1
|
Harrison DM, Sati P, Klawiter EC, Narayanan S, Bagnato F, Beck ES, Barker P, Calvi A, Cagol A, Donadieu M, Duyn J, Granziera C, Henry RG, Huang SY, Hoff MN, Mainero C, Ontaneda D, Reich DS, Rudko DA, Smith SA, Trattnig S, Zurawski J, Bakshi R, Gauthier S, Laule C. The use of 7T MRI in multiple sclerosis: review and consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Brain Commun 2024; 6:fcae359. [PMID: 39445084 PMCID: PMC11497623 DOI: 10.1093/braincomms/fcae359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The use of ultra-high-field 7-Tesla (7T) MRI in multiple sclerosis (MS) research has grown significantly over the past two decades. With recent regulatory approvals of 7T scanners for clinical use in 2017 and 2020, the use of this technology for routine care is poised to continue to increase in the coming years. In this context, the North American Imaging in MS Cooperative (NAIMS) convened a workshop in February 2023 to review the previous and current use of 7T technology for MS research and potential future research and clinical applications. In this workshop, experts were tasked with reviewing the current literature and proposing a series of consensus statements, which were reviewed and approved by the NAIMS. In this review and consensus paper, we provide background on the use of 7T MRI in MS research, highlighting this technology's promise for identification and quantification of aspects of MS pathology that are more difficult to visualize with lower-field MRI, such as grey matter lesions, paramagnetic rim lesions, leptomeningeal enhancement and the central vein sign. We also review the promise of 7T MRI to study metabolic and functional changes to the brain in MS. The NAIMS provides a series of consensus statements regarding what is currently known about the use of 7T MRI in MS, and additional statements intended to provide guidance as to what work is necessary going forward to accelerate 7T MRI research in MS and translate this technology for use in clinical practice and clinical trials. This includes guidance on technical development, proposals for a universal acquisition protocol and suggestions for research geared towards assessing the utility of 7T MRI to improve MS diagnostics, prognostics and therapeutic efficacy monitoring. The NAIMS expects that this article will provide a roadmap for future use of 7T MRI in MS.
Collapse
Affiliation(s)
- Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Baltimore VA Medical Center, Baltimore, MD 21201, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital, Montreal, QC, Canada, H3A 2B4
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada, H3A 2B4
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Nashville VA Medical Center, TN Valley Healthcare System, Nashville, TN 37212, USA
| | - Erin S Beck
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alberto Calvi
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Alessandro Cagol
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| | - Maxime Donadieu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeff Duyn
- Advanced MRI Section, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Department of Neurology, University Hospital Basel, 4001 Basel, Switzerland
| | - Roland G Henry
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Susie Y Huang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Michael N Hoff
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Caterina Mainero
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital, Montreal, QC, Canada, H3A 2B4
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37212, USA
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Jonathan Zurawski
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rohit Bakshi
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susan Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Cornelia Laule
- Radiology, Pathology and Laboratory Medicine, Physics and Astronomy, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada, BC V6T 1Z4
| |
Collapse
|
2
|
Müller J, Lu PJ, Cagol A, Ruberte E, Shin HG, Ocampo-Pineda M, Chen X, Tsagkas C, Barakovic M, Galbusera R, Weigel M, Schaedelin SA, Wang Y, Nguyen TD, Spincemaille P, Kappos L, Kuhle J, Lee J, Granziera C. Quantifying Remyelination Using χ-Separation in White Matter and Cortical Multiple Sclerosis Lesions. Neurology 2024; 103:e209604. [PMID: 39213476 PMCID: PMC11362958 DOI: 10.1212/wnl.0000000000209604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Myelin and iron play essential roles in remyelination processes of multiple sclerosis (MS) lesions. χ-separation, a novel biophysical model applied to multiecho T2*-data and T2-data, estimates the contribution of myelin and iron to the obtained susceptibility signal. We used this method to investigate myelin and iron levels in lesion and nonlesion brain areas in patients with MS and healthy individuals. METHODS This prospective MS cohort study included patients with MS fulfilling the McDonald Criteria 2017 and healthy individuals, aged 18 years or older, with no other neurologic comorbidities. Participants underwent MRI at baseline and after 2 years, including multiecho GRE-(T2*) and FAST-(T2) sequences. Using χ-separation, we generated myelin-sensitive and iron-sensitive susceptibility maps. White matter lesions (WMLs), cortical lesions (CLs), surrounding normal-appearing white matter (NAWM), and normal-appearing gray matter were segmented on fluid-attenuated inversion recovery and magnetization-prepared 2 rapid gradient echo images, respectively. Cross-sectional group comparisons used Wilcoxon rank-sum tests, longitudinal analyses applied Wilcoxon signed-rank tests. Associations with clinical outcomes (disease phenotype, age, sex, disease duration, disability measured by Expanded Disability Status Scale [EDSS], neurofilament light chain levels, and T2-lesion number and volume) were assessed using linear regression models. RESULTS Of 168 patients with MS (median [interquartile range (IQR)] age 47.0 [21.7] years; 101 women; 6,898 WMLs, 775 CLs) and 103 healthy individuals (age 33.0 [10.5] years, 57 women), 108 and 62 were followed for a median of 2 years, respectively (IQR 0.1; 5,030 WMLs, 485 CLs). At baseline, WMLs had lower myelin (median 0.025 [IQR 0.015] parts per million [ppm]) and iron (0.017 [0.015] ppm) than the corresponding NAWM (myelin 0.030 [0.012]; iron 0.019 [0.011] ppm; both p < 0.001). After 2 years, both myelin (0.027 [0.014] ppm) and iron had increased (0.018 [0.015] ppm; both p < 0.001). Younger age (p < 0.001, b = -5.111 × 10-5), lower disability (p = 0.04, b = -2.352 × 10-5), and relapsing-remitting phenotype (RRMS, 0.003 [0.01] vs primary progressive 0.002 [IQR 0.01], p < 0.001; vs secondary progressive 0.0004 [IQR 0.01], p < 0.001) at baseline were associated with remyelination. Increment of myelin correlated with clinical improvement measured by EDSS (p = 0.015, b = -6.686 × 10-4). DISCUSSION χ-separation, a novel mathematical model applied to multiecho T2*-images and T2-images shows that young RRMS patients with low disability exhibit higher remyelination capacity, which correlated with clinical disability over a 2-year follow-up.
Collapse
Affiliation(s)
- Jannis Müller
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Po-Jui Lu
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Alessandro Cagol
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Esther Ruberte
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Hyeong-Geol Shin
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Mario Ocampo-Pineda
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Xinjie Chen
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Charidimos Tsagkas
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Muhamed Barakovic
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Riccardo Galbusera
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Matthias Weigel
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Sabine A Schaedelin
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Yi Wang
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Thanh D Nguyen
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Pascal Spincemaille
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Ludwig Kappos
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Jens Kuhle
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Jongho Lee
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Cristina Granziera
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| |
Collapse
|
3
|
Bebo BF, Banwell BL, Whitacre CC, Coetzee T, Dalgas U, De Jager PL, Proebstel AK, Yong VW, Benveniste EN, Thompson AJ. The refined Pathways to Cures Research Roadmap for multiple sclerosis cures. Mult Scler 2024; 30:1242-1251. [PMID: 39212108 PMCID: PMC11451078 DOI: 10.1177/13524585241266483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Multiple sclerosis is a chronic immune-mediated disease of the central nervous system affecting nearly 3 million people worldwide. Although much progress has been made in the understanding and treatment of MS, cures remain elusive. OBJECTIVES To accelerate the development of cures for MS by updating the Pathways to Cures Research Roadmap based on a contemporary understanding of disease. The refined Roadmap will help to promote research in scientific areas with great potential to reveal insights leading to cures and inspire greater coordination of global resources. METHODS Refinements to the Roadmap were achieved during a Global Summit that included close to 200 academic and industry scientists, health care providers, policy makers, funders, and people with MS from 15 countries. RESULTS The refined Roadmap describes three pathways that target opportunities for generating scientific insights leading to cures. Recommendations for accelerating research progress include, lowering barriers for global data sharing, enhancing collaboration and coordination among research supporters, committing to sustained funding, considering implications for implementation, engaging PwMS and committing to diversity, equity, and inclusion in the global MS movement. CONCLUSION The refined roadmap provides a strategic framework for tackling the complexities of MS and advancing prevention strategies, effective treatments, and cures.
Collapse
Affiliation(s)
- Bruce F Bebo
- National Multiple Sclerosis Society, New York, NY, USA
| | - Brenda L Banwell
- Division of Child Neurology, Children’s Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Ulrik Dalgas
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Phillip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University, New York, NY, USA
| | - Anne-Katrin Proebstel
- Research Center for Clinical Neuroimmunology and Neuroscience, Departments of Neurology, Biomedicine, and Clinical Research, University Hospital Basel, Basel, Switzerland
| | - V Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alan J Thompson
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, NIHR University College London Hospitals Biomedical Research Centre, Faculty of Brain Sciences, University College London, London, UK
| |
Collapse
|
4
|
Thornton MA, Futia GL, Stockton ME, Budoff SA, Ramirez AN, Ozbay B, Tzang O, Kilborn K, Poleg-Polsky A, Restrepo D, Gibson EA, Hughes EG. Long-term in vivo three-photon imaging reveals region-specific differences in healthy and regenerative oligodendrogenesis. Nat Neurosci 2024; 27:846-861. [PMID: 38539013 PMCID: PMC11104262 DOI: 10.1038/s41593-024-01613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024]
Abstract
The generation of new myelin-forming oligodendrocytes in the adult central nervous system is critical for cognitive function and regeneration following injury. Oligodendrogenesis varies between gray and white matter regions, suggesting that local cues drive regional differences in myelination and the capacity for regeneration. However, the layer- and region-specific regulation of oligodendrocyte populations is unclear due to the inability to monitor deep brain structures in vivo. Here we harnessed the superior imaging depth of three-photon microscopy to permit long-term, longitudinal in vivo three-photon imaging of the entire cortical column and subcortical white matter in adult mice. We find that cortical oligodendrocyte populations expand at a higher rate in the adult brain than those of the white matter. Following demyelination, oligodendrocyte replacement is enhanced in the white matter, while the deep cortical layers show deficits in regenerative oligodendrogenesis and the restoration of transcriptional heterogeneity. Together, our findings demonstrate that regional microenvironments regulate oligodendrocyte population dynamics and heterogeneity in the healthy and diseased brain.
Collapse
Affiliation(s)
- Michael A Thornton
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory L Futia
- Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael E Stockton
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samuel A Budoff
- Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra N Ramirez
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Baris Ozbay
- Intelligent Imaging Innovations, Denver, CO, USA
| | - Omer Tzang
- Intelligent Imaging Innovations, Denver, CO, USA
| | - Karl Kilborn
- Intelligent Imaging Innovations, Denver, CO, USA
| | - Alon Poleg-Polsky
- Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily A Gibson
- Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
5
|
Lazzarotto A, Hamzaoui M, Tonietto M, Dubessy AL, Khalil M, Pirpamer L, Ropele S, Enzinger C, Battaglini M, Stromillo ML, De Stefano N, Filippi M, Rocca MA, Gallo P, Gasperini C, Stankoff B, Bodini B. Time is myelin: early cortical myelin repair prevents atrophy and clinical progression in multiple sclerosis. Brain 2024; 147:1331-1343. [PMID: 38267729 PMCID: PMC10994569 DOI: 10.1093/brain/awae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/15/2023] [Accepted: 01/13/2024] [Indexed: 01/26/2024] Open
Abstract
Cortical myelin loss and repair in multiple sclerosis (MS) have been explored in neuropathological studies, but the impact of these processes on neurodegeneration and the irreversible clinical progression of the disease remains unknown. Here, we evaluated in vivo cortical demyelination and remyelination in a large cohort of people with all clinical phenotypes of MS followed up for 5 years using magnetization transfer imaging (MTI), a technique that has been shown to be sensitive to myelin content changes in the cortex. We investigated 140 people with MS (37 clinically isolated syndrome, 71 relapsing-MS, 32 progressive-MS), who were clinically assessed at baseline and after 5 years and, along with 84 healthy controls, underwent a 3 T-MRI protocol including MTI at baseline and after 1 year. Changes in cortical volume over the radiological follow-up were computed with a Jacobian integration method. Magnetization transfer ratio was employed to calculate for each patient an index of cortical demyelination at baseline and of dynamic cortical demyelination and remyelination over the follow-up period. The three indices of cortical myelin content change were heterogeneous across patients but did not significantly differ across clinical phenotypes or treatment groups. Cortical remyelination, which tended to fail in the regions closer to CSF (-11%, P < 0.001), was extensive in half of the cohort and occurred independently of age, disease duration and clinical phenotype. Higher indices of cortical dynamic demyelination (β = 0.23, P = 0.024) and lower indices of cortical remyelination (β = -0.18, P = 0.03) were significantly associated with greater cortical atrophy after 1 year, independently of age and MS phenotype. While the extent of cortical demyelination predicted a higher probability of clinical progression after 5 years in the entire cohort [odds ratio (OR) = 1.2; P = 0.043], the impact of cortical remyelination in reducing the risk of accumulating clinical disability after 5 years was significant only in the subgroup of patients with shorter disease duration and limited extent of demyelination in cortical regions (OR = 0.86, P = 0.015, area under the curve = 0.93). In this subgroup, a 30% increase in cortical remyelination nearly halved the risk of clinical progression at 5 years, independently of clinical relapses. Overall, our results highlight the critical role of cortical myelin dynamics in the cascade of events leading to neurodegeneration and to the subsequent accumulation of irreversible disability in MS. Our findings suggest that early-stage myelin repair compensating for cortical myelin loss has the potential to prevent neuro-axonal loss and its long-term irreversible clinical consequences in people with MS.
Collapse
Affiliation(s)
- Andrea Lazzarotto
- Department of Neuroscience, Sorbonne Université, Paris Brain Institute, CNRS, Inserm, 75013 Paris, France
- AP-HP, Hôpital Universitaire Pitié-Salpêtrière, 75013 Paris, France
- Padova Neuroscience Center, University of Padua, 35122 Padua, Italy
| | - Mariem Hamzaoui
- Department of Neuroscience, Sorbonne Université, Paris Brain Institute, CNRS, Inserm, 75013 Paris, France
| | - Matteo Tonietto
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 91400 Orsay, France
- Roche Pharma Research & Early Development, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | | | - Michael Khalil
- Department of Neurology, Medical University of Graz, 8036 Graz, Austria
| | - Lukas Pirpamer
- Department of Neurology, Medical University of Graz, 8036 Graz, Austria
- Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, CH-4051 Basel, Switzerland
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, 8036 Graz, Austria
| | | | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Maria Laura Stromillo
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Maria Assunta Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Paolo Gallo
- Padova Neuroscience Center, University of Padua, 35122 Padua, Italy
- Multiple Sclerosis Centre of Veneto Region, 35128 Padua, Italy
| | | | - Bruno Stankoff
- Department of Neuroscience, Sorbonne Université, Paris Brain Institute, CNRS, Inserm, 75013 Paris, France
- AP-HP, Hôpital Universitaire Pitié-Salpêtrière, 75013 Paris, France
| | - Benedetta Bodini
- Department of Neuroscience, Sorbonne Université, Paris Brain Institute, CNRS, Inserm, 75013 Paris, France
- AP-HP, Hôpital Universitaire Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
6
|
Franklin RJM, Bodini B, Goldman SA. Remyelination in the Central Nervous System. Cold Spring Harb Perspect Biol 2024; 16:a041371. [PMID: 38316552 PMCID: PMC10910446 DOI: 10.1101/cshperspect.a041371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, while this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granule neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this work, we will (1) review the biology of remyelination, including the cells and signals involved; (2) describe when remyelination occurs and when and why it fails, including the consequences of its failure; and (3) discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.
Collapse
Affiliation(s)
- Robin J M Franklin
- Altos Labs Cambridge Institute of Science, Cambridge CB21 6GH, United Kingdom
| | - Benedetta Bodini
- Sorbonne Université, Paris Brain Institute, CNRS, INSERM, Paris 75013, France
- Saint-Antoine Hospital, APHP, Paris 75012, France
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642, USA
- University of Copenhagen Faculty of Medicine, Copenhagen 2200, Denmark
| |
Collapse
|
7
|
Kaffe D, Kaplanis SI, Karagogeos D. The Roles of Caloric Restriction Mimetics in Central Nervous System Demyelination and Remyelination. Curr Issues Mol Biol 2023; 45:9526-9548. [PMID: 38132442 PMCID: PMC10742427 DOI: 10.3390/cimb45120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The dysfunction of myelinating glial cells, the oligodendrocytes, within the central nervous system (CNS) can result in the disruption of myelin, the lipid-rich multi-layered membrane structure that surrounds most vertebrate axons. This leads to axonal degeneration and motor/cognitive impairments. In response to demyelination in the CNS, the formation of new myelin sheaths occurs through the homeostatic process of remyelination, facilitated by the differentiation of newly formed oligodendrocytes. Apart from oligodendrocytes, the two other main glial cell types of the CNS, microglia and astrocytes, play a pivotal role in remyelination. Following a demyelination insult, microglia can phagocytose myelin debris, thus permitting remyelination, while the developing neuroinflammation in the demyelinated region triggers the activation of astrocytes. Modulating the profile of glial cells can enhance the likelihood of successful remyelination. In this context, recent studies have implicated autophagy as a pivotal pathway in glial cells, playing a significant role in both their maturation and the maintenance of myelin. In this Review, we examine the role of substances capable of modulating the autophagic machinery within the myelinating glial cells of the CNS. Such substances, called caloric restriction mimetics, have been shown to decelerate the aging process by mitigating age-related ailments, with their mechanisms of action intricately linked to the induction of autophagic processes.
Collapse
Affiliation(s)
- Despoina Kaffe
- Department of Biology, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
| | - Stefanos Ioannis Kaplanis
- Department of Basic Science, School of Medicine, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Greece
| | - Domna Karagogeos
- Department of Basic Science, School of Medicine, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Greece
| |
Collapse
|
8
|
Thornton MA, Futia GL, Stockton ME, Budoff SA, Ramirez AN, Ozbay B, Tzang O, Kilborn K, Poleg-Polsky A, Restrepo D, Gibson EA, Hughes EG. Long-term in vivo three-photon imaging reveals region-specific differences in healthy and regenerative oligodendrogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.564636. [PMID: 37961298 PMCID: PMC10634963 DOI: 10.1101/2023.10.29.564636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The generation of new myelin-forming oligodendrocytes in the adult CNS is critical for cognitive function and regeneration following injury. Oligodendrogenesis varies between gray and white matter regions suggesting that local cues drive regional differences in myelination and the capacity for regeneration. Yet, the determination of regional variability in oligodendrocyte cell behavior is limited by the inability to monitor the dynamics of oligodendrocytes and their transcriptional subpopulations in white matter of the living brain. Here, we harnessed the superior imaging depth of three-photon microscopy to permit long-term, longitudinal in vivo three-photon imaging of an entire cortical column and underlying subcortical white matter without cellular damage or reactivity. Using this approach, we found that the white matter generated substantially more new oligodendrocytes per volume compared to the gray matter, yet the rate of population growth was proportionally higher in the gray matter. Following demyelination, the white matter had an enhanced population growth that resulted in higher oligodendrocyte replacement compared to the gray matter. Finally, deep cortical layers had pronounced deficits in regenerative oligodendrogenesis and restoration of the MOL5/6-positive oligodendrocyte subpopulation following demyelinating injury. Together, our findings demonstrate that regional microenvironments regulate oligodendrocyte population dynamics and heterogeneity in the healthy and diseased brain.
Collapse
Affiliation(s)
- Michael A. Thornton
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus
| | | | - Michael E. Stockton
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus
| | - Samuel A. Budoff
- Physiology and Biophysics, University of Colorado Anschutz Medical Campus
| | - Alexandra N Ramirez
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus
| | - Baris Ozbay
- Intelligent Imaging Innovations (3i), Denver, CO, USA
| | - Omer Tzang
- Intelligent Imaging Innovations (3i), Denver, CO, USA
| | - Karl Kilborn
- Intelligent Imaging Innovations (3i), Denver, CO, USA
| | - Alon Poleg-Polsky
- Physiology and Biophysics, University of Colorado Anschutz Medical Campus
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus
| | - Emily A. Gibson
- Bioengineering, University of Colorado Anschutz Medical Campus
| | - Ethan G. Hughes
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus
| |
Collapse
|
9
|
Zhu Q, Yan Z, Shi Z, Luo D, Ding S, Chen X, Li Y. Increased cortical lesion load contributed to pathological changes beyond focal lesion in cortical gray matter of multiple sclerosis: a diffusion kurtosis imaging analysis. Cereb Cortex 2023; 33:10867-10876. [PMID: 37718158 DOI: 10.1093/cercor/bhad332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Biomarkers specific to cortical gray matter (cGM) pathological changes of multiple sclerosis (MS) are desperately needed to better understand the disease progression. The cGM damage occurs in cortical lesion (CL) and normal-appearing cGM (NAcGM) areas. While the association between CL load and cGM damage has been reported, little is known about how different CL types, i.e. intracortical lesion (ICL) and leukocortical lesion (LCL) would be associated with cGM damage. In our study, relapsing-remitting MS patients and healthy controls were divided into 4 groups according to CL load level. NAcGM diffusion kurtosis imaging (DKI)/diffusion tensor imaging (DTI) values and cGM volume (cGMV) were used to characterize the pathological changes in cGM. Univariate general linear model was used for group comparisons and stepwise regression analysis was used to assess the effects of ICL volume and LCL volume on NAcGM damage. We found peak values in DKI/DTI values, cGMV and neuropsychological scores in high CL load group. Kurtosis fractional anisotropy (KFA) was the most sensitive in characterizing NAcGM damage, and LCL volume related more to NAcGM damage. Our findings suggested KFA could become a surrogate biomarker to cGM damage, and LCL might be the main factor in whole brain NAcGM damage.
Collapse
Affiliation(s)
- Qiyuan Zhu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zichun Yan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhuowei Shi
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dan Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuang Ding
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xiaoya Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
10
|
Thümmler K, Wrzos C, Franz J, McElroy D, Cole JJ, Hayden L, Arseni D, Schwarz F, Junker A, Edgar JM, Kügler S, Neef A, Wolf F, Stadelmann C, Linington C. Fibroblast growth factor 9 (FGF9)-mediated neurodegeneration: Implications for progressive multiple sclerosis? Neuropathol Appl Neurobiol 2023; 49:e12935. [PMID: 37705188 DOI: 10.1111/nan.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/22/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
AIMS Fibroblast growth factor (FGF) signalling is dysregulated in multiple sclerosis (MS) and other neurological and psychiatric conditions, but there is little or no consensus as to how individual FGF family members contribute to disease pathogenesis. Lesion development in MS is associated with increased expression of FGF1, FGF2 and FGF9, all of which modulate remyelination in a variety of experimental settings. However, FGF9 is also selectively upregulated in major depressive disorder (MDD), prompting us to speculate it may also have a direct effect on neuronal function and survival. METHODS Transcriptional profiling of myelinating cultures treated with FGF1, FGF2 or FGF9 was performed, and the effects of FGF9 on cortical neurons investigated using a combination of transcriptional, electrophysiological and immunofluorescence microscopic techniques. The in vivo effects of FGF9 were explored by stereotactic injection of adeno-associated viral (AAV) vectors encoding either FGF9 or EGFP into the rat motor cortex. RESULTS Transcriptional profiling of myelinating cultures after FGF9 treatment revealed a distinct neuronal response with a pronounced downregulation of gene networks associated with axonal transport and synaptic function. In cortical neuronal cultures, FGF9 also rapidly downregulated expression of genes associated with synaptic function. This was associated with a complete block in the development of photo-inducible spiking activity, as demonstrated using multi-electrode recordings of channel rhodopsin-transfected rat cortical neurons in vitro and, ultimately, neuronal cell death. Overexpression of FGF9 in vivo resulted in rapid loss of neurons and subsequent development of chronic grey matter lesions with neuroaxonal reduction and ensuing myelin loss. CONCLUSIONS These observations identify overexpression of FGF9 as a mechanism by which neuroaxonal pathology could develop independently of immune-mediated demyelination in MS. We suggest targeting neuronal FGF9-dependent pathways may provide a novel strategy to slow if not halt neuroaxonal atrophy and loss in MS, MDD and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Katja Thümmler
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Claudia Wrzos
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Jonas Franz
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
| | - Daniel McElroy
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - John J Cole
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Lorna Hayden
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Diana Arseni
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Friedrich Schwarz
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Junker
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Department of Neuropathology, University Hospital Essen, Essen, Germany
| | - Julia M Edgar
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sebastian Kügler
- Institute for Neurology, University Medical Center Göttingen, Göttingen, Germany
- Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Andreas Neef
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Fred Wolf
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Cluster of Excellence Multiscale Bioimaging: From Molecular Machines to Network of Excitable Cells (MBExC), University of Goettingen, Göttingen, Germany
| | - Christine Stadelmann
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence Multiscale Bioimaging: From Molecular Machines to Network of Excitable Cells (MBExC), University of Goettingen, Göttingen, Germany
| | | |
Collapse
|
11
|
In vivo characterization of microglia and myelin relation in multiple sclerosis by combined 11C-PBR28 PET and synthetic MRI. J Neurol 2023; 270:3091-3102. [PMID: 36859627 DOI: 10.1007/s00415-023-11621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND The in vivo relation between microglia activation and demyelination in multiple sclerosis is still unclear. OBJECTIVE We combined 11C-PBR28 positron emission tomography and rapid estimation of myelin for diagnostic imaging (REMyDI) to characterize the relation between these pathological processes in a heterogeneous MS cohort. METHODS 11C-PBR28 standardized uptake values normalized by a pseudo-reference region (SUVR) were used to measure activated microglia. A voxelwise analysis compared 11C-PBR28 SUVR in the white matter of 38 MS patients and 16 matched healthy controls. The relative difference in SUVR served as a threshold to classify patients' lesioned, perilesional and normal-appearing white matter as active or inactive. REMyDI was acquired in 27 MS patients for assessing myelin content in active and inactive white matter and its relationship with SUVR. Finally, we investigated the contribution of radiological metrics to clinical outcomes. RESULTS 11C-PBR28 SUVR were abnormally higher in several white matter areas in MS. Myelin content was lower in active compared to inactive corresponding white matter regions. An inverse correlation between SUVR and myelin content was found. Radiological metrics correlated with both neurological and cognitive impairment. CONCLUSION our data suggest an inverse relation of microglia activation and myelination, particularly in perilesional white matter tissue.
Collapse
|
12
|
Molina-Gonzalez I, Miron VE, Antel JP. Chronic oligodendrocyte injury in central nervous system pathologies. Commun Biol 2022; 5:1274. [PMID: 36402839 PMCID: PMC9675815 DOI: 10.1038/s42003-022-04248-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Myelin, the membrane surrounding neuronal axons, is critical for central nervous system (CNS) function. Injury to myelin-forming oligodendrocytes (OL) in chronic neurological diseases (e.g. multiple sclerosis) ranges from sublethal to lethal, leading to OL dysfunction and myelin pathology, and consequent deleterious impacts on axonal health that drive clinical impairments. This is regulated by intrinsic factors such as heterogeneity and age, and extrinsic cellular and molecular interactions. Here, we discuss the responses of OLs to injury, and perspectives for therapeutic targeting. We put forward that targeting mature OL health in neurological disease is a promising therapeutic strategy to support CNS function.
Collapse
Affiliation(s)
- Irene Molina-Gonzalez
- grid.4305.20000 0004 1936 7988United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland UK
| | - Veronique E. Miron
- grid.4305.20000 0004 1936 7988United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland UK ,grid.415502.7Barlo Multiple Sclerosis Centre and Keenan Research Centre for Biomedical Science, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Immunology, University of Toronto, Toronto, Canada
| | - Jack P. Antel
- grid.14709.3b0000 0004 1936 8649Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC Canada
| |
Collapse
|
13
|
Brown JWL, Prados F, Altmann DR, Kanber B, Stutters J, Cunniffe NG, Jones JL, Georgieva ZG, Needham EJ, Daruwalla C, Wheeler‐Kingshott CG, Connick P, Chandran S, Franklin R, MacManus D, Samson R, Coles A, Chard D. Remyelination varies between and within lesions in multiple sclerosis following bexarotene. Ann Clin Transl Neurol 2022; 9:1626-1642. [PMID: 36116011 PMCID: PMC9539389 DOI: 10.1002/acn3.51662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE In multiple sclerosis chronic demyelination is associated with axonal loss, and ultimately contributes to irreversible progressive disability. Enhancing remyelination may slow, or even reverse, disability. We recently trialled bexarotene versus placebo in 49 people with multiple sclerosis. While the primary MRI outcome was negative, there was converging neurophysiological and MRI evidence of efficacy. Multiple factors influence lesion remyelination. In this study we undertook a systematic exploratory analysis to determine whether treatment response - measured by change in magnetisation transfer ratio - is influenced by location (tissue type and proximity to CSF) or the degree of abnormality (using baseline magnetisation transfer ratio and T1 values). METHODS We examined treatment effects at the whole lesion level, the lesion component level (core, rim and perilesional tissues) and at the individual lesion voxel level. RESULTS At the whole lesion level, significant treatment effects were seen in GM but not WM lesions. Voxel-level analyses detected significant treatment effects in WM lesion voxels with the lowest baseline MTR, and uncovered gradients of treatment effect in both WM and CGM lesional voxels, suggesting that treatment effects were lower near CSF spaces. Finally, larger treatment effects were seen in the outer and surrounding components of GM lesions compared to inner cores. INTERPRETATION Remyelination varies markedly within and between lesions. The greater remyelinating effect in GM lesions is congruent with neuropathological observations. For future remyelination trials, whole GM lesion measures require less complex post-processing compared to WM lesions (which require voxel level analyses) and markedly reduce sample sizes.
Collapse
Affiliation(s)
- J. William L. Brown
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- NMR Research UnitQueen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of NeurologyLondonUK
- Clinical Outcomes Research Unit (CORe)University of MelbourneMelbourneAustralia
| | - Ferran Prados
- NMR Research UnitQueen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of NeurologyLondonUK
- e‐Health Center, Universitat Oberta de CatalunyaBarcelonaSpain
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Daniel R. Altmann
- Medical Statistics DepartmentLondon School of Hygiene & Tropical MedicineLondonUK
| | - Baris Kanber
- NMR Research UnitQueen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of NeurologyLondonUK
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image ComputingUniversity College LondonLondonUK
- National Institute for Health Research Biomedical Research Centre, University College London Hospitals NHS Foundation Trust and University College LondonLondonUK
| | - Jonathan Stutters
- NMR Research UnitQueen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of NeurologyLondonUK
| | - Nick G. Cunniffe
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Joanne L. Jones
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Zoya G. Georgieva
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Edward J. Needham
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Cyrus Daruwalla
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Claudia Gandini Wheeler‐Kingshott
- NMR Research UnitQueen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of NeurologyLondonUK
- Brain Connectivity Centre, IRCCS Mondino FoundationPaviaItaly
- Department of Brain and Behavioural SciencesUniversity of PaviaPaviaItaly
| | - Peter Connick
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Siddharthan Chandran
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research Institute, University of EdinburghEdinburghUK
| | - Robin Franklin
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - David MacManus
- NMR Research UnitQueen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of NeurologyLondonUK
| | - Rebecca Samson
- NMR Research UnitQueen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of NeurologyLondonUK
| | - Alasdair Coles
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Declan Chard
- NMR Research UnitQueen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of NeurologyLondonUK
- National Institute for Health Research Biomedical Research Centre, University College London Hospitals NHS Foundation Trust and University College LondonLondonUK
| |
Collapse
|
14
|
Kolb H, Al-Louzi O, Beck ES, Sati P, Absinta M, Reich DS. From pathology to MRI and back: Clinically relevant biomarkers of multiple sclerosis lesions. Neuroimage Clin 2022; 36:103194. [PMID: 36170753 PMCID: PMC9668624 DOI: 10.1016/j.nicl.2022.103194] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Focal lesions in both white and gray matter are characteristic of multiple sclerosis (MS). Histopathological studies have helped define the main underlying pathological processes involved in lesion formation and evolution, serving as a gold standard for many years. However, histopathology suffers from an intrinsic bias resulting from over-reliance on tissue samples from late stages of the disease or atypical cases and is inadequate for routine patient assessment. Pathological-radiological correlative studies have established advanced MRI's sensitivity to several relevant MS-pathological substrates and its practicality for assessing dynamic changes and following lesions over time. This review focuses on novel imaging techniques that serve as biomarkers of critical pathological substrates of MS lesions: the central vein, chronic inflammation, remyelination and repair, and cortical lesions. For each pathological process, we address the correlative value of MRI to MS pathology, its contribution in elucidating MS pathology in vivo, and the clinical utility of the imaging biomarker.
Collapse
Affiliation(s)
- Hadar Kolb
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv-Yaffo, Israel,Corresponding author at: Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv-Yaffo, Israel.
| | - Omar Al-Louzi
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erin S. Beck
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Institute of Experimental Neurology (INSPE), IRCSS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy,Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
15
|
Hosseinpour Z, Jonkman L, Oladosu O, Pridham G, Pike GB, Inglese M, Geurts JJ, Zhang Y. Texture analysis in brain T2 and diffusion MRI differentiates histology-verified grey and white matter pathology types in multiple sclerosis. J Neurosci Methods 2022; 379:109671. [PMID: 35820450 DOI: 10.1016/j.jneumeth.2022.109671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/19/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a co mplex disease of the central nervous system involving several types of brain pathology that are difficult to characterize using conventional imaging methods. NEW METHOD We originated novel texture analysis and machine learning approaches for classifying MS pathology subtypes as compared with 2 common advanced MRI measures: magnetization transfer ratio (MTR) and fractional anisotropy (FA). Texture analysis used an optimized grey level co-occurrence matrix method with histology-informed 7T T2-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) from 15 MS and 12 control brain specimens. DTI analysis took an innovative approach that assessed the texture across diffusion directions upsampled from 30 to 90. Tissue types included de- and re-myelinated lesions and normal-appearing areas in both grey and white matter, and diffusely abnormal white matter. Data analyses were stepwise, including: (1) group-wise classification using random forest algorithms based on all or individual imaging parameters; (2) parameter importance ranking; and (3) pairwise analysis using top-ranked features. RESULTS Texture analysis performed better than MTR and FA, with T2 texture performed the best. T2 texture measures ranked the highest in classifying most grey and white matter tissue types, including de- versus re-myelinated lesions and among grey matter lesion subtypes (accuracy=0.86-0.59; kappa=0.60-0.41). Diffusion texture best differentiated normal appearing and control white matter. COMPARISON WITH EXISTING METHODS There is no established method in imaging for differentiating MS pathology subtypes. In combined texture analysis and machine learning studies, there is also no direct evidence comparing conventional with advanced MRI measures for assessing MS pathology. Further, this study is unique in conducting innovative texture analysis with DTI following data-augmentation using robust methods. CONCLUSIONS T2 and diffusion MRI texture analysis integrated with machine learning may be valuable approaches for characterizing MS pathology.
Collapse
Affiliation(s)
- Zahra Hosseinpour
- Biomedical Engineering Graduate Program, University of Calgary, Alberta T2N 4N, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta T2N 4N1, Canada
| | - Laura Jonkman
- Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Olayinka Oladosu
- Department of Neuroscience, University of Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta T2N 4N1, Canada
| | - Glen Pridham
- Department of Clinical Neurosciences, University of Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta T2N 4N1, Canada
| | - G Bruce Pike
- Department of Clinical Neurosciences, University of Calgary, Alberta T2N 4N1, Canada; Department of Radiology, University of Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta T2N 4N1, Canada
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA 10029; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Jeroen J Geurts
- Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Yunyan Zhang
- Department of Clinical Neurosciences, University of Calgary, Alberta T2N 4N1, Canada; Department of Radiology, University of Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
16
|
Reciprocal Interactions between Oligodendrocyte Precursor Cells and the Neurovascular Unit in Health and Disease. Cells 2022; 11:cells11121954. [PMID: 35741083 PMCID: PMC9221698 DOI: 10.3390/cells11121954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 12/04/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are mostly known for their capability to differentiate into oligodendrocytes and myelinate axons. However, they have been observed to frequently interact with cells of the neurovascular unit during development, homeostasis, and under pathological conditions. The functional consequences of these interactions are largely unclear, but are increasingly studied. Although OPCs appear to be a rather homogenous cell population in the central nervous system (CNS), they present with an enormous potential to adapt to their microenvironment. In this review, it is summarized what is known about the various roles of OPC-vascular interactions, and the circumstances under which they have been observed.
Collapse
|
17
|
Lazzarotto A, Tonietto M, Poirion E, Battaglini M, Palladino R, Benoit C, Ricigliano VA, Maillart E, De Stefano N, Stankoff B, Bodini B. Clinically relevant profiles of myelin content changes in patients with multiple sclerosis: A multimodal and multicompartment imaging study. Mult Scler 2022; 28:1881-1890. [PMID: 35708126 DOI: 10.1177/13524585221096975] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the clinical relevance of individual profiles of cortical and white matter lesion myelin content changes combining magnetisation transfer imaging (MTI) and 11C-PiB-positron emission tomography (PET) in patients with multiple sclerosis (MS). METHODS MTI and [11C]PiB-PET acquired in 19 patients with MS followed up over 2-4 months and in seven healthy controls (HCs), were employed to generate individual maps of cortical and white matter (WM) lesion myelin content changes, respectively. These maps were used to calculate individual indices of demyelination and remyelination, and to investigate their association with clinical scores. RESULTS Cortical remyelination ranged between 1% and 5% of the total cortical volume (17%-45% of the cortical volume demyelinated at baseline). WM lesion remyelination ranged between 8% and 22% of the lesional volume. An extensive cortical remyelination was associated with a shorter disease duration (rho = -0.63, p = 0.01) and, in combination with WM lesion remyelination, explained 68%-70% of the variance of clinical scores (p < 0.01). CONCLUSION Our multimodal and multicompartment approach allows us to explore single-patient cortical and WM lesion demyelination and remyelination, and to generate clinically relevant indices of myelin repair. These indices may be used as outcome measures in clinical trials, thus increasing the chance to identify successful promyelinating treatments in patients with MS.
Collapse
Affiliation(s)
- Andrea Lazzarotto
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, Paris, France/Padova Neuroscience Center, University of Padua, Padua, Italy; AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Matteo Tonietto
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, Paris, France/CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Emilie Poirion
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, Paris, France; Hospital Foundation A. de Rothschild, Imaging department, Paris, France
| | - Marco Battaglini
- Department of Neurological and Behavioural Sciences, University of Siena, Siena, Italy
| | - Raffaele Palladino
- Department of Primary Care and Public Health, School of Public Health, Imperial College of London, London, UK/Department of Public Health, University 'Federico II' of Naples, Naples, Italy
| | - Charline Benoit
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, Paris, France
| | - Vito Ag Ricigliano
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, Paris, France/AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Elisabeth Maillart
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, Paris, France/AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Nicola De Stefano
- Department of Neurological and Behavioural Sciences, University of Siena, Siena, Italy
| | - Bruno Stankoff
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, Paris, France/AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Benedetta Bodini
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, Paris, France/AP-HP, Hôpital Saint-Antoine, Paris, France/Institut du Cerveau et de la moelle épinière, ICM, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, Hopital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
18
|
Zirngibl M, Assinck P, Sizov A, Caprariello AV, Plemel JR. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol Neurodegener 2022; 17:34. [PMID: 35526004 PMCID: PMC9077942 DOI: 10.1186/s13024-022-00538-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
The dietary consumption of cuprizone – a copper chelator – has long been known to induce demyelination of specific brain structures and is widely used as model of multiple sclerosis. Despite the extensive use of cuprizone, the mechanism by which it induces demyelination are still unknown. With this review we provide an updated understanding of this model, by showcasing two distinct yet overlapping modes of action for cuprizone-induced demyelination; 1) damage originating from within the oligodendrocyte, caused by mitochondrial dysfunction or reduced myelin protein synthesis. We term this mode of action ‘intrinsic cell damage’. And 2) damage to the oligodendrocyte exerted by inflammatory molecules, brain resident cells, such as oligodendrocytes, astrocytes, and microglia or peripheral immune cells – neutrophils or T-cells. We term this mode of action ‘extrinsic cellular damage’. Lastly, we summarize recent developments in research on different forms of cell death induced by cuprizone, which could add valuable insights into the mechanisms of cuprizone toxicity. With this review we hope to provide a modern understanding of cuprizone-induced demyelination to understand the causes behind the demyelination in MS.
Collapse
Affiliation(s)
- Martin Zirngibl
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Peggy Assinck
- Wellcome Trust- MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anastasia Sizov
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Andrew V Caprariello
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, Canada
| | - Jason R Plemel
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada. .,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
19
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
20
|
Beck ES, Maranzano J, Luciano NJ, Parvathaneni P, Filippini S, Morrison M, Suto DJ, Wu T, van Gelderen P, de Zwart JA, Antel S, Fetco D, Ohayon J, Andrada F, Mina Y, Thomas C, Jacobson S, Duyn J, Cortese I, Narayanan S, Nair G, Sati P, Reich DS. Cortical lesion hotspots and association of subpial lesions with disability in multiple sclerosis. Mult Scler 2022; 28:1351-1363. [PMID: 35142571 DOI: 10.1177/13524585211069167] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Dramatic improvements in visualization of cortical (especially subpial) multiple sclerosis (MS) lesions allow assessment of impact on clinical course. OBJECTIVE Characterize cortical lesions by 7 tesla (T) T2*-/T1-weighted magnetic resonance imaging (MRI); determine relationship with other MS pathology and contribution to disability. METHODS Sixty-four adults with MS (45 relapsing-remitting/19 progressive) underwent 3 T brain/spine MRI, 7 T brain MRI, and clinical testing. RESULTS Cortical lesions were found in 94% (progressive: median 56/range 2-203; relapsing-remitting: 15/0-168; p = 0.004). Lesion distribution across 50 cortical regions was nonuniform (p = 0.006), with highest lesion burden in supplementary motor cortex and highest prevalence in superior frontal gyrus. Leukocortical and white matter lesion volumes were strongly correlated (r = 0.58, p < 0.0001), while subpial and white matter lesion volumes were moderately correlated (r = 0.30, p = 0.002). Leukocortical (p = 0.02) but not subpial lesions (p = 0.40) were correlated with paramagnetic rim lesions; both were correlated with spinal cord lesions (p = 0.01). Cortical lesion volumes (total and subtypes) were correlated with expanded disability status scale, 25-foot timed walk, nine-hole peg test, and symbol digit modality test scores. CONCLUSION Cortical lesions are highly prevalent and are associated with disability and progressive disease. Subpial lesion burden is not strongly correlated with white matter lesions, suggesting differences in inflammation and repair mechanisms.
Collapse
Affiliation(s)
- Erin S Beck
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Josefina Maranzano
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Department of Anatomy, University of Quebec in Trois-Rivières, Trois-Rivières, QC, Canada
| | - Nicholas J Luciano
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Prasanna Parvathaneni
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Stefano Filippini
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
| | - Mark Morrison
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Daniel J Suto
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tianxia Wu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peter van Gelderen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jacco A de Zwart
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Samson Antel
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Dumitru Fetco
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Joan Ohayon
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Frances Andrada
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yair Mina
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chevaz Thomas
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Steve Jacobson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jeff Duyn
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Irene Cortese
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Pascal Sati
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Rai NK, Singh V, Li L, Willard B, Tripathi A, Dutta R. Comparative Proteomic Profiling Identifies Reciprocal Expression of Mitochondrial Proteins Between White and Gray Matter Lesions From Multiple Sclerosis Brains. Front Neurol 2022; 12:779003. [PMID: 35002930 PMCID: PMC8740228 DOI: 10.3389/fneur.2021.779003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system, where ongoing demyelination and remyelination failure are the major factors for progressive neurological disability. In this report, we employed a comprehensive proteomic approach and immunohistochemical validation to gain insight into the pathobiological mechanisms that may be associated with the progressive phase of MS. Isolated proteins from myelinated regions, demyelinated white-matter lesions (WMLs), and gray-matter lesions (GMLs) from well-characterized progressive MS brain tissues were subjected to label-free quantitative mass spectrometry. Using a system-biology approach, we detected increased expression of proteins belonging to mitochondrial electron transport complexes and oxidative phosphorylation pathway in WMLs. Intriguingly, many of these proteins and pathways had opposite expression patterns and were downregulated in GMLs of progressive MS brains. A comparison to the human MitoCarta database mapped the mitochondrial proteins to mitochondrial subunits in both WMLs and GMLs. Taken together, we provide evidence of opposite expression of mitochondrial proteins in response to demyelination of white- and gray-matter regions in progressive MS brain.
Collapse
Affiliation(s)
- Nagendra Kumar Rai
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States
| | - Vaibhav Singh
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States
| | - Ling Li
- Proteomic Core Facility, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Belinda Willard
- Proteomic Core Facility, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
| | - Ajai Tripathi
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States
| | - Ranjan Dutta
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States.,Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
22
|
Huitema MJD, Strijbis EMM, Luchicchi A, Bol JGJM, Plemel JR, Geurts JJG, Schenk GJ. Myelin Quantification in White Matter Pathology of Progressive Multiple Sclerosis Post-Mortem Brain Samples: A New Approach for Quantifying Remyelination. Int J Mol Sci 2021; 22:ijms222312634. [PMID: 34884445 PMCID: PMC8657470 DOI: 10.3390/ijms222312634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/14/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating and neurodegenerative disease of the central nervous system (CNS). Repair through remyelination can be extensive, but quantification of remyelination remains challenging. To date, no method for standardized digital quantification of remyelination of MS lesions exists. This methodological study aims to present and validate a novel standardized method for myelin quantification in progressive MS brains to study myelin content more precisely. Fifty-five MS lesions in 32 tissue blocks from 14 progressive MS cases and five tissue blocks from 5 non-neurological controls were sampled. MS lesions were selected by macroscopic investigation of WM by standard histopathological methods. Tissue sections were stained for myelin with luxol fast blue (LFB) and histological assessment of de- or remyelination was performed by light microscopy. The myelin quantity was estimated with a novel myelin quantification method (MQM) in ImageJ. Three independent raters applied the MQM and the inter-rater reliability was calculated. We extended the method to diffusely appearing white matter (DAWM) and encephalitis to test potential wider applicability of the method. Inter-rater agreement was excellent (ICC = 0.96) and there was a high reliability with a lower- and upper limit of agreement up to −5.93% to 18.43% variation in myelin quantity. This study builds on the established concepts of histopathological semi-quantitative assessment of myelin and adds a novel, reliable and accurate quantitative measurement tool for the assessment of myelination in human post-mortem samples.
Collapse
Affiliation(s)
- Marije J. D. Huitema
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands; (M.J.D.H.); (A.L.); (J.G.J.M.B.); (J.J.G.G.)
| | - Eva M. M. Strijbis
- Department of Neurology, MS Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands;
| | - Antonio Luchicchi
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands; (M.J.D.H.); (A.L.); (J.G.J.M.B.); (J.J.G.G.)
| | - John G. J. M. Bol
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands; (M.J.D.H.); (A.L.); (J.G.J.M.B.); (J.J.G.G.)
| | - Jason R. Plemel
- Department of Medicine, Division of Neurology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2S2, Canada;
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jeroen J. G. Geurts
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands; (M.J.D.H.); (A.L.); (J.G.J.M.B.); (J.J.G.G.)
| | - Geert J. Schenk
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands; (M.J.D.H.); (A.L.); (J.G.J.M.B.); (J.J.G.G.)
- Correspondence:
| |
Collapse
|
23
|
Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis. Nat Rev Neurol 2021; 18:40-55. [PMID: 34732831 DOI: 10.1038/s41582-021-00581-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
In contrast to the multiple disease-modifying therapies that are available for relapsing-remitting multiple sclerosis (MS), the therapeutic options for progressive MS (PMS) are limited. Recent advances in our understanding of the neuroimmunology of PMS, including the mechanisms that drive slowly expanding lesions, have fuelled optimism for improved treatment of this condition. In this Review, we highlight the commonly observed neuropathology of PMS and discuss the associated mechanisms of CNS injury. We then apply this knowledge to formulate criteria for therapeutic efficacy in PMS, beginning with the need for early treatment owing to the substantial neuropathology that is already present at the initial clinical presentation. Other requirements include: antagonism of neuroaxonal injury mediators such as pro-inflammatory microglia and lymphocytes; remediation of oxidative stress resulting from iron deposition and mitochondrial dysfunction; and promotion of neuroprotection through remyelination. We consider whether current disease-modifying therapies for relapsing-remitting MS meet the criteria for successful therapeutics in PMS and suggest that the evidence favours the early introduction of sphingosine 1-phosphate receptor modulators. Finally, we weigh up emerging medications, including repurposed generic medications and Bruton's tyrosine kinase inhibitors, against these fundamental criteria. In this new therapeutic era in PMS, success depends collectively on understanding disease mechanisms, drug characteristics (including brain penetration) and rational use.
Collapse
|
24
|
Sherafat A, Pfeiffer F, Nishiyama A. Shaping of Regional Differences in Oligodendrocyte Dynamics by Regional Heterogeneity of the Pericellular Microenvironment. Front Cell Neurosci 2021; 15:721376. [PMID: 34690700 PMCID: PMC8531270 DOI: 10.3389/fncel.2021.721376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are glial cells that differentiate into mature oligodendrocytes (OLs) to generate new myelin sheaths. While OPCs are distributed uniformly throughout the gray and white matter in the developing and adult brain, those in white matter proliferate and differentiate into oligodendrocytes at a greater rate than those in gray matter. There is currently lack of evidence to suggest that OPCs comprise genetically and transcriptionally distinct subtypes. Rather, the emerging view is that they exist in different cell and functional states, depending on their location and age. Contrary to the normal brain, demyelinated lesions in the gray matter of multiple sclerosis brains contain more OPCs and OLs and are remyelinated more robustly than those in white matter. The differences in the dynamic behavior of OL lineage cells are likely to be influenced by their microenvironment. There are regional differences in astrocytes, microglia, the vasculature, and the composition of the extracellular matrix (ECM). We will discuss how the regional differences in these elements surrounding OPCs might shape their phenotypic variability in normal and demyelinated states.
Collapse
Affiliation(s)
- Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Friederike Pfeiffer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States.,Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States.,Institute of Systems Genomics, University of Connecticut, Storrs, CT, United States.,The Institute of Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
25
|
Barletta V, Herranz E, Treaba CA, Mehndiratta A, Ouellette R, Mangeat G, Granberg T, Sloane JA, Klawiter EC, Cohen-Adad J, Mainero C. Quantitative 7-Tesla Imaging of Cortical Myelin Changes in Early Multiple Sclerosis. Front Neurol 2021; 12:714820. [PMID: 34539559 PMCID: PMC8446537 DOI: 10.3389/fneur.2021.714820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022] Open
Abstract
Cortical demyelination occurs early in multiple sclerosis (MS) and relates to disease outcome. The brain cortex has endogenous propensity for remyelination as proven from histopathology study. In this study, we aimed at characterizing cortical microstructural abnormalities related to myelin content by applying a novel quantitative MRI technique in early MS. A combined myelin estimation (CME) cortical map was obtained from quantitative 7-Tesla (7T) T2* and T1 acquisitions in 25 patients with early MS and 19 healthy volunteers. Cortical lesions in MS patients were classified based on their myelin content by comparison with CME values in healthy controls as demyelinated, partially demyelinated, or non-demyelinated. At follow-up, we registered changes in cortical lesions as increased, decreased, or stable CME. Vertex-wise analysis compared cortical CME in the normal-appearing cortex in 25 MS patients vs. 19 healthy controls at baseline and investigated longitudinal changes at 1 year in 10 MS patients. Measurements from the neurite orientation dispersion and density imaging (NODDI) diffusion model were obtained to account for cortical neurite/dendrite loss at baseline and follow-up. Finally, CME maps were correlated with clinical metrics. CME was overall low in cortical lesions (p = 0.03) and several normal-appearing cortical areas (p < 0.05) in the absence of NODDI abnormalities. Individual cortical lesion analysis revealed, however, heterogeneous CME patterns from extensive to partial or absent demyelination. At follow-up, CME overall decreased in cortical lesions and non-lesioned cortex, with few areas showing an increase (p < 0.05). Cortical CME maps correlated with processing speed in several areas across the cortex. In conclusion, CME allows detection of cortical microstructural changes related to coexisting demyelination and remyelination since the early phases of MS, and shows to be more sensitive than NODDI and relates to cognitive performance.
Collapse
Affiliation(s)
- Valeria Barletta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States
| | - Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States
| | - Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States
| | - Ambica Mehndiratta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Russell Ouellette
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Gabriel Mangeat
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jacob A Sloane
- Harvard Medical School, Harvard University, Boston, MA, United States.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Eric C Klawiter
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|
26
|
Brown JWL, Cunniffe NG, Prados F, Kanber B, Jones JL, Needham E, Georgieva Z, Rog D, Pearson OR, Overell J, MacManus D, Samson RS, Stutters J, Ffrench-Constant C, Gandini Wheeler-Kingshott CAM, Moran C, Flynn PD, Michell AW, Franklin RJM, Chandran S, Altmann DR, Chard DT, Connick P, Coles AJ. Safety and efficacy of bexarotene in patients with relapsing-remitting multiple sclerosis (CCMR One): a randomised, double-blind, placebo-controlled, parallel-group, phase 2a study. Lancet Neurol 2021; 20:709-720. [PMID: 34418398 DOI: 10.1016/s1474-4422(21)00179-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Progressive disability in multiple sclerosis occurs because CNS axons degenerate as a late consequence of demyelination. In animals, retinoic acid receptor RXR-gamma agonists promote remyelination. We aimed to assess the safety and efficacy of a non-selective retinoid X receptor agonist in promoting remyelination in people with multiple sclerosis. METHODS This randomised, double-blind, placebo-controlled, parallel-group, phase 2a trial (CCMR One) recruited patients with relapsing-remitting multiple sclerosis from two centres in the UK. Eligible participants were aged 18-50 years and had been receiving dimethyl fumarate for at least 6 months. Via a web-based system run by an independent statistician, participants were randomly assigned (1:1), by probability-weighted minimisation using four binary factors, to receive 300 mg/m2 of body surface area per day of oral bexarotene or oral placebo for 6 months. Participants, investigators, and outcome assessors were masked to treatment allocation. MRI scans were done at baseline and at 6 months. The primary safety outcome was the number of adverse events and withdrawals attributable to bexarotene. The primary efficacy outcome was the patient-level change in mean lesional magnetisation transfer ratio between baseline and month 6 for lesions that had a baseline magnetisation transfer ratio less than the within-patient median. We analysed the primary safety outcome in the safety population, which comprised participants who received at least one dose of their allocated treatment. We analysed the primary efficacy outcome in the intention-to-treat population, which comprised all patients who completed the study. This study is registered in the ISRCTN Registry, 14265371, and has been completed. FINDINGS Between Jan 17, 2017, and May 17, 2019, 52 participants were randomly assigned to receive either bexarotene (n=26) or placebo (n=26). Participants who received bexarotene had a higher mean number of adverse events (6·12 [SD 3·09]; 159 events in total) than did participants who received placebo (1·63 [SD 1·50]; 39 events in total). All bexarotene-treated participants had at least one adverse event, which included central hypothyroidism (n=26 vs none on placebo), hypertriglyceridaemia (n=24 vs none on placebo), rash (n=13 vs one on placebo), and neutropenia (n=10 vs none on placebo). Five (19%) participants on bexarotene and two (8%) on placebo discontinued the study drug due to adverse events. One episode of cholecystitis in a placebo-treated participant was the only serious adverse event. The change in mean lesional magnetisation transfer ratio was not different between the bexarotene group (0·25 percentage units [pu; SD 0·98]) and the placebo group (0·09 pu [0·84]; adjusted bexarotene-placebo difference 0·16 pu, 95% CI -0·39 to 0·71; p=0·55). INTERPRETATION We do not recommend the use of bexarotene to treat patients with multiple sclerosis because of its poor tolerability and negative primary efficacy outcome. However, statistically significant effects were seen in some exploratory MRI and electrophysiological analyses, suggesting that other retinoid X receptor agonists might have small biological effects that could be investigated in further studies. FUNDING Multiple Sclerosis Society of the United Kingdom.
Collapse
Affiliation(s)
- J William L Brown
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK; Clinical Outcomes Research Unit, University of Melbourne, Melbourne, VIC, Australia
| | - Nick G Cunniffe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Ferran Prados
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK; Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK; e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Baris Kanber
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK; Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK; National Institute for Health Research Biomedical Research Centre, University College London Hospitals NHS Foundation Trust and University College London, London, UK
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Edward Needham
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Zoya Georgieva
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David Rog
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Owen R Pearson
- Department of Neurology, Swansea Bay University Health Board, Swansea, UK
| | - James Overell
- Product Development Neuroscience, F Hoffmann-La Roche, Basel, Switzerland; Institute of Neurological Sciences, University of Glasgow, Glasgow, UK
| | - David MacManus
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rebecca S Samson
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jonathan Stutters
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK; Brain Connectivity Centre, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Carla Moran
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Paul D Flynn
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrew W Michell
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Robin J M Franklin
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Daniel R Altmann
- Medical Statistics Department, London School of Hygiene & Tropical Medicine, London, UK
| | - Declan T Chard
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK; National Institute for Health Research Biomedical Research Centre, University College London Hospitals NHS Foundation Trust and University College London, London, UK
| | - Peter Connick
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
27
|
Pavic G, Petzsch P, Jansen R, Raba K, Rychlik N, Simiantonakis I, Küry P, Göttle P, Köhrer K, Hartung HP, Meuth SG, Jander S, Gliem M. Microglia contributes to remyelination in cerebral but not spinal cord ischemia. Glia 2021; 69:2739-2751. [PMID: 34390590 DOI: 10.1002/glia.24068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/07/2022]
Abstract
Inflammation after injury of the central nervous system (CNS) is increasingly viewed as a therapeutic target. However, comparative studies in different CNS compartments are sparse. To date only few studies based on immunohistochemical data and all referring to mechanical injury have directly compared inflammation in different CNS compartments. These studies revealed that inflammation is more pronounced in spinal cord than in brain. Therefore, it is unclear whether concepts and treatments established in the cerebral cortex can be transferred to spinal cord lesions and vice versa or whether immunological treatments must be adapted to different CNS compartments. By use of transcriptomic and flow cytometry analysis of equally sized photothrombotically induced lesions in the cerebral cortex and the spinal cord, we could document an overall comparable inflammatory reaction and repair activity in brain and spinal cord between day 1 and day 7 after ischemia. However, remyelination was increased after cerebral versus spinal cord ischemia which is in line with increased remyelination in gray matter in previous analyses and was accompanied by microglia dominated inflammation opposed to monocytes/macrophages dominated inflammation after spinal cord ischemia. Interestingly remyelination could be reduced by microglia and not hematogenous macrophage depletion. Our results show that despite different cellular composition of the postischemic infiltrate the inflammatory response in cerebral cortex and spinal cord are comparable between day 1 and day 7. A striking difference was higher remyelination capacity in the cerebral cortex, which seems to be supported by microglia dominance.
Collapse
Affiliation(s)
- Goran Pavic
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Robin Jansen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nicole Rychlik
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sebastian Jander
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Gliem
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
28
|
Tsouki F, Williams A. Multifaceted involvement of microglia in gray matter pathology in multiple sclerosis. Stem Cells 2021; 39:993-1007. [PMID: 33754376 DOI: 10.1002/stem.3374] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
In the inflammatory demyelinating neurodegenerative disease multiple sclerosis (MS), there is increasing interest in gray matter pathology, as neuronal loss and cortical atrophy correlate with disability and disease progression, and MS therapeutics fail to significantly slow or stop neurodegeneration. Microglia, the central nervous system (CNS)-resident macrophages, are extensively involved in white matter MS pathology, but are also implicated in gray matter pathology, similar to other neurodegenerative diseases, for which there is synaptic, axonal, and neuronal degeneration. Microglia display regional heterogeneity within the CNS, which reflects their highly plastic nature and their ability to deliver context-dependent responses tailored to the demands of their microenvironment. Therefore, microglial roles in the MS gray matter in part reflect and in part diverge from those in the white matter. The present review summarizes current knowledge of microglial involvement in gray matter changes in MS, in demyelination, synaptic damage, and neurodegeneration, with evidence implicating microglia in pathology, neuroprotection, and repair. As our understanding of microglial physiology and pathophysiology increases, we describe how we are moving toward potential therapeutic applications in MS, harnessing microglia to protect and regenerate the CNS.
Collapse
Affiliation(s)
- Foteini Tsouki
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| |
Collapse
|
29
|
Moulson AJ, Squair JW, Franklin RJM, Tetzlaff W, Assinck P. Diversity of Reactive Astrogliosis in CNS Pathology: Heterogeneity or Plasticity? Front Cell Neurosci 2021; 15:703810. [PMID: 34381334 PMCID: PMC8349991 DOI: 10.3389/fncel.2021.703810] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/02/2021] [Indexed: 01/02/2023] Open
Abstract
Astrocytes are essential for the development and homeostatic maintenance of the central nervous system (CNS). They are also critical players in the CNS injury response during which they undergo a process referred to as "reactive astrogliosis." Diversity in astrocyte morphology and gene expression, as revealed by transcriptional analysis, is well-recognized and has been reported in several CNS pathologies, including ischemic stroke, CNS demyelination, and traumatic injury. This diversity appears unique to the specific pathology, with significant variance across temporal, topographical, age, and sex-specific variables. Despite this, there is limited functional data corroborating this diversity. Furthermore, as reactive astrocytes display significant environmental-dependent plasticity and fate-mapping data on astrocyte subsets in the adult CNS is limited, it remains unclear whether this diversity represents heterogeneity or plasticity. As astrocytes are important for neuronal survival and CNS function post-injury, establishing to what extent this diversity reflects distinct established heterogeneous astrocyte subpopulations vs. environmentally dependent plasticity within established astrocyte subsets will be critical for guiding therapeutic development. To that end, we review the current state of knowledge on astrocyte diversity in the context of three representative CNS pathologies: ischemic stroke, demyelination, and traumatic injury, with the goal of identifying key limitations in our current knowledge and suggesting future areas of research needed to address them. We suggest that the majority of identified astrocyte diversity in CNS pathologies to date represents plasticity in response to dynamically changing post-injury environments as opposed to heterogeneity, an important consideration for the understanding of disease pathogenesis and the development of therapeutic interventions.
Collapse
Affiliation(s)
- Aaron J. Moulson
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Jordan W. Squair
- Department of Clinical Neuroscience, Faculty of Life Sciences, Center for Neuroprosthetics and Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), NeuroRestore, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Robin J. M. Franklin
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Peggy Assinck
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Kalafatakis I, Karagogeos D. Oligodendrocytes and Microglia: Key Players in Myelin Development, Damage and Repair. Biomolecules 2021; 11:1058. [PMID: 34356682 PMCID: PMC8301746 DOI: 10.3390/biom11071058] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes, the myelin-making cells of the CNS, regulate the complex process of myelination under physiological and pathological conditions, significantly aided by other glial cell types such as microglia, the brain-resident, macrophage-like innate immune cells. In this review, we summarize how oligodendrocytes orchestrate myelination, and especially myelin repair after damage, and present novel aspects of oligodendroglial functions. We emphasize the contribution of microglia in the generation and regeneration of myelin by discussing their beneficial and detrimental roles, especially in remyelination, underlining the cellular and molecular components involved. Finally, we present recent findings towards human stem cell-derived preclinical models for the study of microglia in human pathologies and on the role of microbiome on glial cell functions.
Collapse
Affiliation(s)
- Ilias Kalafatakis
- Laboratory of Neuroscience, Department of Basic Science, University of Crete Medical School, 70013 Heraklion, Greece;
- IMBB FORTH, Nikolaou Plastira 100, Vassilika Vouton, 70013 Heraklion, Greece
| | - Domna Karagogeos
- Laboratory of Neuroscience, Department of Basic Science, University of Crete Medical School, 70013 Heraklion, Greece;
- IMBB FORTH, Nikolaou Plastira 100, Vassilika Vouton, 70013 Heraklion, Greece
| |
Collapse
|
31
|
Cayre M, Falque M, Mercier O, Magalon K, Durbec P. Myelin Repair: From Animal Models to Humans. Front Cell Neurosci 2021; 15:604865. [PMID: 33935649 PMCID: PMC8079744 DOI: 10.3389/fncel.2021.604865] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
It is widely thought that brain repair does not occur, but myelin regeneration provides clear evidence to the contrary. Spontaneous remyelination may occur after injury or in multiple sclerosis (MS). However, the efficiency of remyelination varies considerably between MS patients and between the lesions of each patient. Myelin repair is essential for optimal functional recovery, so a profound understanding of the cells and mechanisms involved in this process is required for the development of new therapeutic strategies. In this review, we describe how animal models and modern cell tracing and imaging methods have helped to identify the cell types involved in myelin regeneration. In addition to the oligodendrocyte progenitor cells identified in the 1990s as the principal source of remyelinating cells in the central nervous system (CNS), other cell populations, including subventricular zone-derived neural progenitors, Schwann cells, and even spared mature oligodendrocytes, have more recently emerged as potential contributors to CNS remyelination. We will also highlight the conditions known to limit endogenous repair, such as aging, chronic inflammation, and the production of extracellular matrix proteins, and the role of astrocytes and microglia in these processes. Finally, we will present the discrepancies between observations in humans and in rodents, discussing the relationship of findings in experimental models to myelin repair in humans. These considerations are particularly important from a therapeutic standpoint.
Collapse
Affiliation(s)
- Myriam Cayre
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), Marseille, France
| | | | | | | | | |
Collapse
|
32
|
Werkman IL, Kövilein J, de Jonge JC, Baron W. Impairing committed cholesterol biosynthesis in white matter astrocytes, but not grey matter astrocytes, enhances in vitro myelination. J Neurochem 2021; 156:624-641. [PMID: 32602556 PMCID: PMC7984098 DOI: 10.1111/jnc.15113] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/20/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Remyelination is a regenerative process that is essential to recover saltatory conduction and to prevent neurodegeneration upon demyelination. The formation of new myelin involves the differentiation of oligodendrocyte progenitor cells (OPCs) toward oligodendrocytes and requires high amounts of cholesterol. Astrocytes (ASTRs) modulate remyelination by supplying lipids to oligodendrocytes. Remarkably, remyelination is more efficient in grey matter (GM) than in white matter (WM), which may relate to regional differences in ASTR subtype. Here, we show that a feeding layer of gmASTRs was more supportive to in vitro myelination than a feeding layer of wmASTRs. While conditioned medium from both gmASTRs and wmASTRs accelerated gmOPC differentiation, wmOPC differentiation is enhanced by secreted factors from gmASTRs, but not wmASTRs. In vitro analyses revealed that gmASTRs secreted more cholesterol than wmASTRs. Cholesterol efflux from both ASTR types was reduced upon exposure to pro-inflammatory cytokines, which was mediated via cholesterol transporter ABCA1, but not ABCG1, and correlated with a minor reduction of myelin membrane formation by oligodendrocytes. Surprisingly, a wmASTR knockdown of Fdft1 encoding for squalene synthase (SQS), an enzyme essential for the first committed step in cholesterol biosynthesis, enhanced in vitro myelination. Reduced secretion of interleukin-1β likely by enhanced isoprenylation, and increased unsaturated fatty acid synthesis, both pathways upstream of SQS, likely masked the effect of reduced levels of ASTR-derived cholesterol. Hence, our findings indicate that gmASTRs export more cholesterol and are more supportive to myelination than wmASTRs, but specific inhibition of cholesterol biosynthesis in ASTRs is beneficial for wmASTR-mediated modulation of myelination.
Collapse
Affiliation(s)
- Inge L. Werkman
- Biomedical Sciences of Cells & Systemssection Molecular NeurobiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
- Present address:
Department of BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Janine Kövilein
- Biomedical Sciences of Cells & Systemssection Molecular NeurobiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Jenny C. de Jonge
- Biomedical Sciences of Cells & Systemssection Molecular NeurobiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Wia Baron
- Biomedical Sciences of Cells & Systemssection Molecular NeurobiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
33
|
Bouman PM, Steenwijk MD, Pouwels PJW, Schoonheim MM, Barkhof F, Jonkman LE, Geurts JJG. Histopathology-validated recommendations for cortical lesion imaging in multiple sclerosis. Brain 2021; 143:2988-2997. [PMID: 32889535 PMCID: PMC7586087 DOI: 10.1093/brain/awaa233] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/10/2020] [Accepted: 06/01/2020] [Indexed: 11/30/2022] Open
Abstract
Cortical demyelinating lesions are clinically important in multiple sclerosis, but notoriously difficult to visualize with MRI. At clinical field strengths, double inversion recovery MRI is most sensitive, but still only detects 18% of all histopathologically validated cortical lesions. More recently, phase-sensitive inversion recovery was suggested to have a higher sensitivity than double inversion recovery, although this claim was not histopathologically validated. Therefore, this retrospective study aimed to provide clarity on this matter by identifying which MRI sequence best detects histopathologically-validated cortical lesions at clinical field strength, by comparing sensitivity and specificity of the thus far most commonly used MRI sequences, which are T2, fluid-attenuated inversion recovery (FLAIR), double inversion recovery and phase-sensitive inversion recovery. Post-mortem MRI was performed on non-fixed coronal hemispheric brain slices of 23 patients with progressive multiple sclerosis directly after autopsy, at 3 T, using T1 and proton-density/T2-weighted, as well as FLAIR, double inversion recovery and phase-sensitive inversion recovery sequences. A total of 93 cortical tissue blocks were sampled from these slices. Blinded to histopathology, all MRI sequences were consensus scored for cortical lesions. Subsequently, tissue samples were stained for proteolipid protein (myelin) and scored for cortical lesion types I–IV (mixed grey matter/white matter, intracortical, subpial and cortex-spanning lesions, respectively). MRI scores were compared to histopathological scores to calculate sensitivity and specificity per sequence. Next, a retrospective (unblinded) scoring was performed to explore maximum scoring potential per sequence. Histopathologically, 224 cortical lesions were detected, of which the majority were subpial. In a mixed model, sensitivity of T1, proton-density/T2, FLAIR, double inversion recovery and phase-sensitive inversion recovery was 8.9%, 5.4%, 5.4%, 22.8% and 23.7%, respectively (20, 12, 12, 51 and 53 cortical lesions). Specificity of the prospective scoring was 80.0%, 75.0%, 80.0%, 91.1% and 88.3%. Sensitivity and specificity did not significantly differ between double inversion recovery and phase-sensitive inversion recovery, while phase-sensitive inversion recovery identified more lesions than double inversion recovery upon retrospective analysis (126 versus 95; P < 0.001). We conclude that, at 3 T, double inversion recovery and phase-sensitive inversion recovery sequences outperform conventional sequences T1, proton-density/T2 and FLAIR. While their overall sensitivity does not exceed 25%, double inversion recovery and phase-sensitive inversion recovery are highly pathologically specific when using existing scoring criteria and their use is recommended for optimal cortical lesion assessment in multiple sclerosis.
Collapse
Affiliation(s)
- Piet M Bouman
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Martijn D Steenwijk
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,UCL Institutes of Neurology and Healthcare Engineering, UCL, London, UK
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Werkman IL, Dubbelaar ML, van der Vlies P, de Boer-Bergsma JJ, Eggen BJL, Baron W. Transcriptional heterogeneity between primary adult grey and white matter astrocytes underlie differences in modulation of in vitro myelination. J Neuroinflammation 2020; 17:373. [PMID: 33308248 PMCID: PMC7733297 DOI: 10.1186/s12974-020-02045-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
Background Multiple sclerosis (MS) is an inflammation-mediated demyelinating disease of the central nervous system that eventually results in secondary axonal degeneration due to remyelination failure. Successful remyelination is orchestrated by astrocytes (ASTRs) and requires sequential activation, recruitment, and maturation of oligodendrocyte progenitor cells (OPCs). In both MS and experimental models, remyelination is more robust in grey matter (GM) than white matter (WM), which is likely related to local differences between GM and WM lesions. Here, we investigated whether adult gmASTRs and wmASTRs per se and in response to MS relevant Toll-like receptor (TLR) activation differently modulate myelination. Methods Differences in modulation of myelination between adult gmASTRs and wmASTRs were examined using an in vitro myelinating system that relies on a feeding layer of ASTRs. Transcriptional profiling and weighted gene co-expression network analysis were used to analyze differentially expressed genes and gene networks. Potential differential modulation of OPC proliferation and maturation by untreated adult gmASTRs and wmASTRs and in response to TLR3 and TLR4 agonists were assessed. Results Our data reveal that adult wmASTRs are less supportive to in vitro myelination than gmASTRs. WmASTRs more abundantly express reactive ASTR genes and genes of a neurotoxic subtype of ASTRs, while gmASTRs have more neuro-reparative transcripts. We identified a gene network module containing cholesterol biosynthesis enzyme genes that positively correlated with gmASTRs, and a network module containing extracellular matrix-related genes that positively correlated with wmASTRs. Adult wmASTRs and gmASTRs responding to TLR3 agonist Poly(I:C) distinctly modulate OPC behavior, while exposure to TLR4 agonist LPS of both gmASTRs and wmASTRs results in a prominent decrease in myelin membrane formation. Conclusions Primary adult gmASTRs and wmASTRs are heterogeneous at the transcriptional level, differed in their support of in vitro myelination, and their pre-existing phenotype determined TLR3 agonist responses. These findings point to a role of ASTR heterogeneity in regional differences in remyelination efficiency between GM and WM lesions. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02045-3.
Collapse
Affiliation(s)
- Inge L Werkman
- Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713, AV, Groningen, the Netherlands
| | - Marissa L Dubbelaar
- Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713, AV, Groningen, the Netherlands
| | - Pieter van der Vlies
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jelkje J de Boer-Bergsma
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bart J L Eggen
- Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713, AV, Groningen, the Netherlands
| | - Wia Baron
- Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713, AV, Groningen, the Netherlands.
| |
Collapse
|
35
|
Cellular senescence and failure of myelin repair in multiple sclerosis. Mech Ageing Dev 2020; 192:111366. [DOI: 10.1016/j.mad.2020.111366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023]
|
36
|
Melero-Jerez C, Fernández-Gómez B, Lebrón-Galán R, Ortega MC, Sánchez-de Lara I, Ojalvo AC, Clemente D, de Castro F. Myeloid-derived suppressor cells support remyelination in a murine model of multiple sclerosis by promoting oligodendrocyte precursor cell survival, proliferation, and differentiation. Glia 2020; 69:905-924. [PMID: 33217041 PMCID: PMC7894183 DOI: 10.1002/glia.23936] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
The most frequent variant of multiple sclerosis (MS) is the relapsing–remitting form, characterized by symptomatic phases followed by periods of total/partial recovery. Hence, it is possible that these patients can benefit from endogenous agents that control the inflammatory process and favor spontaneous remyelination. In this context, there is increasing interest in the role of myeloid‐derived suppressor cells (MDSCs) during the clinical course of experimental autoimmune encephalomyelitis (EAE). MDSCs speed up infiltrated T‐cell anergy and apoptosis. In different animal models of MS, a milder disease course is related to higher presence/density of MDSCs in the periphery, and smaller demyelinated lesions in the central nervous system (CNS). These observations lead us to wonder whether MDSCs might not only exert an anti‐inflammatory effect but might also have direct influence on oligodendrocyte precursor cells (OPCs) and remyelination. In the present work, we reveal for the first time the relationship between OPCs and MDSCs in EAE, relationship that is guided by the distance from the inflammatory core. We describe the effects of MDSCs on survival, proliferation, as well as potent promoters of OPC differentiation toward mature phenotypes. We show for the first time that osteopontin is remarkably present in the analyzed secretome of MDSCs. The ablation of this cue from MDSCs‐secretome demonstrates that osteopontin is the main MDSC effector on these oligodendroglial cells. These data highlight a crucial pathogenic interaction between innate immunity and the CNS, opening ways to develop MDSC‐ and/or osteopontin‐based therapies to promote effective myelin preservation and repair in MS patients.
Collapse
Affiliation(s)
- Carolina Melero-Jerez
- Instituto Cajal-CSIC, Madrid, Spain.,Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | | | - Rafael Lebrón-Galán
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | - Maria Cristina Ortega
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | - Irene Sánchez-de Lara
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | - Ana Cristina Ojalvo
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | | |
Collapse
|
37
|
Galbusera R, Parmar K, Boillat Y, Fartaria MJ, Todea AR, Brien KO, Smolinski A, Kappos L, van der Zwaag W, Granziera C. Laminar analysis of the cerebellar cortex shows widespread damage in early MS patients: A pilot study at 7T MRI. Mult Scler J Exp Transl Clin 2020; 6:2055217320961409. [PMID: 33149930 PMCID: PMC7586276 DOI: 10.1177/2055217320961409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 11/24/2022] Open
Abstract
Background To date, little is known about the presence and extent of cerebellar cortical pathology in early stages of MS. Objective The aims of this study were to (i) investigate microstructural changes in the normal-appearing cerebellar cortex of early MS patients by using 7 T MRI and (ii) evaluate the influence of those changes on clinical performance. Methods Eighteen RRMS patients and nine healthy controls underwent quantitative T1 and T2* measurement at 7 T MRI using high-resolution MP2RAGE and multi-echo gradient-echo imaging. After subtracting lesion masks, average T1 and T2* maps were computed for three layers in the cerebellar cortex and compared between groups using mixed effects models. Results The volume of the cerebellar cortex and its layers did not differ between patients and controls. In MS patients, significantly longer T1 values were observed in all vermis cortical layers and in the middle and external cortical layer of the cerebellar hemispheres. No between-group differences in T2* values were found. T1 values correlated with EDSS, SDMT and PASAT. Conclusions We found MRI evidence of damage in the normal-appearing cerebellar cortex at early MS stages and before volumetric changes. This microstructural alteration appears to be related to EDSS and cognitive performance.
Collapse
Affiliation(s)
- Riccardo Galbusera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Katrin Parmar
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Yohan Boillat
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mario Joao Fartaria
- Advanced Clinical Imaging Technology, Siemens Healthcare AG (HC CMEA SUI DI BM PI), Lausanne, Switzerland
| | - Alexandra-Ramona Todea
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Kieran O' Brien
- Siemens Healthcare Pty Ltd., Bowen Hills, Australia; Centre for Advanced Imaging, University of Queensland, Australia
| | - Anna Smolinski
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | | | - Cristina Granziera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
38
|
Bianchi VE, Rizzi L, Bresciani E, Omeljaniuk RJ, Torsello A. Androgen Therapy in Neurodegenerative Diseases. J Endocr Soc 2020; 4:bvaa120. [PMID: 33094209 PMCID: PMC7568521 DOI: 10.1210/jendso/bvaa120] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases, including Alzheimer disease (AD), Parkinson disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington disease, are characterized by the loss of neurons as well as neuronal function in multiple regions of the central and peripheral nervous systems. Several studies in animal models have shown that androgens have neuroprotective effects in the brain and stimulate axonal regeneration. The presence of neuronal androgen receptors in the peripheral and central nervous system suggests that androgen therapy might be useful in the treatment of neurodegenerative diseases. To illustrate, androgen therapy reduced inflammation, amyloid-β deposition, and cognitive impairment in patients with AD. As well, improvements in remyelination in MS have been reported; by comparison, only variable results are observed in androgen treatment of PD. In ALS, androgen administration stimulated motoneuron recovery from progressive damage and regenerated both axons and dendrites. Only a few clinical studies are available in human individuals despite the safety and low cost of androgen therapy. Clinical evaluations of the effects of androgen therapy on these devastating diseases using large populations of patients are strongly needed.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Department of Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta, Falciano, San Marino
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
39
|
Werkman IL, Lentferink DH, Baron W. Macroglial diversity: white and grey areas and relevance to remyelination. Cell Mol Life Sci 2020; 78:143-171. [PMID: 32648004 PMCID: PMC7867526 DOI: 10.1007/s00018-020-03586-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Macroglia, comprising astrocytes and oligodendroglial lineage cells, have long been regarded as uniform cell types of the central nervous system (CNS). Although regional morphological differences between these cell types were initially described after their identification a century ago, these differences were largely ignored. Recently, accumulating evidence suggests that macroglial cells form distinct populations throughout the CNS, based on both functional and morphological features. Moreover, with the use of refined techniques including single-cell and single-nucleus RNA sequencing, additional evidence is emerging for regional macroglial heterogeneity at the transcriptional level. In parallel, several studies revealed the existence of regional differences in remyelination capacity between CNS grey and white matter areas, both in experimental models for successful remyelination as well as in the chronic demyelinating disease multiple sclerosis (MS). In this review, we provide an overview of the diversity in oligodendroglial lineage cells and astrocytes from the grey and white matter, as well as their interplay in health and upon demyelination and successful remyelination. In addition, we discuss the implications of regional macroglial diversity for remyelination in light of its failure in MS. Since the etiology of MS remains unknown and only disease-modifying treatments altering the immune response are available for MS, the elucidation of macroglial diversity in grey and white matter and its putative contribution to the observed difference in remyelination efficiency between these regions may open therapeutic avenues aimed at enhancing endogenous remyelination in either area.
Collapse
Affiliation(s)
- Inge L Werkman
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Dennis H Lentferink
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
40
|
de Jong JM, Wang P, Oomkens M, Baron W. Remodeling of the interstitial extracellular matrix in white matter multiple sclerosis lesions: Implications for remyelination (failure). J Neurosci Res 2020; 98:1370-1397. [PMID: 31965607 DOI: 10.1002/jnr.24582] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
The extracellular matrix (ECM) provides protection, rigidity, and structure toward cells. It consists, among others, of a wide variety of glycoproteins and proteoglycans, which act together to produce a complex and dynamic environment, most relevant in transmembrane events. In the brain, the ECM occupies a notable proportion of its volume and maintains the homeostasis of central nervous system (CNS). In addition, remodeling of the ECM, that is transient changes in ECM proteins regulated by matrix metalloproteinases (MMPs), is an important process that modulates cell behavior upon injury, thereby facilitating recovery. Failure of ECM remodeling plays an important role in the pathogenesis of multiple sclerosis (MS), a neurodegenerative demyelinating disease of the CNS with an inflammatory response against protective myelin sheaths that surround axons. Remyelination of denuded axons improves the neuropathological conditions of MS, but this regeneration process fails over time, leading to chronic disease progression. In this review, we uncover abnormal ECM remodeling in MS lesions by discussing ECM remodeling in experimental demyelination models, that is when remyelination is successful, and compare alterations in ECM components to the ECM composition and MMP expression in the parenchyma of demyelinated MS lesions, that is when remyelination fails. Inter- and intralesional differences in ECM remodeling in the distinct white matter MS lesions are discussed in terms of consequences for oligodendrocyte behavior and remyelination (failure). Hence, the review will aid to understand how abnormal ECM remodeling contributes to remyelination failure in MS lesions and assists in developing therapeutic strategies to promote remyelination.
Collapse
Affiliation(s)
- Jody M de Jong
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peng Wang
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michelle Oomkens
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
41
|
TLR3 agonists induce fibronectin aggregation by activated astrocytes: a role of pro-inflammatory cytokines and fibronectin splice variants. Sci Rep 2020; 10:532. [PMID: 31953424 PMCID: PMC6969115 DOI: 10.1038/s41598-019-57069-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/21/2019] [Indexed: 01/01/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system which eventually results in axonal loss mainly due to failure of remyelination. Previously we have shown that the persistent presence of stable astrocyte-derived fibronectin aggregates in MS lesions impairs OPC differentiation, and thereby remyelination. Here we set out to discern whether and, if so, how inflammatory mediators as present in MS lesions trigger astrocytes to form fibronectin aggregates. Our findings revealed that in slice cultures only upon demyelination, the TLR3 agonist Poly(I:C) evoked astrocytes to form fibronectin aggregates. Consistently, pro-inflammatory cytokine-pretreated astrocytes were more susceptible to Poly(I:C)-induced fibronectin aggregation, indicating that astrocytes form fibronectin aggregates upon a double hit by inflammatory mediators. The underlying mechanism involves disrupted fibronectin fibrillogenesis at the cell surface as a result of a cytokine-induced increase in relative mRNA levels of EIIIApos-Fn over EIIIBpos-Fn and a Poly(I:C)-mediated decrease in integrin affinity. Remarkably, fibronectin aggregation is exacerbated by white matter astrocytes compared to grey matter astrocytes, which may be a reflection of higher expression levels of EIIIApos-fibronectin in white matter astrocytes. Hence, interfering with alternative fibronectin splicing and/or TLR3-mediated signaling may prevent fibronectin aggregation and overcome remyelination failure in MS lesions.
Collapse
|
42
|
Boshans LL, Sherafat A, Nishiyama A. The effects of developmental and current niches on oligodendrocyte precursor dynamics and fate. Neurosci Lett 2019; 715:134593. [PMID: 31678373 DOI: 10.1016/j.neulet.2019.134593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/29/2022]
Abstract
Oligodendrocyte precursor cells (OPCs), whose primary function is to generate myelinating oligodendrocytes, are distributed widely throughout the developing and mature central nervous system. They originate from several defined subdomains in the embryonic germinal zones at different developmental stages and in the adult. While many phenotypic differences have been observed among OPCs in different anatomical regions and among those arising from different germinal zones, we know relatively little about the molecular and cellular mechanisms by which the historical and current niches shape the behavior of oligodendrocyte lineage cells. This minireview will discuss how the behavior of oligodendrocyte lineage cells is influenced by the developmental niches from which subpopulations of OPCs emerge, by the current niches surrounding OPCs in different regions, and in pathological states that cause deviations from the normal density of oligodendrocyte lineage cells and myelin.
Collapse
Affiliation(s)
- Linda L Boshans
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA; Institute for Systems Genomics, University of Connecticut, USA; Institute for Brain and Cognitive Science, University of Connecticut, USA.
| |
Collapse
|
43
|
Silva BA, Ferrari CC. Cortical and meningeal pathology in progressive multiple sclerosis: a new therapeutic target? Rev Neurosci 2019; 30:221-232. [PMID: 30048237 DOI: 10.1515/revneuro-2018-0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/04/2018] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease that involves an intricate interaction between the central nervous system and the immune system. Nevertheless, its etiology is still unknown. MS exhibits different clinical courses: recurrent episodes with remission periods ('relapsing-remitting') that can evolve to a 'secondary progressive' form or persistent progression from the onset of the disease ('primary progressive'). The discovery of an effective treatment and cure has been hampered due to the pathological and clinical heterogeneity of the disease. Historically, MS has been considered as a disease exclusively of white matter. However, patients with progressive forms of MS present with cortical lesions associated with meningeal inflammation along with physical and cognitive disabilities. The pathogenesis of the cortical lesions has not yet been fully described. Animal models that represent both the cortical and meningeal pathologies will be critical in addressing MS pathogenesis as well as the design of specific treatments. In this review, we will address the state-of-the-art diagnostic and therapeutic alternatives and the development of strategies to discover new therapeutic approaches, especially for the progressive forms.
Collapse
Affiliation(s)
- Berenice Anabel Silva
- Institute of Basic Science and Experimental Medicine (ICBME), University Institute, Italian Hospital, Potosi 4240 (C1199ABB), CABA, Buenos Aires, Argentina.,Leloir Institute Foundation, Institute for Biochemical Investigations of Buenos Aires, (IIBBA, CONICET), Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina, e-mail:
| | - Carina Cintia Ferrari
- Institute of Basic Science and Experimental Medicine (ICBME), University Institute, Italian Hospital, Potosi 4240 (C1199ABB), CABA, Buenos Aires, Argentina.,Leloir Institute Foundation, Institute for Biochemical Investigations of Buenos Aires, (IIBBA, CONICET), Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| |
Collapse
|
44
|
Gruchot J, Weyers V, Göttle P, Förster M, Hartung HP, Küry P, Kremer D. The Molecular Basis for Remyelination Failure in Multiple Sclerosis. Cells 2019; 8:cells8080825. [PMID: 31382620 PMCID: PMC6721708 DOI: 10.3390/cells8080825] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Myelin sheaths in the central nervous system (CNS) insulate axons and thereby allow saltatory nerve conduction, which is a prerequisite for complex brain function. Multiple sclerosis (MS), the most common inflammatory autoimmune disease of the CNS, leads to the destruction of myelin sheaths and the myelin-producing oligodendrocytes, thus leaving behind demyelinated axons prone to injury and degeneration. Clinically, this process manifests itself in significant neurological symptoms and disability. Resident oligodendroglial precursor cells (OPCs) and neural stem cells (NSCs) are present in the adult brain, and can differentiate into mature oligodendrocytes which then remyelinate the demyelinated axons. However, for multiple reasons, in MS the regenerative capacity of these cell populations diminishes significantly over time, ultimately leading to neurodegeneration, which currently remains untreatable. In addition, microglial cells, the resident innate immune cells of the CNS, can contribute further to inflammatory and degenerative axonal damage. Here, we review the molecular factors contributing to remyelination failure in MS by inhibiting OPC and NSC differentiation or modulating microglial behavior.
Collapse
Affiliation(s)
- Joel Gruchot
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Vivien Weyers
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Moritz Förster
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany.
| |
Collapse
|
45
|
Imaging in mice and men: Pathophysiological insights into multiple sclerosis from conventional and advanced MRI techniques. Prog Neurobiol 2019; 182:101663. [PMID: 31374243 DOI: 10.1016/j.pneurobio.2019.101663] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/17/2019] [Accepted: 07/17/2019] [Indexed: 01/16/2023]
Abstract
Magnetic resonance imaging (MRI) is the most important tool for diagnosing multiple sclerosis (MS). However, MRI is still unable to precisely quantify the specific pathophysiological processes that underlie imaging findings in MS. Because autopsy and biopsy samples of MS patients are rare and biased towards a chronic burnt-out end or fulminant acute early stage, the only available methods to identify human disease pathology are to apply MRI techniques in combination with subsequent histopathological examination to small animal models of MS and to transfer these insights to MS patients. This review summarizes the existing combined imaging and histopathological studies performed in MS mouse models and humans with MS (in vivo and ex vivo), to promote a better understanding of the pathophysiology that underlies conventional MRI, diffusion tensor and magnetization transfer imaging findings in MS patients. Moreover, it provides a critical view on imaging capabilities and results in MS patients and mouse models and for future studies recommends how to combine those particular MR sequences and parameters whose underlying pathophysiological basis could be partly clarified. Further combined longitudinal in vivo imaging and histopathological studies on rationally selected, appropriate mouse models are required.
Collapse
|
46
|
Treaba CA, Granberg TE, Sormani MP, Herranz E, Ouellette RA, Louapre C, Sloane JA, Kinkel RP, Mainero C. Longitudinal Characterization of Cortical Lesion Development and Evolution in Multiple Sclerosis with 7.0-T MRI. Radiology 2019; 291:740-749. [PMID: 30964421 PMCID: PMC6543899 DOI: 10.1148/radiol.2019181719] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/16/2019] [Accepted: 02/11/2019] [Indexed: 12/19/2022]
Abstract
Background Cortical lesions develop early in multiple sclerosis (MS) and play a major role in disease progression. MRI at 7.0 T shows high sensitivity for detection of cortical lesions as well as better spatial resolution and signal-to-noise ratio compared with lower field strengths. Purpose To longitudinally characterize (a) the development and evolution of cortical lesions in multiple sclerosis across the cortical width, sulci, and gyri; (b) their relation with white matter lesion accrual; and (c) the contribution of 7.0-T cortical and white matter lesion load and cortical thickness to neurologic disability. Materials and Methods Twenty participants with relapsing-remitting MS and 13 with secondary progressive MS, along with 10 age-matched healthy controls, were prospectively recruited from 2010 to 2016 to acquire, in two imaging sessions (mean interval, 1.5 years), 7.0-T MRI T2*-weighted gradient-echo images (0.33 × 0.33 × 1.0 mm3) for cortical and white matter lesion segmentation and 3.0-T T1-weighted images for cortical surface reconstruction and cortical thickness estimation. Cortical lesions were sampled through the cortex to quantify cortical lesion distribution. The Expanded Disability Status Scale (EDSS) was used to assess neurologic disability. Nonparametric statistics assessed differences between and within groups in MRI metrics of cortical and white matter lesion burden; regression analysis explored associations of disability with MRI metrics. Results Twenty-five of 31 (81%) participants developed new cortical lesions per year (intracortical, 1.3 ± 1.7 vs leukocortical, 0.7 ± 1.9; P = .04), surpassing white matter lesion accrual (cortical, 2.0 ± 2.8 vs white matter, 0.7 ± 0.6; P = .01). In contrast to white matter lesions, cortical lesion accrual was greater in participants with secondary progressive MS than with relapsing-remitting MS (3.6 lesions/year ± 4.2 vs 1.1 lesions/year ± 0.9, respectively; P = .03) and preferentially localized in sulci. Total cortical lesion volume independently predicted baseline EDSS (β = 1.5, P < .001) and EDSS changes at follow-up (β = 0.5, P = .003). Conclusion Cortical lesions predominantly develop intracortically and within sulci, suggesting an inflammatory cerebrospinal fluid-mediated lesion pathogenesis. Cortical lesion accumulation was prominent at 7.0 T and independently predicted neurologic disability progression. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Filippi and Rocca in this issue.
Collapse
Affiliation(s)
- Constantina A. Treaba
- From the A. A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, Bldg 149, 13th St, Charleston, MA
02129 (C.A.T., T.E.G., E.H., R.A.O., C.L., C.M.); Harvard Medical School,
Boston, MA (C.A.T., T.E.G., E.H., C.L., C.M.); Department of Neuroscience,
Karolinska Institutet, Stockholm, Sweden (T.E.G.); Department of Health Sciences
(DISSAL), University of Genoa, Genoa, Italy (M.P.S.); Department of Neurology,
Beth Israel Deaconess Medical Center, Boston, MA (J.A.S.); and Department of
Neurosciences, University of California San Diego, San Diego, CA (R.P.K.)
| | - Tobias E. Granberg
- From the A. A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, Bldg 149, 13th St, Charleston, MA
02129 (C.A.T., T.E.G., E.H., R.A.O., C.L., C.M.); Harvard Medical School,
Boston, MA (C.A.T., T.E.G., E.H., C.L., C.M.); Department of Neuroscience,
Karolinska Institutet, Stockholm, Sweden (T.E.G.); Department of Health Sciences
(DISSAL), University of Genoa, Genoa, Italy (M.P.S.); Department of Neurology,
Beth Israel Deaconess Medical Center, Boston, MA (J.A.S.); and Department of
Neurosciences, University of California San Diego, San Diego, CA (R.P.K.)
| | - Maria Pia Sormani
- From the A. A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, Bldg 149, 13th St, Charleston, MA
02129 (C.A.T., T.E.G., E.H., R.A.O., C.L., C.M.); Harvard Medical School,
Boston, MA (C.A.T., T.E.G., E.H., C.L., C.M.); Department of Neuroscience,
Karolinska Institutet, Stockholm, Sweden (T.E.G.); Department of Health Sciences
(DISSAL), University of Genoa, Genoa, Italy (M.P.S.); Department of Neurology,
Beth Israel Deaconess Medical Center, Boston, MA (J.A.S.); and Department of
Neurosciences, University of California San Diego, San Diego, CA (R.P.K.)
| | - Elena Herranz
- From the A. A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, Bldg 149, 13th St, Charleston, MA
02129 (C.A.T., T.E.G., E.H., R.A.O., C.L., C.M.); Harvard Medical School,
Boston, MA (C.A.T., T.E.G., E.H., C.L., C.M.); Department of Neuroscience,
Karolinska Institutet, Stockholm, Sweden (T.E.G.); Department of Health Sciences
(DISSAL), University of Genoa, Genoa, Italy (M.P.S.); Department of Neurology,
Beth Israel Deaconess Medical Center, Boston, MA (J.A.S.); and Department of
Neurosciences, University of California San Diego, San Diego, CA (R.P.K.)
| | - Russell A. Ouellette
- From the A. A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, Bldg 149, 13th St, Charleston, MA
02129 (C.A.T., T.E.G., E.H., R.A.O., C.L., C.M.); Harvard Medical School,
Boston, MA (C.A.T., T.E.G., E.H., C.L., C.M.); Department of Neuroscience,
Karolinska Institutet, Stockholm, Sweden (T.E.G.); Department of Health Sciences
(DISSAL), University of Genoa, Genoa, Italy (M.P.S.); Department of Neurology,
Beth Israel Deaconess Medical Center, Boston, MA (J.A.S.); and Department of
Neurosciences, University of California San Diego, San Diego, CA (R.P.K.)
| | - Céline Louapre
- From the A. A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, Bldg 149, 13th St, Charleston, MA
02129 (C.A.T., T.E.G., E.H., R.A.O., C.L., C.M.); Harvard Medical School,
Boston, MA (C.A.T., T.E.G., E.H., C.L., C.M.); Department of Neuroscience,
Karolinska Institutet, Stockholm, Sweden (T.E.G.); Department of Health Sciences
(DISSAL), University of Genoa, Genoa, Italy (M.P.S.); Department of Neurology,
Beth Israel Deaconess Medical Center, Boston, MA (J.A.S.); and Department of
Neurosciences, University of California San Diego, San Diego, CA (R.P.K.)
| | - Jacob A. Sloane
- From the A. A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, Bldg 149, 13th St, Charleston, MA
02129 (C.A.T., T.E.G., E.H., R.A.O., C.L., C.M.); Harvard Medical School,
Boston, MA (C.A.T., T.E.G., E.H., C.L., C.M.); Department of Neuroscience,
Karolinska Institutet, Stockholm, Sweden (T.E.G.); Department of Health Sciences
(DISSAL), University of Genoa, Genoa, Italy (M.P.S.); Department of Neurology,
Beth Israel Deaconess Medical Center, Boston, MA (J.A.S.); and Department of
Neurosciences, University of California San Diego, San Diego, CA (R.P.K.)
| | - Revere P. Kinkel
- From the A. A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, Bldg 149, 13th St, Charleston, MA
02129 (C.A.T., T.E.G., E.H., R.A.O., C.L., C.M.); Harvard Medical School,
Boston, MA (C.A.T., T.E.G., E.H., C.L., C.M.); Department of Neuroscience,
Karolinska Institutet, Stockholm, Sweden (T.E.G.); Department of Health Sciences
(DISSAL), University of Genoa, Genoa, Italy (M.P.S.); Department of Neurology,
Beth Israel Deaconess Medical Center, Boston, MA (J.A.S.); and Department of
Neurosciences, University of California San Diego, San Diego, CA (R.P.K.)
| | - Caterina Mainero
- From the A. A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, Bldg 149, 13th St, Charleston, MA
02129 (C.A.T., T.E.G., E.H., R.A.O., C.L., C.M.); Harvard Medical School,
Boston, MA (C.A.T., T.E.G., E.H., C.L., C.M.); Department of Neuroscience,
Karolinska Institutet, Stockholm, Sweden (T.E.G.); Department of Health Sciences
(DISSAL), University of Genoa, Genoa, Italy (M.P.S.); Department of Neurology,
Beth Israel Deaconess Medical Center, Boston, MA (J.A.S.); and Department of
Neurosciences, University of California San Diego, San Diego, CA (R.P.K.)
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Clinical MRI is of paramount importance for multiple sclerosis diagnosis but lacks the specificity to investigate the pathogenic mechanisms underlying disease onset and progression. The application of advanced MR sequences allows the characterization of diverse and complex pathological mechanisms, granting insights into multiple sclerosis natural history and response to treatment. RECENT FINDINGS This review provides an update on the most recent international guidelines for optimal standard imaging of multiple sclerosis and discusses advantages and limitations of advanced imaging approaches for investigating inflammation, demyelination and neurodegeneration. An overview is provided for methods devoted to imaging leptomeningeal enhancement, microglial activation, demyelination, neuronal metabolic damage and neuronal loss. SUMMARY The application of magnetic resonance (MR) guidelines to standard-of-care MR protocols, although still limited, would substantially contribute to the optimization of multiple sclerosis management. From an academic perspective, different mechanism-specific imaging techniques are available and offer a powerful tool to elucidate multiple sclerosis pathogenesis, monitor disease progression and guide therapeutic choices.
Collapse
|
48
|
Filippi M, Brück W, Chard D, Fazekas F, Geurts JJG, Enzinger C, Hametner S, Kuhlmann T, Preziosa P, Rovira À, Schmierer K, Stadelmann C, Rocca MA. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol 2019; 18:198-210. [DOI: 10.1016/s1474-4422(18)30451-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/22/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
|
49
|
Petracca M, Margoni M, Bommarito G, Inglese M. Monitoring Progressive Multiple Sclerosis with Novel Imaging Techniques. Neurol Ther 2018; 7:265-285. [PMID: 29956263 PMCID: PMC6283788 DOI: 10.1007/s40120-018-0103-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Indexed: 02/04/2023] Open
Abstract
Imaging markers for monitoring disease progression in progressive multiple sclerosis (PMS) are scarce, thereby limiting the possibility to monitor disease evolution and to test effective treatments in clinical trials. Advanced imaging techniques that have the advantage of metrics with increased sensitivity to short-term tissue changes and increased specificity to the structural abnormalities characteristic of PMS have recently been applied in clinical trials of PMS. In this review, we (1) provide an overview of the pathological features of PMS, (2) summarize the findings of research and clinical trials conducted in PMS which have applied conventional and advanced magnetic resonance imaging techniques and (3) discuss recent advancements and future perspectives in monitoring PMS with imaging techniques.
Collapse
Affiliation(s)
- Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Monica Margoni
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Multiple Sclerosis Centre, Department of Neurosciences DNS, University Hospital, University of Padua, Padua, Italy
| | - Giulia Bommarito
- Department of Neuroscience, Rehabilitation, Genetics and Maternal and Perinatal Sciences, University of Genoa, Genoa, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Genetics and Maternal and Perinatal Sciences, University of Genoa, Genoa, Italy.
- Departments of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
50
|
Abstract
Multiple sclerosis (MS) is the most common chronic inflammatory, demyelinating and neurodegenerative disease of the central nervous system in young adults. This disorder is a heterogeneous, multifactorial, immune-mediated disease that is influenced by both genetic and environmental factors. In most patients, reversible episodes of neurological dysfunction lasting several days or weeks characterize the initial stages of the disease (that is, clinically isolated syndrome and relapsing-remitting MS). Over time, irreversible clinical and cognitive deficits develop. A minority of patients have a progressive disease course from the onset. The pathological hallmark of MS is the formation of demyelinating lesions in the brain and spinal cord, which can be associated with neuro-axonal damage. Focal lesions are thought to be caused by the infiltration of immune cells, including T cells, B cells and myeloid cells, into the central nervous system parenchyma, with associated injury. MS is associated with a substantial burden on society owing to the high cost of the available treatments and poorer employment prospects and job retention for patients and their caregivers.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy. .,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| | - Amit Bar-Or
- Department of Neurology and Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.,Neuroimmunology Unit, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandra Solari
- Unit of Neuroepidemiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sandra Vukusic
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, Fondation Eugène Devic EDMUS Contre la Sclérose en Plaques, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|