017; 56:342-352. [PMID: 27767332 DOI: 10.1165/rcmb.2015-0396oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Toll-like receptor (TLR) 2 has a well-known role in sensing multiple ligands that include microbial products, endotoxin, and some extracellular matrix molecules; however, its role in the development of malignant pleural effusion (MPE) remains unknown. We performed the present study to explore the impact of TLR2 signaling on the development of MPE and to define the underlying mechanisms by which TLR2 works. Development of MPE was compared between TLR2-/- and wild-type (WT) mice. The effect of TLR2 on differentiation of T helper type 17 (Th17), Th9, and Th2 cells in MPE was explored. The mechanisms of TLR2 on survival of mice bearing MPE were also investigated. MPE volume in TLR2-/- mice was lower than that in WT mice, and the survival of TLR2-/- mice bearing MPE was longer than that of WT mice. TLR2 deficiency increased, and TLR2 activation decreased, Th17 cells in MPE, whereas TLR2 signaling showed the contrary effects on Th2 cells. Th9 cells were increased in MPE of TLR2-/- mice but were not influenced by TLR2 signaling. Intraperitoneal injection of anti-IL-17 monoclonal antibody (mAb), anti-IL-9 mAb, or recombinant mouse IL-4 accelerated the death of TLR2-/- mice bearing MPE, and intraperitoneal injection anti-IL-17 mAb in TLR2-/- mice was associated with a significantly shorter survival time than in WT mice. We have demonstrated, for the first time, that TLR2 signaling promotes the development of MPE and accelerates the death of mice bearing MPE by directly suppressing Th17 cell differentiation and directly promoting Th2 cell differentiation, and also by indirectly suppressing Th9 cell differentiation via an IL-17-dependent mechanism.
Collapse
Affiliation(s)
- Xiu-Zhi Wu
- 1 Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qiong Zhou
- 2 Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Hua Lin
- 2 Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and.,3 Department of Respiratory and Critical Care Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Kan Zhai
- 1 Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiao-Juan Wang
- 1 Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wei-Bing Yang
- 2 Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Huan-Zhong Shi
- 1 Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Penz E, Watt KN, Hergott CA, Rahman NM, Psallidas I. Management of malignant pleural effusion: challenges and solutions. Cancer Manag Res 2017; 9:229-241. [PMID: 28694705 PMCID: PMC5491570 DOI: 10.2147/cmar.s95663] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Malignant pleural effusion (MPE) is a sign of advanced cancer and is associated with significant symptom burden and mortality. To date, management has been palliative in nature with a focus on draining the pleural space, with therapies aimed at preventing recurrence or providing intermittent drainage through indwelling catheters. Given that patients with MPEs are heterogeneous with respect to their cancer type and response to systemic therapy, functional status, and pleural milieu, response to MPE therapy is also heterogeneous and difficult to predict. Furthermore, the impact of therapies on important patient outcomes has only recently been evaluated consistently in clinical trials and cohort studies. In this review, we examine patient outcomes that have been studied to date, address the question of which are most important for managing patients, and review the literature related to the expected value for money (cost-effectiveness) of indwelling pleural catheters relative to traditionally recommended approaches.
Collapse
Affiliation(s)
- Erika Penz
- Division of Respirology, Department of Medicine, University of Saskatchewan, Saskatoon, SK
| | - Kristina N Watt
- Division of Respirology, Department of Medicine, University of Saskatchewan, Saskatoon, SK
| | - Christopher A Hergott
- Division of Respirology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Najib M Rahman
- Oxford Centre for Respiratory Medicine, Respiratory Trials Unit, Oxford University, Oxford, UK
| | - Ioannis Psallidas
- Oxford Centre for Respiratory Medicine, Respiratory Trials Unit, Oxford University, Oxford, UK
| |
Collapse
|
28
|
Mutant KRAS promotes malignant pleural effusion formation. Nat Commun 2017; 8:15205. [PMID: 28508873 PMCID: PMC5440809 DOI: 10.1038/ncomms15205] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 03/08/2017] [Indexed: 12/19/2022] Open
Abstract
Malignant pleural effusion (MPE) is the lethal consequence of various human cancers metastatic to the pleural cavity. However, the mechanisms responsible for the development of MPE are still obscure. Here we show that mutant KRAS is important for MPE induction in mice. Pleural disseminated, mutant KRAS bearing tumour cells upregulate and systemically release chemokine ligand 2 (CCL2) into the bloodstream to mobilize myeloid cells from the host bone marrow to the pleural space via the spleen. These cells promote MPE formation, as indicated by splenectomy and splenocyte restoration experiments. In addition, KRAS mutations are frequently detected in human MPE and cell lines isolated thereof, but are often lost during automated analyses, as indicated by manual versus automated examination of Sanger sequencing traces. Finally, the novel KRAS inhibitor deltarasin and a monoclonal antibody directed against CCL2 are equally effective against an experimental mouse model of MPE, a result that holds promise for future efficient therapies against the human condition.
Collapse
|
29
|
Woodcock HV, José RJ, Jenkins G. Review of the British Thoracic Society Winter Meeting 2016, 7-9 December, London, UK. Thorax 2017; 72:600-665. [PMID: 28473505 DOI: 10.1136/thoraxjnl-2017-210154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 11/04/2022]
Abstract
This article reviews the British Thoracic Society Winter Meeting 2016 and highlights the new developments in scientific and clinical research across the breadth of respiratory medicine.
Collapse
Affiliation(s)
- Hannah V Woodcock
- Department of Respiratory Medicine, Whipps Cross Hospital, London, UK
| | - Ricardo J José
- Centre for Inflammation and Tissue Repair, University College London, London, UK
| | - Gisli Jenkins
- Centre for Respiratory Research, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
30
|
Psallidas I, Kalomenidis I, Porcel JM, Robinson BW, Stathopoulos GT. Malignant pleural effusion: from bench to bedside. Eur Respir Rev 2017; 25:189-98. [PMID: 27246596 DOI: 10.1183/16000617.0019-2016] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/25/2016] [Indexed: 11/05/2022] Open
Abstract
Malignant pleural effusion (MPE) is a common but serious condition that is related with poor quality of life, morbidity and mortality. Its incidence and associated healthcare costs are rising and its management remains palliative, with median survival ranging from 3 to 12 months. During the last decade there has been significant progress in unravelling the pathophysiology of MPE, as well as its diagnostics, imaging, and management. Nowadays, formerly bed-ridden patients are genotyped, phenotyped, and treated on an ambulatory basis. This article attempts to provide a comprehensive overview of current advances in MPE from bench to bedside. In addition, it highlights unanswered questions in current clinical practice and suggests future directions for basic and clinical research in the field.
Collapse
Affiliation(s)
- Ioannis Psallidas
- Oxford Respiratory Trials Unit, Oxford Centre for Respiratory Medicine, Oxford University Hospitals Trust, Oxford, UK
| | - Ioannis Kalomenidis
- 1st Dept of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Jose M Porcel
- Pleural Medicine Unit, Dept of Internal Medicine, Arnau de Vilanova University Hospital, Biomedical Research Institute of Lleida, Lleida, Spain
| | - Bruce W Robinson
- National Centre for Asbestos Related Disease, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia Dept of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Dept of Physiology, Faculty of Medicine, University of Patras, Achaia, Greece Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
31
|
Kotyza J. Chemokines in tumor proximal fluids. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161:41-49. [PMID: 28115749 DOI: 10.5507/bp.2016.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/09/2016] [Indexed: 01/02/2023] Open
Abstract
Chemokines are chemotactic cytokines produced by leukocytes and other types of cells including tumor cells. Their action is determined by the expression of cognate receptors and subsequent signaling in target cells, followed by the modulation of cytoskeletal proteins and the induction of other responses. In tumors, chemokines produced by neoplastic/stroma cells control the leukocyte infiltrate influencing tumor growth and progression. Tumor cells also express functional chemokine receptors responding to chemokine signals, promoting cell survival, proliferation and metastasis formation. Chemokines may be detected in serum of cancer patients, but due to the paracrine nature of these molecules, more significant concentrations are found in the tumor adjacent, non-vascular fluids, collectively called tumor proximal fluids. This review summarizes the expression of CC and CXC chemokines in these fluids, namely in interstitial fluid, pleural, ascitic, and cyst fluids, but also in urine, saliva, cerebrospinal fluid, cervical secretions and bronchoalveolar lavage fluid. Most comparative clinical studies reveal increased chemokine levels in high-grade tumor proximal fluids rather than in low-grade tumors and benign conditions, indicating shorter survival periods. The data confirm peritumoral fluid chemokines as sensitive diagnostic and prognostic markers, as well as offer support for chemokines and their receptors as potential targets for antitumor therapy.
Collapse
Affiliation(s)
- Jaromir Kotyza
- Institute of Biochemistry, Faculty of Medicine in Pilsen, Charles University in Prague, Pilzen, Czech Republic
| |
Collapse
|
32
|
Lee YCG, Idell S, Stathopoulos GT. Translational Research in Pleural Infection and Beyond. Chest 2016; 150:1361-1370. [DOI: 10.1016/j.chest.2016.07.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/10/2016] [Accepted: 07/30/2016] [Indexed: 12/17/2022] Open
|
33
|
Lansley SM, Cheah HM, Lee YCG. Role of MCP-1 in pleural effusion development in a carrageenan-induced murine model of pleurisy. Respirology 2016; 22:758-763. [PMID: 27878909 DOI: 10.1111/resp.12951] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/12/2016] [Accepted: 09/03/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Exudative pleural effusions affect over 1500 patients per million population each year. The pathobiology of pleural exudate formation remains unclear. Our recent study revealed monocyte chemotactic protein-1 (MCP-1) as a key driver of fibrinolytic-induced exudate effusion while another study found a role for MCP-1 in malignant effusion formation. In the present study, we further evaluated the role of MCP-1 in the development of pleural effusion in a mouse model of acute pleural inflammation. METHODS λ-Carrageenan (CAR) was injected into the pleural cavity of CD1 mice and pleural effusion volume measured up to 16 h post-injection. Pleural effusion and serum protein and MCP-1 concentrations were measured and differential cell counts performed in fluids. Mice were also treated with either intraperitoneal (i) anti-MCP-1 antibody or isotype control or (ii) an MCP-1 receptor (CCR2) antagonist or vehicle control 12 h prior to and at the time of CAR injection. RESULTS Intrapleural CAR induced significant pleural fluid accumulation (300.0 ± 49.9 μL) in mice after 4 h. Pleural fluid MCP-1 concentrations were significantly higher than corresponding serum MCP-1 (144 603 ± 23 204 pg/mL vs 3703 ± 801 pg/mL, P < 0.0001). A significant decrease in pleural fluid formation was seen both with anti-MCP-1 antibody (median (interquartile range, IQR): 36 (0-168) μL vs controls 290 (70-436) μL; P = 0.02) or CCR2 antagonist (153 (30-222) μL vs controls 240 (151-331) μL, P = 0.0049). CONCLUSIONS Blockade of MCP-1 activity significantly reduced inflammatory pleural effusion formation in a CAR model. Together with recent successes in MCP-1 blockade in other effusion formation models, our data strongly support clinical evaluation of MCP-1 antagonists as a novel approach to pleural fluid management.
Collapse
Affiliation(s)
- Sally M Lansley
- Centre for Respiratory Health, School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Hui Min Cheah
- Centre for Respiratory Health, School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Y C Gary Lee
- Centre for Respiratory Health, School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia.,Respiratory Department, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| |
Collapse
|
34
|
Giopanou I, Lilis I, Papaleonidopoulos V, Agalioti T, Kanellakis NI, Spiropoulou N, Spella M, Stathopoulos GT. Tumor-derived osteopontin isoforms cooperate with TRP53 and CCL2 to promote lung metastasis. Oncoimmunology 2016; 6:e1256528. [PMID: 28197374 DOI: 10.1080/2162402x.2016.1256528] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/29/2016] [Indexed: 12/13/2022] Open
Abstract
The lungs are ubiquitous receptacles of metastases originating from various bodily tumors. Although osteopontin (SPP1) has been associated with tumor dissemination, the role of its isoforms in lung-directed metastasis is incompletely understood. We employed syngeneic mouse models of spontaneous and induced lung-targeted metastasis in C57BL/6 mice competent and deficient in both Spp1 alleles. Tumor-derived osteopontin expression was modulated using either stable anti-Spp1 RNA interference, or forced overexpression of intracellular and secreted Spp1 isoforms. Identified osteopontin's downstream partners were validated using lung adenocarcinoma cells conditionally lacking the Trp53 gene and Ccr2-deficient mice. We determined that host-derived osteopontin was dispensable for pulmonary colonization by different tumor types. Oppositely, tumor-originated intracellular osteopontin promoted tumor cell survival by preventing tumor-related protein 53-mediated apoptosis, while the secretory osteopontin functioned in a paracrine mode to accelerate lung metastasis by enhancing tumor-derived C-C-motif chemokine ligand 2 signaling to cognate host receptors. As new ways to target osteopontin signaling are becoming available, the cytokine may constitute an important therapeutic target against pulmonary involvement by cancers of other organs.
Collapse
Affiliation(s)
- Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras , Rio, Achaia, Greece
| | - Ioannis Lilis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras , Rio, Achaia, Greece
| | - Vassilios Papaleonidopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras , Rio, Achaia, Greece
| | - Theodora Agalioti
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras , Rio, Achaia, Greece
| | - Nikolaos I Kanellakis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras , Rio, Achaia, Greece
| | - Nikolitsa Spiropoulou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras , Rio, Achaia, Greece
| | - Magda Spella
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras , Rio, Achaia, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece; Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| |
Collapse
|
35
|
Cheah HM, Lansley SM, Varano Della Vergiliana JF, Tan AL, Thomas R, Leong SL, Creaney J, Lee YCG. Malignant pleural fluid from mesothelioma has potent biological activities. Respirology 2016; 22:192-199. [PMID: 27560254 DOI: 10.1111/resp.12874] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/30/2016] [Accepted: 06/13/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Malignant pleural effusion (MPE) affects >90% of mesothelioma patients. Research on MPE has focused on its physical impact on breathlessness; MPE is rich in growth mediators but its contribution to tumour biology has not been investigated. We aimed to examine the potential effects of MPE in promoting growth, migration and chemo-resistance of mesothelioma. METHODS Pleural fluid samples from 151 patients (56 mesothelioma, 60 metastatic pleural cancer and 35 benign) were used. Seven validated human mesothelioma cell lines and three primary cultured mesothelioma lines were employed. RESULTS Pleural fluid from mesothelioma patients (diluted to 30%) consistently stimulated cell proliferation (trypan-blue cell viability assay) in five mesothelioma cell lines tested by (median) 2.23-fold over controls (all P < 0.0001). The fluid also induced cell migration by (median) 2.13-fold in six mesothelioma cell lines using scratch-wound assay. In a murine flank model of mesothelioma, tumour infused with daily instillations of pleural fluid grew significantly faster over saline controls (median 52.5 cm2 vs 28.0 cm2 at day 13, P = 0.028). Addition of MPE (diluted to 30%) to culture media significantly protected mesothelioma from cisplatin/pemetrexed-induced cell death in all three cell lines tested (median fold reduction of 1.29, 1.98 and 3.90, all P < 0.001 vs control). The growth effects of matched pleural fluid and cultured mesothelioma cells from the same patients did not differ significantly from unmatched pairs. CONCLUSION This 'proof-of-concept' study reveals potent biological capabilities of malignant pleural fluid in mesothelioma pathobiology.
Collapse
Affiliation(s)
- Hui Min Cheah
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, Western Australia, Australia.,School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Sally M Lansley
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, Western Australia, Australia
| | | | - Ai Ling Tan
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, Western Australia, Australia.,School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Rajesh Thomas
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, Western Australia, Australia.,School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia.,Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Su Lyn Leong
- School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia.,Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Jenette Creaney
- School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Yun Chor Gary Lee
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, Western Australia, Australia.,School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia.,Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| |
Collapse
|
36
|
Lim SY, Yuzhalin AE, Gordon-Weeks AN, Muschel RJ. Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget 2016; 7:28697-710. [PMID: 26885690 PMCID: PMC5053756 DOI: 10.18632/oncotarget.7376] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/31/2016] [Indexed: 01/04/2023] Open
Abstract
The CCL2-CCR2 signaling axis has generated increasing interest in recent years due to its association with the progression of cancer. Although first described as a chemotactic molecule with physiological roles in regulating inflammation, recent studies have revealed a pro-tumorigenic function for CCL2 in favoring cancer development and subsequent metastasis. CCL2 binds the cognate receptor CCR2, and together this signaling pair has been shown to have multiple pro-tumorigenic roles, from mediating tumor growth and angiogenesis to recruiting and usurping host stromal cells to support tumor progression. The importance of CCL2-CCR2 signaling has been further championed by the establishment of clinical trials targeting this signaling pair in solid and metastatic cancers. Here we review the roles of CCL2-CCR2 signaling in the development and progression of cancer metastasis. We further evaluate the outcome of several clinical trials targeting either CCL2 or CCR2, and discuss the prospects and challenges of manipulating CCL2-CCR2 interaction as a potential approach for combating metastatic disease.
Collapse
Affiliation(s)
- Su Yin Lim
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Arseniy E. Yuzhalin
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Alex N. Gordon-Weeks
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Ruth J. Muschel
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
New insights on pleural fluid formation: potential translational targets. CURRENT PULMONOLOGY REPORTS 2016. [DOI: 10.1007/s13665-016-0135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Thomas R, Cheah HM, Creaney J, Turlach BA, Lee YCG. Longitudinal Measurement of Pleural Fluid Biochemistry and Cytokines in Malignant Pleural Effusions. Chest 2016; 149:1494-500. [PMID: 26836920 DOI: 10.1016/j.chest.2016.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/08/2015] [Accepted: 01/04/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Malignant pleural effusion (MPE) is common. Existing literature on pleural fluid compositions is restricted to cross-sectional sampling with little information on longitudinal changes of fluid biochemistry and cytokines with disease progression. Indwelling pleural catheters provide the unique opportunity for repeated sampling and longitudinal evaluation of MPE, which may provide insight into tumor pathobiology. METHODS We collected 638 MPE samples from 103 patients managed with indwelling pleural catheters over 95 days (median, range 0-735 days) and analyzed them for protein, pH, lactate dehydrogenase, and glucose levels. Peripheral blood was quantified for hematocrit, platelets, leukocytes, protein, and albumin. Cytokine levels (monocyte chemotactic protein [MCP]-1; vascular endothelial growth factor; interleukin-6, -8, and -10; tumor necrosis factor-α; and interferon-gamma) were determined in 298 samples from 35 patients with mesothelioma. Longitudinal changes of all parameters were analyzed using a linear mixed model. RESULTS Significant decreases were observed over time in pleural fluid protein by 8 g/L per 100 days (SE, 1.32; P < .0001) and pH (0.04/100 days; SE, 0.02; P = .0203), accompanied by a nonsignificant rise in lactate dehydrogenase. The ratio of pleural fluid to serum protein decreased by 0.06/100 days (SE, 0.02; P = .04). MPEs from mesothelioma (n = 63) had lower pleural fluid glucose (P = .0104) at baseline and a faster rate of decline in glucose (P = .0423) when compared with non-mesothelioma effusions (n = 38). A progressive rise in mesothelioma pleural fluid concentration of [log] MCP-1 ([log] 0.37 pg/mL per 100 days; SE, 0.13; P = .0046), but not of other cytokines, was observed. CONCLUSIONS MPE fluids become less exudative and more acidic over the disease course. The rise in MCP-1 levels suggests a pathobiological role in MPE.
Collapse
Affiliation(s)
- Rajesh Thomas
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, University of Western Australia, Perth, Australia; School of Medicine and Pharmacology, University of Western Australia, Perth, Australia; Pleural Medicine Unit, Institute of Respiratory Health, University of Western Australia, Perth, Australia
| | - Hui Min Cheah
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia; Pleural Medicine Unit, Institute of Respiratory Health, University of Western Australia, Perth, Australia
| | - Jenette Creaney
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia; National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Berwin A Turlach
- Centre for Applied Statistics and School of Mathematics and Statistics, University of Western Australia, Perth, Australia
| | - Y C Gary Lee
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, University of Western Australia, Perth, Australia; School of Medicine and Pharmacology, University of Western Australia, Perth, Australia; Pleural Medicine Unit, Institute of Respiratory Health, University of Western Australia, Perth, Australia.
| |
Collapse
|
39
|
Lansley SM, Cheah HM, Varano Della Vergiliana JF, Chakera A, Lee YCG. Tissue plasminogen activator potently stimulates pleural effusion via a monocyte chemotactic protein-1-dependent mechanism. Am J Respir Cell Mol Biol 2015; 53:105-12. [PMID: 25474480 DOI: 10.1165/rcmb.2014-0017oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pleural infection is common. Evacuation of infected pleural fluid is essential for successful treatment, but it is often difficult because of adhesions/loculations within the effusion and the viscosity of the fluid. Intrapleural delivery of tissue plasminogen activator (tPA) (to break the adhesions) and deoxyribonuclease (DNase) (to reduce fluid viscosity) has recently been shown to improve clinical outcomes in a large randomized study of pleural infection. Clinical studies of intrapleural fibrinolytic therapy have consistently shown subsequent production of large effusions, the mechanism(s) of which are unknown. We aimed to determine the mechanism by which tPA induces exudative fluid formation. Intrapleural tPA, with or without DNase, significantly induced pleural fluid accumulation in CD1 mice (tPA alone: median [interquartile range], 53.5 [30-355] μl) compared with DNase alone or vehicle controls (both, 0.0 [0.0-0.0] μl) after 6 hours. Fluid induction was reproduced after intrapleural delivery of streptokinase and urokinase, indicating a class effect. Pleural fluid monocyte chemotactic protein (MCP)-1 levels strongly correlated with effusion volume (r = 0.7302; P = 0.003), and were significantly higher than MCP-1 levels in corresponding sera. Mice treated with anti-MCP-1 antibody (P < 0.0001) or MCP-1 receptor antagonist (P = 0.0049) demonstrated a significant decrease in tPA-induced pleural fluid formation (by up to 85%). Our data implicate MCP-1 as the key molecule governing tPA-induced fluid accumulation. The role of MCP-1 in the development of other exudative effusions warrants examination.
Collapse
Affiliation(s)
- Sally M Lansley
- 1 Pleural Disease Unit, Lung Institute of Western Australia, Perth, Western Australia, Australia
| | - Hui Min Cheah
- 1 Pleural Disease Unit, Lung Institute of Western Australia, Perth, Western Australia, Australia.,2 School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia; and
| | | | - Aron Chakera
- 2 School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia; and.,Departments of 3 Renal Medicine and
| | - Y C Gary Lee
- 1 Pleural Disease Unit, Lung Institute of Western Australia, Perth, Western Australia, Australia.,2 School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia; and.,4 Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| |
Collapse
|
40
|
Tsai MF, Chang TH, Wu SG, Yang HY, Hsu YC, Yang PC, Shih JY. EGFR-L858R mutant enhances lung adenocarcinoma cell invasive ability and promotes malignant pleural effusion formation through activation of the CXCL12-CXCR4 pathway. Sci Rep 2015; 5:13574. [PMID: 26338423 PMCID: PMC4559673 DOI: 10.1038/srep13574] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
Malignant pleural effusion (MPE) is a common clinical problem in non-small cell lung carcinoma (NSCLC) patients; however, the underlying mechanisms are still largely unknown. Recent studies indicate that the frequency of the L858R mutant form of the epidermal growth factor receptor (EGFR-L858R) is higher in lung adenocarcinoma with MPE than in surgically resected specimens, suggesting that lung adenocarcinoma cells harboring this mutation tend to invade the adjacent pleural cavity. The purpose of this study was to clarify the relationship between the EGFR-L858R mutation and cancer cell invasion ability and to investigate the molecular mechanisms involved in the formation of MPE. We found that expression of EGFR-L858R in lung cancer cells resulted in up-regulation of the CXCR4 in association with increased cancer cell invasive ability and MPE formation. Ectopic expression of EGFR-L858R in lung cancer cells acted through activation of ERK signaling pathways to induce the expression of CXCR4. We also indicated that Inhibition of CXCR4 with small interfering RNA, neutralizing antibody, or receptor antagonist significantly suppressed the EGFR-L858R–dependent cell invasion. These results suggest that targeting the production of CXCR4 and blocking the CXCL12-CXCR4 pathway might be effective strategies for treating NSCLCs harboring a specific type of EGFR mutation.
Collapse
Affiliation(s)
- Meng-Feng Tsai
- Department of Molecular Biotechnology, College of Biotechnology and Bioresources, Dayeh University, Changhua 51591, Taiwan
| | - Tzu-Hua Chang
- Department of Internal Medicine, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Shang-Gin Wu
- Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch, Yunlin 64041, Taiwan
| | - Hsiao-Yin Yang
- Department of Internal Medicine, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Yi-Chiung Hsu
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| |
Collapse
|
41
|
Spella M, Giannou AD, Stathopoulos GT. Switching off malignant pleural effusion formation-fantasy or future? J Thorac Dis 2015; 7:1009-20. [PMID: 26150914 DOI: 10.3978/j.issn.2072-1439.2015.05.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 05/27/2015] [Indexed: 12/11/2022]
Abstract
Malignant pleural effusion (MPE) is common and difficult to treat. In the vast majority of patients the presence of MPE heralds incurable disease, associated with poor quality of life, morbidity and mortality. Current therapeutic approaches are inefficient and merely offer palliation of associated symptoms. Recent scientific progress has shed light in the biologic processes governing the mechanisms behind the pathobiology of MPE. Pleural based tumors interfere with pleural fluid drainage, as well as the host vasculature and immune system, resulting in decreased fluid absorption and increased pleural fluid production via enhanced plasma extravasation into the pleural space. In order to achieve this feat, pleural based tumors must elicit critical vasoactive events in the pleura, thus forming a favorable microenvironment for tumor dissemination and MPE development. Such properties involve specific transcriptional signaling cascades in addition to secretion of important mediators which attract and activate host cell populations which, in turn, impact tumor cell functions. The dissection of the biologic steps leading to MPE formation provides novel therapeutic targets and recent research findings provide encouraging results towards future therapeutic innovations in MPE management.
Collapse
Affiliation(s)
- Magda Spella
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, 26504, Greece
| | - Anastasios D Giannou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, 26504, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, 26504, Greece
| |
Collapse
|
42
|
Yoshimura T, Liu M, Chen X, Li L, Wang JM. Crosstalk between Tumor Cells and Macrophages in Stroma Renders Tumor Cells as the Primary Source of MCP-1/CCL2 in Lewis Lung Carcinoma. Front Immunol 2015; 6:332. [PMID: 26167165 PMCID: PMC4481164 DOI: 10.3389/fimmu.2015.00332] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/15/2015] [Indexed: 11/13/2022] Open
Abstract
The chemokine MCP-1/CCL2 is produced by a variety of tumors and plays an important role in cancer progression. We and others previously demonstrated that the primary source of MCP-1 in several mouse tumors, including 4T1 breast cancer, M5076 sarcoma, and B16 melanoma, was stromal cells. In the present study, we identified that tumor cells were the primary source of MCP-1 in Lewis lung carcinoma (LLC), because MCP-1 mRNA was highly expressed in tumors grown in both wild type (WT) and MCP-1(-/-) mice with elevated serum MCP-1 levels. Since LLC cells isolated from tumors expressed low levels of MCP-1 in vitro, it appeared that the tumor-stromal cell interaction in a tumor microenvironment increased MCP-1 expression in LLC cells. In fact, co-culture of LLC cells with normal mouse peritoneal macrophages or normal lung cells containing macrophages increased MCP-1 expression by LLC cells. Macrophages from TNFα(-/-) mice failed to activate LLC cells and anti-TNFα neutralizing antibody abolished the effect of WT macrophages on LLC cells. When LLC cells were transplanted into TNFα(-/-) mice, the levels of MCP-1 mRNA in tumors and serum MCP-1 levels were markedly lower as compared to WT mice, and importantly, tumors grew more slowly. Taken together, our results indicate that TNFα released by tumor cell-activated macrophages is critical for increased MCP-1 production by tumors cells. Thus, disruption of tumor-stromal cell interaction may inhibit tumor progression by reducing the production of tumor-promoting proinflammatory mediators, such as MCP-1.
Collapse
Affiliation(s)
- Teizo Yoshimura
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Mingyong Liu
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Department of Spine Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Basic Science Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Liangzhu Li
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Engineering Research Center for Cell and Therapeutic Antibody of Ministry of Education, School of Pharmacy, Shanghai Jiaotong University, Shanghai, China
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
43
|
Giannou AD, Marazioti A, Spella M, Kanellakis NI, Apostolopoulou H, Psallidas I, Prijovich ZM, Vreka M, Zazara DE, Lilis I, Papaleonidopoulos V, Kairi CA, Patmanidi AL, Giopanou I, Spiropoulou N, Harokopos V, Aidinis V, Spyratos D, Teliousi S, Papadaki H, Taraviras S, Snyder LA, Eickelberg O, Kardamakis D, Iwakura Y, Feyerabend TB, Rodewald HR, Kalomenidis I, Blackwell TS, Agalioti T, Stathopoulos GT. Mast cells mediate malignant pleural effusion formation. J Clin Invest 2015; 125:2317-34. [PMID: 25915587 DOI: 10.1172/jci79840] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/26/2015] [Indexed: 01/02/2023] Open
Abstract
Mast cells (MCs) have been identified in various tumors; however, the role of these cells in tumorigenesis remains controversial. Here, we quantified MCs in human and murine malignant pleural effusions (MPEs) and evaluated the fate and function of these cells in MPE development. Evaluation of murine MPE-competent lung and colon adenocarcinomas revealed that these tumors actively attract and subsequently degranulate MCs in the pleural space by elaborating CCL2 and osteopontin. MCs were required for effusion development, as MPEs did not form in mice lacking MCs, and pleural infusion of MCs with MPE-incompetent cells promoted MPE formation. Once homed to the pleural space, MCs released tryptase AB1 and IL-1β, which in turn induced pleural vasculature leakiness and triggered NF-κB activation in pleural tumor cells, thereby fostering pleural fluid accumulation and tumor growth. Evaluation of human effusions revealed that MCs are elevated in MPEs compared with benign effusions. Moreover, MC abundance correlated with MPE formation in a human cancer cell-induced effusion model. Treatment of mice with the c-KIT inhibitor imatinib mesylate limited effusion precipitation by mouse and human adenocarcinoma cells. Together, the results of this study indicate that MCs are required for MPE formation and suggest that MC-dependent effusion formation is therapeutically addressable.
Collapse
|
44
|
Effect of Endostar combined with angiopoietin-2 inhibitor on malignant pleural effusion in mice. Med Oncol 2014; 32:410. [DOI: 10.1007/s12032-014-0410-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|
45
|
Marazioti A, Stathopoulos GT. Monoclonal antibody targeting of mononuclear cell chemokines driving malignant pleural effusion. Oncoimmunology 2014; 3:e29195. [PMID: 25083335 PMCID: PMC4108461 DOI: 10.4161/onci.29195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 01/12/2023] Open
Abstract
Recent evidence suggests that host immune cells contribute to the development of malignant pleural effusion (MPE), a common manifestation of metastatic cancer. We have identified such cells, predominantly mononuclear myeloid cells, recruited by tumor-orchestrated inflammatory chemokines. Moreover, targeting of these inflammation-associated mediators modified the disease course of MPE in mice.
Collapse
Affiliation(s)
- Antonia Marazioti
- Laboratory for Molecular Respiratory Carcinogenesis; Department of Physiology; Faculty of Medicine; University of Patras; Rio, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis; Department of Physiology; Faculty of Medicine; University of Patras; Rio, Greece
| |
Collapse
|
46
|
Bai CQ, Yao YW, Liu CH, Zhang H, Xu XB, Zeng JL, Liang WJ, Yang W, Song Y. Diagnostic and prognostic significance of lysophosphatidic acid in malignant pleural effusions. J Thorac Dis 2014; 6:483-90. [PMID: 24822107 DOI: 10.3978/j.issn.2072-1439.2014.02.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/26/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Lysophosphatidic acid (LPA) is an important extracellular signal transmitter and intracellular second messenger in body fluids. It can be detected in the ascitic fluid of patients with ovarian cancer. Increasing evidence shows that LPA can stimulate cancer cell proliferation and promote tumor invasion and metastasis. Our study aimed to evaluate the diagnostic value of LPA in differentiating between malignant pleural effusions (MPEs) and benign pleural effusions (BPEs) and to evaluate the association between the level of LPA in MPE and the prognosis of lung cancer patients. PATIENTS AND METHODS The level of LPA in the pleural effusions (PEs) of 123 patients (94 MPE, 29 BPE) with lung cancer was evaluated using an enzyme-linked immunosorbent assay. The performance of LPA was analyzed by standard Receiver operator characteristic curve (ROC) analysis methods, using the area under the curve (AUC) as a measure of accuracy. Overall survival (OS) curves and progression-free survival (PFS) curves were based on the Kaplan-Meier method, and the survival differences between subgroups were analyzed using the log-rank or Breslow test (SPSS software). A multivariate Cox proportional hazards model was used to assess whether LPA independently predicted lung cancer survival. RESULTS The levels of LPA differed significantly between MPE (22.08±8.72 µg/L) and BPE (14.61±5.12 µg/L) (P<0.05). Using a cutoff point of 18.93 µg/L, LPA had a sensitivity of 60% and a specificity of 83% to distinguish MPEs from BPEs with an AUC of 0.769±0.045 (SE) (P=0.000) (95% CI, 0.68-0.857). In the three pathological types of lung cancer patients with MPE, there were no significant associations between LPA levels and the length of PFS and OS (P=0.58 and 0.186, respectively). Interestingly, in the patients with MPE caused by lung adenocarcinoma there were significant associations between the LPA levels and the PFS and OS (P=0.018 and 0.026, respectively). Multivariate analysis showed that the LPA level was an independent prognostic factor for PFS in lung adenocarcinoma. CONCLUSIONS Our results indicate that LPA can be used as a new biomarker for the diagnosis of MPE caused by lung cancer and that higher levels of LPA are related to shorter PFS in adenocarcinoma of the lung.
Collapse
Affiliation(s)
- Cui-Qing Bai
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing clinical school, Southern Medical University (Guangzhou), Nanjing 210001, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210001, China ; 3 Department of Respiratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241000, China ; 4 Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Yan-Wen Yao
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing clinical school, Southern Medical University (Guangzhou), Nanjing 210001, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210001, China ; 3 Department of Respiratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241000, China ; 4 Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Chun-Hua Liu
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing clinical school, Southern Medical University (Guangzhou), Nanjing 210001, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210001, China ; 3 Department of Respiratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241000, China ; 4 Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - He Zhang
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing clinical school, Southern Medical University (Guangzhou), Nanjing 210001, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210001, China ; 3 Department of Respiratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241000, China ; 4 Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Xiao-Bing Xu
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing clinical school, Southern Medical University (Guangzhou), Nanjing 210001, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210001, China ; 3 Department of Respiratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241000, China ; 4 Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Jun-Li Zeng
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing clinical school, Southern Medical University (Guangzhou), Nanjing 210001, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210001, China ; 3 Department of Respiratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241000, China ; 4 Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Wen-Jun Liang
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing clinical school, Southern Medical University (Guangzhou), Nanjing 210001, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210001, China ; 3 Department of Respiratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241000, China ; 4 Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Wen Yang
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing clinical school, Southern Medical University (Guangzhou), Nanjing 210001, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210001, China ; 3 Department of Respiratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241000, China ; 4 Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Yong Song
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing clinical school, Southern Medical University (Guangzhou), Nanjing 210001, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210001, China ; 3 Department of Respiratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241000, China ; 4 Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| |
Collapse
|
47
|
Marazioti A, Blackwell TS, Stathopoulos GT. The lymphatic system in malignant pleural effusion. Drain or immune switch? Am J Respir Crit Care Med 2014; 189:626-7. [PMID: 24628311 DOI: 10.1164/rccm.201401-0140ed] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Ohnuki H, Jiang K, Wang D, Salvucci O, Kwak H, Sánchez-Martín D, Maric D, Tosato G. Tumor-infiltrating myeloid cells activate Dll4/Notch/TGF-β signaling to drive malignant progression. Cancer Res 2014; 74:2038-49. [PMID: 24520074 DOI: 10.1158/0008-5472.can-13-3118] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myeloid cells that orchestrate malignant progression in the tumor microenvironment offer targets for a generalized strategy to attack solid tumors. Through an analysis of tumor microenvironments, we explored an experimental model of lung cancer that uncovered a network of Dll4/Notch/TGF-β1 signals that links myeloid cells to cancer progression. Myeloid cells attracted to the tumor microenvironment by the tumor-derived cytokines CCL2 and M-CSF expressed increased levels of the Notch ligand Dll4, thereby activating Notch signaling in the tumor cells and amplifying tumor-intrinsic Notch activation. Heightened Dll4/Notch signaling in tumor cells magnified TGF-β-induced pSMAD2/3 signaling and was required to sustain TGF-β-induced tumor cell growth. Conversely, Notch blockade reduced TGF-β signaling and limited lung carcinoma tumor progression. Corroborating these findings, by interrogating RNAseq results from tumor and adjacent normal tissue in clinical specimens of human head and neck squamous carcinoma, we found evidence that TGF-β/Notch crosstalk contributed to progression. In summary, the myeloid cell-carcinoma signaling network we describe uncovers novel mechanistic links between the tumor microenvironment and tumor growth, highlighting new opportunities to target tumors where this network is active.
Collapse
Affiliation(s)
- Hidetaka Ohnuki
- Authors' Affiliations: Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, NIH; Department of Intramural Research National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, Maryland; and W2Motif, LLC, San Diego, California
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Yeh HH, Chang WT, Lu KC, Lai WW, Liu HS, Su WC. Upregulation of tissue factor by activated Stat3 contributes to malignant pleural effusion generation via enhancing tumor metastasis and vascular permeability in lung adenocarcinoma. PLoS One 2013; 8:e75287. [PMID: 24086497 PMCID: PMC3785526 DOI: 10.1371/journal.pone.0075287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/13/2013] [Indexed: 11/19/2022] Open
Abstract
Malignant pleural effusion (MPE) is a poor prognostic sign for patients with lung cancer. Tissue factor (TF) is a coagulation factor that participates in angiogenesis and vascular permeability and is abundant in MPE. We previously demonstrated that autocrine IL-6-activated Stat3 contributes to tumor metastasis and upregulation of VEGF, resulting in the generation of MPE in lung adenocarcinoma. In this study, we found IL-6-triggered Stat3 activation also induces TF expression. By using pharmacologic inhibitors, it was shown that JAK2 kinase, but not Src kinase, contributed to autocrine IL-6-induced TF expression. Inhibition of Stat3 activation by dominant negative Stat3 (S3D) in lung adenocarcinoma suppressed TF-induced coagulation, anchorage-independent growth in vitro, and tumor growth in vivo. Consistently, knockdown of TF expression by siRNA resulted in a reduction of anchorage-independent growth of lung adenocarcinoma cells. Inhibition of TF expression also decreased the adhesion ability of cancer cells in normal lung tissues. In the nude mouse model, both lung metastasis and MPE generation were decreased when PC14PE6/AS2-siTF cells (TF expression was silenced) were intravenously injected. PC14PE6/AS2-siTF cells also produced less malignant ascites through inhibition of vascular permeability. In summary, we showed that TF expression plays a pivotal role in the pathogenesis of MPE generation via regulating of tumor metastasis and vascular permeability in lung adenocarcinoma bearing activated Stat3.
Collapse
Affiliation(s)
- Hsuan-Heng Yeh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tsan Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuang-Chu Lu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wu-Wei Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Sheng Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center for Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (WCS); (HSL)
| | - Wu-Chou Su
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (WCS); (HSL)
| |
Collapse
|
50
|
Marazioti A, Kairi CA, Spella M, Giannou AD, Magkouta S, Giopanou I, Papaleonidopoulos V, Kalomenidis I, Snyder LA, Kardamakis D, Stathopoulos GT. Beneficial impact of CCL2 and CCL12 neutralization on experimental malignant pleural effusion. PLoS One 2013; 8:e71207. [PMID: 23967166 PMCID: PMC3743892 DOI: 10.1371/journal.pone.0071207] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/03/2013] [Indexed: 12/31/2022] Open
Abstract
Using genetic interventions, we previously determined that C-C motif chemokine ligand 2 (CCL2) promotes malignant pleural effusion (MPE) formation in mice. Here we conducted preclinical studies aimed at assessing the specific therapeutic potential of antibody-mediated CCL2 blockade against MPE. For this, murine MPEs or skin tumors were generated in C57BL/6 mice by intrapleural or subcutaneous delivery of lung (LLC) or colon (MC38) adenocarcinoma cells. Human lung adenocarcinoma cells (A549) were used to induce MPEs in severe combined immunodeficient mice. Intraperitoneal antibodies neutralizing mouse CCL2 and/or CCL12, a murine CCL2 ortholog, were administered at 10 or 50 mg/kg every three days. We found that high doses of CCL2/12 neutralizing antibody treatment (50 mg/kg) were required to limit MPE formation by LLC cells. CCL2 and CCL12 blockade were equally potent inhibitors of MPE development by LLC cells. Combined CCL2 and CCL12 neutralization was also effective against MC38-induced MPE and prolonged the survival of mice in both syngeneic models. Mouse-specific CCL2-blockade limited A549-caused xenogeneic MPE, indicating that host-derived CCL2 also contributes to MPE precipitation in mice. The impact of CCL2/12 antagonism was associated with inhibition of immune and vascular MPE-related phenomena, such as inflammation, new blood vessel assembly and plasma extravasation into the pleural space. We conclude that CCL2 and CCL12 blockade are effective against experimental MPE induced by murine and human adenocarcinoma in mice. These results suggest that CCL2-targeted therapies may hold promise for future use against human MPE.
Collapse
Affiliation(s)
- Antonia Marazioti
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Chrysoula A. Kairi
- First Department of Critical Care and Pulmonary Medicine, University of Athens School of Medicine, General Hospital Evangelismos, Athens, Attica, Greece
| | - Magda Spella
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Anastasios D. Giannou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Sophia Magkouta
- First Department of Critical Care and Pulmonary Medicine, University of Athens School of Medicine, General Hospital Evangelismos, Athens, Attica, Greece
| | - Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Vassilios Papaleonidopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Ioannis Kalomenidis
- First Department of Critical Care and Pulmonary Medicine, University of Athens School of Medicine, General Hospital Evangelismos, Athens, Attica, Greece
| | - Linda A. Snyder
- Janssen R&D, LLC, Oncology Discovery Research, Spring House, Pennsylvania, United States of America
| | - Dimitrios Kardamakis
- Department of Radiation Oncology and Stereotactic Radiotherapy, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Georgios T. Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
- First Department of Critical Care and Pulmonary Medicine, University of Athens School of Medicine, General Hospital Evangelismos, Athens, Attica, Greece
- * E-mail:
| |
Collapse
|