1
|
Martínez de Lapiscina I, Diego E, Baquero C, Fernández E, Menendez E, Moure MD, Ruiz de Azua T, Castaño L, Valdés N. Novel Gene Variants in a Nationwide Cohort of Patients with Pheochromocytoma and Paraganglioma. Int J Mol Sci 2024; 25:12056. [PMID: 39596125 PMCID: PMC11593415 DOI: 10.3390/ijms252212056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Pheochromocytomas (PCCs) and paragangliomas (PGLs), denoted PPGLs, are rare neuroendocrine tumours and are highly heterogeneous. The phenotype-genotype correlation is poor; therefore, additional studies are needed to understand their pathogenesis. We describe the clinical characteristics of 63 patients with PPGLs and perform a genetic study. Genetic screening was performed via a targeted gene panel, and clinical variables were compared among patients with a positive molecular diagnosis and negative ones in both PCC and PGL cohorts. The mean age of patients with PCC was 50.0, and the mean age of those with PGL was 54.0. Disease-causing germline variants were identified in 16 individuals (25.4%), twelve and five patients with PCC and PGL, respectively. Genetically positive patients were younger at diagnosis in both cohorts. Variants in genes associated with either isolated PPGLs or syndromic forms of the disease were detected in a cohort of PPGLs. We have identified novel variants in known genes and set the importance of genetic screening to every patient with PPGLs, with a special focus on the young. A longer follow up of patients with variants in genes associated with syndromic forms is of clinical value.
Collapse
Affiliation(s)
- Idoia Martínez de Lapiscina
- Biobizkaia Health Research Institute, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), European Reference Network on Rare Endocrine Conditions (Endo-ERN), Plaza de Cruces s/n, 48903 Barakaldo, Spain
| | - Estrella Diego
- Biobizkaia Health Research Institute, Endocrinology and Nutrition Department, Cruces University Hospital, Plaza de Cruces s/n, 48903 Barakaldo, Spain; (E.D.); (E.F.)
| | - Candela Baquero
- Biobizkaia Health Research Institute, University of the Basque Country (UPV-EHU), Plaza de Cruces s/n, 48903 Barakaldo, Spain;
| | - Elsa Fernández
- Biobizkaia Health Research Institute, Endocrinology and Nutrition Department, Cruces University Hospital, Plaza de Cruces s/n, 48903 Barakaldo, Spain; (E.D.); (E.F.)
| | - Edelmiro Menendez
- Principality of Asturias Health Research Institute, Department of Endocrinology and Nutrition, Asturias Central University Hospital, Oviedo University, CIBERER. Av. Roma s/n, 33011 Oviedo, Spain;
| | - Maria Dolores Moure
- Biobizkaia Health Research Institute, Endocrinology and Nutrition Department, Cruces University Hospital, UPV-EHU, Plaza de Cruces s/n, 48903 Barakaldo, Spain;
| | - Teresa Ruiz de Azua
- Endocrinology Department, Urduliz Hospital, Goieta 32, 48610 Urduliz, Spain;
| | - Luis Castaño
- Biobizkaia Health Research Institute, Pediatric Endocrinology Department, Cruces University Hospital, UPV-EHU, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Endo-ERN, Plaza de Cruces s/n, 48903 Barakaldo, Spain;
| | - Nuria Valdés
- Biobizkaia Health Research Institute, Endocrinology and Nutrition Department, Cruces University Hospital, UPV-EHU, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CI-BERDEM), Endo-ERN, Plaza de Cruces s/n, 48903 Barakaldo, Spain
| | | |
Collapse
|
2
|
Uher O, Hadrava Vanova K, Taïeb D, Calsina B, Robledo M, Clifton-Bligh R, Pacak K. The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives. Endocr Rev 2024; 45:521-552. [PMID: 38377172 PMCID: PMC11244254 DOI: 10.1210/endrev/bnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.
Collapse
Affiliation(s)
- Ondrej Uher
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - David Taïeb
- Department of Nuclear Medicine, CHU de La Timone, Marseille 13005, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Familiar Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney 2065, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney 2065, NSW, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| |
Collapse
|
3
|
Torresan F, Iacobone C, Giorgino F, Iacobone M. Genetic and Molecular Biomarkers in Aggressive Pheochromocytomas and Paragangliomas. Int J Mol Sci 2024; 25:7142. [PMID: 39000254 PMCID: PMC11241596 DOI: 10.3390/ijms25137142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neoplasms producing catecholamines that occur as hereditary syndromes in 25-40% of cases. To date, PPGLs are no longer classified as benign and malignant tumors since any lesion could theoretically metastasize, even if it occurs only in a minority of cases (approximately 10-30%). Over the last decades, several attempts were made to develop a scoring system able to predict the risk of aggressive behavior at diagnosis, including the risk of metastases and disease recurrence; unfortunately, none of the available scores is able to accurately predict the risk of aggressive behavior, even including clinical, biochemical, and histopathological features. Thus, life-long follow-up is required in PPGL patients. Some recent studies focusing on genetic and molecular markers (involved in hypoxia regulation, gene transcription, cellular growth, differentiation, signaling pathways, and apoptosis) seem to indicate they are promising prognostic factors, even though their clinical significance needs to be further evaluated. The most involved pathways in PPGLs with aggressive behavior are represented by Krebs cycle alterations caused by succinate dehydrogenase subunits (SDHx), especially when caused by SDHB mutations, and by fumarate hydratase mutations that lead to the activation of hypoxia pathways and DNA hypermethylation, suggesting a common pathway in tumorigenesis. Conversely, PPGLs showing mutations in the kinase cascade (cluster 2) tend to display less aggressive behavior. Finally, establishing pathways of tumorigenesis is also fundamental to developing new drugs targeted to specific pathways and improving the survival of patients with metastatic disease. Unfortunately, the rarity of these tumors and the scarce number of cases enrolled in the available studies represents an obstacle to validating the role of molecular markers as reliable predictors of aggressiveness.
Collapse
Affiliation(s)
- Francesca Torresan
- Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy;
| | - Clelia Iacobone
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70121 Bari, Italy; (C.I.); (F.G.)
| | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70121 Bari, Italy; (C.I.); (F.G.)
| | - Maurizio Iacobone
- Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy;
| |
Collapse
|
4
|
Abou Khouzam R, Janji B, Thiery J, Zaarour RF, Chamseddine AN, Mayr H, Savagner P, Kieda C, Gad S, Buart S, Lehn JM, Limani P, Chouaib S. Hypoxia as a potential inducer of immune tolerance, tumor plasticity and a driver of tumor mutational burden: Impact on cancer immunotherapy. Semin Cancer Biol 2023; 97:104-123. [PMID: 38029865 DOI: 10.1016/j.semcancer.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
In cancer patients, immune cells are often functionally compromised due to the immunosuppressive features of the tumor microenvironment (TME) which contribute to the failures in cancer therapies. Clinical and experimental evidence indicates that developing tumors adapt to the immunological environment and create a local microenvironment that impairs immune function by inducing immune tolerance and invasion. In this context, microenvironmental hypoxia, which is an established hallmark of solid tumors, significantly contributes to tumor aggressiveness and therapy resistance through the induction of tumor plasticity/heterogeneity and, more importantly, through the differentiation and expansion of immune-suppressive stromal cells. We and others have provided evidence indicating that hypoxia also drives genomic instability in cancer cells and interferes with DNA damage response and repair suggesting that hypoxia could be a potential driver of tumor mutational burden. Here, we reviewed the current knowledge on how hypoxic stress in the TME impacts tumor angiogenesis, heterogeneity, plasticity, and immune resistance, with a special interest in tumor immunogenicity and hypoxia targeting. An integrated understanding of the complexity of the effect of hypoxia on the immune and microenvironmental components could lead to the identification of better adapted and more effective combinational strategies in cancer immunotherapy. Clearly, the discovery and validation of therapeutic targets derived from the hypoxic tumor microenvironment is of major importance and the identification of critical hypoxia-associated pathways could generate targets that are undeniably attractive for combined cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Bassam Janji
- Department of Cancer Research, Luxembourg Institute of Health, Tumor Immunotherapy and Microenvironment (TIME) Group, 6A, rue Nicolas-Ernest Barblé, L-1210 Luxembourg city, Luxembourg.
| | - Jerome Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Ali N Chamseddine
- Gastroenterology Department, Cochin University Hospital, Université de Paris, APHP, Paris, France; Ambroise Paré - Hartmann Private Hospital Group, Oncology Unit, Neuilly-sur-Seine, France.
| | - Hemma Mayr
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland; Department of Surgery & Transplantation, University and University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| | - Pierre Savagner
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland; Centre for Molecular Biophysics, UPR 4301 CNRS, 45071 Orleans, France; Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland.
| | - Sophie Gad
- Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres University (PSL), 75014 Paris, France; UMR CNRS 9019, Genome Integrity and Cancers, Gustave Roussy, Paris-Saclay University, 94800 Villejuif, France.
| | - Stéphanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg, France.
| | - Perparim Limani
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland; Department of Surgery & Transplantation, University and University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| |
Collapse
|
5
|
Lakhani A, Kang DH, Kang YE, Park JO. Toward Systems-Level Metabolic Analysis in Endocrine Disorders and Cancer. Endocrinol Metab (Seoul) 2023; 38:619-630. [PMID: 37989266 PMCID: PMC10764991 DOI: 10.3803/enm.2023.1814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023] Open
Abstract
Metabolism is a dynamic network of biochemical reactions that support systemic homeostasis amidst changing nutritional, environmental, and physical activity factors. The circulatory system facilitates metabolite exchange among organs, while the endocrine system finely tunes metabolism through hormone release. Endocrine disorders like obesity, diabetes, and Cushing's syndrome disrupt this balance, contributing to systemic inflammation and global health burdens. They accompany metabolic changes on multiple levels from molecular interactions to individual organs to the whole body. Understanding how metabolic fluxes relate to endocrine disorders illuminates the underlying dysregulation. Cancer is increasingly considered a systemic disorder because it not only affects cells in localized tumors but also the whole body, especially in metastasis. In tumorigenesis, cancer-specific mutations and nutrient availability in the tumor microenvironment reprogram cellular metabolism to meet increased energy and biosynthesis needs. Cancer cachexia results in metabolic changes to other organs like muscle, adipose tissue, and liver. This review explores the interplay between the endocrine system and systems-level metabolism in health and disease. We highlight metabolic fluxes in conditions like obesity, diabetes, Cushing's syndrome, and cancers. Recent advances in metabolomics, fluxomics, and systems biology promise new insights into dynamic metabolism, offering potential biomarkers, therapeutic targets, and personalized medicine.
Collapse
Affiliation(s)
- Aliya Lakhani
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Da Hyun Kang
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Yea Eun Kang
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Junyoung O. Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Fischer A, Maccio U, Wang K, Friemel J, Broglie Daeppen MA, Vetter D, Lehmann K, Reul A, Robledo M, Hantel C, Bechmann N, Pacak K, Zitzmann K, Auernhammer CJ, Grossman AB, Beuschlein F, Nölting S. PD-L1 and HIF-2α Upregulation in Head and Neck Paragangliomas after Embolization. Cancers (Basel) 2023; 15:5199. [PMID: 37958373 PMCID: PMC10650267 DOI: 10.3390/cancers15215199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Hypoxia activates pathways associated with tumor progression, metastatic spread, and alterations in the immune microenvironment leading to an immunosuppressive phenotype. In particular, the upregulation of PD-L1, a target for therapy with checkpoint inhibitors, is well-studied in several tumors. However, the relationship between hypoxia and PD-L1 regulation in pheochromocytomas and paragangliomas (PPGL), and especially in paragangliomas treated with embolization, is still largely unexplored. We investigated the expression of the hypoxia-marker HIF-2α and of PD-L1 in a PPGL-cohort with and without embolization as potential biomarkers that may predict the response to treatment with HIF-2α and checkpoint inhibitors. A total of 29 tumor samples from 25 patients who were operated at a single center were included and analyzed utilizing immunohistochemistry (IHC) for PD-L1 and HIF-2α. Embolization prior to surgery was performed in seven (24%) tumors. PD-L1 expression in tumor cells of head and neck paragangliomas (HNPGLs) receiving prior embolization (median PD-L1 positivity: 15%) was significantly higher as compared to PD-L1 expression in HNPGLs without prior embolization (median PD-L1 positivity: 0%) (p = 0.008). Consistently, significantly more HNPGLs with prior embolization were positive for HIF-2α (median nuclear HIF-2α positivity: 40%) as compared to HNPGLs without prior embolization (median nuclear HIF-2α positivity: 0%) (p = 0.016). Our results support the hypothesis that embolization with subsequent hypoxia leads to the upregulation of both PD-L1 and HIF-2α in HNPGLs, and could thus facilitate targeted treatment with HIF-2α and checkpoint inhibitors in the case of inoperable, locally advanced, or metastatic disease.
Collapse
Affiliation(s)
- Alessa Fischer
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), University of Zurich (UZH), Rämistrasse 100, CH-8091 Zurich, Switzerland
| | - Umberto Maccio
- Department of Pathology and Molecular Pathology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Katharina Wang
- Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Juliane Friemel
- Department of Pathology and Molecular Pathology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Martina A. Broglie Daeppen
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, CH-8091 Zurich, Switzerland
| | - Diana Vetter
- Department of Visceral and Transplantation Surgery, University Hospital, CH-8091 Zurich, Switzerland
| | - Kuno Lehmann
- Department of Visceral and Transplantation Surgery, University Hospital, CH-8091 Zurich, Switzerland
| | - Astrid Reul
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), University of Zurich (UZH), Rämistrasse 100, CH-8091 Zurich, Switzerland
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), University of Zurich (UZH), Rämistrasse 100, CH-8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Kathrin Zitzmann
- Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | | | - Ashley B. Grossman
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK
- NET Unit, ENETS Centre of Excellence, Royal Free Hospital, London NW3 2QG, UK
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), University of Zurich (UZH), Rämistrasse 100, CH-8091 Zurich, Switzerland
- Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
- The LOOP Zurich–Medical Research Center, CH-8091 Zurich, Switzerland
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), University of Zurich (UZH), Rämistrasse 100, CH-8091 Zurich, Switzerland
- Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| |
Collapse
|
7
|
Wang Y, Liu B, Li F, Zhang Y, Gao X, Wang Y, Zhou H. The connection between tricarboxylic acid cycle enzyme mutations and pseudohypoxic signaling in pheochromocytoma and paraganglioma. Front Endocrinol (Lausanne) 2023; 14:1274239. [PMID: 37867526 PMCID: PMC10585109 DOI: 10.3389/fendo.2023.1274239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors originating from chromaffin cells, holding significant clinical importance due to their capacity for excessive catecholamine secretion and associated cardiovascular complications. Roughly 80% of cases are associated with genetic mutations. Based on the functionality of these mutated genes, PPGLs can be categorized into distinct molecular clusters: the pseudohypoxia signaling cluster (Cluster-1), the kinase signaling cluster (Cluster-2), and the WNT signaling cluster (Cluster-3). A pivotal factor in the pathogenesis of PPGLs is hypoxia-inducible factor-2α (HIF2α), which becomes upregulated even under normoxic conditions, activating downstream transcriptional processes associated with pseudohypoxia. This adaptation provides tumor cells with a growth advantage and enhances their ability to thrive in adverse microenvironments. Moreover, pseudohypoxia disrupts immune cell communication, leading to the development of an immunosuppressive tumor microenvironment. Within Cluster-1a, metabolic perturbations are particularly pronounced. Mutations in enzymes associated with the tricarboxylic acid (TCA) cycle, such as succinate dehydrogenase (SDHx), fumarate hydratase (FH), isocitrate dehydrogenase (IDH), and malate dehydrogenase type 2 (MDH2), result in the accumulation of critical oncogenic metabolic intermediates. Notable among these intermediates are succinate, fumarate, and 2-hydroxyglutarate (2-HG), which promote activation of the HIFs signaling pathway through various mechanisms, thus inducing pseudohypoxia and facilitating tumorigenesis. SDHx mutations are prevalent in PPGLs, disrupting mitochondrial function and causing succinate accumulation, which competitively inhibits α-ketoglutarate-dependent dioxygenases. Consequently, this leads to global hypermethylation, epigenetic changes, and activation of HIFs. In FH-deficient cells, fumarate accumulation leads to protein succination, impacting cell function. FH mutations also trigger metabolic reprogramming towards glycolysis and lactate synthesis. IDH1/2 mutations generate D-2HG, inhibiting α-ketoglutarate-dependent dioxygenases and stabilizing HIFs. Similarly, MDH2 mutations are associated with HIF stability and pseudohypoxic response. Understanding the intricate relationship between metabolic enzyme mutations in the TCA cycle and pseudohypoxic signaling is crucial for unraveling the pathogenesis of PPGLs and developing targeted therapies. This knowledge enhances our comprehension of the pivotal role of cellular metabolism in PPGLs and holds implications for potential therapeutic advancements.
Collapse
Affiliation(s)
- Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Xin Gao
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Rosenblum JS, Wang H, Nazari MA, Zhuang Z, Pacak K. Pacak-Zhuang syndrome: a model providing new insights into tumor syndromes. Endocr Relat Cancer 2023; 30:e230050. [PMID: 37450881 PMCID: PMC10512798 DOI: 10.1530/erc-23-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
This article is a summary of the plenary lecture presented by Jared Rosenblum that was awarded the Manger Prize at the Sixth International Symposium on Pheochromocytoma/Paraganglioma held on 19-22 October 2022 in Prague, Czech Republic. Herein, we review our initial identification of a new syndrome of multiple paragangliomas, somatostatinomas, and polycythemia caused by early postzygotic mosaic mutations in EPAS1, encoding hypoxia-inducible factor 2 alpha (HIF-2α), and our continued exploration of new disease phenotypes in this syndrome, including vascular malformations and neural tube defects. Continued recruitment and close monitoring of patients with this syndrome as well as the generation and study of a corresponding disease mouse model as afforded by the pheochromocytoma/paraganglioma translational program at the National Institutes of Health has provided new insights into the natural history of these developmental anomalies and the pathophysiologic role of HIF-2α. Further, these studies have highlighted the importance of the timing of genetic defects in the development of related disease phenotypes. The recent discovery and continued study of this syndrome has not only rapidly evolved our understanding of pheochromocytoma and paraganglioma but also deepened our understanding of other developmental tumor syndromes, heritable syndromes, and sporadic diseases.
Collapse
Affiliation(s)
- Jared S Rosenblum
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Matthew A Nazari
- Eunice Kennedy Shriver National Institute of Child Health and Development, Bethesda, MD, 20892
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Development, Bethesda, MD, 20892
| |
Collapse
|
9
|
van den Berg MF, Kooistra HS, Grinwis GCM, Nicoli S, Golinelli S, Stammeleer L, van Wolferen ME, Timmermans-Sprang EPM, Zandvliet MMJM, van Steenbeek FG, Galac S. Whole transcriptome analysis of canine pheochromocytoma and paraganglioma. Front Vet Sci 2023; 10:1155804. [PMID: 37691636 PMCID: PMC10484483 DOI: 10.3389/fvets.2023.1155804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are neuroendocrine tumors arising from the chromaffin cells in the adrenal medulla and extra-adrenal paraganglia, respectively. Local invasion, concurrent disorders, and metastases prevent surgical removal, which is the most effective treatment to date. Given the current lack of effective medical treatment, there is a need for novel therapeutic strategies. To identify druggable pathways driving PPGL development, we performed RNA sequencing on PPGLs (n = 19) and normal adrenal medullas (NAMs; n = 10) of dogs. Principal component analysis (PCA) revealed that PPGLs clearly clustered apart from NAMs. In total, 4,218 genes were differentially expressed between PPGLs and NAMs. Of these, 232 had a log2 fold change of >3 or < -3, of which 149 were upregulated in PPGLs, and 83 were downregulated. Compared with NAMs, PPGLs had increased expression of genes related to the cell cycle, tumor development, progression and metastasis, hypoxia and angiogenesis, and the Wnt signaling pathway, and decreased expression of genes related to adrenal steroidogenesis. Our data revealed several overexpressed genes that could provide targets for novel therapeutics, such as Ret Proto-Oncogene (RET), Dopamine Receptor D2 (DRD2), and Secreted Frizzled Related Protein 2 (SFRP2). Based on the PCA, PPGLs were classified into 2 groups, of which group 1 had significantly higher Ki67 scores (p = 0.035) and shorter survival times (p = 0.04) than group 2. Increased expression of 1 of the differentially expressed genes between group 1 and 2, pleiotrophin (PTN), appeared to correlate with a more aggressive tumor phenotype. This study has shed light on the transcriptomic profile of canine PPGL, yielding new insights into the pathogenesis of these tumors in dogs, and revealed potential novel targets for therapy. In addition, we identified 2 transcriptionally distinct groups of PPGLs that had significantly different survival times.
Collapse
Affiliation(s)
- Marit F. van den Berg
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Hans S. Kooistra
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Guy C. M. Grinwis
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Stefania Golinelli
- Department of Veterinary Medical Science, Faculty of Veterinary Medicine, University of Bologna, Bologna, Italy
| | - Lisa Stammeleer
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Monique E. van Wolferen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Maurice M. J. M. Zandvliet
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Frank G. van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sara Galac
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Grigoryan S, Nhan W, Zhang L, Urban C, Zhao L, Turcu AF. Rates of Pheochromocytoma/Paraganglioma Screening in At-Risk Populations. J Clin Endocrinol Metab 2023; 108:e343-e349. [PMID: 36469797 PMCID: PMC10188311 DOI: 10.1210/clinem/dgac701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
CONTEXT Pheochromocytomas and paragangliomas (PPGL) are rare causes of secondary hypertension, but when unrecognized, they can lead to serious complications. Data regarding PPGL screening are lacking. OBJECTIVE This study aimed to assess the rates and patterns of PPGL screening among eligible patients. METHODS We conducted a retrospective review of adults with hypertension seen in outpatient clinics of a large academic center between January 1, 2017, and June 30, 2020. We included patients with treatment-resistant hypertension, hypertension at age < 35 years, and/or adrenal mass(es). RESULTS Of 203 535 patients with hypertension identified, 71 088 (35%) met ≥ 1 inclusion criteria, and 2013 (2.83%) were screened for PPGL. Patients screened were younger (56.2 ± 17.4 vs 64.0 ± 17.1 years), more often women (54.1% vs 44.2%), and never-smokers (54.6% vs 47.5%, P < 0.001 for all). The rate of screening was highest in patients with hypertension and adrenal mass(es) (51.7%, vs 3.9% in patients with early-onset hypertension, and 2.4% in those with treatment-resistant hypertension). Multivariable logistic regression showed higher odds ratio (OR) of PPGL screening in women (OR [95% CI]: 1.48 [1.34-1.63]); Black vs White patients (1.35 [1.19-1.53]); patients with adrenal mass(es) (55.1 [44.53-68.15]), stroke (1.34 [1.16-1.54]), dyslipidemia (1.41 [1.26-1.58]), chronic kidney disease (1.40 [1.26-1.56]), and obstructive sleep apnea (1.96 [1.76-2.19]). CONCLUSION PPGL screening is pursued in roughly half of patients with adrenal nodules and hypertension, but rarely in patients with treatment-resistant or early-onset hypertension. Similar to screening for other forms of secondary hypertension, PPGL screening occurs more often after serious complications develop.
Collapse
Affiliation(s)
- Seda Grigoryan
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Winnie Nhan
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lei Zhang
- School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Caitlin Urban
- Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Lili Zhao
- School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adina F Turcu
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Gomes JS, Sene LB, Lamana GL, Boer PA, Gontijo JAR. Impact of maternal protein restriction on Hypoxia-Inducible Factor (HIF) expression in male fetal kidney development. PLoS One 2023; 18:e0266293. [PMID: 37141241 PMCID: PMC10159110 DOI: 10.1371/journal.pone.0266293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/13/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Kidney developmental studies have demonstrated molecular pathway changes that may be related to decreased nephron numbers in the male 17 gestational days (17GD) low protein (LP) intake offspring compared to normal protein intake (NP) progeny. Here, we evaluated the HIF-1 and components of its pathway in the kidneys of 17-GD LP offspring to elucidate the molecular modulations during nephrogenesis. METHODS Pregnant Wistar rats were allocated into two groups: NP (regular protein diet-17%) or LP (Low protein diet-6%). Taking into account miRNA transcriptome sequencing previous study (miRNA-Seq) in 17GD male offspring kidneys investigated predicted target genes and proteins related to the HIF-1 pathway by RT-qPCR and immunohistochemistry. RESULTS In the present study, in male 17-GD LP offspring, an increased elF4, HSP90, p53, p300, NFκβ, and AT2 gene encoding compared to the NP progeny. Higher labeling of HIF-1α CAP cells in 17-DG LP offspring was associated with reduced elF4 and phosphorylated elF4 immunoreactivity in LP progeny CAP cells. In 17DG LP, the NFκβ and HSP90 immunoreactivity was enhanced, particularly in the CAP area. DISCUSSION AND CONCLUSION The current study supported that the programmed reduced nephron number in the 17-DG LP offspring may be related to changes in the HIF-1α signaling pathway. Factors that facilitate the transposition of HIF-1α to progenitor renal cell nuclei, such as increased NOS, Ep300, and HSP90 expression, may have a crucial role in this regulatory system. Also, HIF-1α changes could be associated with reduced transcription of elF-4 and its respective signaling path.
Collapse
Affiliation(s)
- Julia Seva Gomes
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas State University (UNICAMP), Campinas, SP, Brazil
| | - Leticia Barros Sene
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas State University (UNICAMP), Campinas, SP, Brazil
| | - Gabriela Leme Lamana
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas State University (UNICAMP), Campinas, SP, Brazil
| | - Patricia Aline Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas State University (UNICAMP), Campinas, SP, Brazil
| | - José Antonio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas State University (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
12
|
Tabebi M, Söderkvist P, Gimm O. Nuclear and mitochondrial DNA alterations in pheochromocytomas and paragangliomas, and their potential treatment. Endocr Relat Cancer 2023; 30:ERC-22-0217. [PMID: 36219865 DOI: 10.1530/erc-22-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Mitochondrial DNA (mtDNA) alterations have been reported in different types of cancers and are suggested to play important roles in cancer development and metastasis. However, there is little information about its involvement in pheochromocytomas and paragangliomas (PCCs/PGLs) formation. PCCs and PGLs are rare endocrine tumors of the chromaffin cells in the adrenal medulla and extra-adrenal paraganglia that can synthesize and secrete catecholamines. Over the last 3 decades, the genetic background of about 60% of PCCs/PGLs involving nuclear DNA alterations has been determined. Recently, a study showed that mitochondrial alterations can be found in around 17% of the remaining PCCs/PGLs. In this review, we summarize recent knowledge regarding both nuclear and mitochondrial alterations and their involvement in PCCs/PGLs. We also provide brief insights into the genetics and the molecular pathways associated with PCCs/PGLs and potential therapeutical targets.
Collapse
Affiliation(s)
- Mouna Tabebi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Peter Söderkvist
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Clinical Genomics Linköping, Linköping University, Linköping, Sweden
| | - Oliver Gimm
- Department of Surgery, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| |
Collapse
|
13
|
Wang Y, Liu L, Chen D, Pang Y, Xu X, Liu J, Li M, Guan X. Development and validation of a novel nomogram predicting pseudohypoxia type pheochromocytomas and paragangliomas. J Endocrinol Invest 2022:10.1007/s40618-022-01984-3. [PMID: 36508127 DOI: 10.1007/s40618-022-01984-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Pseudohypoxia type (PHT) pheochromocytomas and paragangliomas (PPGLs) are more likely to metastasize and have a poor prognosis. However, application of genetic tests has many restrictions. The study aims to establish a novel nomogram for predicting the risk of PHT PPGLs. METHODS This retrospective cross-sectional study included 242 patients with pathology confirmed PPGLs in one tertiary care center in China in 2010-2021. Clinical and biochemical characteristics were collected. Next-generation sequencing was performed in all PPGLs patients for detection of mutation. Univariate and multivariable logistic regression analyses were used to select risk factors for constructing the nomogram. The area under the receiver operating characteristic (ROC) curve (AUC) was used to evaluate the discrimination of the nomogram and the calibration curve was performed. RESULTS Four variables including age ≤ 35 years, hypertension, 24 h urinary output of urinary vanillylmandelic acid (VMA) ≥ 100 umol/24 h and urinary 17-ketosteroide (17 KS) ≤ 50 umol/24 h levels were independently associated with PHT PPGLs in the logistic regression analysis and were included in the nomogram. The nomogram showed a good discrimination performance with AUC of 0.829 [95% confidence interval (CI), 0.767-0.891] in the training set and 0.797 (95%CI, 0.659-0.935) in the validation set, respectively. The calibration curve showed a bias-corrected AUC of 0.809 vs. 0.795, and a Hosmer-Lemeshow (H-L) test yielded a p value of 0.801 vs. 0.885, indicating the nomogram's good ability to distinguish PHT PPGLs from non-PHT PPGLs. CONCLUSION Our study has proposed a novel nomogram for individualized prediction of the PHT PPGLs, which may make contributions to guide the patients' personalized management, follow-up, and treatment.
Collapse
Affiliation(s)
- Y Wang
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - L Liu
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - D Chen
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Y Pang
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - X Xu
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - J Liu
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - M Li
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - X Guan
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
14
|
Pang Y, Li M, Jiang J, Chen X, Fu Y, Wang C, He Y, Zhao Y, Wang Y, Guan X, Zhang L, Xu X, Gan Y, Liu Y, Xie Y, Tang T, Wang J, Xie B, Liang Z, Chen D, Liu H, Chen C, Eisenhofer G, Liu L, Yi X, Chen BT. Impact of body composition and genotype on haemodynamics during surgery for pheochromocytoma and paraganglioma. J Cachexia Sarcopenia Muscle 2022; 13:2843-2853. [PMID: 36068986 PMCID: PMC9745493 DOI: 10.1002/jcsm.13071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 07/05/2022] [Accepted: 07/24/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Maintaining intraoperative haemodynamic stability can reduce cardiovascular complications during surgery for pheochromocytoma and paraganglioma (PPGL). Risk factors such as tumour size and catecholamine levels are reported to predict haemodynamic responses during surgery for PPGL. We hypothesized that additional factors including body composition and genetic information could further improve prediction. METHODS Consecutive patients with PPGL confirmed by surgical pathology between June 2010 and June 2019 were retrospectively included. Cross-sectional computed tomography images at the L3 level were used to assess body composition parameters including skeletal muscle area and visceral fat area. Next-generation sequencing was performed using a panel containing susceptibility genes of PPGL. Differences in clinical-genetic characteristics and body composition parameters were analysed and compared in patients with and without intraoperative haemodynamic instability (HDI). RESULTS We included 221 patients with PPGL (median age 47 [38-56] years, and 52% male). Among them, 49.8% had Cluster 2 mutations (related to kinase signalling pathways), 44.8% had sarcopenia, and 52.9% experienced intraoperative HDI. Compared with patients without HDI, more patients with HDI had Cluster 2 mutations (59.8% vs. 38.5%, P = 0.002) and less had sarcopenia (35.9% vs. 54.8%, P = 0.005). Multivariate analysis showed that urine vanillylmandelic acid ≥ 58 μmol/day (adjusted odds ratio [OR] = 1.840, 95% confidence interval [CI] = 1.012-3.347, P = 0.046), tumour size ≥ 4 cm (adjusted OR = 2.278, 95% CI = 1.242-4.180, P = 0.008), and Cluster 2 mutations (adjusted OR = 2.199, 95% CI = 1.128-4.285, P = 0.021) were independent risk factors for intraoperative HDI, while sarcopenia (adjusted OR = 0.475, 95% CI = 0.266-0.846, P = 0.012) decreased the risk. CONCLUSIONS Body composition and genotype were associated with intraoperative haemodynamics in patients with PPGL. Our results indicated that inclusion of body composition and genotype in the overall assessment of patients with PPGL helped to predict HDI during surgery, which could assist in implementing preoperative and intraoperative measures to reduce perioperative complications.
Collapse
Affiliation(s)
- Yingxian Pang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Minghao Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Yan Fu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Cikui Wang
- Department of Urology, Hubei Armed Police Corps Hospital, Wuchang, P. R. China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Yuanzhe Zhao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Yong Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Xiao Guan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Liang Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Xiaowen Xu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Yalin Liu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Yaoling Xie
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Tingyuan Tang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Jing Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Bin Xie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Zhihao Liang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Danlei Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Haipeng Liu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Changyong Chen
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Graeme Eisenhofer
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Longfei Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Xiaoping Yi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, P. R. China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, P. R. China.,National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan, P. R. China
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
15
|
Ogasawara T, Fujii Y, Kakiuchi N, Shiozawa Y, Sakamoto R, Ogawa Y, Ootani K, Ito E, Tanaka T, Watanabe K, Yoshida Y, Kimura N, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Ogawa S. Genetic Analysis of Pheochromocytoma and Paraganglioma Complicating Cyanotic Congenital Heart Disease. J Clin Endocrinol Metab 2022; 107:2545-2555. [PMID: 35730597 DOI: 10.1210/clinem/dgac362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Pheochromocytoma and paraganglioma (PPGL) may appear as a complication of cyanotic congenital heart disease (CCHD-PPGL) with frequent EPAS1 mutations, suggesting a close link between EPAS1 mutations and tissue hypoxia in CCHD-PPGL pathogenesis. OBJECTIVE Our aim is to further investigate the role of EPAS1 mutations in the hypoxia-driven mechanism of CCHD-PPGL pathogenesis, particularly focusing on metachronous and/or multifocal CCHD-PPGL tumors. METHODS We performed whole-exome sequencing (WES) for somatic and germline mutations in 15 PPGL samples from 7 CCHD patients, including 3 patients with metachronous and/or multifocal tumors, together with an adrenal medullary hyperplasia (AMH) sample. RESULTS We detected EPAS1 mutations in 15 out of 16 PPGL/AMH samples from 7 cases. Conspicuously, all EPAS1 mutations in each of 3 cases with multifocal or metachronous tumors were mutually independent and typical examples of parallel evolution, which is suggestive of strong positive selection of EPAS1-mutated clones. Compared to 165 The Cancer Genome Atlas non-CCHD-PPGL samples, CCHD-PPGL/AMH samples were enriched for 11p deletions (13/16) and 2p amplifications (4/16). Of particular note, the multiple metachronous PPGL tumors with additional copy number abnormalities developed 18 to 23 years after the resolution of hypoxemia, suggesting that CCHD-induced hypoxic environments are critical for positive selection of EPAS1 mutants in early life, but may no longer be required for development of PPGL in later life. CONCLUSION Our results highlight a key role of activated hypoxia-inducible factor 2α due to mutated EPAS1 in positive selection under hypoxic environments, although hypoxemia itself may not necessarily be required for the EPAS1-mutated clones to progress to PPGL.
Collapse
Affiliation(s)
- Tatsuki Ogasawara
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8315, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Yoichi Fujii
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8315, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8315, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8315, Japan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Katsuki Ootani
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562,Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562,Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka 420-8660, Japan
| | - Yusaku Yoshida
- Department of Endocrine Surgery, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Noriko Kimura
- Department of Clinical Research Pathology Division, National Hospital Organization Hakodate Hospital, Hakodate 041-8512, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiroko Tanaka
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8315, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm 14157, Sweden
| |
Collapse
|
16
|
Zhang J, Liu Z, Wu H, Chen X, Hu Q, Li X, Luo L, Ye S, Ye J. Irisin Attenuates Pathological Neovascularization in Oxygen-Induced Retinopathy Mice. Invest Ophthalmol Vis Sci 2022; 63:21. [PMID: 35737379 PMCID: PMC9233294 DOI: 10.1167/iovs.63.6.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose Abnormal angiogenesis is a defining feature in a couple of ocular neovascular diseases. The application of anti-VEGFA therapy has achieved certain benefits in the clinic, accompanying side effects and poor responsiveness in many patients. The present study investigated the role of irisin in retinal neovascularization. Methods Western blot and quantitative PCR were used to determine irisin expression in the oxygen-induced retinopathy mice model. The pathological angiogenesis and inflammation index were examined after irisin administration. Primary retinal astrocytes were cultured and analyzed for VEGFA expression in vitro. Astrocyte-conditioned medium was collected for transwell assay and tube formation assay in human microvascular endothelial cells-1. Results Irisin was downregulated in the oxygen-induced retinopathy mice retinae. Additional irisin attenuated pathological angiogenesis, inflammation, and apoptosis in vivo. In vitro, irisin decreased astrocyte VEGFA production, and the conditioned medium suppressed human microvascular endothelial cells-1 migration. Last, irisin inhibited hypoxia-inducible factor-2α, nuclear factor-κB, and pNF-κB (Phospho-Nuclear Factor-κB) expression. Conclusions Irisin mitigates retinal pathological angiogenesis. Chinese Abstract
目的:异常的血管生成是新生血管性眼病的显著特征。抗血管内皮生长因子A的治疗在临床上取得了一定的效果, 然而同时伴随着不可避免的副作用和不良反应。本研究旨在探讨irisin在视网膜病理性新生血管形成中的作用。
方法:采用免疫印迹和qPCR检测氧诱导视网膜病变小鼠模型中irisin的表达。外源性给予irisin后, 检测病理性血管生成和炎症的相关指标。为了研究irisin在体外的作用, 我们培养了原代视网膜星形胶质细胞, 检测缺氧后VEGFA的表达, 并收集星形胶质细胞的条件培养基用于人微血管内皮细胞-1(HMEC-1)的迁移和管腔形成实验。
结果:irisin在氧诱导视网膜病变小鼠视网膜中下调。外源性加入irisin可抑制病理性血管生成、炎症和凋亡。在体外, irisin减少星形胶质细胞中VEGFA的生成, 其处理过的星形胶质细胞条件培养基可以抑制人微血管内皮细胞-1的迁移。最后, 我们发现irisin可以降低HIF-2α、NF-κB和pNF-κB的表达水平。
结论:irisin可减轻视网膜病理性血管生成。
Collapse
Affiliation(s)
- Jieqiong Zhang
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Zhifei Liu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Haoqian Wu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Xi Chen
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Qiumei Hu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Xue Li
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Linlin Luo
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Shiyang Ye
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Occupational Disease, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| |
Collapse
|
17
|
Hassan Nelson L, Fuentes-Bayne H, Yin J, Asmus E, Ryder M, Morris JC, Hilger CR, Bible KC, Chintakuntlawar AV, Rao SN. Lenvatinib as a Therapeutic Option in Unresectable Metastatic Pheochromocytoma and Paragangliomas. J Endocr Soc 2022; 6:bvac044. [PMID: 35402763 PMCID: PMC8989149 DOI: 10.1210/jendso/bvac044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Context
Metastatic pheochromocytomas and paragangliomas (mPPGL) are rare vascular neuroendocrine tumors that highly express vascular growth factors. Systemic treatment options in cases of unresectable multi-site disease are limited. Multikinase inhibitors, that inhibit angiogenesis, such as lenvatinib, have proven effective in several other malignancies, and may be a viable option for mPPGL.
Objective
To evaluate the efficacy of lenvatinib as salvage therapy in mPPGLs.
Design
Retrospective analysis of mPPGL patients who received lenvatinib from 2015-2020.
Setting
Tertiary referral center
Patients
Patients ≥ 18 years with mPPGL who were treated with lenvatinib were included.
Intervention
Patients were started on lenvatinib 20 mg daily and dose was adjusted according to tolerance or disease progression.
Results
11 patients were included. Median treatment duration was 14.7 months (95% CI: 2.3-NE). Treatment was discontinued due to disease progression, adverse events, or death. Overall survival at 12 months was 80.8% (95% CI: 42.3-94.9%) but its median was not reached. Median progression free survival was 14.7 months (CI 95%: 1.7-NE). Among the 8 patients with measurable disease, overall response rate was 63% as 5/8 experienced a partial response and 3/8 had stable disease. Worsening hypertension and anemia were the most common adverse events (AE).
Conclusions
Lenvatinib may be a viable treatment option for mPPGL, though at the potential risk of worsening hypertension. Larger, multi-center studies are needed to better characterize treatment efficacy.
Collapse
Affiliation(s)
| | | | - Jun Yin
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN
| | - Erik Asmus
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN
| | - Mabel Ryder
- Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | - John C Morris
- Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | | | - Keith C Bible
- Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | | | - Sarika N Rao
- Division of Endocrinology, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
18
|
Kamai T, Murakami S, Arai K, Nishihara D, Uematsu T, Ishida K, Kijima T. Increased expression of Nrf2 and elevated glucose uptake in pheochromocytoma and paraganglioma with SDHB gene mutation. BMC Cancer 2022; 22:289. [PMID: 35300626 PMCID: PMC8931959 DOI: 10.1186/s12885-022-09415-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Background Pheochromocytomas (PCC) and paragangliomas (PGL) are catecholamine-producing neuroendocrine tumors. According to the World Health Organization Classification 2017, all PCC/PGL are considered to have malignant potential. There is growing evidence that PCC/PGL represent a metabolic disease that leads to aerobic glycolysis. Cellular energy metabolism involves both transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and succinate dehydrogenase (SDH) subtypes, but the association of these substances with PCC/PGL is largely unknown. Methods We investigated SDHB gene mutation and protein expressions for SDHB and Nrf2 in surgical specimens from 29 PCC/PGL. We also assessed preoperative maximum standard glucose uptake (SUVmax) on [18F]fluorodeoxy-glucose positron emission tomography and mRNA levels for Nrf2. Results Among 5 PCC/PGL with a PASS Score ≥ 4 or with a moderately to poorly differentiated type in the GAPP Score, 4 were metastatic and found to be SDHB mutants with homogeneous deletion of SDHB protein. SDHB mutants showed a higher expression of Nrf2 protein and a higher preoperative SUVmax than non-SDHB mutants with a PASS < 4 or a well-differentiated GAPP type. Furthermore, protein expression of Nrf2 was positively associated with preoperative SUVmax. The Nrf2 mRNA level positively correlated with malignant phenotype, higher expression for Nrf2 protein and SDHB gene mutant, but negatively correlated with expression for SDHB protein. There was also a positive correlation between Nrf2 mRNA level and SUVmax. Conclusion These results suggest that activation of Nrf2 and elevated metabolism play roles in PCC/PGL with malignant potential that have SDHB gene mutation and SDHB deficiency.
Collapse
Affiliation(s)
- Takao Kamai
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi Mibu, Tochigi, 321-0293, Japan.
| | - Satoshi Murakami
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi Mibu, Tochigi, 321-0293, Japan
| | - Kyoko Arai
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi Mibu, Tochigi, 321-0293, Japan
| | - Daisaku Nishihara
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi Mibu, Tochigi, 321-0293, Japan
| | - Toshitaka Uematsu
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi Mibu, Tochigi, 321-0293, Japan
| | - Kazuyuki Ishida
- Department of Diagnostic Pathology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Toshiki Kijima
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi Mibu, Tochigi, 321-0293, Japan
| |
Collapse
|
19
|
Nölting S, Bechmann N, Taieb D, Beuschlein F, Fassnacht M, Kroiss M, Eisenhofer G, Grossman A, Pacak K. Personalized Management of Pheochromocytoma and Paraganglioma. Endocr Rev 2022; 43:199-239. [PMID: 34147030 PMCID: PMC8905338 DOI: 10.1210/endrev/bnab019] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Pheochromocytomas/paragangliomas are characterized by a unique molecular landscape that allows their assignment to clusters based on underlying genetic alterations. With around 30% to 35% of Caucasian patients (a lower percentage in the Chinese population) showing germline mutations in susceptibility genes, pheochromocytomas/paragangliomas have the highest rate of heritability among all tumors. A further 35% to 40% of Caucasian patients (a higher percentage in the Chinese population) are affected by somatic driver mutations. Thus, around 70% of all patients with pheochromocytoma/paraganglioma can be assigned to 1 of 3 main molecular clusters with different phenotypes and clinical behavior. Krebs cycle/VHL/EPAS1-related cluster 1 tumors tend to a noradrenergic biochemical phenotype and require very close follow-up due to the risk of metastasis and recurrence. In contrast, kinase signaling-related cluster 2 tumors are characterized by an adrenergic phenotype and episodic symptoms, with generally a less aggressive course. The clinical correlates of patients with Wnt signaling-related cluster 3 tumors are currently poorly described, but aggressive behavior seems likely. In this review, we explore and explain why cluster-specific (personalized) management of pheochromocytoma/paraganglioma is essential to ascertain clinical behavior and prognosis, guide individual diagnostic procedures (biochemical interpretation, choice of the most sensitive imaging modalities), and provide personalized management and follow-up. Although cluster-specific therapy of inoperable/metastatic disease has not yet entered routine clinical practice, we suggest that informed personalized genetic-driven treatment should be implemented as a logical next step. This review amalgamates published guidelines and expert views within each cluster for a coherent individualized patient management plan.
Collapse
Affiliation(s)
- Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland.,Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, 13273 Marseille, France
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland.,Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Martin Fassnacht
- Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Matthias Kroiss
- Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany.,Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ashley Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX2 6HG, UK.,Centre for Endocrinology, Barts and the London School of Medicine, London EC1M 6BQ, UK.,ENETS Centre of Excellence, Royal Free Hospital, London NW3 2QG, UK
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20847, USA
| |
Collapse
|
20
|
Curran CS, Kopp JB. Aryl Hydrocarbon Receptor Mechanisms Affecting Chronic Kidney Disease. Front Pharmacol 2022; 13:782199. [PMID: 35237156 PMCID: PMC8882872 DOI: 10.3389/fphar.2022.782199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix transcription factor that binds diverse endogenous and xenobiotic ligands, which regulate AHR stability, transcriptional activity, and cell signaling. AHR activity is strongly implicated throughout the course of chronic kidney disease (CKD). Many diverse organic molecules bind and activate AHR and these ligands are reported to either promote glomerular and tubular damage or protect against kidney injury. AHR crosstalk with estrogen, peroxisome proliferator-activated receptor-γ, and NF-κB pathways may contribute to the diversity of AHR responses during the various forms and stages of CKD. The roles of AHR in kidney fibrosis, metabolism and the renin angiotensin system are described to offer insight into CKD pathogenesis and therapies.
Collapse
Affiliation(s)
- Colleen S. Curran
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD, United States
| | - Jeffrey B. Kopp
- Kidney Disease Section, NIDDK, NIH, Bethesda, MD, United States
| |
Collapse
|
21
|
Pheochromocytomas and Abdominal Paragangliomas: A Practical Guidance. Cancers (Basel) 2022; 14:cancers14040917. [PMID: 35205664 PMCID: PMC8869962 DOI: 10.3390/cancers14040917] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pheochromocytomas and abdominal paragangliomas (PPGLs) are rare. They can be discovered incidentally by imaging with computed tomography or magnetic resonance imaging and during hormonal surveillance in patients with known genetic variants that are associated with PPGLs. As most PPGLs are functioning, a hormonal work-up evaluating for catecholamine excess is recommended. Classical symptoms, such as tachycardia, hypertension and headache, can be present, but when the PPGL is discovered as an incidentaloma, symptoms may be lacking or be more discrete. PPGLs carry malignant potential, and patients should undergo close surveillance, as recurrence of disease or metastasis may develop. Genetic susceptibility for multifocal disease has gained more attention, and germline variants are commonly detected, thus facilitating detection of hereditary cases and afflicted family members. Any patient with a PPGL should be managed by an expert multidisciplinary team consisting of endocrinologists, radiologists, surgeons, pathologists and clinical geneticists. Abstract Pheochromocytomas and abdominal paragangliomas (PPGLs) are rare tumors arising from the adrenal medulla or the sympathetic nervous system. This review presents a practical guidance for clinicians dealing with PPGLs. The incidence of PPGLs has risen. Most cases are detected via imaging and less present with symptoms of catecholamine excess. Most PPGLs secrete catecholamines, with diffuse symptoms. Diagnosis is made by imaging and tests of catecholamines. Localized disease can be cured by surgery. PPGLs are the most heritable of all human tumors, and germline variants are found in approximately 30–50% of cases. Such variants can give information regarding the risk of developing recurrence or metastases as well as the risk of developing other tumors and may identify relatives at risk for disease. All PPGLs harbor malignant potential, and current histological and immunohistochemical algorithms can aid in the identification of indolent vs. aggressive tumors. While most patients with metastatic PPGL have slowly progressive disease, a proportion of patients present with an aggressive course, highlighting the need for more effective therapies in these cases. We conclude that PPGLs are rare but increasing in incidence and management should be guided by a multidisciplinary team.
Collapse
|
22
|
The Role of the Metabolome and Non-Coding RNA on Pheochromocytomas and Paragangliomas: An Update. Metabolites 2022; 12:metabo12020131. [PMID: 35208206 PMCID: PMC8880811 DOI: 10.3390/metabo12020131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Pheochromocytoma and paragangliomas (PPGL) are rare neuroendocrine tumors. In some patients they exhibit malignant behavior characterized by the presence of metastases, limiting treatment options and survival rates. Therapeutic options are limited to surgery, localized radiotherapy, and a few systemic therapies. However, in several recent studies, non-coding RNA molecules are gaining increasing attention as markers of malignancy for PPGL. The understanding of PPGL development molecular mechanisms has improved in the last years, with some of the epigenetic regulatory mechanisms such as DNA and histones methylation, being better understood than RNA-based mechanisms. Metabolome deregulation in PPGL, with increased synthesis of molecules that facilitated tumor growth, results from the activation of hypoxia signaling pathways, affecting tumorigenesis. In addition, the assessment of these metabolites can be useful for the management of these tumors. This review summarizes recent discoveries linking metabolome and non-coding RNA to PPGL and their relevance for diagnosis and therapeutics.
Collapse
|
23
|
Ghosal S, Zhu B, Huynh TT, Meuter L, Jha A, Talvacchio S, Knue M, Patel M, Prodanov T, Das S, Zeiger MA, Nilubol N, Shankavaram UT, Taieb D, Pacak K. A long noncoding RNA-microRNA expression signature predicts metastatic signature in pheochromocytomas and paragangliomas. Endocrine 2022; 75:244-253. [PMID: 34536193 DOI: 10.1007/s12020-021-02857-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE In hopes of discovering new markers for metastatic or aggressive phenotypes of pheochromocytomas and paragangliomas (PCPG), we analyzed the noncoding transcriptome from patient gene expression data in The Cancer Genome Atlas. METHODS Differential expression of miRNAs was observed between PCPG molecular subtypes. We specifically characterized candidate miRNAs that are upregulated in pseudohypoxic PCPGs with mutations in succinate dehydrogenase complex subunits, B and/or D (SDHB and/or SDHD, respectively), which are mutations associated with unfavorable clinical outcomes. RESULTS Our computational analysis identified four candidate miRNAs that showed elevated expression in metastatic compared to non-metastatic PCPGs: miR-182, miR-183, miR-96, and miR-383. We also found six candidate lncRNAs harboring opposite expression patterns from the miRNAs when we analyzed the expression profiles of their predicted target lncRNAs. Three of these lncRNA candidates, USP3-AS1, LINC00877, and AC009312.1, were validated to have reduced expression in metastatic compared to non-metastatic PCPGs. Finally, using univariate and multivariate analysis, we found miRNA miR-182 to be an independent predictor of metastasis-free survival in PCPGs. CONCLUSIONS We identified candidate miRNA and lncRNAs associated with metastasis-free survival in PCPGs.
Collapse
Affiliation(s)
- Suman Ghosal
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Boqun Zhu
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Thanh-Truc Huynh
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Leah Meuter
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara Talvacchio
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marianne Knue
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mayank Patel
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tamara Prodanov
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shaoli Das
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Martha A Zeiger
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Naris Nilubol
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Uma T Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France
- European Center for Research in Medical Imaging, Aix-Marseille University, Marseille, France
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Ma X, Ling C, Zhao M, Wang F, Cui Y, Wen J, Ji Z, Zhang C, Chen S, Tong A, Li Y. Mutational Profile and Potential Molecular Therapeutic Targets of Pheochromocytoma. Front Endocrinol (Lausanne) 2022; 13:921645. [PMID: 35966080 PMCID: PMC9368203 DOI: 10.3389/fendo.2022.921645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Pheochromocytoma/paraganglioma (PCC/PGL; collectively known as PPGL) can be driven by germline and somatic mutations in susceptibility genes. We aimed to investigate the mutation profile and clinical features of pathogenic genes in highly genetically heterogeneous PPGL and to preliminary explore molecular therapeutic targets in PPGL. METHODS We established a panel of 260 genes, including susceptibility genes of PPGL and other important tumorigenic genes to sequence 107 PPGL tissues. RESULTS Overall, 608 genomic mutations were identified in 107 PPGL tissues. Almost 57% of PPGL tissue samples exhibited pathogenic mutations, and the most frequently mutated gene was SDHB (15/107, 14%). SDHB and HRAS were the most commonly mutated genes in germline-mutated PPGL (25/107, 23%) and nongermline-mutated PPGL (36/107, 34%), respectively. In addition, novel pathogenic mutations were detected in sporadic PPGL. PPGL with mutations in the hypoxia pathway had an earlier onset and higher norepinephrine level than those in the kinase pathway. Receptor tyrosine kinase (RTK; 22%, 24/107), mitogen-activated protein kinase (MAPK; 14%, 15/107), and tyrosine kinase (TK; 2%, 2/107) pathways were the most frequently mutated pathways in PPGL. CONCLUSION Our results provided the genetic mutation profile in PPGL tissues. Genetic mutations in PPGL were mainly concentrated in the RTK, TK, and MAPK pathways, suggesting potential molecular therapeutic targets for PPGL.
Collapse
Affiliation(s)
- Xiaosen Ma
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health Commission of the People’s Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Ling
- The Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Meng Zhao
- Bioinformatics Institute, Novogene Co., Ltd., Beijing, China
| | - Fen Wang
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health Commission of the People’s Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunying Cui
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health Commission of the People’s Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jin Wen
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Caili Zhang
- Department of Technical Support, Novogene Co., Ltd., Beijing, China
| | - Shi Chen
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health Commission of the People’s Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Anli Tong
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health Commission of the People’s Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Anli Tong,
| | - Yuxiu Li
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health Commission of the People’s Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Kuo MJM, Nazari MA, Jha A, Pacak K. Pediatric Metastatic Pheochromocytoma and Paraganglioma: Clinical Presentation and Diagnosis, Genetics, and Therapeutic Approaches. Front Endocrinol (Lausanne) 2022; 13:936178. [PMID: 35903274 PMCID: PMC9314859 DOI: 10.3389/fendo.2022.936178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Although pediatric pheochromocytomas and paragangliomas (PPGLs) are rare, they have important differences compared to those in adults. Unfortunately, without timely diagnosis and management, these tumors have a potentially devastating impact on pediatric patients. Pediatric PPGLs are more often extra-adrenal, multifocal/metastatic, and recurrent, likely due to these tumors being more commonly due to a genetic predisposition than in adults. This genetic risk results in disease manifestations at an earlier age giving these tumors time to advance before detection. In spite of these problematic features, advances in the molecular and biochemical characterization of PPGLs have heralded an age of increasingly personalized medicine. An understanding of the genetic basis for an individual patient's tumor provides insight into its natural history and can guide clinicians in management of this challenging disease. In pediatric PPGLs, mutations in genes related to pseudohypoxia are most commonly seen, including the von Hippel-Lindau gene (VHL) and succinate dehydrogenase subunit (SDHx) genes, with the highest risk for metastatic disease associated with variants in SDHB and SDHA. Such pathogenic variants are associated with a noradrenergic biochemical phenotype with resultant sustained catecholamine release and therefore persistent symptoms. This is in contrast to paroxysmal symptoms (e.g., episodic hypertension, palpitations, and diaphoresis/flushing) as seen in the adrenergic, or epinephrine-predominant, biochemical phenotype (due to episodic catecholamine release) that is commonly observed in adults. Additionally, PPGLs in children more often present with signs and symptoms of catecholamine excess. Therefore, children, adolescents, and young adults present differently from older adults (e.g., the prototypical presentation of palpitations, perspiration, and pounding headaches in the setting of an isolated adrenal mass). These presentations are a direct result of genetic determinants and highlight the need for pediatricians to recognize these differences in order to expedite appropriate evaluations, including genetic testing. Identification and familiarity with causative genes inform surveillance and treatment strategies to improve outcomes in pediatric patients with PPGL.
Collapse
Affiliation(s)
- Mickey J. M. Kuo
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Matthew A. Nazari
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Karel Pacak,
| |
Collapse
|
26
|
Winzeler B, Challis BG, Casey RT. Precision Medicine in Phaeochromocytoma and Paraganglioma. J Pers Med 2021; 11:jpm11111239. [PMID: 34834591 PMCID: PMC8620689 DOI: 10.3390/jpm11111239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Precision medicine is a term used to describe medical care, which is specifically tailored to an individual patient or disease with the aim of ensuring the best clinical outcome whilst reducing the risk of adverse effects. Phaeochromocytoma and paraganglioma (PPGL) are rare neuroendocrine tumours with uncertain malignant potential. Over recent years, the molecular profiling of PPGLs has increased our understanding of the mechanisms that drive tumorigenesis. A high proportion of PPGLs are hereditary, with non-hereditary tumours commonly harbouring somatic mutations in known susceptibility genes. Through detailed interrogation of genotype-phenotype, correlations PPGLs can be classified into three different subgroups or clusters. Thus, PPGLs serve as an ideal paradigm for developing, testing and implementing precision medicine concepts in the clinic. In this review, we provide an overview of PPGLs and highlight how detailed molecular characterisation of these tumours provides current and future opportunities for precision oncology.
Collapse
Affiliation(s)
- Bettina Winzeler
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland;
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland
- Department of Medical Genetics, Cambridge Biomedical Campus, Cambridge University, Cambridge CB2 0QQ, UK
| | - Benjamin G. Challis
- Department of Endocrinology, Cambridge University Hospital, Cambridge CB2 0QQ, UK;
| | - Ruth T. Casey
- Department of Medical Genetics, Cambridge Biomedical Campus, Cambridge University, Cambridge CB2 0QQ, UK
- Department of Endocrinology, Cambridge University Hospital, Cambridge CB2 0QQ, UK;
- Correspondence:
| |
Collapse
|
27
|
Special situations in pheochromocytomas and paragangliomas: pregnancy, metastatic disease, and cyanotic congenital heart diseases. Clin Exp Med 2021; 22:359-370. [PMID: 34591219 DOI: 10.1007/s10238-021-00763-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/18/2021] [Indexed: 01/08/2023]
Abstract
The aim of our study was to describe the epidemiology, diagnosis, and treatment of the most complex pheochromocytoma and paraganglioma (PGL) cases, including pheochromocytoma/PGL during pregnancy, in cyanotic congenital heart diseases (CCHDs), and metastatic pheochromocytoma. The English and Spanish literature was thoroughly evaluated searching for articles reporting clinical studies, case reports, or reviews of pheochromocytoma/PGL in pregnancy and in CCHD and metastatic pheochromocytoma/PGL. Particular settings in the diagnosis and management of pheochromocytoma and PGLs remain challenging. Those special situations include the diagnosis during pregnancy or in the context of CCHD since the typical clinical features of pheochromocytoma may be confounded with preeclampsia during pregnancy and with the complications commonly observed in CCHD. In addition, although some clinical and genetic features have been associated with higher risk of metastatic pheochromocytoma, the detection and prediction of the development of metastatic disease involve another complex situation that may require special hormonal determinations as plasmatic 3-methoxytyramine and nuclear medicine studies including 18FDG PET-CT or 18F-FDOPA PET-CT, among others. Furthermore, the selection of the most appropriate treatment in these situations, as well as the moment to carry it out, requires special care as limited evidence is available. This article reviews the epidemiology, diagnosis, and treatment of the pheochromocytoma/PGL during pregnancy, metastatic pheochromocytoma/PGL, and pheochromocytoma/PGL in CCHD. The diagnosis, and especially the treatment, of metastatic pheochromocytomas and pheochromocytoma/PGL during pregnancy and in CCHD is challenging. Thus, these cases should be management in reference centres by multidisciplinary teams specialized in the pheochromocytoma/PGL treatment.
Collapse
|
28
|
Łoń I, Kunikowska J, Jędrusik P, Góra J, Toutounchi S, Placha G, Gaciong Z. Familial SDHB gene mutation in disseminated non-hypoxia-related malignant paraganglioma treated with [ 90Y]Y/[ 177Lu]Lu- DOTATATE. Intractable Rare Dis Res 2021; 10:207-213. [PMID: 34466344 PMCID: PMC8397825 DOI: 10.5582/irdr.2021.01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/17/2021] [Accepted: 05/18/2021] [Indexed: 11/05/2022] Open
Abstract
Familial paraganglioma may be related to mutations in succinate dehydrogenase (SDH) enzyme complex genes. Among patients with hereditary paraganglioma, SDH subunit B (SDHB) gene mutations are associated with the highest morbidity and mortality related to a higher malignancy rate. We report a family with the c.689G>A (p.Arg230His) mutation in the SDHB gene identified in two family members, a father and his daughter. While the 14-year-old daughter had no evidence of clinical disease, recurrent and later disseminated [131I]metaiodobenzylguanidine uptake-negative head and neck paraganglioma with multiple bone metastases developed in the father who underwent peptide receptor radionuclide therapy with [90Y]Y/[177Lu]Lu-dodecane tetraacetic acid octreotate (DOTATATE) at the time of the genetic diagnosis. This treatment was repeated 6 years later due to disease progression and the patient, who is currently 49 years old, remains alive and in good overall clinical condition at 8 years of follow-up after the original presentation at our unit. The growing armamentarium of imaging methods available for such patients may inform decision making regarding choice of the optimal treatment approach, potentially contributing to improved outcomes.
Collapse
Affiliation(s)
- Izabela Łoń
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Jolanta Kunikowska
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Jędrusik
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
- Address correspondence to:P i o t r J ę d r u s i k , D e p a r t m e n t o f I n t e r n a l M e d i c i n e , Hypertension and Vascular Diseases, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland. E-mail:
| | - Jarosław Góra
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Sadegh Toutounchi
- Department of General and Endocrine Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz Placha
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Zbigniew Gaciong
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
29
|
Choi HR, Koo JS, Lee CR, Lee JD, Kang SW, Jo YS, Chung WY. Efficacy of Immunohistochemistry for SDHB in the Screening of Hereditary Pheochromocytoma-Paraganglioma. BIOLOGY 2021; 10:biology10070677. [PMID: 34356532 PMCID: PMC8301322 DOI: 10.3390/biology10070677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022]
Abstract
The most common genetic backgrounds of hereditary paraganglioma and pheochromocytoma (PPGL) are SDHx germline mutations. Given the fact that the immunohistochemistry (IHC) result for SDHB is always negative regardless of the type of SDHx mutation, we aimed to evaluate the efficacy of using SDHB IHC for screening SDHx mutations in PPGL cases. In total, 52 patients who underwent surgery for PPGL treatment between 2006 and 2020 and underwent genetic analysis at diagnosis were included. Tissue microarrays (TMAs) were constructed with PPGL tissues and IHC for SDHB was performed on TMA sections. All 10 patients with SDHB-negative IHC contained SDHB or SDHD mutations. The genetic test results of patients with SDHB-weakly positive IHC varied (one SDHB, two RET, one VHL, and three unknown gene mutations). There were no SDHx mutations in the SDHB-positive IHC group. Six patients with weakly positive SDHB IHC with primarily unknown genetic status were re-called and underwent next-generation sequencing. None of them had SDHx mutations. In conclusion, SDHB-negative IHC is a cost-effective and reliable method to predict SDHx mutations. However, in the case of weakly positive SDHB staining, an additional gene study should be considered.
Collapse
Affiliation(s)
- Hye-Ryeon Choi
- Department of Surgery, Eulji Medical Center, Eulji University School of Medicine, Seoul 01830, Korea;
| | - Ja-Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (J.-S.K.); (S.-W.K.); Tel.: +82-10-4039-7090 (J.-S.K.); +82-10-9148-2166 (S.-W.K.); Fax: +82-2-362-0860 (J.-S.K.); +82-2-313-8289 (S-W.K.)
| | - Cho-Rok Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea; (C.-R.L.); (J.-D.L.); (W.-Y.C.)
| | - Jan-Dee Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea; (C.-R.L.); (J.-D.L.); (W.-Y.C.)
| | - Sang-Wook Kang
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea; (C.-R.L.); (J.-D.L.); (W.-Y.C.)
- Correspondence: (J.-S.K.); (S.-W.K.); Tel.: +82-10-4039-7090 (J.-S.K.); +82-10-9148-2166 (S.-W.K.); Fax: +82-2-362-0860 (J.-S.K.); +82-2-313-8289 (S-W.K.)
| | - Young-Seok Jo
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Woong-Youn Chung
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea; (C.-R.L.); (J.-D.L.); (W.-Y.C.)
| |
Collapse
|
30
|
HIF2alpha-Associated Pseudohypoxia Promotes Radioresistance in Pheochromocytoma: Insights from 3D Models. Cancers (Basel) 2021; 13:cancers13030385. [PMID: 33494435 PMCID: PMC7865577 DOI: 10.3390/cancers13030385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/30/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PCCs/PGLs) are rare neuroendocrine tumors arising from chromaffin tissue located in the adrenal or ganglia of the sympathetic or parasympathetic nervous system. The treatment of non-resectable or metastatic PCCs/PGLs is still limited to palliative measures, including somatostatin type 2 receptor radionuclide therapy with [177Lu]Lu-DOTA-TATE as one of the most effective approaches to date. Nevertheless, the metabolic and molecular determinants of radiation response in PCCs/PGLs have not yet been characterized. This study investigates the effects of hypoxia-inducible factor 2 alpha (HIF2α) on the susceptibility of PCCs/PGLs to radiation treatments using spheroids grown from genetically engineered mouse pheochromocytoma (MPC) cells. The expression of Hif2α was associated with the significantly increased resistance of MPC spheroids to external X-ray irradiation and exposure to beta particle-emitting [177Lu]LuCl3 compared to Hif2α-deficient controls. Exposure to [177Lu]LuCl3 provided an increased long-term control of MPC spheroids compared to single-dose external X-ray irradiation. This study provides the first experimental evidence that HIF2α-associated pseudohypoxia contributes to a radioresistant phenotype of PCCs/PGLs. Furthermore, the external irradiation and [177Lu]LuCl3 exposure of MPC spheroids provide surrogate models for radiation treatments to further investigate the metabolic and molecular determinants of radiation responses in PCCs/PGLs and evaluate the effects of neo-adjuvant-in particular, radiosensitizing-treatments in combination with targeted radionuclide therapies.
Collapse
|
31
|
Zhang X, Sjöblom T. Targeting Loss of Heterozygosity: A Novel Paradigm for Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:ph14010057. [PMID: 33450833 PMCID: PMC7828287 DOI: 10.3390/ph14010057] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
Loss of heterozygosity (LOH) is a common genetic event in the development of cancer. In certain tumor types, LOH can affect more than 20% of the genome, entailing loss of allelic variation in thousands of genes. This reduction of heterozygosity creates genetic differences between tumor and normal cells, providing opportunities for development of novel cancer therapies. Here, we review and summarize (1) mutations associated with LOH on chromosomes which have been shown to be promising biomarkers of cancer risk or the prediction of clinical outcomes in certain types of tumors; (2) loci undergoing LOH that can be targeted for development of novel anticancer drugs as well as (3) LOH in tumors provides up-and-coming possibilities to understand the underlying mechanisms of cancer evolution and to discover novel cancer vulnerabilities which are worth a further investigation in the near future.
Collapse
|
32
|
Expression of Glutamine Metabolism-Related and Amino Acid Transporter Proteins in Adrenal Cortical Neoplasms and Pheochromocytomas. DISEASE MARKERS 2021; 2021:8850990. [PMID: 33505538 PMCID: PMC7806379 DOI: 10.1155/2021/8850990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
Background Glutamine metabolism is considered an important metabolic phenotype of proliferating tumor cells. Objective The objective of this study was to investigate the expression of glutamine metabolism-related and amino acid transporter proteins in adrenal cortical neoplasms (ACNs) and pheochromocytomas (PCCs) in the adrenal gland. Methods A tissue microarray was constructed for 132 cases of ACN (115 cases of adrenal cortical adenoma and 17 cases of adrenal cortical carcinoma) and 189 cases of PCC. Immunohistochemical staining for glutamine metabolism-related proteins GLS1 and GDH and amino acid transporter proteins SLC1A5, SLC7A5, and SLC7A11 as well as SDHB was performed and compared with clinicopathologic parameters. Results The expression levels of GLS (p < 0.001), SLC7A5 (p = 0.049), and SDHB (p = 0.007) were higher in ACN than in PCC, whereas the expression levels of SLC1A5 (p < 0.001) and SLC7A11 (p < 0.001) were higher in PCC than in ACN. In ACN, GLS positivity was associated with a higher Fuhrman grade (p = 0.009), and SLC1A5 positivity was associated with SDHB positivity (p = 0.004) and a clear cell proportion < 25% (p = 0.010). SDHB negativity was also associated with tumor cell necrosis (p = 0.007). In PCC, SLC7A11 positivity was associated with nonnorepinephrine type (p = 0.008). In Kaplan-Meier analysis, patients with GLS positivity (p = 0.039) and SDHB negativity (p = 0.005) had significantly shorter overall survival in ACN. In PCC patients with a GAPP score ≥ 3, GLS positivity (p = 0.001) and SDHB positivity (p = 0.001) were associated with shorter disease-free survival, whereas GLS positivity (p = 0.004) was also associated with shorter overall survival. Conclusions The expression of glutamine metabolism-related and amino acid transporter proteins in ACN and PCC is distinct and associated with prognosis.
Collapse
|
33
|
Liu Y, Lang F, Yang C. NRF2 in human neoplasm: Cancer biology and potential therapeutic target. Pharmacol Ther 2021; 217:107664. [DOI: 10.1016/j.pharmthera.2020.107664] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
|
34
|
Martinelli S, Maggi M, Rapizzi E. Pheochromocytoma/paraganglioma preclinical models: which to use and why? Endocr Connect 2020; 9:R251-R260. [PMID: 33252357 PMCID: PMC7774759 DOI: 10.1530/ec-20-0472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Pheochromocytomas/paragangliomas (PPGLs) are rare neuroendocrine tumours linked to more than 15 susceptibility genes. PPGLs present with very different genotype/phenotype correlations. Certainly, depending on the mutated gene, and the activated intracellular signalling pathways, as well as their metastatic potential, each tumour is immensely different. One of the major challenges in in vitro research, whatever the study field, is to choose the best cellular model for that study. Unfortunately, most of the time there is not 'a best' cell model. Thus, in order to avoid observations that could be related to and/or dependent on a specific cell line, researchers often perform the same experiments using different cell lines simultaneously. The situation is even more complicated when there are only very few cell models obtained in different species for a disease. This is the case for PPGLs. In this review, we will describe the characteristics of the different cell lines and of mouse models, trying to understand if there is one that is more appropriate to use, depending on which aspect of the tumours one is trying to investigate.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Elena Rapizzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Correspondence should be addressed to E Rapizzi:
| |
Collapse
|
35
|
Fassnacht M, Assie G, Baudin E, Eisenhofer G, de la Fouchardiere C, Haak HR, de Krijger R, Porpiglia F, Terzolo M, Berruti A. Adrenocortical carcinomas and malignant phaeochromocytomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2020; 31:1476-1490. [PMID: 32861807 DOI: 10.1016/j.annonc.2020.08.2099] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/30/2020] [Accepted: 08/12/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- M Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - G Assie
- Department of Endocrinology, Reference Centre for Rare Adrenal Diseases, Reference Centre for Rare Adrenal Cancers, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France; Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - E Baudin
- Department of Endocrine Oncology and Nuclear Medicine, Gustave Roussy, Villejuif, France
| | - G Eisenhofer
- Department of Medicine III and Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - C de la Fouchardiere
- Department of Medical Oncology, Centre Léon Bérard, University Claude Bernard Lyon I, Lyon, France
| | - H R Haak
- Department of Internal Medicine Máxima Medisch Centrum, Eindhoven, The Netherlands; Department of Internal Medicine, Division of General Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands; Maastricht University, CAPHRI School for Public Health and Primary Care, Ageing and Long-Term Care, Maastricht, The Netherlands
| | - R de Krijger
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands; Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - F Porpiglia
- Division of Urology, San Luigi Hospital - Orbassano, Turin, Italy; Department of Oncology, University of Turin, Turin, Italy
| | - M Terzolo
- Internal Medicine, Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, Turin, Italy
| | - A Berruti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Medical Oncology, University of Brescia, ASST-Spedali Civili, Brescia, Italy
| |
Collapse
|
36
|
Jiang J, Zhang J, Pang Y, Bechmann N, Li M, Monteagudo M, Calsina B, Gimenez-Roqueplo AP, Nölting S, Beuschlein F, Fassnacht M, Deutschbein T, Timmers HJLM, Åkerström T, Crona J, Quinkler M, Fliedner SMJ, Liu Y, Guo J, Li X, Guo W, Hou Y, Wang C, Zhang L, Xiao Q, Liu L, Gao X, Burnichon N, Robledo M, Eisenhofer G. Sino-European Differences in the Genetic Landscape and Clinical Presentation of Pheochromocytoma and Paraganglioma. J Clin Endocrinol Metab 2020; 105:5880618. [PMID: 32750708 DOI: 10.1210/clinem/dgaa502] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
CONTEXT Pheochromocytomas and paragangliomas (PPGLs) are characterized by distinct genotype-phenotype relationships according to studies largely restricted to Caucasian populations. OBJECTIVE To assess for possible differences in genetic landscapes and genotype-phenotype relationships of PPGLs in Chinese versus European populations. DESIGN Cross-sectional study. SETTING 2 tertiary-care centers in China and 9 in Europe. PARTICIPANTS Patients with pathologically confirmed diagnosis of PPGL, including 719 Chinese and 919 Europeans. MAIN OUTCOME MEASURES Next-generation sequencing performed in tumor specimens with mutations confirmed by Sanger sequencing and tested in peripheral blood if available. Frequencies of mutations were examined according to tumor location and catecholamine biochemical phenotypes. RESULTS Among all patients, higher frequencies of HRAS, FGFR1, and EPAS1 mutations were observed in Chinese than Europeans, whereas the reverse was observed for NF1, VHL, RET, and SDHx. Among patients with apparently sporadic PPGLs, the most frequently mutated genes in Chinese were HRAS (16.5% [13.6-19.3] vs 9.8% [7.6-12.1]) and FGFR1 (9.8% [7.6-12.1] vs 2.2% [1.1-3.3]), whereas among Europeans the most frequently mutated genes were NF1 (15.9% [13.2-18.6] vs 6.6% [4.7-8.5]) and SDHx (10.7% [8.4-13.0] vs 4.2% [2.6-5.7]). Among Europeans, almost all paragangliomas lacked appreciable production of epinephrine and identified gene mutations were largely restricted to those leading to stabilization of hypoxia inducible factors. In contrast, among Chinese there was a larger proportion of epinephrine-producing paragangliomas, mostly due to HRAS and FGFR1 mutations. CONCLUSIONS This study establishes Sino-European differences in the genetic landscape and presentation of PPGLs, including ethnic differences in genotype-phenotype relationships indicating a paradigm shift in our understanding of the biology of these tumors.
Collapse
Affiliation(s)
- Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Shanghai, China
- Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Shanghai, China
- Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Yingxian Pang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Minghao Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Maria Monteagudo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center and Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center and Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Anne-Paule Gimenez-Roqueplo
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Genetics Department, Paris, France
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Svenja Nölting
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Felix Beuschlein
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
- Department of Endocrinology, Diabetology and Clinical Nutrition, Univiersitäts Spital Zürich, Zurich, Switzerland
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Timo Deutschbein
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Henri J L M Timmers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tobias Åkerström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Joakim Crona
- Department of medical sciences, Uppsala University, Uppsala, Sweden
| | | | - Stephanie M J Fliedner
- First Department of Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Yujun Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaomu Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Shanghai, China
- Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cikui Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiao Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Longfei Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Shanghai, China
- Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Nelly Burnichon
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Genetics Department, Paris, France
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center and Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| |
Collapse
|
37
|
Hammarlund EU. Harnessing hypoxia as an evolutionary driver of complex multicellularity. Interface Focus 2020; 10:20190101. [PMID: 32642048 DOI: 10.1098/rsfs.2019.0101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Animal tissue requires low-oxygen conditions for its maintenance. The need for low-oxygen conditions contrasts with the idea of an evolutionary leap in animal diversity as a result of expanding oxic conditions. To accommodate tissue renewal at oxic conditions, however, vertebrate animals and vascular plants demonstrate abilities to access hypoxia. Here, I argue that multicellular organisms sustain oxic conditions first after internalizing hypoxic conditions. The 'harnessing' of hypoxia has allowed multicellular evolution to leave niches that were stable in terms of oxygen concentrations for those where oxygen fluctuates. Since oxygen fluctuates in most settings on Earth's surface, the ancestral niche would have been a deep marine setting. The hypothesis that 'large life' depends on harnessing hypoxia is illustrated in the context of conditions that promote the immature cell phenotype (stemness) in animal physiology and tumour biology and offers one explanation for the general rarity of diverse multicellularity over most of Earth's history.
Collapse
Affiliation(s)
- Emma U Hammarlund
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Scheelevägen 2, Medicon Village Building 404, 223 81 Lund, Sweden.,Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
| |
Collapse
|
38
|
Cummings JJ, Siegrist KK, Deegan RJ, Solórzano CC, Eagle SS. Robotic Adrenalectomy for Pheochromocytoma in a Patient with Fontan Physiology. J Cardiothorac Vasc Anesth 2020; 34:2446-2451. [PMID: 32434722 DOI: 10.1053/j.jvca.2020.02.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Jared J Cummings
- Division of Cardiothoracic Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Kara K Siegrist
- Division of Cardiothoracic Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Robert J Deegan
- Division of Cardiothoracic Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Carmen C Solórzano
- Division of Cardiothoracic Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Susan S Eagle
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
39
|
Guo Y, Wang J, Zhou K, Lv J, Wang L, Gao S, Keller ET, Zhang ZS, Wang Q, Yao Z. Cytotoxic necrotizing factor 1 promotes bladder cancer angiogenesis through activating RhoC. FASEB J 2020; 34:7927-7940. [PMID: 32314833 DOI: 10.1096/fj.201903266rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/23/2022]
Abstract
Uropathogenic Escherichia coli (UPEC), a leading cause of urinary tract infections, is associated with prostate and bladder cancers. Cytotoxic necrotizing factor 1 (CNF1) is a key UPEC toxin; however, its role in bladder cancer is unknown. In the present study, we found CNF1 induced bladder cancer cells to secrete vascular endothelial growth factor (VEGF) through activating Ras homolog family member C (RhoC), leading to subsequent angiogenesis in the bladder cancer microenvironment. We then investigated that CNF1-mediated RhoC activation modulated the stabilization of hypoxia-inducible factor 1α (HIF1α) to upregulate the VEGF. We demonstrated in vitro that active RhoC increased heat shock factor 1 (HSF1) phosphorylation, which induced the heat shock protein 90α (HSP90α) expression, leading to stabilization of HIF1α. Active RhoC elevated HSP90α, HIF1α, VEGF expression, and angiogenesis in the human bladder cancer xenografts. In addition, HSP90α, HIF1α, and VEGF expression were also found positively correlated with the human bladder cancer development. These results provide a potential mechanism through which UPEC contributes to bladder cancer progression, and may provide potential therapeutic targets for bladder cancer.
Collapse
Affiliation(s)
- Yaxiu Guo
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingyu Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kaichen Zhou
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junqiang Lv
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Collaborative Innovation Center for Biotherapy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shan Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Collaborative Innovation Center for Biotherapy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Evan T Keller
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Zhi-Song Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Collaborative Innovation Center for Biotherapy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Quan Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhi Yao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
40
|
Gniado E, Carracher CP, Sharma S. Simultaneous Occurrence of Germline Mutations of SDHB and TP53 in a Patient with Metastatic Pheochromocytoma. J Clin Endocrinol Metab 2020; 105:5680552. [PMID: 31851316 DOI: 10.1210/clinem/dgz269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022]
Abstract
CONTEXT We describe a patient with metastatic malignant pheochromocytoma who was found to have germline SDHB and TP53 mutations occurring together. CASE DESCRIPTION A 39-year-old male presented with neck pain. Magnetic resonance imaging of the neck revealed a C3 vertebral body collapse and an underlying C3 lesion. Computed tomography (CT) of the thorax, abdomen, and pelvis showed multiple skeletal lesions, a sternal mass, bilateral pulmonary nodules, bilateral adrenal masses, and an aortocaval lymph node conglomerate. He underwent biopsy of the sternal mass, which revealed metastatic pheochromocytoma and subsequent blood work showed serum epinephrine levels of 200 pg/mL (normal 10-200 pg/mL), norepinephrine 28 241 pg/mL (normal 80-520 pg/mL), and dopamine 250 pg/mL (normal 0-20 pg/mL). Genetic testing revealed both SDHB and TP53 germline mutations. He was started on α- and β-blockers and calcium channel blockers to control hypertension and tachycardia. Two months after the diagnosis, a CT of the abdomen and pelvis showed progression of disease, with enlargement of the right adrenal mass as well as the aortocaval conglomeration. His plasma metanephrines were significantly elevated. He was started on systemic chemotherapy with cyclophosphamide, dacarbazine, and vincristine. He required several antihypertensive agents, including metyrosine, to control his blood pressure in preparation for chemotherapy. CONCLUSION This is the first reported case of simultaneous SDHB and TP53 germline mutations occurring in an individual with a highly aggressive clinical course of pheochromocytoma. We speculate that the simultaneous occurrence of these 2 oncogenic mutations may have led to an aggressive tumor progression.
Collapse
Affiliation(s)
- Ewa Gniado
- University of Cincinnati, Division of Endocrinology, Diabetes and Metabolism, Cincinnati, Ohio
| | - Colin P Carracher
- University of Cincinnati, Division of Endocrinology, Diabetes and Metabolism, Cincinnati, Ohio
| | - Sona Sharma
- University of Cincinnati, Division of Endocrinology, Diabetes and Metabolism, Cincinnati, Ohio
| |
Collapse
|
41
|
Yu J, Shi X, Yang C, Bullova P, Hong CS, Nesvick CL, Dmitriev P, Pacak K, Zhuang Z, Cao H, Li L. A novel germline gain-of-function HIF2A mutation in hepatocellular carcinoma with polycythemia. Aging (Albany NY) 2020; 12:5781-5791. [PMID: 32235007 PMCID: PMC7185130 DOI: 10.18632/aging.102967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/27/2020] [Indexed: 01/04/2023]
Abstract
Hypoxia-inducible factors (HIFs) regulate oxygen sensing and expression of genes involved in angiogenesis and erythropoiesis. Polycythemia has been observed in patients with hepatocellular carcinoma (HCC), but the underlying molecular basis remains unknown. Liver tissues from 302 HCC patients, including 104 with polycythemia, were sequenced for HIF2A mutations. A germline HIF2A mutation was detected in one HCC patient with concurrent polycythemia. Three additional family members carried this mutation, but none exhibited polycythemia or were diagnosed with HCC. The gain-of-function mutation resulted in a HIF-2α protein that was transcribed normally but resistant to degradation. HIF-2α target genes EDN1, EPO, GNA14, and VEGF were significantly upregulated in the tumor bed but not in the surrounding liver tissue. Polycythemia resolved upon total resection of the tumor tissue. This newly described HIF2A mutation may promote HCC oncogenesis.
Collapse
Affiliation(s)
- Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, China
| | - Xiaowei Shi
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, China
| | - Chunzhang Yang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Petra Bullova
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Christopher S. Hong
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Cody L. Nesvick
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Pauline Dmitriev
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Karel Pacak
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, China
| |
Collapse
|
42
|
Ng P, Deepak D, Teo L, Low TT. Asymptomatic phaeochromocytoma in a patient with Holt-Oram syndrome: a case report. EUROPEAN HEART JOURNAL-CASE REPORTS 2020; 3:1-5. [PMID: 32099963 PMCID: PMC7026609 DOI: 10.1093/ehjcr/ytz206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/29/2019] [Accepted: 10/21/2019] [Indexed: 11/19/2022]
Abstract
Background Holt-Oram syndrome (HOS) is a rare congenital disease that affects the heart and upper limbs. Phaeochromocytoma, a catecholamine-secreting tumour, is a rare neuroendocrine disorder. We present an interesting case presentation of these two rare disorders in a patient who was asymptomatic for phaeochromocytoma. Case summary A 28-year-old woman who was diagnosed at birth with HOS, presented to the hospital with heart failure. She has a past medical history of corrected cyanotic congenital heart disease. She presented with dyspnoea but she did not have headaches, tremors, or diaphoresis. Cardiac magnetic resonance scan was done to investigate the cause of her heart failure and revealed right ventricular systolic dysfunction and a suspicious adrenal lesion. Magnetic resonance imaging adrenal confirmed the presence of the adrenal lesion and concerns were raised for a possible phaeochromocytoma. Biochemical tests showed raised plasma free metanephrine levels. Gallium-68 DOTA positron emission tomography scan showed intense right adrenal gland uptake in keeping with diagnosis of phaeochromocytoma. Discussion Phaeochromocytoma appears to be more prevalent in patients who are in a chronic hypoxic state. This hypoxic state has been postulated to cause the proliferation of adrenal tissue and therefore the formation of phaeochromocytomas. The hypoxia-inducing factor, which is increased in patients with phaeochromocytoma, has been identified as one of the key factors driving this process as it modulates genes that regulate angiogenesis and proliferation. Congenital heart defects seen in HOS can progress to cyanotic heart disease if left uncorrected and may have been the driver for the development of phaeochromocytoma in our patient.
Collapse
Affiliation(s)
- Perryn Ng
- National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Doddabele Deepak
- National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Lynette Teo
- National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Ting Ting Low
- National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| |
Collapse
|
43
|
Cytochrome 450 metabolites of arachidonic acid (20-HETE, 11,12-EET and 14,15-EET) promote pheochromocytoma cell growth and tumor associated angiogenesis. Biochimie 2020; 171-172:147-157. [PMID: 32105813 DOI: 10.1016/j.biochi.2020.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/20/2020] [Indexed: 01/05/2023]
Abstract
The importance of cytochrome P450 (CYP)-derived arachidonic acid (AA) metabolites, 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) as tumor growth promotors has already been described in several cancer types. The aim of this study was to evaluate the role of these compounds in the biology of pheochromocytoma/paraganglioma. These tumors originate from chromaffin cells derived from adrenal medulla (pheochromocytomas) or extra-adrenal autonomic paraganglia (paragangliomas), and they represent the most common hereditary endocrine neoplasia. According to mutations in the driver genes, these tumors are divided in two clusters: pseudo-hypoxic and kinase-signaling EETs, but not 20-HETE, exhibited a potent ability to sustain growth in a murine pheochromocytoma cell line (MPC) in vitro, EETs promoted an increase in cell proliferation and a decrease in cell apoptosis. In a mouse model of pheochromocytoma, the inhibition of CYP-mediated AA metabolism using 1-aminobenzotriazol resulted in slower tumor growth, a decreased vascularization, and a lower final volume. Also, the expression of AA-metabolizing CYP monooxygenases was detected in tumor samples from human origin, being their apparent abundance and the production of both metabolites higher in tumors from the kinase-signaling cluster. This is the first evidence of the importance of CYP- derived AA metabolites in the biology and development of pheochromocytoma/paraganglioma tumors.
Collapse
|
44
|
Abstract
Pheochromocytomas are rare tumors originating in the adrenal medulla. They may be sporadic or in the context of a hereditary syndrome. A considerable number of pheochromocytomas carry germline or somatic gene mutations, which are inherited in the autosomal dominant way. All patients should undergo genetic testing. Symptoms are due to catecholamines over production or to a mass effect. Diagnosis is confirmed by raised plasma or urine metanephrines or normetanephrines. Radiology assists in the tumor location and any local invasion or metastasis. All the patients should have preoperative preparation with α-blockers and/or other medications to control hypertension, arrhythmia, and volume expansion. Surgery is the definitive treatment. Follow up should be life-long.
Collapse
|
45
|
LiCoO 2 particles used in Li-ion batteries induce primary mutagenicity in lung cells via their capacity to generate hydroxyl radicals. Part Fibre Toxicol 2020; 17:6. [PMID: 31996255 PMCID: PMC6990559 DOI: 10.1186/s12989-020-0338-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/15/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Li-ion batteries (LIB) are used in most portable electronics. Among a wide variety of materials, LiCoO2 (LCO) is one of the most used for the cathode of LIB. LCO particles induce oxidative stress in mouse lungs due to their Co content, and have a strong inflammatory potential. In this study, we assessed the mutagenic potential of LCO particles in lung cells in comparison to another particulate material used in LIB, LTO (Li4Ti5O12), which has a low inflammatory potential compared to LCO particles. RESULTS We assessed the mutagenic potential of LCO and LTO particles in vitro by performing a cytokinesis-block micronucleus (MN) assay with rat lung epithelial cells (RLE), as well as in vivo in alveolar type II epithelial (AT-II) cells. LCO particles induced MN in vitro at non-cytotoxic concentrations and in vivo at non-inflammatory doses, indicating a primary genotoxic mechanism. LTO particles did not induce MN. Electron paramagnetic resonance and terephthalate assays showed that LCO particles produce hydroxyl radicals (•OH). Catalase inhibits this •OH production. In an alkaline comet assay with the oxidative DNA damage repair enzyme human 8-oxoguanine DNA glycosylase 1, LCO particles induced DNA strand breaks and oxidative lesions. The addition of catalase reduced the frequency of MN induced by LCO particles in vitro. CONCLUSIONS We report the mutagenic activity of LCO particles used in LIB in vitro and in vivo. Our data support the role of Co(II) ions released from these particles in their primary genotoxic activity which includes the formation of •OH by a Fenton-like reaction, oxidative DNA lesions and strand breaks, thus leading to chromosomal breaks and the formation of MN. Documenting the genotoxic potential of the other LIB particles, especially those containing Co and/or Ni, is therefore needed to guarantee a safe and sustainable development of LIB.
Collapse
|
46
|
Targeting NRF2-Governed Glutathione Synthesis for SDHB-Mutated Pheochromocytoma and Paraganglioma. Cancers (Basel) 2020; 12:cancers12020280. [PMID: 31979226 PMCID: PMC7072390 DOI: 10.3390/cancers12020280] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Succinate dehydrogenase subunit B (SDHB) deficiency frequently occurs in cluster I pheochromocytomas and paragangliomas (PCPGs). SDHB-mutated PCPGs are characterized by alterations in the electron transport chain, metabolic reprogramming of the tricarboxylic cycle, and elevated levels of reactive oxygen species (ROS). We discovered that SDHB-deficient PCPG cells exhibit increased oxidative stress burden, which leads to elevated demands for glutathione metabolism. Mechanistically, nuclear factor erythroid 2-related factor 2 (NRF2)-guided glutathione de novo synthesis plays a key role in supporting cellular survival and the proliferation of SDHB-knockdown (SDHBKD) cells. NRF2 blockade not only disrupted ROS homeostasis in SDHB-deficient cells but also caused severe cytotoxicity by the accumulation of DNA oxidative damage. Brusatol, a potent NRF2 inhibitor, showed a promising effect in suppressing SDHBKD metastatic lesions in vivo, with prolonged overall survival in mice bearing PCPG allografts. Our findings highlight a novel therapeutic strategy of targeting the NRF2-driven glutathione metabolic pathway against SDHB-mutated PCPG.
Collapse
|
47
|
Peng S, Zhang J, Tan X, Huang Y, Xu J, Silk N, Zhang D, Liu Q, Jiang J. The VHL/HIF Axis in the Development and Treatment of Pheochromocytoma/Paraganglioma. Front Endocrinol (Lausanne) 2020; 11:586857. [PMID: 33329393 PMCID: PMC7732471 DOI: 10.3389/fendo.2020.586857] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors originating from chromaffin cells in the adrenal medulla (PCCs) or extra-adrenal sympathetic or parasympathetic paraganglia (PGLs). About 40% of PPGLs result from germline mutations and therefore they are highly inheritable. Although dysfunction of any one of a panel of more than 20 genes can lead to PPGLs, mutations in genes involved in the VHL/HIF axis including PHD, VHL, HIF-2A (EPAS1), and SDHx are more frequently found in PPGLs. Multiple lines of evidence indicate that pseudohypoxia plays a crucial role in the tumorigenesis of PPGLs, and therefore PPGLs are also known as metabolic diseases. However, the interplay between VHL/HIF-mediated pseudohypoxia and metabolic disorder in PPGLs cells is not well-defined. In this review, we will first discuss the VHL/HIF axis and genetic alterations in this axis. Then, we will dissect the underlying mechanisms in VHL/HIF axis-driven PPGL pathogenesis, with special attention paid to the interplay between the VHL/HIF axis and cancer cell metabolism. Finally, we will summarize the currently available compounds/drugs targeting this axis which could be potentially used as PPGLs treatment, as well as their underlying pharmacological mechanisms. The overall goal of this review is to better understand the role of VHL/HIF axis in PPGLs development, to establish more accurate tools in PPGLs diagnosis, and to pave the road toward efficacious therapeutics against metastatic PPGLs.
Collapse
Affiliation(s)
- Song Peng
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Zhang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xintao Tan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yiqiang Huang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Xu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Natalie Silk
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Jun Jiang, ; Qiuli Liu,
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Jun Jiang, ; Qiuli Liu,
| |
Collapse
|
48
|
Kong G, Schenberg T, Yates CJ, Trainer A, Sachithanandan N, Iravani A, Ravi Kumar A, Hofman MS, Akhurst T, Michael M, Hicks RJ. The Role of 68Ga-DOTA-Octreotate PET/CT in Follow-Up of SDH-Associated Pheochromocytoma and Paraganglioma. J Clin Endocrinol Metab 2019; 104:5091-5099. [PMID: 30977831 DOI: 10.1210/jc.2019-00018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/05/2019] [Indexed: 02/04/2023]
Abstract
PURPOSE Germline succinate dehydrogenase (SDHx) mutation carriers, especially SDHB, are at increased risk for malignancy and require life-long surveillance. Current guidelines recommend periodic whole-body MRI imaging. We assessed the incremental value of 68Ga-DOTA-octreotate (GaTate) positron emission tomography (PET)/CT compared with conventional imaging in such patients. METHODS SDHx mutation carriers who had GaTate PET/CT were retrospectively reviewed. Detection of lesions were compared with MRI or CT on a per-patient and per-lesion basis. Proof of lesions were based on histopathology or clinical/imaging follow-up. RESULTS Twenty consecutive patients (median age, 46 years; 10 males) were reviewed. Fourteen patients had SDHB, four, SDHD, one SDHC, and one SDHA mutation. Fifteen had prior surgery and/or radiotherapy. Indications for PET/CT were as follows: 7 patients for surveillance for previously treated disease, 9 residual disease, 2 asymptomatic mutation carriers, and 2 for elevated catecholamines. Median time between modalities was 1.5 months.GaTate PET/CT had higher sensitivity and specificity than conventional imaging. On a per-patient basis: PET/CT sensitivity 100%, specificity 100%; MRI/CT 85% and 50%. Per-lesion basis: PET/CT sensitivity 100%, specificity 75%; MRI/CT 80% and 25%. PET/CT correctly identified additional small nodal and osseous lesions. MRI/CT had more false-positive findings. Change of management resulted in 40% (8/20 patients): 3 received localized treatment instead of observation, 1 changed to observation given extra disease detected, 4 with metastases had radionuclide therapy. CONCLUSIONS GaTate PET/CT provided incremental diagnostic information with consequent management impact in SDHx-pheochromocytoma and paraganglioma. Incorporating this modality as part of a surveillance program seems prudent. Further research is needed to define the optimal surveillance strategy including use of MRI.
Collapse
Affiliation(s)
- Grace Kong
- Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Victoria, Australia
- Neuroendocrine Service, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tess Schenberg
- Neuroendocrine Service, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Familial Cancer Service, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Christopher J Yates
- Endocrinology, The Royal Melbourne Hospital, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia
| | - Alison Trainer
- Familial Cancer Service, Peter MacCallum Cancer Centre, Victoria, Australia
| | | | - Amir Iravani
- Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Victoria, Australia
- Neuroendocrine Service, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Aravind Ravi Kumar
- Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Victoria, Australia
- Neuroendocrine Service, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael S Hofman
- Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Victoria, Australia
- Neuroendocrine Service, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tim Akhurst
- Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Victoria, Australia
- Neuroendocrine Service, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Michael
- Neuroendocrine Service, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Medical Oncology, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Rodney J Hicks
- Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Victoria, Australia
- Neuroendocrine Service, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
49
|
Ghosal S, Das S, Pang Y, Gonzales MK, Huynh TT, Yang Y, Taieb D, Crona J, Shankavaram UT, Pacak K. Long intergenic noncoding RNA profiles of pheochromocytoma and paraganglioma: A novel prognostic biomarker. Int J Cancer 2019; 146:2326-2335. [PMID: 31469413 DOI: 10.1002/ijc.32654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Abstract
Many long intergenic noncoding RNAs (lincRNAs) serve as cancer biomarkers for diagnosis or prognostication. To understand the role of lincRNAs in the rare neuroendocrine tumors pheochromocytoma and paraganglioma (PCPG), we performed first time in-depth characterization of lincRNA expression profiles and correlated findings to clinical outcomes of the disease. RNA-Seq data from patients with PCPGs and 17 other tumor types from The Cancer Genome Atlas and other published sources were obtained. Differential expression analysis and a machine-learning model were used to identify transcripts specific to PCPGs, as well as established PCPG molecular subtypes. Similarly, lincRNAs specific to aggressive PCPGs were identified, and univariate and multivariate analysis was performed for metastasis-free survival. The results were validated in independent samples using RT-PCR. From a pan-cancer context, PCPGs had a specific and unique lincRNA profile. Among PCPGs, five different molecular subtypes were identified corresponding to the established molecular classification. Upregulation of 13 lincRNAs was found to be associated with aggressive/metastatic PCPGs. RT-PCR validation confirmed the overexpression of four lincRNAs in metastatic compared to non-metastatic PCPGs. Kaplan-Meier analysis identified five lincRNAs as prognostic markers for metastasis-free survival of patients in three subtypes of PCPGs. Stratification of PCPG patients with a risk-score formulated using multivariate analysis of lincRNA expression profiles, presence of key driver mutations, tumor location, and hormone secretion profiles showed significant differences in metastasis-free survival. PCPGs thus exhibit a specific lincRNA expression profile that also corresponds to the established molecular subgroups and can be potential marker for the aggressive/metastatic PCPGs.
Collapse
Affiliation(s)
- Suman Ghosal
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Shaoli Das
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ying Pang
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Melissa K Gonzales
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Thanh-Truc Huynh
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Yanqin Yang
- DNA Sequencing & Genomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France.,European Center for Research in Medical Imaging, Aix-Marseille University, Marseille, France
| | - Joakim Crona
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Uma T Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
50
|
Nölting S, Ullrich M, Pietzsch J, Ziegler CG, Eisenhofer G, Grossman A, Pacak K. Current Management of Pheochromocytoma/Paraganglioma: A Guide for the Practicing Clinician in the Era of Precision Medicine. Cancers (Basel) 2019; 11:cancers11101505. [PMID: 31597347 PMCID: PMC6827093 DOI: 10.3390/cancers11101505] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PCC/PGLs) are rare, mostly catecholamine-producing neuroendocrine tumors of the adrenal gland (PCCs) or the extra-adrenal paraganglia (PGL). They can be separated into three different molecular clusters depending on their underlying gene mutations in any of the at least 20 known susceptibility genes: The pseudohypoxia-associated cluster 1, the kinase signaling-associated cluster 2, and the Wnt signaling-associated cluster 3. In addition to tumor size, location (adrenal vs. extra-adrenal), multiplicity, age of first diagnosis, and presence of metastatic disease (including tumor burden), other decisive factors for best clinical management of PCC/PGL include the underlying germline mutation. The above factors can impact the choice of different biomarkers and imaging modalities for PCC/PGL diagnosis, as well as screening for other neoplasms, staging, follow-up, and therapy options. This review provides a guide for practicing clinicians summarizing current management of PCC/PGL according to tumor size, location, age of first diagnosis, presence of metastases, and especially underlying mutations in the era of precision medicine.
Collapse
Affiliation(s)
- Svenja Nölting
- Department of Medicine IV, University Hospital, LMU Munich, Ziemssenstraße 1, 80336 München, Germany.
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
- Department of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstrasse 9, 01062 Dresden, Germany.
| | - Christian G Ziegler
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Graeme Eisenhofer
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany.
| | - Ashley Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford Ox3 7LJ, UK.
- Department of Gastroenterology, Royal Free Hospital ENETS Centre of Excellence, London NW3 2QG, UK.
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|