1
|
Yang X, Wu Y, Zhao H, Liu P, Liang L, Yin A. Emergence and circulation of enterovirus B species in infants in southern China: A multicenter retrospective analysis. Virulence 2024; 15:2329569. [PMID: 38555521 PMCID: PMC10984118 DOI: 10.1080/21505594.2024.2329569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Enteroviruses (EV) are common and can cause severe diseases, particularly in young children. However, the information of EV infection in infants in China is limited due to the vast population size and extensive geographical area of the country. Here, we conducted a retrospective multicenter analysis of available EV data to assess the current epidemiological situation in the infant population in southern China. METHODS The study enrolled infants with suspected EV infection from 34 hospitals across 12 cities in southern China between 2019 to 2022, and the confirmation of EV was done using RT-PCR and VP1 gene sequencing. RESULTS Out of 1221 infants enrolled, 330 (27.03%) were confirmed as EV-infected. Of these, 260 (78.79%) were newborns aged 0-28 days. The EV belonged to three species: EV-B (80.61%), EV-A (11.82%), and human rhinovirus (7.58%). Newborns were more susceptible to EV-B than older infants (p < 0.001). Within EV-B, we identified 15 types, with coxsackievirus (CV) B3 (20.91%), echovirus (E) 11 (19.70%), and E18 (16.97%) being the most common. The predominant EV types changed across different years. EV infection in infants followed a seasonal pattern, with a higher incidence from May to August. Furthermore, perinatal mother-to-child EV transmission in 12 mother-newborn pairs were observed. CONCLUSION Our study is the first to demonstrate the emergence and widespread circulation of EV-B species, mainly CVB3, E11, and E18, in southern China, primarily affecting young infants. This research provides valuable insights for future epidemic assessment, prediction, as well as the elimination of mother-to-child transmission.
Collapse
Affiliation(s)
- Xiaohan Yang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Yudan Wu
- Department of Clinical Laboratory, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Hongyu Zhao
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Pan Liu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Lihua Liang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Aihua Yin
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou 511400, China
| |
Collapse
|
2
|
Jartti M, Flodström-Tullberg M, Hankaniemi MM. Enteroviruses: epidemic potential, challenges and opportunities with vaccines. J Biomed Sci 2024; 31:73. [PMID: 39010093 PMCID: PMC11247760 DOI: 10.1186/s12929-024-01058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024] Open
Abstract
Enteroviruses (EVs) are the most prevalent viruses in humans. EVs can cause a range of acute symptoms, from mild common colds to severe systemic infections such as meningitis, myocarditis, and flaccid paralysis. They can also lead to chronic diseases such as cardiomyopathy. Although more than 280 human EV serotypes exist, only four serotypes have licenced vaccines. No antiviral drugs are available to treat EV infections, and global surveillance of EVs has not been effectively coordinated. Therefore, poliovirus still circulates, and there have been alarming epidemics of non-polio enteroviruses. Thus, there is a pressing need for coordinated preparedness efforts against EVs.This review provides a perspective on recent enterovirus outbreaks and global poliovirus eradication efforts with continuous vaccine development initiatives. It also provides insights into the challenges and opportunities in EV vaccine development. Given that traditional whole-virus vaccine technologies are not suitable for many clinically relevant EVs and considering the ongoing risk of enterovirus outbreaks and the potential for new emerging pathogenic strains, the need for new effective and adaptable enterovirus vaccines is emphasized.This review also explores the difficulties in translating promising vaccine candidates for clinical use and summarizes information from published literature and clinical trial databases focusing on existing enterovirus vaccines, ongoing clinical trials, the obstacles faced in vaccine development as well as the emergence of new vaccine technologies. Overall, this review contributes to the understanding of enterovirus vaccines, their role in public health, and their significance as a tool for future preparedness.
Collapse
Affiliation(s)
- Minne Jartti
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Malin Flodström-Tullberg
- Department of Medicine Huddinge and Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Minna M Hankaniemi
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
3
|
Chang X, Zhang Z, Cui X, Zhang Q, Lin Q, Hu J, Guo Y, Wang X. Genetic diversity and recombination of bovine enterovirus strains in China. Microbiol Spectr 2024; 12:e0280023. [PMID: 38315051 PMCID: PMC10913430 DOI: 10.1128/spectrum.02800-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Bovine enterovirus (BEV) consisting of enterovirus species E (EV-E) and F (EV-F) is the causative agent associated with respiratory and gastrointestinal diseases in cattle. Here, we reported the characterization, genetic diversity, and recombination of novel BEV strains isolated from the major cattle-raising regions in China during 2012-2018. Twenty-seven BEV strains were successfully isolated and characterized. Molecular characterization demonstrated that the majority of these novel BEV strains (24/27) were EV-E, while only few strains (3/27) were EV-F. Sequence analysis revealed the diversity of the circulating BEV strains such as species and subtypes where different species or subtype coinfections were detected in the same regions and even in the same cattle herds. For the EV-E, two novel subtypes, designated as EV-E6 and EV-E7, were revealed in addition to the currently reported EV-E1-EV-E5. Comparative genomic analysis revealed the intraspecies and interspecies genetic exchanges among BEV isolates. The representative strain HeN-B62 was probably from AN12 (EV-F7) and PS-87-Belfast (EV-F3) strains. The interspecies recombination between EV-E and EV-F was also discovered, where the EV-F7-AN12 might be from EV-E5 and EV-F1, and EV-E5-MexKSU/5 may be recombined from EV-F7 and EV-E1. The aforementioned results revealed the genetic diversity and recombination of novel BEV strains and unveiled the different BEV species or subtype infections in the same cattle herd, which will broaden the understanding of enterovirus genetic diversity, recombination, pathogenesis, and prevention of disease outbreaks. IMPORTANCE Bovine enterovirus (BEV) infection is an emerging disease in China that is characterized by digestive, respiratory, and reproductive disorders. In this study, we first reported two novel EV-E subtypes detected in cattle herds in China, unveiled the coinfection of two enterovirus species (EV-E/EV-F) and different subtypes (EV-E2/EV-E7, EV-E1/EV-E7, and EV-E3/EV-E6) in the same cattle herds, and revealed the enterovirus genetic exchange in intraspecies and interspecies recombination. These results provide an important update of enterovirus prevalence and epidemiological aspects and contribute to a better understanding of enterovirus genetic diversity, evolution, and pathogenesis.
Collapse
Affiliation(s)
- Xiaoran Chang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhiyuan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuyuan Cui
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qun Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qian Lin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Junying Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yidi Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinping Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
4
|
Fang C, Fu W, Liu N, Zhao H, Zhao C, Yu K, Liu C, Yin Z, Xu L, Xia N, Wang W, Cheng T. Investigating the virulence of coxsackievirus B6 strains and antiviral treatments in a neonatal murine model. Antiviral Res 2024; 221:105781. [PMID: 38097049 DOI: 10.1016/j.antiviral.2023.105781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Coxsackievirus B6 (CVB6), a member of the human enterovirus family, is associated with severe diseases such as myocarditis in children. However, to date, only a limited number of CVB6 strains have been identified, and their characterization in animal models has been lacking. To address this gap, in this study, a neonatal murine model of CVB6 infection was established to compare the replication and virulence of three infectious-clone-derived CVB6 strains in vivo. The results showed that following challenge with a lethal dose of CVB6 strains, the neonatal mice rapidly exhibited a series of clinical signs, such as weight loss, limb paralysis, and death. For the two high-virulence CVB6 strains, histological examination revealed myocyte necrosis in skeletal and cardiac muscle, and immunohistochemistry confirmed the expression of CVB6 viral protein in these tissues. Real-time PCR assay also revealed higher viral loads in the skeletal and cardiac muscle than in other tissues at different time points post infection. Furthermore, the protective effect of passive immunization with antisera and a neutralizing monoclonal antibody against CVB6 infection was evaluated in the neonatal mouse model. This study should provide insights into the pathogenesis of CVB6 and facilitate further research in the development of vaccines and antivirals against CVBs.
Collapse
Affiliation(s)
- Changjian Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Wenkun Fu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Nanyi Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Huan Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Canyang Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Kang Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Che Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Zhichao Yin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Longfa Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Wei Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China.
| | - Tong Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
5
|
Chien YS, Chen FJ, Wu HC, Lin CH, Chang WC, Perera D, Yang JY, Lee MS, Liao YC. Cost-effective complete genome sequencing using the MinION platform for identification of recombinant enteroviruses. Microbiol Spectr 2023; 11:e0250723. [PMID: 37831475 PMCID: PMC10715163 DOI: 10.1128/spectrum.02507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE By employing a cost-effective approach for complete genome sequencing, the study has enabled the identification of novel enterovirus strains and shed light on the genetic exchange events during outbreaks. The success rate of genome sequencing and the scalability of the protocol demonstrate its practical utility for routine enterovirus surveillance. Moreover, the study's findings of recombinant strains of EVA71 and CVA2 contributing to epidemics in Malaysia and Taiwan emphasize the need for accurate detection and characterization of enteroviruses. The investigation of the whole genome and upstream ORF sequences has provided insights into the evolution and spread of enterovirus subgenogroups. These findings have important implications for the prevention, control, and surveillance of enteroviruses, ultimately contributing to the understanding and management of enterovirus-related illnesses.
Collapse
Affiliation(s)
- Yeh-Sheng Chien
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Feng-Jui Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Han-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chieh-Hua Lin
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Wen-Chiung Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - David Perera
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Sarawak, Malaysia
| | - Jyh-Yuan Yang
- Research and Diagnosis Center, Centers for Disease Control, Taipei, Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
6
|
Yoo B, Kim MG, Min AY, Seo DW, Kim SH, Kim SH. Optimization of RT-PCR methods for enterovirus detection in groundwater. Heliyon 2023; 9:e23028. [PMID: 38149210 PMCID: PMC10750030 DOI: 10.1016/j.heliyon.2023.e23028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Enteroviruses (EVs), which belong to the Picornaviridae family, infect individuals asymptomatically or cause mild symptoms (fever, runny nose, cough, skin rash, sneezing, mouth blister). Severe cases can cause various diseases, such as acute hemorrhagic conjunctivitis, aseptic meningitis, or myocarditis, especially in infants. These viruses can be transmitted via the fecal-oral route via contaminated water. In this study, we established a polymerase chain reaction (PCR) method for detecting EVs in water sample using Coxsackievirus B5 (CV-B5) and Echovirus 30 (E-30), which belong to species B of the four species of EVs (EV-A to D). Several methods have been investigated and compared for the detection of EVs, including real-time reverse transcription (RT) polymerase chain reaction and conventional RT-PCR. The most sensitive primer sets were selected, and the PCR conditions were modified to increase sensitivity. We also quantified the detection limits of real-time and conventional RT-PCR. The detection limits of conventional RT-PCR were detected in 105-106 copy/mL for CV-B5 and 106-107 copy/mL for E-30, respectively. This optimized method for detecting EVs is expected to contribute substantially to the investigation of EV outbreaks in water samples.
Collapse
Affiliation(s)
- Boeun Yoo
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Mi-Gyeong Kim
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - A Young Min
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Doo Won Seo
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Seung Hwan Kim
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Soon Han Kim
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| |
Collapse
|
7
|
Roh D, Jeon W, Lee J. Enterovirus Meningitis without Pleocytosis: a Retrospective Observational Study in Adults. Jpn J Infect Dis 2023; 76:329-334. [PMID: 37394460 DOI: 10.7883/yoken.jjid.2023.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Reverse-transcription polymerase chain reaction (RT-PCR)-confirmed enterovirus (EV) meningitis without pleocytosis has only been previously reported in children. In this study, we examined the frequency of EV meningitis without pleocytosis in adults and compared its clinical features. We retrospectively analyzed the data of adult patients with EV meningitis confirmed using cerebrospinal fluid (CSF) RT-PCR. Among the 17 patients included in this study, 58.8% showed no pleocytosis. The median age and clinical symptoms did not differ between the pleocytosis and non-pleocytosis groups. There were no statistically significant differences in seasonal variation or time from the onset of meningitis symptoms to lumbar puncture. The peripheral white blood cell (WBC) count in patients with pleocytosis was significantly higher than that in patients without pleocytosis. The median CSF pressure showed a higher trend in the non-pleocytosis group. Patients with CSF pressures higher than normal were more common in the non-pleocytosis group. The median CSF protein values were higher than the normal values in both groups. We confirmed the high frequency of EV meningitis without pleocytosis in adults. Accurate diagnosis using RT-PCR is necessary when meningitis symptoms are prominent during an EV epidemic, and CSF protein levels and pressure are high, even if the CSF WBC count is normal.
Collapse
Affiliation(s)
- Dongkeun Roh
- Department of Emergency Medicine, Ajou University School of Medicine, Republic of Korea
| | - Woochan Jeon
- Department of Emergency Medicine, Inje University Ilsan Paik Hospital, Republic of Korea
| | - Jisook Lee
- Department of Emergency Medicine, Ajou University School of Medicine, Republic of Korea
| |
Collapse
|
8
|
Itani TM, Chalapa VI, Slautin VN, Bykov RO, Imangaliev BS, Starikova PK, Sergeev AG, Semenov AV. Non-Polio Enterovirus Surveillance in the Ural Federal District and Western Siberia, 2022: Is There a Need for a Vaccine? Vaccines (Basel) 2023; 11:1588. [PMID: 37896990 PMCID: PMC10610881 DOI: 10.3390/vaccines11101588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Human non-polio enteroviruses (NPEVs) are the etiological agents involved in most cases of hand-foot-and-mouth disease (HFMD), herpangina and aseptic meningitis. Information on the epidemiology profiles of NPEV in the Ural Federal District and Western Siberia is very limited, with no published data available. The aim of this study is to describe NPEV incidence in the Ural Federal District and Western Siberia among patients with different forms of non-polio enterovirus infections (NPEVIs) during 2022, stratified by age and clinical manifestations. A total of 265 samples that tested positive for NPEV using a polymerase chain reaction (PCR) were genotyped by semi-nested PCR for the VP1 gene. The results showed that 21 genotypes were identified among patients in this study. CVA6 was the most common genotype for HFMD. CVA6, along with CVA10, accounted for the majority of herpangina cases, while CVA9 was implicated in most meningitis cases. Sequence and phylogenetic analysis showed that nearly all of the CVA6 strains identified in this study displayed a close genetic relationship to strains identified in other cities in Russia and strains from China. NPEV surveillance allows for monitoring the circulation of clinically relevant genotypes, resulting in continuous data about NPEV epidemiology. This is important for improving case prevention, diagnosis and guiding clinical management.
Collapse
Affiliation(s)
- Tarek M. Itani
- Laboratory of Enteric Virus Infections, Federal Budgetary Institution of Science «Federal Scientific Research Institute of Viral Infections «Virome»», Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 620030 Yekaterinburg, Russia; (V.I.C.); (V.N.S.); (R.O.B.); (B.S.I.); (P.K.S.); (A.G.S.); (A.V.S.)
| | - Vladislav I. Chalapa
- Laboratory of Enteric Virus Infections, Federal Budgetary Institution of Science «Federal Scientific Research Institute of Viral Infections «Virome»», Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 620030 Yekaterinburg, Russia; (V.I.C.); (V.N.S.); (R.O.B.); (B.S.I.); (P.K.S.); (A.G.S.); (A.V.S.)
| | - Vasilii N. Slautin
- Laboratory of Enteric Virus Infections, Federal Budgetary Institution of Science «Federal Scientific Research Institute of Viral Infections «Virome»», Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 620030 Yekaterinburg, Russia; (V.I.C.); (V.N.S.); (R.O.B.); (B.S.I.); (P.K.S.); (A.G.S.); (A.V.S.)
| | - Roman O. Bykov
- Laboratory of Enteric Virus Infections, Federal Budgetary Institution of Science «Federal Scientific Research Institute of Viral Infections «Virome»», Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 620030 Yekaterinburg, Russia; (V.I.C.); (V.N.S.); (R.O.B.); (B.S.I.); (P.K.S.); (A.G.S.); (A.V.S.)
| | - Bolat S. Imangaliev
- Laboratory of Enteric Virus Infections, Federal Budgetary Institution of Science «Federal Scientific Research Institute of Viral Infections «Virome»», Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 620030 Yekaterinburg, Russia; (V.I.C.); (V.N.S.); (R.O.B.); (B.S.I.); (P.K.S.); (A.G.S.); (A.V.S.)
| | - Polina K. Starikova
- Laboratory of Enteric Virus Infections, Federal Budgetary Institution of Science «Federal Scientific Research Institute of Viral Infections «Virome»», Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 620030 Yekaterinburg, Russia; (V.I.C.); (V.N.S.); (R.O.B.); (B.S.I.); (P.K.S.); (A.G.S.); (A.V.S.)
| | - Aleksandr G. Sergeev
- Laboratory of Enteric Virus Infections, Federal Budgetary Institution of Science «Federal Scientific Research Institute of Viral Infections «Virome»», Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 620030 Yekaterinburg, Russia; (V.I.C.); (V.N.S.); (R.O.B.); (B.S.I.); (P.K.S.); (A.G.S.); (A.V.S.)
- Department of Microbiology, Virology and Immunology, Ural State Medical University, 620109 Ekaterinburg, Russia
| | - Aleksandr V. Semenov
- Laboratory of Enteric Virus Infections, Federal Budgetary Institution of Science «Federal Scientific Research Institute of Viral Infections «Virome»», Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 620030 Yekaterinburg, Russia; (V.I.C.); (V.N.S.); (R.O.B.); (B.S.I.); (P.K.S.); (A.G.S.); (A.V.S.)
- Institute of Natural Sciences and Mathematics, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620075 Ekaterinburg, Russia
| |
Collapse
|
9
|
Makhoul N, Kassis I, Green MS, Shqara RA, Shalabi RD, Cohen MS, Dabaja-Younis H. Non-polio enterovirus aseptic meningitis in infants up to three months of age, the bacterial mask of viral disease: A retrospective cohort study. J Clin Virol 2023; 162:105427. [PMID: 37001461 DOI: 10.1016/j.jcv.2023.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Non-polio enterovirus aseptic meningitis (NPE-AM) is a self-limiting illness that can mimic serious bacterial infection (SBI) in infants during their first months of life. OBJECTIVES To compare the clinical features of febrile infants diagnosed with NPE-AM with those of infants who had SBI or non-bacterial infection (NBI). STUDY DESIGN A systematic series of febrile infants < 3-months-old hospitalized between 2010 and 2019 with febrile illness in a tertiary hospital. Clinical and laboratory data were compared between the three groups. RESULTS Overall 1278 infants were included; 207 (16.2%) had NPE-AM, 210 (16.4%) SBI and 861 (67.4%) NBI. The median age was 34 (IQR: 21.5-51.7) days. NPE-AM was documented in 25% of infants < 29 days and 9.9% of infants aged 29-90 days. Infants with NPE-AM or SBI had fever >39°C more frequently, 24.2% and 17.1% compared with 10% in infants with NBI (p < 0.001). Fever duration ≥ 2 days was reported in 3.4% of infants with NPE-AM vs 18.6% in SBI and 26.3% in NBI (p < 0001); rash occurred in 37.7% in NPE-AM compared to 4.6% in NBI and 5.7% in SBI (p < 0.001). The mean white blood count, C-reactive protein and absolute neutrophil count were significantly lower in infants with NPE-AM compared to infants with the SBI (p < 0.001) and similar to the means in infants with NBI (p = 0.848, 0.098 and 0.764 respectively). A high proportion of bloody tap 346/784 (53.1%) was detected. Infants with NPE-AM were more likely to be treated with antibiotics than infants with NBIs (88.9% vs 50.7%, p < 0.001), similarly to infants with SBIs (p = 0.571). CONCLUSIONS The clinical presentation of infants with NPE-AM that could mimic bacterial infection and the high rate of bloody taps may lead to more hospital admissions and antibiotic prescriptions. Rapid molecular testing for detection of NPE may be of additional value in the evaluation of febrile infants.
Collapse
Affiliation(s)
- Nadeen Makhoul
- Pediatric Department, Rambam Health Care Campus, Haifa, Israel
| | - Imad Kassis
- Pediatric Department, Rambam Health Care Campus, Haifa, Israel; The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Manfred S Green
- University of Haifa, Faculty of Public Health, Department of Epidemiology, Haifa, Israel
| | | | | | | | - Halima Dabaja-Younis
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Pediatric Infectious Diseases Unit, Rambam Health Care Campus, Haifa, Israel.
| |
Collapse
|
10
|
Fratty IS, Kriger O, Weiss L, Vasserman R, Erster O, Mendelson E, Sofer D, Weil M. Increased detection of Echovirus 6-associated meningitis in patients hospitalized during the COVID-19 pandemic, Israel 2021-2022. J Clin Virol 2023; 162:105425. [PMID: 37023500 PMCID: PMC10038676 DOI: 10.1016/j.jcv.2023.105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Outbreaks of enteroviral meningitis occur periodically and may lead to hospitalization and severe disease. OBJECTIVE To analyze and describe the meningitis outbreak in patients hospitalized in Israel in 2021-2022, during the COVID-19 pandemic. RESULTS In December 2021, before the emergence of the SARS-CoV-2 omicron variant, an off-season increase in enterovirus (EV) infections was observed among patients hospitalized with meningitis. In January 2022, enterovirus cases decreased by 66% in parallel with the peak of the Omicron wave, and then increased rapidly by 78% in March (compared with February) after a decline in Omicron cases. Sequencing of the enterovirus-positive samples showed a dominance of echovirus 6 (E-6) (29%) before and after the Omicron wave. Phylogenetic analysis found that all 29 samples were very similar and all clustered in the E-6 C1 subtype. The main E-6 symptoms observed were fever and headache, along with vomiting and neck stiffness. The median patient age was 25 years, with a broad range (0-60 years). CONCLUSION An upsurge in enterovirus cases was observed after the decline of the SARS-CoV-2 omicron wave. The dominant subtype was E-6, which was present prior to the emergence of the omicron variant, but increased rapidly only after the omicron wave decline. We hypothesize that the omicron wave delayed the rise in E-6-associated meningitis.
Collapse
Affiliation(s)
- Ilana S Fratty
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat-Gan, Israel; The Israel Center for Disease Control, Israel Ministry of Health, Ramat-Gan, Israel
| | - Or Kriger
- Sheba Medical Center, Pediatric Infectious Disease Unit, Ramat-Gan, Israel
| | - Leah Weiss
- The Israel Center for Disease Control, Israel Ministry of Health, Ramat-Gan, Israel
| | - Rinat Vasserman
- The Israel Center for Disease Control, Israel Ministry of Health, Ramat-Gan, Israel
| | - Oran Erster
- The Israel Center for Disease Control, Israel Ministry of Health, Ramat-Gan, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat-Gan, Israel
| | - Danit Sofer
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat-Gan, Israel
| | - Merav Weil
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat-Gan, Israel.
| |
Collapse
|
11
|
Qiao X, Liu X, Wang Y, Li Y, Wang L, Yang Q, Wang H, Shen H. Analysis of the epidemiological trends of enterovirus A in Asia and Europe. J Infect Chemother 2023; 29:316-321. [PMID: 36528275 DOI: 10.1016/j.jiac.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Enteroviruses have been in massive, cyclical epidemics worldwide. An in-depth understanding of the international epidemiological characteristics of Enterovirus A (EVA) is critical to determining its clinical significance and total disease burden. Although much research has been conducted on EVA epidemiology, there is still a lack of a comprehensive overview of EVA epidemiological characteristics and trends. OBJECTIVE EVA nucleic acid sequences from the NCBI virus database were used to summarize the epidemic time (based on the time of specimen collection), spatial and serotype distribution of EVA, and to analyze EVA isolated from cerebrospinal fluid specimens. METHODS EVA sequences were searched in NCBI Virus by keyword ("Enterovirus A″ or "EVA") to screen sequences released before December 2021 and sort them to analyze EVA by year, geographic region and serotype prevalence. RESULTS The results found 23,041 retrieved nucleic acid sequences with precise collection dates and geographical regions as of December 2021, with Asia accounting for 87%, Europe for 11% and Africa and the Americas for only 2%. Overall, EV-A71, CVA6 and CVA16 are a few of the main prevalent serotypes; and the prevalence characteristics of the different serotypes change over time from place to place. CONCLUSION The prevalence of different serotypes of EVA varies considerably over time and space, and we focused on analysing the epidemiological characteristics of EVAs in Asia and Europe and EVAs that invade the nervous system. This study will likely provide important clues for prevention, control and future research in virological surveillance, disease management and vaccine development.
Collapse
Affiliation(s)
- Xiaorong Qiao
- Key Laboratory of Jiangsu Province, Medical College, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xiaolan Liu
- Key Laboratory of Jiangsu Province, Medical College, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yan Wang
- Key Laboratory of Jiangsu Province, Medical College, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yuhan Li
- Key Laboratory of Jiangsu Province, Medical College, Jiangsu University, Zhenjiang, 212013, PR China
| | - Lulu Wang
- Key Laboratory of Jiangsu Province, Medical College, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qingru Yang
- Key Laboratory of Jiangsu Province, Medical College, Jiangsu University, Zhenjiang, 212013, PR China
| | - Hua Wang
- Key Laboratory of Jiangsu Province, Medical College, Jiangsu University, Zhenjiang, 212013, PR China
| | - Hongxing Shen
- Key Laboratory of Jiangsu Province, Medical College, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
12
|
Revisiting fecal metatranscriptomics analyses of macaques with idiopathic chronic diarrhoea with a focus on trichomonad parasites. Parasitology 2023; 150:248-261. [PMID: 36503585 PMCID: PMC10090643 DOI: 10.1017/s0031182022001688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trichomonads, anaerobic microbial eukaryotes members of the phylum Parabasalia, are common obligate extracellular symbionts that can lead to pathological or asymptomatic colonization of various mucosal surfaces in a wide range of animal hosts. Results from previous in vitro studies have suggested a number of intriguing mucosal colonization strategies by Trichomonads, notably highlighting the importance of interactions with bacteria. However, in vivo validation is currently lacking. A previous metatranscriptomics study into the cause of idiopathic chronic diarrhoea in macaques reported the presence of an unidentified protozoan parasite related to Trichomonas vaginalis. In this work, we performed a reanalysis of the published data in order to identify the parasite species present in the macaque gut. We also leveraged the information-rich metatranscriptomics data to investigate the parasite behaviour in vivo. Our results indicated the presence of at least 3 genera of Trichomonad parasite; Tetratrichomonas, Pentatrichomonas and Trichomitus, 2 of which had not been previously reported in the macaque gut. In addition, we identified common in vivo expression profiles shared amongst the Trichomonads. In agreement with previous findings for other Trichomonads, our results highlighted a relationship between Trichomonads and mucosal bacterial diversity which could be influential in health and disease.
Collapse
|
13
|
Kim MJ, Lee JE, Kim KG, Park DW, Cho SJ, Kim TS, Kee HY, Kim SH, Park HJ, Seo MH, Chung JK, Seo JJ. Long-term sentinel surveillance of enteroviruses in Gwangju, South Korea, 2011-2020. Sci Rep 2023; 13:2798. [PMID: 36797345 PMCID: PMC9933826 DOI: 10.1038/s41598-023-29461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Human enteroviruses (EVs) are associated with a broad spectrum of diseases. To understand EV epidemiology, we present longitudinal data reflecting changing EV prevalence patterns in South Korea. We collected 7160 specimens from patients with suspected EV infections in ten hospitals in Gwangju, Korea during 2011-2020. RNA extraction and real-time reverse transcription polymerase chain reaction using EV-specific probes and primers were performed. EV genotyping and phylogenetic analysis were performed; EVs were detected in 3076 samples (43.0%), and the annual EV detection rate varied. EV infection rates did not differ with sex, and children aged ≤ 4 years were the most prone to EV infection; this trend did not change over time. Overall, 35 different EV types belonging to four distinctive species and rhinoviruses were identified. Although serotype distribution changed annually, the most frequently observed EVs were EV-A71 (13.1% of the cases), CVA6 (8.3%), CVB5 (7.6%), CVA16 (7.6%), CVA10 (7.5%), E18 (7.5%), E30 (7.0%), and E11 (5.0%) during 2011-2020. The predominant EV genotypes by clinical manifestation were CVB5 for aseptic meningitis; EV-A71 for hand, foot, and mouth disease cases; and CVA10 for herpangina. These results will aid the development of vaccines against EV infection and allow comprehensive disease control.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea, 61954.
| | - Ji-eun Lee
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Kwang gon Kim
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Duck Woong Park
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Sun Ju Cho
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Tae sun Kim
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Hye-young Kee
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Sun-Hee Kim
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Hye jung Park
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Mi Hee Seo
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Jae Keun Chung
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Jin-jong Seo
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| |
Collapse
|
14
|
Wu X, Cui L, Bai Y, Bian L, Liang Z. Pseudotyped Viruses for Enterovirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:209-228. [PMID: 36920699 DOI: 10.1007/978-981-99-0113-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Using a non-pathogenic pseudotyped virus as a surrogate for a wide-type virus in scientific research complies with the recent requirements for biosafety. Enterovirus (EV) contains many species of viruses, which are a type of nonenveloped virus. The preparation of its corresponding pseudotyped virus often needs customized construction compared to some enveloped viruses. This article describes the procedures and challenges in the construction of pseudotyped virus for enterovirus (pseudotyped enterovirus, EVpv) and also introduces the application of EVpv in basic virological research, serological monitoring, and the detection of neutralizing antibody (NtAb).
Collapse
Affiliation(s)
- Xing Wu
- Division of Hepatitis Virus & Enterovirus Vaccines, Institute for Biological Products, National Institutes for Food and Drug Control, Beijing, China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Lisha Cui
- Minhai biotechnology Co. Ltd, Beijing, China
| | - Yu Bai
- Division of Hepatitis Virus & Enterovirus Vaccines, Institute for Biological Products, National Institutes for Food and Drug Control, Beijing, China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Lianlian Bian
- Division of Hepatitis Virus & Enterovirus Vaccines, Institute for Biological Products, National Institutes for Food and Drug Control, Beijing, China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Zhenglun Liang
- Division of Hepatitis Virus & Enterovirus Vaccines, Institute for Biological Products, National Institutes for Food and Drug Control, Beijing, China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| |
Collapse
|
15
|
Hand-Foot-and-Mouth Disease-Associated Enterovirus and the Development of Multivalent HFMD Vaccines. Int J Mol Sci 2022; 24:ijms24010169. [PMID: 36613612 PMCID: PMC9820767 DOI: 10.3390/ijms24010169] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Hand-foot-and-mouth disease (HFMD) is an infectious disease of children caused by more than 20 types of enteroviruses, with most cases recovering spontaneously within approximately one week. Severe HFMD in individual children develops rapidly, leading to death, and is associated with other complications such as viral myocarditis and type I diabetes mellitus. The approval and marketing of three inactivated EV-A71 vaccines in China in 2016 have provided a powerful tool to curb the HFMD epidemic but are limited in cross-protecting against other HFMD-associated enteroviruses. This review focuses on the epidemiological analysis of HFMD-associated enteroviruses since the inactivated EV-A71 vaccine has been marketed, collates the progress in the development of multivalent enteroviruses vaccines in different technical routes reported in recent studies, and discusses issues that need to be investigated for safe and effective HFMD multivalent vaccines.
Collapse
|
16
|
Cheng D, Chiu YW, Huang SW, Lien YY, Chang CL, Tsai HP, Wang YF, Wang JR. Genetic and Cross Neutralization Analyses of Coxsackievirus A16 Circulating in Taiwan from 1998 to 2021 Suggest Dominant Genotype B1 can Serve as Vaccine Candidate. Viruses 2022; 14:2306. [PMID: 36298861 PMCID: PMC9608817 DOI: 10.3390/v14102306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Coxsackievirus A16 (CVA16) is well known for causing hand-foot-and-mouth disease (HFMD) and outbreaks were frequently reported in Taiwan in the past twenty years. The epidemiology and genetic variations of CVA16 in Taiwan from 1998 to 2021 were analyzed in this study. CVA16 infections usually occurred in early summer and early winter, and showed increased incidence in 1998, 2000-2003, 2005, 2007-2008, and 2010 in Taiwan. Little or no CVA16 was detected from 2017 to 2021. CVA16 infection was prevalent in patients between 1 to 3 years old. A total of 69 isolates were sequenced. Phylogenetic analysis based on the VP1 region showed that CVA16 subgenotype B1 was dominantly isolated in Taiwan from 1998 to 2019, and B2 was identified only from isolates collected in 1999 and 2000. There was a high frequency of synonymous mutations in the amino acid sequences of the VP1 region among CVA16 isolates, with the exception of position 145 which showed positive selection. The recombination analysis of the whole genome of CVA16 isolates indicated that the 5'-untranslated region and the non-structural protein region of CVA16 subgenotype B1 were recombined with Coxsackievirus A4 (CVA4) and enterovirus A71 (EVA71) genotype A, respectively. The recombination pattern of subgenotype B2 was similar to B1, however, the 3D region was similar to EVA71 genotype B. Cross-neutralization among CVA16 showed that mouse antisera from various subgenotypes viruses can cross-neutralize different genotype with high neutralizing antibody titers. These results suggest that the dominant CVA16 genotype B1 can serve as a vaccine candidate for CVA16.
Collapse
Affiliation(s)
- Dayna Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yo-Wei Chiu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 70101, Taiwan
| | - Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan 70101, Taiwan
| | - Yun-Yin Lien
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 70101, Taiwan
| | - Chia-Lun Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 70101, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ya-Fang Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 70101, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan 70101, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jen-Ren Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 70101, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
17
|
Guo W, Xu D, Cong S, Du Z, Li L, Zhang M, Feng C, Bao G, Sun H, Yang Z, Ma S. Co-infection and enterovirus B: post EV-A71 mass vaccination scenario in China. BMC Infect Dis 2022; 22:671. [PMID: 35927711 PMCID: PMC9354358 DOI: 10.1186/s12879-022-07661-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) is a common child infectious disease caused by more than 20 enterovirus (EV) serotypes. In recent years, enterovirus A71 (EV-A71) has been replaced by Coxsackievirus A6 (CV-A6) to become the predominant serotype. Multiple EV serotypes co-circulate in HFMD epidemics, and this study aimed to investigate the etiological epidemic characteristics of an HFMD outbreak in Kunming, China in 2019. METHODS The clinical samples of 459 EV-associated HFMD patients in 2019 were used to amplify the VP1 gene region by the three sets of primers and identify serotypes using the molecular biology method. Phylogenetic analyses were performed based on the VP1 gene. RESULTS Three hundred and forty-eight cases out of 459 HFMD patients were confirmed as EV infection. Of these 191 (41.61%) were single EV infections and 34.20% had co-infections. The EVs were assigned to 18 EV serotypes, of which CV-A6 was predominant (11.33%), followed by CV-B1 (8.93%), CV-A4 (5.23%), CV-A9 (4.58%), CV-A 16 (3.49%) and CV-A10 and CVA5 both 1.96%. Co-infection of CV-A6 with other EVs was present in 15.25% of these cases, followed by co-infection with CV-A16 and other EVs. The VP1 sequences used in the phylogenetic analyses showed that the CV-A6, CV-B1 and CV-A4 sequences belonged to the sub-genogroup D3 and genogroups F and E, respectively. CONCLUSION Co-circulation and co-infection of multiple serotypes were the etiological characteristic of the HFMD epidemic in Kunming China in 2019 with CV-A-6, CV-B1 and CV-A4 as the predominant serotypes. This is the first report of CV-B1 as a predominant serotype in China and may provide valuable information for the diagnosis, prevention and control of HFMD.
Collapse
Affiliation(s)
- Wei Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Danhan Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Shanri Cong
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Zengqing Du
- Department of Infectious Diseases, Kunming Children's Hospital, Kunming, China
| | - Li Li
- Department of Clinical Laboratory, Kunming Maternal and Child Health Hospital, Kunming, 650031, China
| | - Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Changzeng Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Guohong Bao
- First People's Hospital of Yunnan Province, Kunming, 650032, People's Republic of China
| | - Hao Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China. .,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China.
| |
Collapse
|
18
|
Human FcRn Is a Two-in-One Attachment-Uncoating Receptor for Echovirus 18. mBio 2022; 13:e0116622. [PMID: 35862785 PMCID: PMC9426509 DOI: 10.1128/mbio.01166-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus-receptor interactions determine viral host range and tissue tropism. CD55 and human neonatal Fc receptor (FcRn) were found to be the binding and uncoating receptors for some of the echovirus-related enterovirus species B serotypes in our previous study. Echovirus 18 (E18), as a member of enterovirus species B, is a significant causative agent of aseptic meningitis and viral encephalitis in children. However, it does not use CD55 as a critical host factor. We conducted CRISPR/Cas9 knockout screening to determine the receptors and entry mechanisms and identified FcRn working as a dual-function receptor for E18. Knockout of FCGRT and B2M, which encode the two subunits of FcRn, prevented infection by E18 and other echoviruses in the same physiological cluster. We then elucidated the underlying molecular mechanism of receptor recognition by E18 using cryogenic electron microscopy. The binding of the FCGRT subunit to the canyon region rotates the residues around the pocket, triggering the release of the pocket factor as observed for other enterovirus species B members.
Collapse
|
19
|
Larsson SB, Vracar D, Karlsson M, Ringlander J, Norder H. Epidemiology and clinical manifestations of different enterovirus and rhinovirus types show EV‐D68 may still impact on severity of respiratory infections. J Med Virol 2022; 94:3829-3839. [PMID: 35403229 PMCID: PMC9321759 DOI: 10.1002/jmv.27767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022]
Abstract
Respiratory infections are often caused by enteroviruses (EVs). The aim of this study was to identify whether certain types of EV were more likely to cause severe illness in 2016, when an increasing spread of upper respiratory infections was observed in Gothenburg, Sweden. The EV strain in 137 of 1341 nasopharyngeal samples reactive for EV by polymerase chain reaction could be typed by sequencing the viral 5′‐untranslated region and VP1 regions. Phylogenetic trees were constructed. Patient records were reviewed. Hospital care was needed for 46 of 74 patients with available medical records. The majority of the patients (83) were infected with the rhinovirus (RV). The remaining 54 were infected with EV A, B, C, and D strains of 13 different types, with EV‐D68 and CV‐A10 being the most common (17 vs. 14). Significantly more patients with EV‐D68 presented with dyspnea, both when compared with other EV types (p = 0.003) and compared to all other EV and RV infections (p = 0.04). Phylogenetic analysis of the sequences revealed the spread of both Asian and European CV‐A10 strains and 12 different RV C types. This study showed an abundance of different EV types spreading during a year with increased upper respiratory increased infections. EV‐D68 infections were associated with more severe disease manifestation. Other EV and RV types were more evenly distributed between hospitalized and nonhospitalized patients. The EV type CV‐A10 was also found in infected patients, which warrants further studies and surveillance, as this pathogen could cause more severe disease and outbreaks of hand, foot, and mouth disease.
Collapse
Affiliation(s)
- Simon B. Larsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Beroendekliniken, Region Västra Götaland, Sahlgrenska University HospitalGothenburgSweden
| | - Diana Vracar
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Department of Clinical Microbiology, Sahlgrenska University HospitalGothenburgSweden
| | - Marie Karlsson
- Department of Clinical Microbiology, Sahlgrenska University HospitalGothenburgSweden
| | - Johan Ringlander
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Department of Clinical Microbiology, Sahlgrenska University HospitalGothenburgSweden
| | - Heléne Norder
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
20
|
Gao W, Yue L, Yang T, Shen D, Li H, Song X, Xie T, He X, Xie Z. Proliferation characteristics of coxsackievirus A10 in mice and immune protection ability of experimental inactivated vaccine. Biomed Pharmacother 2021; 143:112212. [PMID: 34649345 DOI: 10.1016/j.biopha.2021.112212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
Coxsackievirus A10 (CVA10) is the main pathogen of hand, foot, and mouth disease in China. However, there are no CVA10-specific drugs and vaccines, and the pathogenesis and effects of this virus in the body are unknown. We investigated the effect of a clinically isolated CVA10 virus strain (CVA10-25) to investigate its effect in suckling mice through different infection routes. We observed the dynamic distribution and proliferation of the virus in mouse tissues by infecting suckling mice with different doses of the virus and mice of different ages with the same dose of the virus. We also analysed the pathological characteristics after infection. A formaldehyde-inactivated experimental vaccine was prepared to immunise 5-week-old BALB/c female mice three times, and newborn suckling mice were tested for the presence of maternally transmitted antibodies. The viral load in each organ after intracerebral administration was higher than that after intraperitoneal administration; the peroral administration route did not cause disease in mice. Mouse paralysis and death after infection were related to age. The skeletal muscles, heart, and lung showed histopathological changes after infection. We established a 2-day-old BALB/c suckling mouse model that could be infected intracranially to study the pathogenesis and pathology of CVA10. Maternally transmitted antibodies protected the mice against the virus. This study provides a reference for CVA10-related pathogenesis and vaccine research.
Collapse
MESH Headings
- Animals
- Animals, Suckling
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Chlorocebus aethiops
- Disease Models, Animal
- Enterovirus/growth & development
- Enterovirus/immunology
- Female
- Hand, Foot and Mouth Disease/immunology
- Hand, Foot and Mouth Disease/prevention & control
- Hand, Foot and Mouth Disease/virology
- Host-Pathogen Interactions
- Immunogenicity, Vaccine
- Mice, Inbred BALB C
- Vaccination
- Vaccine Efficacy
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
- Vero Cells
- Viral Load
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- Mice
Collapse
Affiliation(s)
- Weijie Gao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, Yunnan 650118, China
| | - Lei Yue
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, Yunnan 650118, China
| | - Ting Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, Yunnan 650118, China
| | - Dong Shen
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, Yunnan 650118, China
| | - Hua Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, Yunnan 650118, China
| | - Xia Song
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, Yunnan 650118, China
| | - Tianhong Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, Yunnan 650118, China
| | - Xin He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, Yunnan 650118, China
| | - Zhongping Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, Yunnan 650118, China; Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan 650118, China.
| |
Collapse
|
21
|
Stoffel L, Agyeman PKA, Keitel K, Barbani MT, Duppenthaler A, Kopp MV, Aebi C. Striking Decrease of Enteroviral Meningitis in Children During the COVID-19 Pandemic. Open Forum Infect Dis 2021; 8:ofab115. [PMID: 34183977 PMCID: PMC8083471 DOI: 10.1093/ofid/ofab115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
We report the unprecedented complete absence of pediatric enteroviral meningitis in 2020 in the area of Bern, Switzerland. Presumably an unintended effect of coronavirus disease 2019 public health measures, this finding highlights the potential of community-wide nonpharmaceutical interventions for controlling the circulation of a major pediatric pathogen, which is mainly transmitted by the fecal-oral route.
Collapse
Affiliation(s)
- Larissa Stoffel
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp K A Agyeman
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kristina Keitel
- Department of Pediatric Emergency Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Andrea Duppenthaler
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias V Kopp
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Airway Research Center North (ARCN), Member of the German Lung Research Center (DZL), University of Luebeck, Luebeck, Germany
| | - Christoph Aebi
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Non-Polio Enteroviruses from Acute Flaccid Paralysis Surveillance in Korea, 2012-2019. Viruses 2021; 13:v13030411. [PMID: 33807557 PMCID: PMC8001888 DOI: 10.3390/v13030411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
The risk of polio importation and re-emergence persists since epidemic polio still occurs in some countries, and the resurgence of polio occurring almost 20 years after polio eradication was declared in Asia has been reported. We analyzed the results of acute flaccid paralysis (AFP) surveillance in Korea to assess the quality of AFP surveillance and understand the etiology of non-polio enterovirus (NPEV)-associated central nervous system diseases in a polio-free area. We investigated 637 AFP patients under 15 years of age whose cases were confirmed during 2012–2019 by virus isolation, real-time reverse transcription polymerase chain reaction, and VP1 gene sequencing. Among the 637 AFP cases, NPEV was detected in 213 (33.4%) patients, with the majority observed in EV-A71, with 54.9% of NPEV positives. EV-A71 has been shown to play a role as a major causative agent in most neurological diseases except for Guillain-Barré syndrome (GBS), acute disseminated encephalomyelitis (ADEM), and meningitis. This study provides information on the AFP surveillance situation in Korea and highlights the polio eradication stage in the monitoring and characterization of NPEV against the outbreak of neurological infectious diseases such as polio.
Collapse
|