1
|
Nunes RR, Durán-Carabali LE, Ribeiro NH, Sirena DH, Tassinari ID, Netto CA, Paz AH, de Fraga LS. Impact of peripheral immune cells in experimental neonatal hypoxia-ischemia: A systematic review and meta-analysis. Int Immunopharmacol 2025; 145:113682. [PMID: 39637576 DOI: 10.1016/j.intimp.2024.113682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Infiltration of peripheral immune cells into the brain following neonatal hypoxia-ischemia (HI) contributes to increased neuroinflammation and brain injury. However, the specific roles of different immune cell types in neonatal brain injury remain poorly understood. Although existing evidence suggests a potential role for sexual dimorphism in HI outcomes, this aspect has been insufficiently investigated. In this systematic review and meta-analysis, we examined the brain infiltration of peripheral immune cells in rodents of both sexes following neonatal HI. A total of 25 studies were included. Our analysis revealed significant increases in the infiltration of various subtypes of leukocytes after HI, along with increased brain injury, cell death, and neuroinflammation, and reduced neuronal survival. Notably, males exhibited a greater degree of immune cell infiltration and more pronounced neuroinflammation compared to females. These findings suggest that infiltrating leukocytes contribute significantly to the pathophysiology of neonatal HI, with sexually dimorphic responses further influencing the outcomes. It is crucial that future research focuses on elucidating the specific roles of immune cell subtypes to better understand the mechanisms underlying brain damage after HI and identify novel therapeutic targets. Moreover, the observed sex differences highlight the need to consider sex as a key factor when developing strategies for the treatment of neonatal HI.
Collapse
Affiliation(s)
- Ricardo Ribeiro Nunes
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luz Elena Durán-Carabali
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Nícolas Heller Ribeiro
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Dienifer Hermann Sirena
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Isadora D'Ávila Tassinari
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ana Helena Paz
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Luciano Stürmer de Fraga
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.
| |
Collapse
|
2
|
Sibrecht G, Wong MY, Shrestha R, Bruschettini M. Acupuncture for hypoxic ischemic encephalopathy in neonates. Cochrane Database Syst Rev 2024; 12:CD007968. [PMID: 39692246 DOI: 10.1002/14651858.cd007968.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
BACKGROUND Peripartum asphyxia affects three to five per 1000 live births, with moderate or severe hypoxic ischemic encephalopathy (HIE) occurring in 0.5 to 1 per 1000 live births, and is associated with high mortality and morbidity. Therapeutic hypothermia is an effective treatment, but alternative therapies such as acupuncture are also used. OBJECTIVES To determine the benefits and harms of acupuncture (e.g. needle acupuncture with or without electrical stimulation; laser acupuncture; non-penetrating types of manual or embedded acupressure) on mortality and morbidity in neonates with HIE, compared with 1) no treatment, 2) placebo or sham treatment, 3) any pharmacologic treatment, or 4) different types of acupuncture. SEARCH METHODS We searched CENTRAL, PubMed, Embase, ClinicalTrials.gov, and the WHO ICTRP in March 2023. We conducted a search of the grey literature to identify reports of trials conducted by or referenced in research by CORDIS EU, National Institute for Health and Care Excellence (NICE), and NHSGGC Paediatrics for Health Professionals. We also checked the reference lists of relevant articles to identify additional studies. SELECTION CRITERIA We included randomized controlled trials (RCTs) or quasi-RCTs and cluster-randomized trials. We included studies where participants were term infants (37 weeks or greater) and late preterm infants (34 + 0 to 36 + 6 weeks' gestation) 10 days of age or less, with evidence of peripartum asphyxia. We included studies on acupuncture (e.g. needle acupuncture with or without electrical stimulation; laser acupuncture; non-penetrating types of manual or embedded acupressure). We included studies where acupuncture was compared with: 1) no treatment; 2) placebo or sham treatment; 3) any pharmacologic treatment; or 4) different types of acupuncture. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were all-cause mortality at the latest follow-up, major neurodevelopmental disability in children aged 18 to 24 months and aged 3 to 5 years, adverse events until hospital discharge, and length of hospital stay. MAIN RESULTS We included four studies (enrolling 464 infants) that compared acupuncture with no treatment. The studies ranged in size from 60 to 200 infants. Three studies were conducted in China and one in Russia. None of the four studies reported on any of the prespecified outcomes of our review. We did not identify any ongoing studies. AUTHORS' CONCLUSIONS There is limited availability of studies addressing this specific population. The included studies did not assess mortality, long-term neurodevelopmental outcomes, or adverse effects of acupuncture. We are unable to draw any conclusions about the benefits and harms of acupuncture for HIE in neonates. In light of the current limitations, clinicians are urged to approach the use of acupuncture in neonates with HIE cautiously, as there is no evidence to support its routine application. The available trials assessed surrogate outcomes that have a relatively small impact on newborns, and failed to report important outcomes such as mortality and long-term neurodevelopmental outcomes. Other available trials were performed on older infants who had experienced neonatal HIE. Given the lack of available evidence, well-designed randomized controlled trials with relevant outcomes such as mortality and neurodevelopmental outcomes are essential to evaluate the efficacy and safety of acupuncture for HIE in neonates.
Collapse
Affiliation(s)
- Greta Sibrecht
- II Department of Neonatology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Rujan Shrestha
- Kathmandu, Nepal
- Infectious Diseases Data Observatory (IDDO), Oxford, UK
| | - Matteo Bruschettini
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Department of Research, Development, Education and Innovation, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
3
|
Ding L, Lu Z, Jiang X, Zhang S, Tian X, Wang Q. Obesity-derived macrophages upregulate TNF-α to induce apoptosis in glial cell via the NF-κB/PHLPP1 axis. Int Immunopharmacol 2024; 141:112962. [PMID: 39197294 DOI: 10.1016/j.intimp.2024.112962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024]
Abstract
Macrophages in obese adipose tissue have been shown to damage nerve fibers, however, the mechanism underlying how macrophages cause glial cell damage remains unknown. This study aimed to characterize the mechanism by which macrophages induce apoptosis in glial cell during obesity formation in mice by single-nucleus RNA sequencing (snRNA-seq). Cells obtained from paraepididymal adipose tissue in obese mice underwent snRNA-seq. Eighteen different clusters were identified, and 12 cell types were annotated, including glial cells, macrophages, and fibroblasts. There was a negative correlation between the number of glial cells and macrophages in mouse adipose tissue during the formation of obesity. The pro-apoptotic factor PHLPP1 was identified in GO Terms. The interaction between adipose tissue glial cells and macrophages was revealed via in-depth analysis, and the cell-cell communication mechanism between the TNF-α and NF-KB/PHLPP1 axes was perfected. Apoptosis of glial cell by upregulation of TNF-α via obesity-derived macrophages and activation of the NF-κB/PHLPP1 axis. We further revealed how macrophages induce apoptosis in glial cells during obesity formation, as well as different changes in the two cell populations. This study provides valuable resources and foundations for understanding the mechanistic effects of macrophages and glial cells during obesity formation, as well as diseases and potential interventions.
Collapse
Affiliation(s)
- Ling Ding
- College of Sport and Health, Shandong Sport University, Jinan, Shandong Province 250102, China
| | - Zhimin Lu
- College of Sport and Health, Shandong Sport University, Jinan, Shandong Province 250102, China
| | - Xing Jiang
- College of Sport and Health, Shandong Sport University, Jinan, Shandong Province 250102, China
| | - Sen Zhang
- College of Sport and Health, Shandong Sport University, Jinan, Shandong Province 250102, China
| | - Xuewen Tian
- College of Sport and Health, Shandong Sport University, Jinan, Shandong Province 250102, China.
| | - Qinglu Wang
- College of Sport and Health, Shandong Sport University, Jinan, Shandong Province 250102, China.
| |
Collapse
|
4
|
Koehn LM, Nguyen KV, Tucker R, Lim YP, Chen X, Stonestreet BS. Inter-alpha Inhibitor Proteins Modulate Microvascular Endothelial Components and Cytokines After Exposure to Hypoxia-Ischemia in Neonatal Rats. Mol Neurobiol 2024:10.1007/s12035-024-04594-7. [PMID: 39505805 DOI: 10.1007/s12035-024-04594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
Inter-alpha inhibitor proteins (IAIPs) are neuroprotective and attenuate lipopolysaccharide (LPS)-mediated blood-brain barrier (BBB) disruption in neonatal rodents. We investigated some mechanism(s) fundamental to neuroprotection by IAIPs including changes in cerebral endothelial components and inflammation. Postnatal day-7 rats exposed to sham surgery and placebo or carotid ligation plus 8% FiO2 (90 min) were given IAIPs (30 or 60 mg/kg) or placebo and were killed 6, 12, 24, or 36 h after hypoxia-ischemia (HI). Proteins regulating BBB permeability to leukocytes (vascular cell adhesion molecule 1, VCAM-1), lipid-soluble (P-glycoprotein, PGP), and lipid-insoluble molecules (zonula occludens-1, ZO-1) were measured by immunoblot, and cytokines were measured in serum and cortex. HI resulted in reductions in ZO-1 and increases in VCAM-1, PGP, interferon-γ (IFN-γ), interleukin-12 (IL-12), vascular endothelial growth factor (VEGF), IL-α, and macrophage colony-stimulating factor (M-CSF) in cortex and increases in IL-4, IL-5, IL-10, and granulocyte colony-stimulating factor (G-CSF) in serum. IAIPs attenuated the reductions in ZO-1 and delayed increases in VCAM-1 and PGP in cortex and attenuated increases in cytokines in serum (IL-4, IL-5, IL-10, IFN-γ, G-CSF) and cortex (IL-1α, IL-12, IFN-γ, VEGF, M-CSF) after HI. We conclude that vascular endothelial proteins and cytokines exhibit sequential changes after HI and IAIPs modulate some of these HI-related changes in neonatal rats.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
- Present Address: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Kevin V Nguyen
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Richard Tucker
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Yow-Pin Lim
- ProThera Biologics Inc, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, RI, USA
| | - Xiaodi Chen
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA.
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Wassink G, Cho KHT, Mathai S, Lear CA, Dean JM, Gunn AJ, Bennet L. White matter protection with insulin-like growth factor-1 after hypoxia-ischaemia in preterm foetal sheep. Brain Commun 2024; 6:fcae373. [PMID: 39507274 PMCID: PMC11539755 DOI: 10.1093/braincomms/fcae373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/02/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Perinatal hypoxia-ischaemia in extremely preterm infants is associated with long-term neurodevelopmental impairment, for which there is no specific treatment. Insulin-like growth factor-1 can reduce acute brain injury, but its effects on chronic white matter injury after hypoxia-ischaemia are unclear. Preterm-equivalent foetal sheep (0.6 gestation) received either sham-asphyxia or asphyxia induced by umbilical cord occlusion for 30 min, and recovered for either 3 or 35 days after asphyxia. The 35 day recovery groups received either an intracerebroventricular infusion of insulin-like growth factor-1 (1 µg/24 h) or vehicle, from 3 to 14 days after asphyxia. Asphyxia was associated with ventricular enlargement, and loss of frontal and parietal white matter area (P < 0.05 versus sham-asphyxia). This was associated with reduced area fraction of myelin basic protein and numbers of oligodendrocyte transcription factor 2 and mature, anti-adenomatous polyposis coli-positive oligodendrocytes in periventricular white matter (P < 0.05), with persistent inflammation and caspase-3 activation (P < 0.05). Four of eight foetuses developed cystic lesions in temporal white matter. Prolonged infusion with insulin-like growth factor-1 restored frontal white matter area, improved numbers of oligodendrocyte transcription factor 2-positive and mature, anti-adenomatous polyposis coli-positive oligodendrocytes, with reduced astrogliosis and microgliosis after 35 days recovery (P < 0.05 versus asphyxia). One of four foetuses developed temporal cystic lesions. Functionally, insulin-like growth factor-1-treated foetuses had faster recovery of EEG power, but not spectral edge. Encouragingly, these findings show that delayed, prolonged, insulin-like growth factor-1 treatment can improve functional maturation of periventricular white matter after severe asphyxia in the very immature brain, at least in part by suppressing chronic neural inflammation.
Collapse
Affiliation(s)
- Guido Wassink
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Kenta H T Cho
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Sam Mathai
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Christopher A Lear
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Justin M Dean
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| |
Collapse
|
6
|
Jin N, Sha S, Ruan Y, Ouyang Y. Identification and analysis of oxidative stress-related genes in hypoxic-ischemic brain damage using bioinformatics and experimental verification. Immun Inflamm Dis 2024; 12:e70000. [PMID: 39172048 PMCID: PMC11340634 DOI: 10.1002/iid3.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Oxidative stress (OS) plays a major role in the progress of hypoxic-ischemic brain damage (HIBD). This study aimed to investigate OS-related genes and their underlying molecular mechanisms in neonatal HIBD. METHODS Microarray data sets were acquired from the Gene Expression Omnibus (GEO) database to screen the differentially expressed genes (DEGs) between control samples and HIBD samples. OS-related genes were drawn from GeneCards and OS-DEGs in HIBD were obtained by intersecting with the DEGs. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were conducted to determine the underlying mechanisms and functions of OS-DEGs in HIBD. Moreover, the hub genes were screened using the protein-protein interaction network and identified in the GSE144456 data set. CIBERSORT was then performed to evaluate the expression of immunocytes in each sample and perform a correlation analysis of the optimal OS-DEGs and immunocytes. Finally, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunohistochemistry were performed to validate the expression levels of the optimal OS-DEGs. RESULTS In total, 93 OS-DEGs were identified. GO, KEGG, and GSEA enrichment analyses indicated that these genes were predominantly enriched in OS and inflammation. Four OS-related biomarker genes (Jun, Fos, Tlr2, and Atf3) were identified and verified. CIBERSORT analysis revealed the dysregulation of six types of immune cells in the HIBD group. Moreover, 47 drugs that might target four OS-related biomarker genes were screened. Eventually, RT-qPCR and immunohistochemistry results for rat samples further validated the expression levels of Fos, Tlr2, and Atf3. CONCLUSIONS Fos, Tlr2 and Atf3 are potential OS-related biomarkers of HIBD progression. The mechanisms of OS are associated with those of neonatal HIBD.
Collapse
Affiliation(s)
- Ni Jin
- Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Sha Sha
- Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yanghao Ruan
- Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Ying Ouyang
- Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
7
|
Chen XF, Wu Y, Kim B, Nguyen KV, Chen A, Qiu J, Santoso AR, Disdier C, Lim YP, Stonestreet BS. Neuroprotective efficacy of hypothermia and Inter-alpha Inhibitor Proteins after hypoxic ischemic brain injury in neonatal rats. Neurotherapeutics 2024; 21:e00341. [PMID: 38453562 PMCID: PMC11070713 DOI: 10.1016/j.neurot.2024.e00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Therapeutic hypothermia is the standard of care for hypoxic-ischemic (HI) encephalopathy. Inter-alpha Inhibitor Proteins (IAIPs) attenuate brain injury after HI in neonatal rats. Human (h) IAIPs (60 mg/kg) or placebo (PL) were given 15 min, 24 and 48 h to postnatal (P) day-7 rats after carotid ligation and 8% oxygen for 90 min with (30 °C) and without (36 °C) exposure to hypothermia 1.5 h after HI for 3 h. Hemispheric volume atrophy (P14) and neurobehavioral tests including righting reflex (P8-P10), small open field (P13-P14), and negative geotaxis (P14) were determined. Hemispheric volume atrophy in males was reduced (P < 0.05) by 41.9% in the normothermic-IAIP and 28.1% in the hypothermic-IAIP compared with the normothermic-PL group, and in females reduced (P < 0.05) by 30.3% in the normothermic-IAIP, 45.7% in hypothermic-PL, and 55.2% in hypothermic-IAIP compared with the normothermic-PL group after HI. Hypothermia improved (P < 0.05) the neuroprotective effects of hIAIPs in females. The neuroprotective efficacy of hIAIPs was comparable to hypothermia in female rats (P = 0.183). Treatment with hIAIPs, hypothermia, and hIAIPs with hypothermia decreased (P < 0.05) the latency to enter the peripheral zone in the small open field test in males. We conclude that hIAIPs provide neuroprotection from HI brain injury that is comparable to the protection by hypothermia, hypothermia increases the effects of hIAIPs in females, and hIAIPs and hypothermia exhibit some sex-related differential effects.
Collapse
Affiliation(s)
- Xiaodi F Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Yuqi Wu
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Boram Kim
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Kevin V Nguyen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Ainuo Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Joseph Qiu
- ProThera Biologics, Inc., Providence, RI, USA
| | | | - Clemence Disdier
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI, USA; The Alpert Medical School of Brown University, Department of Pathology and Laboratory Medicine, Providence, RI, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA; Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
8
|
Durán-Carabali LE, Odorcyk FK, Grun LK, Schmitz F, Ramires Junior OV, de Oliveria MR, Campos KF, Hoeper E, Carvalho AVS, Greggio S, Venturine GT, Zimmer ER, Barbé-Tuana F, Wyse ATS, Netto CA. Maternal environmental enrichment protects neonatal brains from hypoxic-ischemic challenge by mitigating brain energetic dysfunction and modulating glial cell responses. Exp Neurol 2024; 374:114713. [PMID: 38325654 DOI: 10.1016/j.expneurol.2024.114713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
There is evidence that maternal milieu and changes in environmental factors during the prenatal period may exert a lasting impact on the brain health of the newborn, even in case of neonatal brain hypoxia-ischemia (HI). The present study aimed to investigate the effects of maternal environmental enrichment (EE) on HI-induced energetic and metabolic failure, along with subsequent neural cell responses in the early postnatal period. Male Wistar pups born to dams exposed to maternal EE or standard conditions (SC) were randomly divided into Sham-SC, HI-SC, Sham-EE, and HI-EE groups. Neonatal HI was induced on postnatal day (PND) 3. The Na+,K+-ATPase activity, mitochondrial function and neuroinflammatory related-proteins were assessed at 24 h and 48 h after HI. MicroPET-FDG scans were used to measure glucose uptake at three time points: 24 h post-HI, PND18, and PND24. Moreover, neuronal preservation and glial cell responses were evaluated at PND18. After HI, animals exposed to maternal EE showed an increase in Na+,K+-ATPase activity, preservation of mitochondrial potential/mass ratio, and a reduction in mitochondrial swelling. Glucose uptake was preserved in HI-EE animals from PND18 onwards. Maternal EE attenuated HI-induced cell degeneration, white matter injury, and reduced astrocyte immunofluorescence. Moreover, the HI-EE group exhibited elevated levels of IL-10 and a reduction in Iba-1 positive cells. Data suggested that the regulation of AKT/ERK1/2 signaling pathways could be involved in the effects of maternal EE. This study evidenced that antenatal environmental stimuli could promote bioenergetic and neural resilience in the offspring against early HI damage, supporting the translational value of pregnancy-focused environmental treatments.
Collapse
Affiliation(s)
- L E Durán-Carabali
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - F K Odorcyk
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - L K Grun
- Group of Inflammation and Cellular Senescence, Graduate Program in Cellular and Molecular Biology, School of Sciences, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - F Schmitz
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab.), Brazil
| | - O V Ramires Junior
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab.), Brazil
| | - M R de Oliveria
- Department of Morphology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - K F Campos
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - E Hoeper
- Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - A V S Carvalho
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - S Greggio
- Undergraduate Program in Biomedicine, School of Health and Life Sciences, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Preclinical Research Center, Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil
| | - G T Venturine
- Preclinical Research Center, Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil
| | - E R Zimmer
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - F Barbé-Tuana
- Group of Inflammation and Cellular Senescence, Graduate Program in Cellular and Molecular Biology, School of Sciences, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - A T S Wyse
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab.), Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - C A Netto
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
9
|
Gumusoglu SB. The role of the placenta-brain axis in psychoneuroimmune programming. Brain Behav Immun Health 2024; 36:100735. [PMID: 38420039 PMCID: PMC10900837 DOI: 10.1016/j.bbih.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/06/2024] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
Gestational exposures have enduring impacts on brain and neuroimmune development and function. Perturbations of pregnancy leading to placental structure/function deficits, cell stress, immune activation, and endocrine changes (metabolic, growth factors, etc.) all increase neuropsychiatric risk in offspring. The existing literature links obstetric diseases with placental involvement to offspring neuroimmune outcomes and neurodevelopmental risk. Psychoneuroimmune outcomes in offspring brain include changes to microglia, cytokine/chemokine production, cell stress, and long-term immunoreactivity. These outcomes are altered by structural, anti-angiogenic/hypoxic, inflammatory, and metabolic diseases of the placenta. This fetal programming occurs via direct placental passage or production of factors which can act directly on fetal brain substrates, or indirectly via action of circulating factors on intermediates in the placenta. Placental neuroendocrine, vascular/angiogenic, immune, and extracellular vesicular mechanisms are detailed. These mechanisms interact within various placental and pregnancy conditions. An increased understanding of the placental origins of psychoneuroimmunology will yield dividends for human health. Identifying maternal and placental biomarkers for fetal neuroimmune health may also revolutionize early diagnosis and precision psychiatry, empowering patients to make the best healthcare decisions for their families. Targeting placental mechanisms may be a valuable approach for the prevention and mitigation of intergenerational, lifelong neuropathology.
Collapse
Affiliation(s)
- Serena B. Gumusoglu
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, 200 Hawkins Dr. Iowa City, IA, 52327, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
10
|
Julien P, Zinni M, Bonnel N, El Kamouh M, Odorcyk F, Peters L, Gautier EF, Leduc M, Broussard C, Baud O. Synergistic effect of sildenafil combined with controlled hypothermia to alleviate microglial activation after neonatal hypoxia-ischemia in rats. J Neuroinflammation 2024; 21:31. [PMID: 38263116 PMCID: PMC10804557 DOI: 10.1186/s12974-024-03022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND AND PURPOSE The only validated treatment to prevent brain damage associated with hypoxia-ischemia (HI) encephalopathy of the newborn is controlled hypothermia with limited benefits. Additional putative neuroprotective drug candidates include sildenafil citrate, a phosphodiesterase-type 5 inhibitor. The main objective of this preclinical study is to assess its ability to reduce HI-induced neuroinflammation, in particular through its potential effect on microglial activation. METHODS HI was induced in P10 Sprague-Dawley rats by unilateral carotid permanent artery occlusion and hypoxia (HI) and treated by either hypothermia (HT) alone, Sildenafil (Sild) alone or combined treatment (SildHT). Lesion size and glial activation were analyzed by immunohistochemistry, qRT-PCR, and proteomic analyses performed at P13. RESULTS None of the treatments was associated with a significant early reduction in lesion size 72h after HI, despite significant changes in tissue loss distribution. Significant reductions in both Iba1 + (within the ipsilateral hemisphere) and GFAP + cells (within the ipsilateral hippocampus) were observed in SildHT group, but not in the other treatment groups. In microglia-sorted cells, pro-inflammatory markers, i.e. Il1b, Il6, Nos2, and CD86 were significantly downregulated in SildHT treatment group only. These changes were restricted to the ipsilateral hemisphere, were not evidenced in sorted astrocytes, and were not sex dependent. Proteomic analyses in sorted microglia refined the pro-inflammatory effect of HI and confirmed a biologically relevant impact of SildHT on specific molecular pathways including genes related to neutrophilic functions. CONCLUSIONS Our findings suggest that Sildenafil combined with controlled hypothermia produces maximum effect in mitigating microglial activation induced by HI through complex proteomic regulation. The reduction of neuroinflammation induced by Sildenafil may represent an interesting therapeutic strategy for neonatal neuroprotection.
Collapse
Affiliation(s)
- Pansiot Julien
- Inserm UMR1141 NeuroDiderot, Université Paris Cité, Paris, France
| | - Manuela Zinni
- Inserm UMR1141 NeuroDiderot, Université Paris Cité, Paris, France
| | - Natacha Bonnel
- Inserm UMR1141 NeuroDiderot, Université Paris Cité, Paris, France
| | - Marina El Kamouh
- Inserm UMR1141 NeuroDiderot, Université Paris Cité, Paris, France
| | - Felipe Odorcyk
- Inserm UMR1141 NeuroDiderot, Université Paris Cité, Paris, France
| | - Lea Peters
- Inserm UMR1141 NeuroDiderot, Université Paris Cité, Paris, France
| | - Emilie-Fleur Gautier
- Institut Cochin, Proteom'IC Facility, INSERM, CNRS, Université Paris Cité, Paris, France
| | - Marjorie Leduc
- Institut Cochin, Proteom'IC Facility, INSERM, CNRS, Université Paris Cité, Paris, France
| | - Cédric Broussard
- Institut Cochin, Proteom'IC Facility, INSERM, CNRS, Université Paris Cité, Paris, France
| | - Olivier Baud
- Inserm UMR1141 NeuroDiderot, Université Paris Cité, Paris, France.
- Laboratory of Child Growth and Development, University of Geneva, Geneva, Switzerland.
- Division of Neonatology and Pediatric Intensive Care, Département de Pédiatrie, Hôpitaux Universitaires de Genève, Laboratoire de Développement et Croissance, Children's University Hospital of Geneva, Geneva, Switzerland.
| |
Collapse
|
11
|
Fleiss B, Gressens P. Role of Microglial Modulation in Therapies for Perinatal Brain Injuries Leading to Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:591-606. [PMID: 39207715 DOI: 10.1007/978-3-031-55529-9_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodevelopmental disorders (NDDs) encompass various conditions stemming from changes during brain development, typically diagnosed early in life. Examples include autism spectrum disorder, intellectual disability, cerebral palsy, seizures, dyslexia, and attention deficit hyperactivity disorder. Many NDDs are linked to perinatal events like infections, oxygen disturbances, or insults in combination. This chapter outlines the causes and effects of perinatal brain injury as they relate to microglia, along with efforts to prevent or treat such damage. We primarily discuss therapies targeting microglia modulation, focusing on those either clinically used or in advanced development, often tested in large animal models such as sheep, non-human primates, and piglets-standard translational models in perinatal medicine. Additionally, it touches on experimental studies showcasing advancements in the field.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Pierre Gressens
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
- Université de Paris, NeuroDiderot, Inserm, Paris, France.
| |
Collapse
|
12
|
Turner MJ, Dietz RM. Potential Adjuncts to Therapeutic Hypothermia to Mitigate Multiorgan Injury in Perinatal Hypoxia-Ischemia. Neoreviews 2023; 24:e771-e782. [PMID: 38036441 DOI: 10.1542/neo.24-12-e771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Over the last 2 decades, therapeutic hypothermia has become the standard of care to reduce morbidity and mortality in neonates affected by moderate-to-severe hypoxic-ischemic encephalopathy (HIE). There is a significant interest in improving the neurologic outcomes of neonatal HIE, ranging from adjunctive therapy to therapeutic hypothermia. Importantly, the pathophysiologic mechanisms underlying HIE also affect multiple other organs, contributing to high morbidity and mortality in this patient population. This review focuses on the adjunct therapies currently under investigation to mitigate the impact of hypoxic-ischemic injury on the brain, kidneys, liver, heart, and gastrointestinal system.
Collapse
Affiliation(s)
- Megan J Turner
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Pediatrics, Denver Health Medical Center, Denver, CO
| | - Robert M Dietz
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
13
|
Mike JK, White Y, Hutchings RS, Vento C, Ha J, Iranmahboub A, Manzoor H, Gunewardena A, Cheah C, Wang A, Goudy BD, Lakshminrusimha S, Long-Boyle J, Fineman JR, Ferriero DM, Maltepe E. Effect of Clemastine on Neurophysiological Outcomes in an Ovine Model of Neonatal Hypoxic-Ischemic Encephalopathy. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1728. [PMID: 38002819 PMCID: PMC10670092 DOI: 10.3390/children10111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023]
Abstract
Originally approved by the U.S. Food and Drug Administration (FDA) for its antihistamine properties, clemastine can also promote white matter integrity and has shown promise in the treatment of demyelinating diseases such as multiple sclerosis. Here, we conducted an in-depth analysis of the feasibility, safety, and neuroprotective efficacy of clemastine administration in near-term lambs (n = 25, 141-143 days) following a global ischemic insult induced via an umbilical cord occlusion (UCO) model. Lambs were randomly assigned to receive clemastine or placebo postnatally, and outcomes were assessed over a six-day period. Clemastine administration was well tolerated. While treated lambs demonstrated improvements in inflammatory scores, their neurodevelopmental outcomes were unchanged.
Collapse
Affiliation(s)
- Jana Krystofova Mike
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Yasmine White
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Rachel S. Hutchings
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Christian Vento
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Janica Ha
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Ariana Iranmahboub
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Hadiya Manzoor
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Anya Gunewardena
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Cheryl Cheah
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Aijun Wang
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95817, USA;
| | - Brian D. Goudy
- Department of Pediatrics, University of California Davis, Davis, CA 95817, USA (S.L.)
| | | | - Janel Long-Boyle
- School of Pharmacy, University of California San Francisco, San Francisco, CA 94143, USA
- Initiative for Pediatric Drug and Device Development, San Francisco, CA 94143, USA
| | - Jeffrey R. Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
- Initiative for Pediatric Drug and Device Development, San Francisco, CA 94143, USA
| | - Donna M. Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Emin Maltepe
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
- Initiative for Pediatric Drug and Device Development, San Francisco, CA 94143, USA
- Department of Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
14
|
Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, Singh V, Sharma R, Sharma M. Mast cell-mediated immune regulation in health and disease. Front Med (Lausanne) 2023; 10:1213320. [PMID: 37663654 PMCID: PMC10470157 DOI: 10.3389/fmed.2023.1213320] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Mast cells are important components of the immune system, and they perform pro-inflammatory as well as anti-inflammatory roles in the complex process of immune regulation in health and disease. Because of their strategic perivascular localization, sensitivity and adaptability to the microenvironment, and ability to release a variety of preformed and newly synthesized effector molecules, mast cells perform unique functions in almost all organs. Additionally, Mast cells express a wide range of surface and cytoplasmic receptors which enable them to respond to a variety of cytokines, chemicals, and pathogens. The mast cell's role as a cellular interface between external and internal environments as well as between vasculature and tissues is critical for protection and repair. Mast cell interactions with different immune and nonimmune cells through secreted inflammatory mediators may also turn in favor of disease promoting agents. First and forefront, mast cells are well recognized for their multifaceted functions in allergic diseases. Reciprocal communication between mast cells and endothelial cells in the presence of bacterial toxins in chronic/sub-clinical infections induce persistent vascular inflammation. We have shown that mast cell proteases and histamine induce endothelial inflammatory responses that are synergistically amplified by bacterial toxins. Mast cells have been shown to exacerbate vascular changes in normal states as well as in chronic or subclinical infections, particularly among cigarette smokers. Furthermore, a potential role of mast cells in SARS-CoV-2-induced dysfunction of the capillary-alveolar interface adds to the growing understanding of mast cells in viral infections. The interaction between mast cells and microglial cells in the brain further highlights their significance in neuroinflammation. This review highlights the significant role of mast cells as the interface that acts as sensor and early responder through interactions with cells in systemic organs and the nervous system.
Collapse
Affiliation(s)
- Kottarappat N. Dileepan
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Vineesh V. Raveendran
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rishi Sharma
- Department of Medicine, School of Medicine, University of Missouri, Kansas City, MO, United States
| | - Harita Abraham
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajat Barua
- Cardiology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Vikas Singh
- Neurology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City VA Medical Center, Kansas, MO, United States
| |
Collapse
|
15
|
Xu X, Zhou R, Ying J, Li X, Lu R, Qu Y, Mu D. Irisin prevents hypoxic-ischemic brain damage in rats by inhibiting oxidative stress and protecting the blood-brain barrier. Peptides 2023; 161:170945. [PMID: 36623553 DOI: 10.1016/j.peptides.2023.170945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is associated with excessive inflammation, blood-brain barrier dysfunction, and oxidative stress. Irisin can reduce inflammation and ameliorate oxidative stress; however, its effects on hypoxic-ischemic brain damage in newborns are unknown. Newborn Sprague-Dawley rats were subjected to hypoxic-ischemic injury and irisin treatment. TUNEL staining assays, the albumin-Evans blue dye extravasation method, an antioxidants detection kit, quantitative reverse-transcriptase PCR, enzyme linked immunosorbent assay, Western blot analysis, immunohistochemistry, and electron microscopy were used to investigate the possible mechanisms underlying the prevention of HIE by irisin. We discovered that rats affected by HIE and administered irisin had lower levels of IL-6 (but not TNF-α or IL-1β) less oxidative stress, and enhanced blood-brain barrier integrity. Irisin can effectively attenuate brain damage by reducing oxidative stress and protecting the blood-brain barrier.
Collapse
Affiliation(s)
- Xuanpei Xu
- Department of Pediatrics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot 010011, China
| | - Ruixi Zhou
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Junjie Ying
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaoxue Li
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ruifeng Lu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Yi Qu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Teo EJ, Chand KK, Miller SM, Wixey JA, Colditz PB, Bjorkman ST. Early evolution of glial morphology and inflammatory cytokines following hypoxic-ischemic injury in the newborn piglet brain. Sci Rep 2023; 13:282. [PMID: 36609414 PMCID: PMC9823001 DOI: 10.1038/s41598-022-27034-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023] Open
Abstract
Neuroinflammation is a hallmark of hypoxic-ischemic injury and can be characterized by the activation of glial cells and the expression of inflammatory cytokines and chemokines. Interleukin (IL)-1β and tumor necrosis factor (TNF)α are among the best-characterized early response cytokines and are often expressed concurrently. Several types of central nervous system cells secrete IL-1β and TNFα, including microglia, astrocytes, and neurons, and these cytokines convey potent pro-inflammatory actions. Chemokines also play a central role in neuroinflammation by controlling inflammatory cell trafficking. Our aim was to characterise the evolution of early neuroinflammation in the neonatal piglet model of hypoxic-ischemic encephalopathy (HIE). Piglets (< 24 h old) were exposed to HI insult, and recovered to 2, 4, 8, 12 or 24H post-insult. Brain tissue from the frontal cortex and basal ganglia was harvested for assessment of glial cell activation profiles and transcription levels of inflammatory markers in HI piglets with comparison to a control group of newborn piglets. Fluorescence microscopy was used to observe microglia, astrocytes, neurons, degenerating neurons and possibly apoptotic cells, and quantitative polymerase chain reaction was used to measure gene expression of several cytokines and chemokines. HI injury was associated with microglial activation and morphological changes to astrocytes at all time points examined. Gene expression analyses of inflammation-related markers revealed significantly higher expression of pro-inflammatory cytokines tumor necrosis factor-α (TNFα) and interleukin 1 beta (IL-1β), chemokines cxc-chemokine motif ligand (CXCL)8 and CXCL10, and anti-inflammatory cytokine transforming growth factor (TGF)β in every HI group, with some region-specific differences noted. No significant difference was observed in the level of C-X-C chemokine receptor (CCR)5 over time. This high degree of neuroinflammation was associated with a reduction in the number of neurons in piglets at 12H and 24H in the frontal cortex, and the putamen at 12H. This reduction of neurons was not associated with increased numbers of degenerating neurons or potentially apoptotic cells. HI injury triggered a robust early neuroinflammatory response associated with a reduction in neurons in cortical and subcortical regions in our piglet model of HIE. This neuroinflammatory response may be targeted using novel therapeutics to reduce neuropathology in our piglet model of neonatal HIE.
Collapse
Affiliation(s)
- Elliot J. Teo
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Kirat. K. Chand
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Stephanie M. Miller
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Julie A. Wixey
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Paul B. Colditz
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - S. Tracey. Bjorkman
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| |
Collapse
|
17
|
Gai C, Xing X, Song Y, Zhao Y, Jiang Z, Cheng Y, Xiao Y, Wang Z. Up-Regulation of miR-9-5p Inhibits Hypoxia-Ischemia Brain Damage Through the DDIT4-Mediated Autophagy Pathways in Neonatal Mice. Drug Des Devel Ther 2023; 17:1175-1189. [PMID: 37113470 PMCID: PMC10128084 DOI: 10.2147/dddt.s393362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Hypoxia-ischemia (HI) remains the leading cause of cerebral palsy and long-term neurological sequelae in infants. Despite intensive research and many therapeutic approaches, there are limited neuroprotective strategies against HI insults. Herein, we reported that HI insult significantly down-regulated microRNA-9-5p (miR-9-5p) level in the ipsilateral cortex of neonatal mice. Methods The biological function and expression patterns of protein in the ischemic hemispheres were evaluated by qRT-PCR, Western Blotting analysis, Immunofluorescence and Immunohistochemistry. Open field test and Y-maze test were applied to detect locomotor activity and exploratory behavior and working memory. Results Overexpression of miR-9-5p effectively alleviated brain injury and improved neurological behaviors following HI insult, accompanying with suppressed neuroinflammation and apoptosis. MiR-9-5p directly bound to the 3' untranslated region of DNA damage-inducible transcript 4 (DDIT4) and negatively regulated its expression. Furthermore, miR-9-5p mimics treatment down-regulated light chain 3 II/light chain 3 I (LC3 II/LC3 I) ratio and Beclin-1 expression and decreased LC3B accumulation in the ipsilateral cortex. Further analysis showed that DDIT4 knockdown conspicuously inhibited the HI-up-regulated LC3 II/ LC3 I ratio and Beclin-1 expression, associating with attenuated brain damage. Conclusion The study indicates that miR-9-5p-mediated HI injury is regulated by DDIT4-mediated autophagy pathway and up-regulation of miR-9-5p level may provide a potential therapeutic effect on HI brain damage.
Collapse
Affiliation(s)
- Chengcheng Gai
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Xiaohui Xing
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, 252000, People’s Republic of China
| | - Yan Song
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Yijing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Zige Jiang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Yahong Cheng
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, 252000, People’s Republic of China
- Liaocheng Neuroscience Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, 252000, People’s Republic of China
- Correspondence: Yilei Xiao, Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, 252000, People’s Republic of China, Email
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, 250014, People’s Republic of China
- Zhen Wang, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People’s Republic of China, Email
| |
Collapse
|
18
|
Ji X, Zhou Y, Gao Q, He H, Wu Z, Feng B, Mei Y, Cheng Y, Zhou W, Chen Y, Xiong M. Functional reconstruction of the basal ganglia neural circuit by human striatal neurons in hypoxic-ischaemic injured brain. Brain 2022; 146:612-628. [PMID: 36516880 PMCID: PMC9924911 DOI: 10.1093/brain/awac358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 12/16/2022] Open
Abstract
Perinatal hypoxic-ischaemic encephalopathy is the leading cause of neonatal death and permanent neurological deficits, while the basal ganglia is one of the major nuclei that is selectively and greatly affected in the brains of hypoxic-ischaemic encephalopathy patients, especially in severe cases. Human embryonic stem cell-derived neurons have shown great potential in different types of brain disorders in adults. However, it remains unknown whether and how grafted human embryonic stem cell-derived neurons can repair immature brains with hypoxic-ischaemic encephalopathy. Here, by administrating genetically labelled human embryonic stem cell-derived striatal neural progenitors into the ipsilateral striatum of hypoxic-ischaemic encephalopathy-injured mice, we found that the grafted cells gradually matured into GABA spiny projection neurons morphologically and electrophysiologically, and significantly rescued the area loss of hypoxic-ischaemic encephalopathy-injured brains. Intriguingly, using immunohistochemical staining combined with enhanced ascorbate peroxidase-based immunoelectron microscopy and rabies virus-mediated trans-synaptic tracing, we show that the grafts start to extend axonal projections to the endogenous target areas (globus pallidus externa, globus pallidus internus, substantia nigra), form synapses with host striatal, globus pallidus and nigra neurons, and receive extensive and stable synaptic inputs as early as 2 months post-transplantation. Importantly, we further demonstrated functional neural circuits re-established between the grafted neurons and host cortical, striatal and substantial nigra neurons at 3-6 months post-transplantation in the hypoxic-ischaemic encephalopathy-injured brain by optogenetics combined with electrophysiological recording. Finally, the transplanted striatal spiny projection neurons but not spinal GABA neurons restored the motor defects of hypoxic-ischaemic encephalopathy, which were reversed by clozapine-N-oxide-based inhibition of graft function. These findings demonstrate anatomical and functional reconstruction of the basal ganglia neural circuit including multiple loops by striatal spiny projection neurons in hypoxic-ischaemic encephalopathy-injured immature brains, which raises the possibility of such a cell replacement therapeutic strategy for hypoxic-ischaemic encephalopathy in neonates.
Collapse
Affiliation(s)
| | | | - Qinqin Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China,University of Chinese Academy of Sciences, Beijing, China
| | - Ziyan Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ban Feng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuting Mei
- Stem Cell Center, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Yan Cheng
- Stem Cell Center, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Wenhao Zhou
- Wenhao Zhou 399 Wanyuan Road, Children’s Hospital of Fudan University, Shanghai, China E-mail:
| | - Yuejun Chen
- Correspondence may also be addressed to: Yuejun Chen 320 Yueyang Road, Chinese Academy of Sciences, Shanghai, China E-mail:
| | - Man Xiong
- Correspondence to: Man Xiong 138 Medical College Road, Shanghai, Fudan University, China E-mail:
| |
Collapse
|
19
|
Chen X, Malaeb SN, Pan J, Wang L, Scafidi J. Editorial: Perinatal hypoxic-ischemic brain injury: Mechanisms, pathogenesis, and potential therapeutic strategies. Front Cell Neurosci 2022; 16:1086692. [PMID: 36582212 PMCID: PMC9793000 DOI: 10.3389/fncel.2022.1086692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xiaodi Chen
- Women and Infants Hospital of RI, Alpert Medical School of Brown University, Providence, RI, United States
| | | | - Jonathan Pan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Laishuan Wang
- Children's Hospital, Fudan University, Shanghai, China
| | - Joseph Scafidi
- Department of Neurology and Pediatrics, Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
20
|
Targeting Persistent Neuroinflammation after Hypoxic-Ischemic Encephalopathy-Is Exendin-4 the Answer? Int J Mol Sci 2022; 23:ijms231710191. [PMID: 36077587 PMCID: PMC9456443 DOI: 10.3390/ijms231710191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy is brain injury resulting from the loss of oxygen and blood supply around the time of birth. It is associated with a high risk of death or disability. The only approved treatment is therapeutic hypothermia. Therapeutic hypothermia has consistently been shown to significantly reduce the risk of death and disability in infants with hypoxic-ischemic encephalopathy. However, approximately 29% of infants treated with therapeutic hypothermia still develop disability. Recent preclinical and clinical studies have shown that there is still persistent neuroinflammation even after treating with therapeutic hypothermia, which may contribute to the deficits seen in infants despite treatment. This suggests that potentially targeting this persistent neuroinflammation would have an additive benefit in addition to therapeutic hypothermia. A potential additive treatment is Exendin-4, which is a glucagon-like peptide 1 receptor agonist. Preclinical data from various in vitro and in vivo disease models have shown that Exendin-4 has anti-inflammatory, mitochondrial protective, anti-apoptotic, anti-oxidative and neurotrophic effects. Although preclinical studies of the effect of Exendin-4 in perinatal hypoxic-ischemic brain injury are limited, a seminal study in neonatal mice showed that Exendin-4 had promising neuroprotective effects. Further studies on Exendin-4 neuroprotection for perinatal hypoxic-ischemic brain injury, including in large animal translational models are warranted to better understand its safety, window of opportunity and effectiveness as an adjunct with therapeutic hypothermia.
Collapse
|
21
|
Neuroprotection of Cannabidiol, Its Synthetic Derivatives and Combination Preparations against Microglia-Mediated Neuroinflammation in Neurological Disorders. Molecules 2022; 27:molecules27154961. [PMID: 35956911 PMCID: PMC9370304 DOI: 10.3390/molecules27154961] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 12/28/2022] Open
Abstract
The lack of effective treatment for neurological disorders has encouraged the search for novel therapeutic strategies. Remarkably, neuroinflammation provoked by the activated microglia is emerging as an important therapeutic target for neurological dysfunction in the central nervous system. In the pathological context, the hyperactivation of microglia leads to neuroinflammation through the release of neurotoxic molecules, such as reactive oxygen species, proteinases, proinflammatory cytokines and chemokines. Cannabidiol (CBD) is a major pharmacologically active phytocannabinoids derived from Cannabis sativa L. CBD has promising therapeutic effects based on mounting clinical and preclinical studies of neurological disorders, such as epilepsy, multiple sclerosis, ischemic brain injuries, neuropathic pain, schizophrenia and Alzheimer’s disease. A number of preclinical studies suggested that CBD exhibited potent inhibitory effects of neurotoxic molecules and inflammatory modulators, highlighting its remarkable therapeutic potential for the treatment of numerous neurological disorders. However, the molecular mechanisms of action underpinning CBD’s effects on neuroinflammation appear to be complex and are poorly understood. This review summarises the anti-neuroinflammatory activities of CBD against various neurological disorders with a particular focus on their main molecular mechanisms of action, which were related to the downregulation of NADPH oxidase-mediated ROS, TLR4-NFκB and IFN-β-JAK-STAT pathways. We also illustrate the pharmacological action of CBD’s derivatives focusing on their anti-neuroinflammatory and neuroprotective effects for neurological disorders. We included the studies that demonstrated synergistic enhanced anti-neuroinflammatory activity using CBD and other biomolecules. The studies that are summarised in the review shed light on the development of CBD, including its derivatives and combination preparations as novel therapeutic options for the prevention and/or treatment of neurological disorders where neuroinflammation plays an important role in the pathological components.
Collapse
|
22
|
Analysis of Givinostat/ITF2357 Treatment in a Rat Model of Neonatal Hypoxic-Ischemic Brain Damage. Int J Mol Sci 2022; 23:ijms23158287. [PMID: 35955430 PMCID: PMC9368553 DOI: 10.3390/ijms23158287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 01/27/2023] Open
Abstract
The histone deacetylase inhibitor (HDACi) Givinostat/ITF2357 provides neuroprotection in adult models of brain injury; however, its action after neonatal hypoxia-ischemia (HI) is still undefined. The aim of our study was to test the hypothesis that the mechanism of Givinostat is associated with the alleviation of inflammation. For this purpose, we analyzed the microglial response and the effect on molecular mediators (chemokines/cytokines) that are crucial for inducing cerebral damage after neonatal hypoxia-ischemia. Seven-day-old rat pups were subjected to unilateral carotid artery ligation followed by 60 min of hypoxia (7.6% O2). Givinostat (10 mg/kg b/w) was administered in a 5-day regimen. The effects of Givinostat on HI-induced inflammation (cytokine, chemokine and microglial activation and polarization) were assessed with a Luminex assay, immunohistochemistry and Western blot. Givinostat treatment did not modulate the microglial response specific for HI injury. After Givinostat administration, the investigated chemokines and cytokines remained at the level induced by HI. The only immunosuppressive effect of Givinostat may be associated with the decrease in MIP-1α. Neonatal hypoxia-ischemia produces an inflammatory response by activating the proinflammatory M1 phenotype of microglia, disrupting the microglia–neuron (CX3CL1/CX3CR1) axis and elevating numerous proinflammatory cytokines/chemokines. Givinostat/ITF2357 did not prevent an inflammatory reaction after HI.
Collapse
|
23
|
Gong L, Zhu T, Chen C, Xia N, Yao Y, Ding J, Xu P, Li S, Sun Z, Dong X, Shen W, Sun P, Zeng L, Xie Y, Jiang P. Miconazole exerts disease-modifying effects during epilepsy by suppressing neuroinflammation via NF-κB pathway and iNOS production. Neurobiol Dis 2022; 172:105823. [PMID: 35878745 DOI: 10.1016/j.nbd.2022.105823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/29/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022] Open
Abstract
Neuroinflammation contributes to the generation of epilepsy and has been proposed as an effective therapeutic target. Recent studies have uncovered the potential effects of the anti-fungal drug miconazole for treating various brain diseases by suppressing neuroinflammation but have not yet been studied in epilepsy. Here, we investigated the effects of different doses of miconazole (5, 20, 80 mg/kg) on seizure threshold, inflammatory cytokines release, and glial cells activation in the pilocarpine (PILO) pentylenetetrazole (PTZ), and intrahippocampal kainic acid (IHKA) models. We demonstrated that 5 and 20 mg/kg miconazole increased seizure threshold, but only 20 mg/kg miconazole reduced inflammatory cytokines release, glial cells activation, and morphological alteration during the early post-induction period (24 h, 3 days). We further investigated the effects of 20 mg/kg miconazole on epilepsy (4 weeks after KA injection). We found that miconazole significantly attenuated cytokines production, glial cells activation, microglial morphological changes, frequency and duration of recurrent hippocampal paroxysmal discharges (HPDs), and neuronal and synaptic damage in the hippocampus during epilepsy. In addition, miconazole suppressed the KA-induced activation of the NF-κB pathway and iNOS production. Our results indicated miconazole to be an effective drug for disease-modifying effects during epilepsy, which may act by attenuating neuroinflammation through the suppression of NF-κB activation and iNOS production. At appropriate doses, miconazole may be a safe and effective approved drug that can easily be repositioned for clinical practice.
Collapse
Affiliation(s)
- Lifen Gong
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Chen Chen
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Ningxiao Xia
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Yinping Yao
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China; Department of Pediatrics, Shaoxing People's Hospital, Shaoxing 312300, China
| | - Junchao Ding
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China; Department of Pediatrics, Yiwu Maternity and Children Hospital, Yiwu 322000, China
| | - Peng Xu
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China; Department of Pediatrics, Tongxiang First People's Hospital, Tongxiang 314500, China
| | - Shufen Li
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China; Department of Pediatrics, Lishui Center Hospital, Lishui 323000, China
| | - Zengxian Sun
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China; Department of Pediatrics, Lishui Center Hospital, Lishui 323000, China
| | - Xinyan Dong
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Weida Shen
- Department of Pharmacy, Zhejiang University City College School of Medicine, Hangzhou 310015, China
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Linghui Zeng
- Department of Pharmacy, Zhejiang University City College School of Medicine, Hangzhou 310015, China.
| | - Yicheng Xie
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China.
| | - Peifang Jiang
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China.
| |
Collapse
|
24
|
Zhou Y, Yang L, Liu X, Wang H. Lactylation may be a Novel Posttranslational Modification in Inflammation in Neonatal Hypoxic-Ischemic Encephalopathy. Front Pharmacol 2022; 13:926802. [PMID: 35721121 PMCID: PMC9202888 DOI: 10.3389/fphar.2022.926802] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 01/22/2023] Open
Abstract
Perinatal hypoxia-ischemia remains the most common cause of acute neonatal brain injury and is associated with a high death rate and long-term neurological abnormalities such as memory and cognitive deficits and dyskinesia. Hypoxia-ischemia triggers an inflammatory cascade in the brain that is amplified by the activation of immune cells and the influx of peripheral immune cells into the brain parenchyma in response to cellular injury. Thus, acute cerebral hypoxic-ischemic inflammation is a major contributor to the pathogenesis of newborn hypoxic-ischemic brain injury. Lactate is a glycolysis end product that can regulate inflammation through histone lactylation, a unique posttranslational modification that was identified in recent studies. The purpose of this review is to outline the recent improvements in our understanding of microglia-mediated hypoxic-ischemic inflammation and to further discuss how histone lactylation regulates inflammation by affecting macrophage activation. These findings may suggest that epigenetic reprogramming-associated lactate input is linked to disease outcomes such as acute neonatal brain injury pathogenesis and the therapeutic effects of drugs and other strategies in relieving neonatal hypoxic-ischemic brain injury. Therefore, improving our knowledge of the reciprocal relationships between histone lactylation and inflammation could lead to the development of new immunomodulatory therapies for brain damage in newborns.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, China
| | - Li Yang
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, China
| | - Xiaoying Liu
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, China
| | - Hao Wang
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
25
|
Pregnolato S, Sabir H, Luyt K, Rienecker KDA, Isles AR, Chakkarapani E. Regulation of glutamate transport and neuroinflammation in a term newborn rat model of hypoxic–ischaemic brain injury. Brain Neurosci Adv 2022; 6:23982128221097568. [PMID: 35615059 PMCID: PMC9125068 DOI: 10.1177/23982128221097568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
In the newborn brain, moderate-severe hypoxia–ischaemia induces glutamate excitotoxicity and inflammation, possibly via dysregulation of candidate astrocytic glutamate transporter ( Glt1) and pro-inflammatory cytokines (e.g. Tnfα, Il1β, Il6). Epigenetic mechanisms may mediate dysregulation. Hypotheses: (1) hypoxia–ischaemia dysregulates mRNA expression of these candidate genes; (2) expression changes in Glt1 are mediated by DNA methylation changes; and (3) methylation values in brain and blood are correlated. Seven-day-old rat pups ( n = 42) were assigned to nine groups based on treatment (for each timepoint: naïve ( n = 3), sham ( n = 3), hypoxia–ischaemia ( n = 8) and timepoint for tissue collection (6, 12 and 24 h post-hypoxia). Moderate hypoxic–ischemic brain injury was induced via ligation of the left common carotid artery followed by 100 min hypoxia (8% O2, 36°C). mRNA was quantified in cortex and hippocampus for the candidate genes, myelin ( Mbp), astrocytic ( Gfap) and neuronal ( Map2) markers (qPCR). DNA methylation was measured for Glt1 in cortex and blood (bisulphite pyrosequencing). Hypoxia–ischaemia induced pro-inflammatory cytokine upregulation in both brain regions at 6 h. This was accompanied by gene expression changes potentially indicating onset of astrogliosis and myelin injury. There were no significant changes in expression or promoter DNA methylation of Glt1. This pilot study supports accumulating evidence that hypoxia–ischaemia causes neuroinflammation in the newborn brain and prioritises further expression and DNA methylation analyses focusing on this pathway. Epigenetic blood biomarkers may facilitate identification of high-risk newborns at birth, maximising chances of neuroprotective interventions.
Collapse
Affiliation(s)
- Silvia Pregnolato
- Department of Neonatal Neurology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, Bonn, Germany
- Department of Pediatrics I/Neonatology, University Hospital Essen, University Duisburg Essen, Essen, Germany
| | - Karen Luyt
- Department of Neonatal Neurology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kira DA Rienecker
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | | |
Collapse
|
26
|
Glaser N, Chu S, Weiner J, Zdepski L, Wulff H, Tancredi D, ODonnell ME. Effects of TRAM-34 and minocycline on neuroinflammation caused by diabetic ketoacidosis in a rat model. BMJ Open Diabetes Res Care 2022; 10:10/3/e002777. [PMID: 35584854 PMCID: PMC9119135 DOI: 10.1136/bmjdrc-2022-002777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/01/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Diabetic ketoacidosis (DKA) causes acute and chronic neuroinflammation that may contribute to cognitive decline in patients with type 1 diabetes. We evaluated the effects of agents that reduce neuroinflammation (triarylmethane-34 (TRAM-34) and minocycline) during and after DKA in a rat model. RESEARCH DESIGN AND METHODS Juvenile rats with DKA were treated with insulin and saline, either alone or in combination with TRAM-34 (40 mg/kg intraperitoneally twice daily for 3 days, then daily for 4 days) or minocycline (45 mg/kg intraperitoneally daily for 7 days). We compared cytokine and chemokine concentrations in brain tissue lysates during DKA among the three treatment groups and in normal controls and diabetic controls (n=9-15/group). We also compared brain inflammatory mediator levels in these same groups in adult diabetic rats that were treated for DKA as juveniles. RESULTS Brain tissue concentrations of chemokine (C-C) motif ligand (CCL)3, CCL5 and interferon (IFNγ) were increased during acute DKA, as were brain cytokine composite scores. Both treatments reduced brain inflammatory mediator levels during acute DKA. TRAM-34 predominantly reduced chemokine concentrations (chemokine (C-X-C) motif ligand (CXCL-1), CCL5) whereas minocycline had broader effects, (reducing CXCL-1, tumor necrosis factor (TNFα), IFNγ, interleukin (IL) 2, IL-10 and IL-17A). Brain inflammatory mediator levels were elevated in adult rats that had DKA as juveniles, compared with adult diabetic rats without previous DKA, however, neither TRAM-34 nor minocycline treatment reduced these levels. CONCLUSIONS These data demonstrate that both TRAM-34 and minocycline reduce acute neuroinflammation during DKA, however, treatment with these agents for 1 week after DKA does not reduce long-term neuroinflammation.
Collapse
Affiliation(s)
- Nicole Glaser
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, California, USA
| | - Steven Chu
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, California, USA
| | - Justin Weiner
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Linnea Zdepski
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Heike Wulff
- Department of Pharmacology, UC Davis, Davis, California, USA
| | - Daniel Tancredi
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, California, USA
| | - Martha E ODonnell
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| |
Collapse
|
27
|
He Y, Zhang Y, Li F, Shi Y. White Matter Injury in Preterm Infants: Pathogenesis and Potential Therapy From the Aspect of the Gut–Brain Axis. Front Neurosci 2022; 16:849372. [PMID: 35573292 PMCID: PMC9099073 DOI: 10.3389/fnins.2022.849372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Very preterm infants who survive are at high risk of white matter injury (WMI). With a greater understanding of the pathogenesis of WMI, the gut microbiota has recently drawn increasing attention in this field. This review tries to clarify the possible mechanisms behind the communication of the gut bacteria and the immature brain via the gut–brain axis. The gut microbiota releases signals, such as microbial metabolites. These metabolites regulate inflammatory and immune responses characterized by microglial activation, which ultimately impact the differentiation of pre-myelinating oligodendrocytes (pre-OLs) and lead to WMI. Moreover, probiotics and prebiotics emerge as a promising therapy to improve the neurodevelopmental outcome. However, future studies are required to clarify the function of these above products and the optimal time for their administration within a larger population. Based on the existing evidence, it is still too early to recommend probiotics and prebiotics as effective treatments for WMI.
Collapse
Affiliation(s)
- Yu He
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Yuni Zhang
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Fang Li
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- *Correspondence: Fang Li,
| | - Yuan Shi
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Yuan Shi,
| |
Collapse
|
28
|
Xiong Q, Li X, Xia L, Yao Z, Shi X, Dong Z. Dihydroartemisinin attenuates hypoxic-ischemic brain damage in neonatal rats by inhibiting oxidative stress. Mol Brain 2022; 15:36. [PMID: 35484595 PMCID: PMC9052669 DOI: 10.1186/s13041-022-00921-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) induced by perinatal asphyxia is a major cause of neurological disability among infants. Dihydroartemisinin (DHA), derived from artemisinin, well known as an anti-malarial medicine, was proved to be able to inhibit oxidative stress and inflammation. However, whether those functions of DHA play roles in hypoxic-ischemic brain damage (HIBD), an animal model of HIE in patient which also been observed to have oxidative stress and inflammation, is unknown. In this study, we demonstrated that the DHA treatment on newborn rats significantly relieved the neuron loss and motor and cognitive impairment caused by HIBD. One of the underlying mechanisms is that DHA enhanced the anti-oxidant capacity of HIBD rats by up-regulating the total antioxidant capacity (T-AOC), gluathione reductase (GR) and catalase (CAT) while down regulating the pro-oxidative substances including hydrogen peroxide (H2O2), total nitric oxide synthase (T-NOS) and inducible nitric oxide synthase (iNOS). Thus, our study illustrated that DHA could alleviate the damage of brains and improve the cognitive and motor function of HIBD rats by inhibiting oxidative stress, provided an opportunity to interrogate potential therapeutics for affected HIE patients.
Collapse
Affiliation(s)
- Qian Xiong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaohuan Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lei Xia
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhengyu Yao
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiuyu Shi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
29
|
Xin DQ, Zhao YJ, Li TT, Ke HF, Gai CC, Guo XF, Chen WQ, Liu DX, Wang Z. The delivery of miR-21a-5p by extracellular vesicles induces microglial polarization via the STAT3 pathway following hypoxia-ischemia in neonatal mice. Neural Regen Res 2022; 17:2238-2246. [PMID: 35259844 PMCID: PMC9083169 DOI: 10.4103/1673-5374.336871] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Extracellular vesicles (EVs) from mesenchymal stromal cells (MSCs) have previously been shown to protect against brain injury caused by hypoxia-ischemia (HI). The neuroprotective effects have been found to relate to the anti-inflammatory effects of EVs. However, the underlying mechanisms have not previously been determined. In this study, we induced oxygen-glucose deprivation in BV-2 cells (a microglia cell line), which mimics HI in vitro, and found that treatment with MSCs-EVs increased the cell viability. The treatment was also found to reduce the expression of pro-inflammatory cytokines, induce the polarization of microglia towards the M2 phenotype, and suppress the phosphorylation of selective signal transducer and activator of transcription 3 (STAT3) in the microglia. These results were also obtained in vivo using neonatal mice with induced HI. We investigated the potential role of miR-21a-5p in mediating these effects, as it is the most highly expressed miRNA in MSCs-EVs and interacts with the STAT3 pathway. We found that treatment with MSCs-EVs increased the levels of miR-21a-5p in BV-2 cells, which had been lowered following oxygen-glucose deprivation. When the level of miR-21a-5p in the MSCs-EVs was reduced, the effects on microglial polarization and STAT3 phosphorylation were reduced, for both the in vitro and in vivo HI models. These results indicate that MSCs-EVs attenuate HI brain injury in neonatal mice by shuttling miR-21a-5p, which induces microglial M2 polarization by targeting STAT3.
Collapse
Affiliation(s)
- Dan-Qing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yi-Jing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ting-Ting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Hong-Fei Ke
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Cheng-Cheng Gai
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiao-Fan Guo
- Department of Neurology, Loma Linda University Health, Loma Linda, CA, USA
| | - Wen-Qiang Chen
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - De-Xiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
30
|
Panayotacopoulou MT, Papageorgiou I, Pagida M, Katsogridaki AE, Chrysanthou-Piterou M, Valous NA, Halama N, Patsouris E, Konstantinidou AE. Microglia Activation in the Midbrain of the Human Neonate: The Effect of Perinatal Hypoxic-Ischemic Injury. J Neuropathol Exp Neurol 2022; 81:208-224. [PMID: 35092294 DOI: 10.1093/jnen/nlab135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Perinatal hypoxia-ischemia (PHI) is a major risk factor for the development of neuropsychiatric deficits later in life. We previously reported that after prolonged PHI, the dopaminergic neurons of the human neonate showed a dramatic reduction of tyrosine hydroxylase (TH) in the substantia nigra, without important signs of neuronal degeneration despite the significant reduction in their cell size. Since microglia activation could precede neuronal death, we now investigated 2 microglia activation markers, ionized calcium-binding adapter molecule 1 (Iba1), and the phagocytosis marker Cd68. The highest Iba1 immunoreactivity was found in neonates with neuropathological lesions of severe/abrupt PHI, while the lowest in subjects with moderate/prolonged or older PHI. Subjects with very severe/prolonged or chronic PHI showed an increased Iba1 expression and very activated microglial morphology. Heavy attachment of microglia on TH neurons and remarkable expression of Cd68 were also observed indicating phagocytosis in this group. Females appear to express more Iba1 than males, suggesting a gender difference in microglia maturation and immune reactivity after PHI insult. PHI-induced microglial "priming" during the sensitive for brain development perinatal/neonatal period, in combination with genetic or other epigenetic factors, could predispose the survivors to neuropsychiatric disorders later in life, possibly through a sexually dimorphic way.
Collapse
Affiliation(s)
- Maria T Panayotacopoulou
- From the Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P).,University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP)
| | - Ismini Papageorgiou
- Institute for Diagnostic and Interventional Radiology, University Hospital of Jena, Jena, Germany (IP).,Institute of Radiology, Südharz Hospital Nordhausen, Nordhausen, Germany (IP)
| | - Marianna Pagida
- From the Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P).,University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP)
| | - Alexandra E Katsogridaki
- From the Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P).,University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP)
| | - Margarita Chrysanthou-Piterou
- From the Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P).,University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP)
| | - Nektarios A Valous
- Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany (NAV)
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD), Heidelberg, Germany (NH).,Division of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany (NH)
| | - Efstratios Patsouris
- University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP).,1st Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece (EP, AEK)
| | | |
Collapse
|
31
|
Yang Z, Huang J, Liao Y, Gan S, Zhu S, Xu S, Shu Y, Lu W. ER Stress is Involved in Mast Cells Degranulation via IRE1α/miR-125/Lyn Pathway in an Experimental Intracerebral Hemorrhage Mouse Model. Neurochem Res 2022; 47:1598-1609. [PMID: 35171433 DOI: 10.1007/s11064-022-03555-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/16/2022] [Accepted: 02/08/2022] [Indexed: 10/25/2022]
Abstract
The degranulation of mast cells accounts for the development of neuroinflammation following intracerebral hemorrhage (ICH). Inhibition of IRE1α, a sensor signaling protein related to endoplasmic reticulum stress, has been shown to exert anti-inflammatory effects in several neurological diseases. The objective of this study was to investigate the effects of IRE1α inhibition on mast cells degranulation in an ICH mouse model and to explore the contribution of miR-125/Lyn pathway in IRE1α-mediated mast cells degranulation. Male mice were subjected to ICH by intraparenchymal injection of autologous blood. STF083010, an inhibitor of IRE1α, was administered intranasally at 1 h after ICH induction. AntimiR-125 was delivered by intracerebroventricular (i.c.v.) injection prior to ICH induction to elucidate the possible mechanisms. Western blot analysis, immunofluorescence staining, neurological test, hematoma volume, brain water content, toluidine blue staining and reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) were performed. Endogenous phosphorylated IRE1α (p-IRE1α), tryptase, interleukin-17A (IL-17A), tumor necrosis factor α (TNF-α) and tryptase mRNA were increased in time dependent manner while miR-125b-2-3p was decreased after ICH. Inhibition of IRE1α, with STF083010, remarkably reduced brain water content, improved neurological function, decreased hematoma volume, upregulated the expression of miR-125b-2-3p, decreased the number of mast cells, and downregulated the protein expression of Lyn kinase, XBP1s (spliced X-box binding protein-1), tryptase, IL-17A and TNF-α. The downregulation of Lyn kinase, tryptase, IL-17A, TNF-α, and decreased mast cells number were reversed by antimiR-125. The present findings demonstrate that IRE1α inhibition attenuates mast cells degranulation and neuroinflammation, at least partially, through IRE1α/miR-125/Lyn signaling pathway after ICH.
Collapse
Affiliation(s)
- Zhengyu Yang
- Department of Anatomy & Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China.,Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Juan Huang
- Department of Anatomy & Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China.,Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Yuhui Liao
- Department of Anatomy & Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China.,Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Shengwei Gan
- Department of Anatomy & Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China.,Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Shujuan Zhu
- Department of Anatomy & Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China.,Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Shiye Xu
- Department of Anatomy & Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China.,Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Yue Shu
- Department of Anatomy & Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China.,Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Weitian Lu
- Department of Anatomy & Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China. .,Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
32
|
Brégère C, Schwendele B, Radanovic B, Guzman R. Microglia and Stem-Cell Mediated Neuroprotection after Neonatal Hypoxia-Ischemia. Stem Cell Rev Rep 2022; 18:474-522. [PMID: 34382141 PMCID: PMC8930888 DOI: 10.1007/s12015-021-10213-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
Neonatal hypoxia-ischemia encephalopathy (HIE) refers to a brain injury in term infants that can lead to death or lifelong neurological deficits such as cerebral palsy (CP). The pathogenesis of this disease involves multiple cellular and molecular events, notably a neuroinflammatory response driven partly by microglia, the brain resident macrophages. Treatment options are currently very limited, but stem cell (SC) therapy holds promise, as beneficial outcomes are reported in animal studies and to a lesser degree in human trials. Among putative mechanisms of action, immunomodulation is considered a major contributor to SC associated benefits. The goal of this review is to examine whether microglia is a cellular target of SC-mediated immunomodulation and whether the recruitment of microglia is linked to brain repair. We will first provide an overview on microglial activation in the rodent model of neonatal HI, and highlight its sensitivity to developmental age. Two complementary questions are then addressed: (i) do immune-related treatments impact microglia and provide neuroprotection, (ii) does stem cell treatment modulates microglia? Finally, the immune-related findings in patients enrolled in SC based clinical trials are discussed. Our review points to an impact of SCs on the microglial phenotype, but heterogeneity in experimental designs and methodological limitations hamper our understanding of a potential contribution of microglia to SC associated benefits. Thorough analyses of the microglial phenotype are warranted to better address the relevance of the neuroimmune crosstalk in brain repair and improve or advance the development of SC protocols in humans.
Collapse
Affiliation(s)
- Catherine Brégère
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Bernd Schwendele
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Boris Radanovic
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Raphael Guzman
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
33
|
Nguyen NP, Helmbrecht H, Ye Z, Adebayo T, Hashi N, Doan MA, Nance E. Brain Tissue-Derived Extracellular Vesicle Mediated Therapy in the Neonatal Ischemic Brain. Int J Mol Sci 2022; 23:620. [PMID: 35054800 PMCID: PMC8775954 DOI: 10.3390/ijms23020620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Hypoxic-Ischemic Encephalopathy (HIE) in the brain is the leading cause of morbidity and mortality in neonates and can lead to irreparable tissue damage and cognition. Thus, investigating key mediators of the HI response to identify points of therapeutic intervention has significant clinical potential. Brain repair after HI requires highly coordinated injury responses mediated by cell-derived extracellular vesicles (EVs). Studies show that stem cell-derived EVs attenuate the injury response in ischemic models by releasing neuroprotective, neurogenic, and anti-inflammatory factors. In contrast to 2D cell cultures, we successfully isolated and characterized EVs from whole brain rat tissue (BEV) to study the therapeutic potential of endogenous EVs. We showed that BEVs decrease cytotoxicity in an ex vivo oxygen glucose deprivation (OGD) brain slice model of HI in a dose- and time-dependent manner. The minimum therapeutic dosage was determined to be 25 μg BEVs with a therapeutic application time window of 4-24 h post-injury. At this therapeutic dosage, BEV treatment increased anti-inflammatory cytokine expression. The morphology of microglia was also observed to shift from an amoeboid, inflammatory phenotype to a restorative, anti-inflammatory phenotype between 24-48 h of BEV exposure after OGD injury, indicating a shift in phenotype following BEV treatment. These results demonstrate the use of OWH brain slices to facilitate understanding of BEV activity and therapeutic potential in complex brain pathologies for treating neurological injury in neonates.
Collapse
Affiliation(s)
- Nam Phuong Nguyen
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA;
| | - Hawley Helmbrecht
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (H.H.); (Z.Y.); (N.H.)
| | - Ziming Ye
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (H.H.); (Z.Y.); (N.H.)
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Tolulope Adebayo
- Department of Biology, University of Washington, Seattle, WA 98195, USA;
| | - Najma Hashi
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (H.H.); (Z.Y.); (N.H.)
| | - My-Anh Doan
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA;
| | - Elizabeth Nance
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA;
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (H.H.); (Z.Y.); (N.H.)
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
34
|
Xing Z, Zhen T, Jie F, Jie Y, Shiqi L, Kaiyi Z, Zhicui O, Mingyan H. Early Toll-like receptor 4 inhibition improves immune dysfunction in the hippocampus after hypoxic-ischemic brain damage. Int J Med Sci 2022; 19:142-151. [PMID: 34975308 PMCID: PMC8692118 DOI: 10.7150/ijms.66494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/21/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Toll-like receptor 4 (TLR4) is implicated in neonatal hypoxic-ischemic brain damage (HIBD), but the underlying mechanism is unclear. Hypothesis: We hypothesized that TLR4 mediates brain damage after hypoxic ischemia (HI) by inducing abnormal neuroimmune responses, including activation of immune cells and expression disorder of immune factors, while early inhibition of TLR4 can alleviate the neuroimmune dysfunction. Method: Postnatal day 7 rats were randomized into control, HI, and HI+TAK-242 (TAK-242) groups. The HIBD model was developed using the Rice-Vannucci method (the left side was the ipsilateral side of HI). TAK-242 (0.5 mg/kg) was given to rat pups in the TAK-242 group at 30 min before modeling. Immunofluorescence, immunohistochemistry, and western blotting were used to determine the TLR4 expression; the number of Iba-1+, GFAP+, CD161+, MPO+, and CD3+ cells; ICAM-1 and C3a expression; and interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-10 expression in the hippocampal CA1 region. Result: Significantly increased TLR4 expression was observed in the left hippocampus, and was alleviated by TAK-242. The significant increases in Iba-1+, MPO+, and CD161+ cells at 24 h and 7 days after HI and in GFAP+ and CD3+ T cells at 7 days after HI were also counteracted by TAK-242, but no significant differences were observed among groups at 24 h after HI. ICAM-1 expression increased 24 h after HI, while C3a expression decreased; TAK-242 also alleviated these changes. TNF-α and IL-1β expression increased, while IL-10 expression decreased at 24 h and 7 days after HI; TAK-242 counteracted the increased TNF-α and IL-1β expression at 24 h and the changes in IL-1β and IL-10 at 7 days, but induced no significant differences in IL-10 expression at 24 h and TNF-α expression at 7 days. Conclusion: Early TLR4 inhibition can alleviate hippocampal immune dysfunction after neonatal HIBD.
Collapse
Affiliation(s)
- Zhu Xing
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - Tang Zhen
- Department of Neonatology, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi, 541001 China.,Department of Pediatrics, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013 China
| | - Fan Jie
- Department of Neonatology, East Hospital of Shaoyang Central Hospital, Shaoyang, Hunan, 422000 China
| | - Yu Jie
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - Liu Shiqi
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - Zhu Kaiyi
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - OuYang Zhicui
- Department of Neonatology, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi, 541001 China
| | - Hei Mingyan
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| |
Collapse
|
35
|
Yin C, Ji Y, Ma N, Chen K, Zhang W, Bai D, Jia X, Xia S, Yin H. RNA-seq analysis reveals potential molecular mechanisms of ZNF580/ZFP580 promoting neuronal survival and inhibiting apoptosis after Hypoxic-ischemic brain damage. Neuroscience 2021; 483:52-65. [PMID: 34929337 DOI: 10.1016/j.neuroscience.2021.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) is one of the main causes of neonatal acute death and chronic nervous system impairment, but still lacks effective treatments. ZNF580/ZFP580, reported in our previous studies, may be a newly identified member of the Krüppel-like factor (KLF) family, and has anti-apoptotic effects during ischemic myocardial injury. In the present study, we showed that the expression levels of both ZFP580/ZNF580 mRNA and protein increased significantly in neonatal HIBD rats and oxygen-glucose deprivation (OGD) SH-SY5Y cell models. ZNF580 overexpression promoted neuron survival and suppressed neuron apoptosis after OGD in neuron-like SH-SY5Y cells, while interference with ZNF580 resulted in the opposite results. RNA-seq analysis identified 248 differentially-expressed genes (DEGs) between ZNF580 overexpression SH-SY5Y cells and interference-expressed SH-SY5Y cells. Gene Ontology functional enrichment analysis showed that these DEGs played significant roles in the growth, development, and regeneration of axons, DNA biosynthetic processes, DNA replication, and apoptosis. Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that these DEGs were found in some pathways, including ferroptosis, glutamatergic synapses, protein processing in the endoplasmic reticulum, estrogen signaling pathways, the TGF-beta signaling pathway, and the longevity regulating pathway. The qRT-PCR validation results were consistent with RNA-seq results, which showed that HSPA5, IGFBP3, NTN4, and KLF9 increased in ZNF580-overexpressed SH-SY5Y cells and decreased in interference-expressed SH-SY5Y cells, when compared with normal cells. Together, the results suggested that ZNF580 targeted these genes to inhibit neuronal apoptosis.
Collapse
Affiliation(s)
- Chongjuan Yin
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yansu Ji
- Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, Hebei, China
| | - Ning Ma
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Kai Chen
- Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, Hebei, China
| | - Wencheng Zhang
- Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, Hebei, China
| | - Dan Bai
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaojun Jia
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shihai Xia
- Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, Hebei, China.
| | - Huaiqing Yin
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
36
|
Zhu J, Li L, Ding J, Huang J, Shao A, Tang B. The Role of Formyl Peptide Receptors in Neurological Diseases via Regulating Inflammation. Front Cell Neurosci 2021; 15:753832. [PMID: 34650406 PMCID: PMC8510628 DOI: 10.3389/fncel.2021.753832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/02/2021] [Indexed: 01/02/2023] Open
Abstract
Formyl peptide receptors (FPRs) are a group of G protein-coupled cell surface receptors that play important roles in host defense and inflammation. Owing to the ubiquitous expression of FPRs throughout different cell types and since they interact with structurally diverse chemotactic agonists, they have a dual function in inflammatory processes, depending on binding with different ligands so that accelerate or inhibit key intracellular kinase-based regulatory pathways. Neuroinflammation is closely associated with the pathogenesis of neurodegenerative diseases, neurogenic tumors and cerebrovascular diseases. From recent studies, it is clear that FPRs are important biomarkers for neurological diseases as they regulate inflammatory responses by monitoring glial activation, accelerating neural differentiation, regulating angiogenesis, and controlling blood brain barrier (BBB) permeability, thereby affecting neurological disease progression. Given the complex mechanisms of neurological diseases and the difficulty of healing, we are eager to find new and effective therapeutic targets. Here, we review recent research about various mechanisms of the effects generated after FPR binding to different ligands, role of FPRs in neuroinflammation as well as the development and prognosis of neurological diseases. We summarize that the FPR family has dual inflammatory functional properties in central nervous system. Emphasizing that FPR2 acts as a key molecule that mediates the active resolution of inflammation, which binds with corresponding receptors to reduce the expression and activation of pro-inflammatory composition, govern the transport of immune cells to inflammatory tissues, and restore the integrity of the BBB. Concurrently, FPR1 is essentially related to angiogenesis, cell proliferation and neurogenesis. Thus, treatment with FPRs-modulation may be effective for neurological diseases.
Collapse
Affiliation(s)
- Jiahui Zhu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingfei Li
- Department of Neurology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiao Ding
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinyu Huang
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Tang
- Department of Neurology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
37
|
Role of macrophages in fetal development and perinatal disorders. Pediatr Res 2021; 90:513-523. [PMID: 33070164 DOI: 10.1038/s41390-020-01209-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
In the fetus and the neonate, altered macrophage function has been implicated not only in inflammatory disorders but also in developmental abnormalities marked by altered onset, interruption, or imbalance of key structural changes. The developmental role of macrophages were first noted nearly a century ago, at about the same time when these cells were being identified as central effectors in phagocytosis and elimination of microbes. Since that time, we have made considerable progress in understanding the diverse roles that these cells play in both physiology and disease. Here, we review the role of fetal and neonatal macrophages in immune surveillance, innate immunity, homeostasis, tissue remodeling, angiogenesis, and repair of damaged tissues. We also discuss the possibility of therapeutic manipulation of the relative abundance and activation status of macrophage subsets in various diseases. This article combines peer-reviewed evidence from our own studies with results of an extensive literature search in the databases PubMed, EMBASE, and Scopus. IMPACT: We have reviewed the structure, differentiation, and classification of macrophages in the neonatal period. Neonatal macrophages are derived from embryonic, hepatic, and bone marrow precursors. Macrophages play major roles in tissue homeostasis, innate immunity, inflammation, tissue repair, angiogenesis, and apoptosis of various cellular lineages in various infectious and inflammatory disorders. Macrophages and related inflammatory mediators could be important therapeutic targets in several neonatal diseases.
Collapse
|
38
|
Optimization of Hypoxic Brain Injuries Diagnostics in Full-Term Newborns. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.2.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The problem of early diagnosis of the central nervous system damage in newborn before the onset of clinical symptoms remains relevant at the present time.The aim of the study was to optimize the hypoxic brain damage diagnosis in full-term newborns by analyzing the concentration of cytokines in the umbilical cord blood.Materials and methods. During the first stage of the study, a prospective analysis of concentrations of interleukins (IL-1β, IL-4, IL-6, IL-8, IL-10), TNF-α and neuron-specific enolase (NSE) in the umbilical cord blood serum of full-term newborns was performed. The second stage of the study included the retrospective analysis of clinical data and instrumental research methods. The main method for diagnosing in the development of hypoxic brain damage in newborns was neurosonography.Results. The development of hypoxic brain damage is evidenced by the concentration of IL-1β over 30.3 pg/ml, IL-4 – over 1.7 pg/ml, IL-6 – over 79.4 pg/ml, IL-8 – over 107.7 pg/ml, NSE – more than 10.3 ng/ml and TNF-α – more than 1.6 pg/ml in umbilical cord blood.Conclusion. The results of the study confirmed that the comprehensive assessment of the cytokines concentration in the umbilical cord blood improves the hypoxic brain damage diagnosis in newborns. Analysis of the level of these markers immediately after the birth will optimize the management tactics of newborns who have undergone hypoxic exposure in antenatal and intranatal period.
Collapse
|
39
|
Robertson NJ, Meehan C, Martinello KA, Avdic-Belltheus A, Boggini T, Mutshiya T, Lingam I, Yang Q, Sokolska M, Charalambous X, Bainbridge A, Hristova M, Kramer BW, Golay X, Weil B, Lowdell MW. Human umbilical cord mesenchymal stromal cells as an adjunct therapy with therapeutic hypothermia in a piglet model of perinatal asphyxia. Cytotherapy 2021; 23:521-535. [PMID: 33262073 PMCID: PMC8139415 DOI: 10.1016/j.jcyt.2020.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/12/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND With therapeutic hypothermia (HT) for neonatal encephalopathy, disability rates are reduced, but not all babies benefit. Pre-clinical rodent studies suggest mesenchymal stromal cells (MSCs) augment HT protection. AIMS The authors studied the efficacy of intravenous (IV) or intranasal (IN) human umbilical cord-derived MSCs (huMSCs) as adjunct therapy to HT in a piglet model. METHODS A total of 17 newborn piglets underwent transient cerebral hypoxia-ischemia (HI) and were then randomized to (i) HT at 33.5°C 1-13 h after HI (n = 7), (ii) HT+IV huMSCs (30 × 106 cells) at 24 h and 48 h after HI (n = 5) or (iii) HT+IN huMSCs (30 × 106 cells) at 24 h and 48 h after HI (n = 5). Phosphorus-31 and hydrogen-1 magnetic resonance spectroscopy (MRS) was performed at 30 h and 72 h and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells and oligodendrocytes quantified. In two further piglets, 30 × 106 IN PKH-labeled huMSCs were administered. RESULTS HI severity was similar between groups. Amplitude-integrated electroencephalogram (aEEG) recovery was more rapid for HT+IN huMSCs compared with HT from 25 h to 42 h and 49 h to 54 h (P ≤ 0.05). MRS phosphocreatine/inorganic phosphate was higher on day 2 in HT+IN huMSCs than HT (P = 0.035). Comparing HT+IN huMSCs with HT and HT+IV huMSCs, there were increased OLIG2 counts in hippocampus (P = 0.011 and 0.018, respectively), internal capsule (P = 0.013 and 0.037, respectively) and periventricular white matter (P = 0.15 for IN versus IV huMSCs). Reduced TUNEL-positive cells were seen in internal capsule with HT+IN huMSCs versus HT (P = 0.05). PKH-labeled huMSCs were detected in the brain 12 h after IN administration. CONCLUSIONS After global HI, compared with HT alone, the authors saw beneficial effects of HT+IN huMSCs administered at 24 h and 48 h (30 × 106 cells/kg total dose) based on more rapid aEEG recovery, improved 31P MRS brain energy metabolism and increased oligodendrocyte survival at 72 h.
Collapse
Affiliation(s)
| | | | | | | | - Tiziana Boggini
- Institute for Women's Health, University College London, London, UK
| | - Tatenda Mutshiya
- Institute for Women's Health, University College London, London, UK
| | - Ingran Lingam
- Institute for Women's Health, University College London, London, UK
| | - Qin Yang
- Institute for Women's Health, University College London, London, UK
| | | | | | - Alan Bainbridge
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Mariya Hristova
- Institute for Women's Health, University College London, London, UK
| | - Boris W Kramer
- Department of Pediatrics, University of Maastricht, Maastricht, the Netherlands
| | - Xavier Golay
- Institute for Women's Health, University College London, London, UK
| | - Ben Weil
- Royal Free London NHS Foundation Trust, London, UK
| | - Mark W Lowdell
- Institute for Women's Health, University College London, London, UK; Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
40
|
Dumbuya JS, Chen L, Wu JY, Wang B. The role of G-CSF neuroprotective effects in neonatal hypoxic-ischemic encephalopathy (HIE): current status. J Neuroinflammation 2021; 18:55. [PMID: 33612099 PMCID: PMC7897393 DOI: 10.1186/s12974-021-02084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is an important cause of permanent damage to central nervous system (CNS) that may result in neonatal death or manifest later as mental retardation, epilepsy, cerebral palsy, or developmental delay. The primary cause of this condition is systemic hypoxemia and/or reduced cerebral blood flow with long-lasting neurological disabilities and neurodevelopmental impairment in neonates. About 20 to 25% of infants with HIE die in the neonatal period, and 25-30% of survivors are left with permanent neurodevelopmental abnormalities. The mechanisms of hypoxia-ischemia (HI) include activation and/or stimulation of myriad of cascades such as increased excitotoxicity, oxidative stress, N-methyl-D-aspartic acid (NMDA) receptor hyperexcitability, mitochondrial collapse, inflammation, cell swelling, impaired maturation, and loss of trophic support. Different therapeutic modalities have been implicated in managing neonatal HIE, though translation of most of these regimens into clinical practices is still limited. Therapeutic hypothermia, for instance, is the most widely used standard treatment in neonates with HIE as studies have shown that it can inhibit many steps in the excito-oxidative cascade including secondary energy failure, increases in brain lactic acid, glutamate, and nitric oxide concentration. Granulocyte-colony stimulating factor (G-CSF) is a glycoprotein that has been implicated in stimulation of cell survival, proliferation, and function of neutrophil precursors and mature neutrophils. Extensive studies both in vivo and ex vivo have shown the neuroprotective effect of G-CSF in neurodegenerative diseases and neonatal brain damage via inhibition of apoptosis and inflammation. Yet, there are still few experimentation models of neonatal HIE and G-CSF's effectiveness, and extrapolation of adult stroke models is challenging because of the evolving brain. Here, we review current studies and/or researches of G-CSF's crucial role in regulating these cytokines and apoptotic mediators triggered following neonatal brain injury, as well as driving neurogenesis and angiogenesis post-HI insults.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lu Chen
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Jang-Yen Wu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
41
|
Zhang B, Ran Y, Wu S, Zhang F, Huang H, Zhu C, Zhang S, Zhang X. Inhibition of Colony Stimulating Factor 1 Receptor Suppresses Neuroinflammation and Neonatal Hypoxic-Ischemic Brain Injury. Front Neurol 2021; 12:607370. [PMID: 33679579 PMCID: PMC7930561 DOI: 10.3389/fneur.2021.607370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Hypoxic-ischemic (HI) brain injury is a major cause of neonatal death or lifetime disability without widely accepted effective pharmacological treatments. It has been shown that the survival of microglia requires colony-stimulating factor 1 receptor (CSF1R) signaling and microglia participate in neonatal HI brain injury. We therefore hypothesize that microglia depletion during a HI insult period could reduce immature brain injury. In this study, CD1 mouse pups were treated with a CSF1R inhibitor (PLX3397, 25 mg/kg/daily) or a vehicle from postnatal day 4 to day 11 (P4-11), and over 90% of total brain microglia were deleted at P9. Unilateral hemisphere HI injury was induced at P9 by permanently ligating the left common carotid arteries and exposing the pups to 10% oxygen for 30 min to produce moderate left hemisphere injury. We found that the PLX3397 treatment reduced HI brain injury by 46.4%, as evaluated by the percentage of brain infarction at 48 h after HI. Furthermore, CSF1R inhibition suppressed the infiltration of neutrophils (69.7% reduction, p = 0.038), macrophages (77.4% reduction, p = 0.009), and T cells (72.9% reduction, p = 0.008) to the brain, the production of cytokines and chemokines (such as CCL12, CCL6, CCL21, CCL22, CCL19, IL7, CD14, and WISP-1), and reduced neuronal apoptosis as indicated by active caspase-3 labeled cells at 48 h after HI (615.20 ± 156.84/mm2 vs. 1,205.00 ± 99.15/mm2, p = 0.013). Our results suggest that CSF1R inhibition suppresses neuroinflammation and neonatal brain injury after acute cerebral hypoxia-ischemia in neonatal mice.
Collapse
Affiliation(s)
- Bohao Zhang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Center of Advanced Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou, China
| | - Yunwei Ran
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siting Wu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fang Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Huachen Huang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Clinical Neuroscience, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Shusheng Zhang
- Center of Advanced Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
42
|
Drug delivery platforms for neonatal brain injury. J Control Release 2021; 330:765-787. [PMID: 33417984 DOI: 10.1016/j.jconrel.2020.12.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE), initiated by the interruption of oxygenated blood supply to the brain, is a leading cause of death and lifelong disability in newborns. The pathogenesis of HIE involves a complex interplay of excitotoxicity, inflammation, and oxidative stress that results in acute to long term brain damage and functional impairments. Therapeutic hypothermia is the only approved treatment for HIE but has limited effectiveness for moderate to severe brain damage; thus, pharmacological intervention is explored as an adjunct therapy to hypothermia to further promote recovery. However, the limited bioavailability and the side-effects of systemic administration are factors that hinder the use of the candidate pharmacological agents. To overcome these barriers, therapeutic molecules may be packaged into nanoscale constructs to enable their delivery. Yet, the application of nanotechnology in infants is not well examined, and the neonatal brain presents unique challenges. Novel drug delivery platforms have the potential to magnify therapeutic effects in the damaged brain, mitigate side-effects associated with high systemic doses, and evade mechanisms that remove the drugs from circulation. Encouraging pre-clinical data demonstrates an attenuation of brain damage and increased structural and functional recovery. This review surveys the current progress in drug delivery for treating neonatal brain injury.
Collapse
|
43
|
Han J, Yang S, Hao X, Zhang B, Zhang H, Xin C, Hao Y. Extracellular Vesicle-Derived microRNA-410 From Mesenchymal Stem Cells Protects Against Neonatal Hypoxia-Ischemia Brain Damage Through an HDAC1-Dependent EGR2/Bcl2 Axis. Front Cell Dev Biol 2021; 8:579236. [PMID: 33505958 PMCID: PMC7829500 DOI: 10.3389/fcell.2020.579236] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-ischemia brain damage (HIBD) is a neurological disorder occring in neonates, which is exacerbated by neuronal apoptosis. Mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) have been proposed as a promising strategy for treating or preventing ischemia-related diseases. However, their mechanisms in HIBD remain unclear. Thus, we aimed to address the role of EV-derived microRNA (miR)-410 in HIBD. Neonatal HIBD mouse model was constructed using HI insult, from which neurons were isolated, followed by exposure to oxygen glucose deprivation (OGD). EVs were isolated from human umbilical cord (hUC)-derived MSCs. In silico analyses, dual-luciferase reporter gene and chromatin immunoprecipitation assays were adopted to determine relationships among miR-410, histone deacetylase 1 (HDAC1), early growth response protein 2 (EGR2), and B cell lymphoma/leukemia 2 (Bcl2). The functional roles of EV-derived miR-410 were determined using loss- and gain-of functions experiments, and by evaluating neuronal viability, cell-cycle distribution and neuronal apoptosis in vitro as well as modified neurological severity score (mNSS), edema formation, and cerebral infarction volume in vivo. hUC-MSCs-derived EVs protected against HIBD in vivo and inhibited the OGD-induced neuronal apoptosis in vitro. miR-410 was successfully delivered to neurons by hUC-MSCs-EVs and negatively targeted HDAC1, which inversely mediated the expression of EGR2/Bcl2. Upregulation of EV-derived miR-410 promoted the viability but inhibited apoptosis of neurons, which was reversed by HDAC1 overexpression. EV-derived miR-410 elevation reduced mNSS, edema formation, and cerebral infarction volume by increasing EGR2/Bcl2 expression through downregulating HDAC1 expression in vivo. In summary, EV-derived miR-410 impeded neuronal apoptosis by elevating the expression of EGR2/Bcl2 via HDAC1 downregulation, thereby providing a potential strategy for treating or preventing HIBD.
Collapse
Affiliation(s)
- Jun Han
- Department of Neonatology, The First Hospital of Jilin University, Changchun, China
| | - Si Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiaosheng Hao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Bo Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hongbo Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Cuijuan Xin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yunpeng Hao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
44
|
Dexmedetomidine post-conditioning ameliorates long-term neurological outcomes after neonatal hypoxic ischemia: The role of autophagy. Life Sci 2021; 270:118980. [PMID: 33428879 DOI: 10.1016/j.lfs.2020.118980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hypoxic-ischemic brain injury (HIBI) is a major cause of mortality in neonates and can cause long-term neurological sequelae. Excessive autophagy caused by HI may cause neuronal death. Dexmedetomidine was reported neuroprotective against HIBI. Therefore, in the present study, the autophagy-related mechanisms underlying the protective effects of dexmedetomidine against cerebral HI in neonatal rats were investigated. METHODS In the present study, the expression of autophagy-related proteins microtubule-associated protein 1 light chain 3 (LC3) B-II and Beclin1, neuronal and microglia autophagy levels, the myelin basic protein (MBP) expression, long-term neuronal density ratio, and long-term behavioral prognosis in HIBI model were investigated by ligating the left common carotid artery in neonatal rats, followed by 2-h hypoxia. RESULTS Dexmedetomidine inhibited the overactivated autophagy of hippocampal neurons and microglia after HI. In addition, dexmedetomidine inhibited neuronal density decrease and axon demyelination after HI-induced overactivated autophagy. Lastly, dexmedetomidine improved the long-term neurological prognosis and was reversed by the autophagy agonist rapamycin. CONCLUSION The protective effects of dexmedetomidine on HI neonatal rats were evidenced by inhibition of excessive autophagy of neurons and microglia, thereby reducing the decline of long-term neuronal density and axon demyelination as well as improving long-term learning cognitive function.
Collapse
|
45
|
Shao R, Sun D, Hu Y, Cui D. White matter injury in the neonatal hypoxic-ischemic brain and potential therapies targeting microglia. J Neurosci Res 2021; 99:991-1008. [PMID: 33416205 DOI: 10.1002/jnr.24761] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
Neonatal hypoxic-ischemic (H-I) injury, which mainly causes neuronal damage and white matter injury (WMI), is among the predominant causes of infant morbidity (cerebral palsy, cognitive and persistent motor disabilities) and mortality. Disruptions to the oxygen and blood supply in the perinatal brain affect the cerebral microenvironment and may affect microglial activation, excitotoxicity, and oxidative stress. Microglia are significantly associated with axonal damage and myelinating oligodendrocytes, which are major pathological components of WMI. However, the effects of H-I injury on microglial functions and underlying transformation mechanisms remain poorly understood. The historical perception that these cells are major risk factors for ischemic stroke has been questioned due to our improved understanding of the diversity of microglial phenotypes and their alterable functions, which exacerbate or attenuate injuries in different regions in response to environmental instability. Unfortunately, although therapeutic hypothermia is an efficient treatment, death and disability remain the prognosis for a large proportion of neonates with H-I injury. Hence, novel neuroprotective therapies to treat WMI following H-I injury are urgently needed. Here, we review microglial mechanisms that might occur in the developing brain due to neonatal H-I injury and discuss whether microglia function as a double-edged sword in WMI. Then, we emphasize microglial heterogeneity, notably at the single-cell level, and sex-specific effects on the etiology of neurological diseases. Finally, we discuss current knowledge of strategies aiming to improve microglia modulation and remyelination following neonatal H-I injury. Overall, microglia-targeted therapy might provide novel and valuable insights into the treatment of neonatal H-I insult.
Collapse
Affiliation(s)
- Rongjiao Shao
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dawei Sun
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yue Hu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Derong Cui
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
46
|
Ma Q, Dasgupta C, Shen G, Li Y, Zhang L. MicroRNA-210 downregulates TET2 and contributes to inflammatory response in neonatal hypoxic-ischemic brain injury. J Neuroinflammation 2021; 18:6. [PMID: 33402183 PMCID: PMC7786974 DOI: 10.1186/s12974-020-02068-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
Background Neonatal hypoxic-ischemic (HI) brain injury is a leading cause of acute mortality and chronic disability in newborns. Our previous studies demonstrated that HI insult significantly increased microRNA-210 (miR-210) in the brain of rat pups and inhibition of brain endogenous miR-210 by its inhibitor (LNA) provided neuroprotective effect in HI-induced brain injury. However, the molecular mechanisms underpinning this neuroprotection remain unclear. Methods We made a neonatal HI brain injury model in mouse pups of postnatal day 7 to uncover the mechanism of miR-210 in targeting the ten eleven translocation (TET) methylcytosine dioxygenase 2 that is a transcriptional suppressor of pro-inflammatory cytokine genes in the neonatal brain. TET2 silencing RNA was used to evaluate the role of TET2 in the neonatal HI-induced pro-inflammatory response and brain injury. MiR-210 mimic and inhibitor (LNA) were delivered into the brain of mouse pups to study the regulation of miR-210 on the expression of TET2. Luciferase reporter gene assay was performed to validate the direct binding of miR-210 to the 3′ untranslated region of the TET2 transcript. Furthermore, BV2 mouse microglia cell line was employed to confirm the role of miR-210-TET2 axis in regulating pro-inflammatory response in microglia. Post-assays included chromatin immunoprecipitation (ChIP) assay, co-immunoprecipitation, RT-PCR, brain infarct assay, and neurobehavioral test. Student’s t test or one-way ANOVA was used for statistical analysis. Results HI insult significantly upregulated miR-210, downregulated TET2 protein abundance, and increased NF-κB subunit p65 acetylation level and its DNA binding capacity to the interleukin 1 beta (IL-1β) promoter in the brain of mouse pups. Inhibition of miR-210 rescued TET2 protein level from HI insult and miR-210 mimic decreased TET2 protein level in the brain of mouse pups, suggesting that TET2 is a functional target of miR-210. The co-immunoprecipitation was performed to reveal the role of TET2 in HI-induced inflammatory response in the neonatal brain. The result showed that TET2 interacted with NF-κB subunit p65 and histone deacetylase 3 (HDAC3), a co-repressor of gene transcription. Furthermore, TET2 knockdown increased transcriptional activity of acetyl-p65 on IL-1β gene in the neonatal brain and enhanced HI-induced upregulation of acetyl-p65 level and pro-inflammatory cytokine expression. Of importance, TET2 knockdown exacerbated brain infarct size and neurological deficits and counteracted the neuroprotective effect of miR-210 inhibition. Finally, the in vitro results demonstrated that the miR-210-TET2 axis regulated pro-inflammatory response in BV2 mouse microglia cell line. Conclusions The miR-210-TET2 axis regulates pro-inflammatory cytokine expression in microglia, contributing to neonatal HI brain injury.
Collapse
Affiliation(s)
- Qingyi Ma
- The Lawrence D. Longo Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| | - Chiranjib Dasgupta
- The Lawrence D. Longo Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Guofang Shen
- The Lawrence D. Longo Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Yong Li
- The Lawrence D. Longo Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Lubo Zhang
- The Lawrence D. Longo Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
47
|
Min YJ, Ling EA, Li F. Immunomodulatory Mechanism and Potential Therapies for Perinatal Hypoxic-Ischemic Brain Damage. Front Pharmacol 2020; 11:580428. [PMID: 33536907 PMCID: PMC7849181 DOI: 10.3389/fphar.2020.580428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-ischemia (HI) is one of the most common causes of death and disability in neonates. Currently, the only available licensed treatment for perinatal HI is hypothermia. However, it alone is not sufficient to prevent the brain injuries and/or neurological dysfunction related to HI. Perinatal HI can activate the immune system and trigger the peripheral and central responses which involve the immune cell activation, increase in production of immune mediators and release of reactive oxygen species. There is mounting evidence indicating that regulation of immune response can effectively rescue the outcomes of brain injury in experimental perinatal HI models such as Rice-Vannucci model of newborn hypoxic-ischemic brain damage (HIBD), local transient cerebral ischemia and reperfusion model, perinatal asphyxia model, and intrauterine hypoxia model. This review summarizes the many studies about immunomodulatory mechanisms and therapies for HI. It highlights the important actions of some widely documented therapeutic agents for effective intervening of HI related brain damage, namely, HIBD, such as EPO, FTY720, Minocycline, Gastrodin, Breviscapine, Milkvetch etc. In this connection, it has been reported that the ameboid microglial cells featured prominently in the perinatal brain represent the key immune cells involved in HIBD. To this end, drugs, chemical agents and herbal compounds which have the properties to suppress microglia activation have recently been extensively explored and identified as potential therapeutic agents or strategies for amelioration of neonatal HIBD.
Collapse
Affiliation(s)
- Ying-Jun Min
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fan Li
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| |
Collapse
|
48
|
Koehn LM, Chen X, Logsdon AF, Lim YP, Stonestreet BS. Novel Neuroprotective Agents to Treat Neonatal Hypoxic-Ischemic Encephalopathy: Inter-Alpha Inhibitor Proteins. Int J Mol Sci 2020; 21:E9193. [PMID: 33276548 PMCID: PMC7731124 DOI: 10.3390/ijms21239193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 02/02/2023] Open
Abstract
Perinatal hypoxia-ischemia (HI) is a major cause of brain injury and mortality in neonates. Hypoxic-ischemic encephalopathy (HIE) predisposes infants to long-term cognitive deficits that influence their quality of life and place a large burden on society. The only approved treatment to protect the brain after HI is therapeutic hypothermia, which has limited effectiveness, a narrow therapeutic time window, and is not considered safe for treatment of premature infants. Alternative or adjunctive therapies are needed to improve outcomes of full-term and premature infants after exposure to HI. Inter-alpha inhibitor proteins (IAIPs) are immunomodulatory molecules that are proposed to limit the progression of neonatal inflammatory conditions, such as sepsis. Inflammation exacerbates neonatal HIE and suggests that IAIPs could attenuate HI-related brain injury and improve cognitive outcomes associated with HIE. Recent studies have shown that intraperitoneal treatment with IAIPs can decrease neuronal and non-neuronal cell death, attenuate glial responses and leukocyte invasion, and provide long-term behavioral benefits in neonatal rat models of HI-related brain injury. The present review summarizes these findings and outlines the remaining experimental analyses necessary to determine the clinical applicability of this promising neuroprotective treatment for neonatal HI-related brain injury.
Collapse
Affiliation(s)
- Liam M. Koehn
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI 02905, USA; (L.M.K.); (X.C.)
| | - Xiaodi Chen
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI 02905, USA; (L.M.K.); (X.C.)
| | - Aric F. Logsdon
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA;
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI 02903, USA;
- Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Barbara S. Stonestreet
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI 02905, USA; (L.M.K.); (X.C.)
| |
Collapse
|
49
|
Glaser N, Chu S, Hung B, Fernandez L, Wulff H, Tancredi D, ODonnell ME. Acute and chronic neuroinflammation is triggered by diabetic ketoacidosis in a rat model. BMJ Open Diabetes Res Care 2020; 8:e001793. [PMID: 33318070 PMCID: PMC7737057 DOI: 10.1136/bmjdrc-2020-001793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Cognitive decline is common in patients with type 1 diabetes and has been attributed to the effects of chronic hyperglycemia and severe hypoglycemia. Diabetic ketoacidosis (DKA) has only recently been suspected to be involved in causing cognitive decline. We hypothesized that DKA triggers both acute and chronic neuroinflammation, contributing to brain injury. RESEARCH METHODS AND DESIGN We measured concentrations of cytokines, chemokines and matrix metalloproteinases (MMP) in serum and brain tissue lysates in juvenile rats during and after DKA (during acute DKA, 24 hours and 7 days after DKA), and compared these to healthy controls and hyperglycemic controls. We also measured cytokine, chemokine and MMP concentrations in serum and brain tissue of adult rats (70 days) that had experienced DKA as juveniles and compared these measurements to those of adult diabetic rats without exposure to DKA. RESULTS During acute DKA in the juvenile rats, serum concentrations of CCL3, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and MMP-9 were significantly increased. Serum concentrations of IL-2 and IL-17A increased 7 days after DKA recovery. In brain tissue lysates, concentrations of CCL3, CCL5, interferon (IFN)-γ and MMP-9 were significantly elevated during acute DKA. In adult rats that had DKA as juveniles (28 days previously), serum concentrations of IL-1ß and brain concentrations of IL-10 and IL-12p70 were elevated in comparison to diabetic rats without prior DKA. Composite scores for highly correlated cytokines and chemokines (mean z-scores for IL-10, IL-1ß, TNF-α, IL-17A, IFN-γ, CXCL-1 and CCL5) were also significantly elevated in adult rats with prior DKA. CONCLUSIONS These data confirm that DKA causes acute systemic inflammation and neuroinflammation in a rat model. Importantly, the neuroinflammatory response triggered by DKA is long-lasting, suggesting the possibility that DKA-induced chronic neuroinflammation could contribute to long-term cognitive decline in individuals with diabetes.
Collapse
Affiliation(s)
- Nicole Glaser
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, USA
| | - Steven Chu
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, USA
| | - Benjamin Hung
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Sacramento, California, USA
| | - Luis Fernandez
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, USA
| | - Heike Wulff
- Department of Pharmacology, University of California Davis School of Medicine, Sacramento, California, USA
| | - Daniel Tancredi
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, USA
| | - Martha E ODonnell
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
50
|
Farfán N, Carril J, Redel M, Zamorano M, Araya M, Monzón E, Alvarado R, Contreras N, Tapia-Bustos A, Quintanilla ME, Ezquer F, Valdés JL, Israel Y, Herrera-Marschitz M, Morales P. Intranasal Administration of Mesenchymal Stem Cell Secretome Reduces Hippocampal Oxidative Stress, Neuroinflammation and Cell Death, Improving the Behavioral Outcome Following Perinatal Asphyxia. Int J Mol Sci 2020; 21:ijms21207800. [PMID: 33096871 PMCID: PMC7589575 DOI: 10.3390/ijms21207800] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Perinatal Asphyxia (PA) is a leading cause of motor and neuropsychiatric disability associated with sustained oxidative stress, neuroinflammation, and cell death, affecting brain development. Based on a rat model of global PA, we investigated the neuroprotective effect of intranasally administered secretome, derived from human adipose mesenchymal stem cells (MSC-S), preconditioned with either deferoxamine (an hypoxia-mimetic) or TNF-α+IFN-γ (pro-inflammatory cytokines). PA was generated by immersing fetus-containing uterine horns in a water bath at 37 °C for 21 min. Thereafter, 16 μL of MSC-S (containing 6 μg of protein derived from 2 × 105 preconditioned-MSC), or vehicle, were intranasally administered 2 h after birth to asphyxia-exposed and control rats, evaluated at postnatal day (P) 7. Alternatively, pups received a dose of either preconditioned MSC-S or vehicle, both at 2 h and P7, and were evaluated at P14, P30, and P60. The preconditioned MSC-S treatment (i) reversed asphyxia-induced oxidative stress in the hippocampus (oxidized/reduced glutathione); (ii) increased antioxidative Nuclear Erythroid 2-Related Factor 2 (NRF2) translocation; (iii) increased NQO1 antioxidant protein; (iv) reduced neuroinflammation (decreasing nuclearNF-κB/p65 levels and microglial reactivity); (v) decreased cleaved-caspase-3 cell-death; (vi) improved righting reflex, negative geotaxis, cliff aversion, locomotor activity, anxiety, motor coordination, and recognition memory. Overall, the study demonstrates that intranasal administration of preconditioned MSC-S is a novel therapeutic strategy that prevents the long-term effects of perinatal asphyxia.
Collapse
Affiliation(s)
- Nancy Farfán
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Jaime Carril
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Martina Redel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Marta Zamorano
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Maureen Araya
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Estephania Monzón
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Raúl Alvarado
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Norton Contreras
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (N.C.); (J.L.V.)
| | - Andrea Tapia-Bustos
- School of Pharmacy, Faculty of Medicine, Universidad Andres Bello, Santiago 8370149, Chile;
| | - María Elena Quintanilla
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine-Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile;
| | - José Luis Valdés
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (N.C.); (J.L.V.)
| | - Yedy Israel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Mario Herrera-Marschitz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Paola Morales
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (N.C.); (J.L.V.)
- Correspondence: ; Tel.: +56-229786788
| |
Collapse
|