1
|
Deng L, Chen S, Li Y, Huang S, Yang X, Wang J. Synthetic CT generation based on multi-sequence MR using CycleGAN for head and neck MRI-only planning. Biomed Eng Lett 2024; 14:1319-1333. [PMID: 39465105 PMCID: PMC11502648 DOI: 10.1007/s13534-024-00402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 10/29/2024] Open
Abstract
The purpose of this study is to investigate the influence of different magnetic resonance (MR) sequences on the accuracy of generating computed tomography (sCT) images for nasopharyngeal carcinoma based on CycleGAN. In this study, 143 patients' head and neck MR sequence (T1, T2, T1C, and T1DIXONC) and CT imaging data were acquired. The generator and discriminator of CycleGAN are improved to achieve the purpose of balance confrontation, and a cyclic consistent structure control domain is proposed in terms of loss function. Four different single-sequence MR images and one multi-sequence MR image were used to evaluate the accuracy of sCT. During the model testing phase, five testing scenarios were employed to further assess the mean absolute error, peak signal-to-noise ratio, structural similarity index, and root mean square error between the actual CT images and the sCT images generated by different models. T1 sequence-based sCT achieved better results in single-sequence MR-based sCT. Multi-sequence MR-based sCT achieved better results with T1 sequence-based sCT in terms of evaluation metrics. For metrological evaluation, the global gamma passage rate of sCT based on sequence MR was greater than 95% at 3%/3 mm, except for sCT based on T2 sequence MR. We developed a CycleGAN method to synthesize CT using different MR sequences, this method shows encouraging potential for dosimetric evaluation.
Collapse
Affiliation(s)
- Liwei Deng
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, 150080 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, School of Automation, Harbin University of Science and Technology, Harbin, 150080 Heilongjiang China
| | - Songyu Chen
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, 150080 Heilongjiang China
| | - Yunfa Li
- Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, School of Automation, Harbin University of Science and Technology, Harbin, 150080 Heilongjiang China
| | - Sijuan Huang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong China
| | - Xin Yang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong China
| | - Jing Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|
2
|
Sherwani MK, Gopalakrishnan S. A systematic literature review: deep learning techniques for synthetic medical image generation and their applications in radiotherapy. FRONTIERS IN RADIOLOGY 2024; 4:1385742. [PMID: 38601888 PMCID: PMC11004271 DOI: 10.3389/fradi.2024.1385742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
The aim of this systematic review is to determine whether Deep Learning (DL) algorithms can provide a clinically feasible alternative to classic algorithms for synthetic Computer Tomography (sCT). The following categories are presented in this study: ∙ MR-based treatment planning and synthetic CT generation techniques. ∙ Generation of synthetic CT images based on Cone Beam CT images. ∙ Low-dose CT to High-dose CT generation. ∙ Attenuation correction for PET images. To perform appropriate database searches, we reviewed journal articles published between January 2018 and June 2023. Current methodology, study strategies, and results with relevant clinical applications were analyzed as we outlined the state-of-the-art of deep learning based approaches to inter-modality and intra-modality image synthesis. This was accomplished by contrasting the provided methodologies with traditional research approaches. The key contributions of each category were highlighted, specific challenges were identified, and accomplishments were summarized. As a final step, the statistics of all the cited works from various aspects were analyzed, which revealed that DL-based sCTs have achieved considerable popularity, while also showing the potential of this technology. In order to assess the clinical readiness of the presented methods, we examined the current status of DL-based sCT generation.
Collapse
Affiliation(s)
- Moiz Khan Sherwani
- Section for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
3
|
Eidex Z, Ding Y, Wang J, Abouei E, Qiu RLJ, Liu T, Wang T, Yang X. Deep learning in MRI-guided radiation therapy: A systematic review. J Appl Clin Med Phys 2024; 25:e14155. [PMID: 37712893 PMCID: PMC10860468 DOI: 10.1002/acm2.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
Recent advances in MRI-guided radiation therapy (MRgRT) and deep learning techniques encourage fully adaptive radiation therapy (ART), real-time MRI monitoring, and the MRI-only treatment planning workflow. Given the rapid growth and emergence of new state-of-the-art methods in these fields, we systematically review 197 studies written on or before December 31, 2022, and categorize the studies into the areas of image segmentation, image synthesis, radiomics, and real time MRI. Building from the underlying deep learning methods, we discuss their clinical importance and current challenges in facilitating small tumor segmentation, accurate x-ray attenuation information from MRI, tumor characterization and prognosis, and tumor motion tracking. In particular, we highlight the recent trends in deep learning such as the emergence of multi-modal, visual transformer, and diffusion models.
Collapse
Affiliation(s)
- Zach Eidex
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
- School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Yifu Ding
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jing Wang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Elham Abouei
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Richard L. J. Qiu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tian Liu
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Tonghe Wang
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
- School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
4
|
Ohira S, Suzuki Y, Washio H, Yamamoto Y, Tateishi S, Inui S, Kanayama N, Kawamata M, Miyazaki M, Nishio T, Koizumi M, Nakanishi K, Konishi K. Impact of magnetic resonance imaging-related geometric distortion of dose distribution in fractionated stereotactic radiotherapy in patients with brain metastases. Strahlenther Onkol 2024; 200:39-48. [PMID: 37591978 DOI: 10.1007/s00066-023-02120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/10/2023] [Indexed: 08/19/2023]
Abstract
PURPOSE The geometric distortion related to magnetic resonance (MR) imaging in a diagnostic radiology (MRDR) and radiotherapy (MRRT) setup is evaluated, and the dosimetric impact of MR distortion on fractionated stereotactic radiotherapy (FSRT) in patients with brain metastases is simulated. MATERIALS AND METHODS An anthropomorphic skull phantom was scanned using a 1.5‑T MR scanner, and the magnitude of MR distortion was calculated with (MRDR-DC and MRRT-DC) and without (MRDR-nDC and MRRT-nDC) distortion-correction algorithms. Automated noncoplanar volumetric modulated arc therapy (HyperArc, HA; Varian Medical Systems, Palo Alto, CA, USA) plans were generated for 53 patients with 186 brain metastases. The MR distortion at each gross tumor volume (GTV) was calculated using the distance between the center of the GTV and the MR image isocenter (MIC) and the quadratic regression curve derived from the phantom study (MRRT-DC and MRRT-nDC). Subsequently, the radiation isocenter of the HA plans was shifted according to the MR distortion at each GTV (HADC and HAnDC). RESULTS The median MR distortions were approximately 0.1 mm when the distance from the MIC was < 30 mm, whereas the median distortion varied widely when the distance was > 60 mm (0.23, 0.47, 0.37, and 0.57 mm in MRDR-DC, MRDR-nDC, MRRT-DC, and MRRT-nDC, respectively). The dose to the 98% of the GTV volume (D98%) decreased as the distance from the MIC increased. In the HADC plans, the relative dose difference of D98% was less than 5% when the GTV was located within 70 mm from the MIC, whereas the underdose of GTV exceeded 5% when it was 48 mm (-26.5% at maximum) away from the MIC in the HAnDC plans. CONCLUSION Use of a distortion-correction algorithm in the studied MR diagnoses is essential, and the dosimetric impact of MR distortion is not negligible, particularly for tumors located far away from the MIC.
Collapse
Affiliation(s)
- Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Yuta Suzuki
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Hayate Washio
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Yuki Yamamoto
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Soichiro Tateishi
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Shoki Inui
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Naoyuki Kanayama
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Minoru Kawamata
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Katsuyuki Nakanishi
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Koji Konishi
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
5
|
Yuan S, Chen X, Liu Y, Zhu J, Men K, Dai J. Comprehensive evaluation of similarity between synthetic and real CT images for nasopharyngeal carcinoma. Radiat Oncol 2023; 18:182. [PMID: 37936196 PMCID: PMC10629140 DOI: 10.1186/s13014-023-02349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/11/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Although magnetic resonance imaging (MRI)-to-computed tomography (CT) synthesis studies based on deep learning have significantly progressed, the similarity between synthetic CT (sCT) and real CT (rCT) has only been evaluated in image quality metrics (IQMs). To evaluate the similarity between synthetic CT (sCT) and real CT (rCT) comprehensively, we comprehensively evaluated IQMs and radiomic features for the first time. METHODS This study enrolled 127 patients with nasopharyngeal carcinoma who underwent CT and MRI scans. Supervised-learning (Unet) and unsupervised-learning (CycleGAN) methods were applied to build MRI-to-CT synthesis models. The regions of interest (ROIs) included nasopharynx gross tumor volume (GTVnx), brainstem, parotid glands, and temporal lobes. The peak signal-to-noise ratio (PSNR), mean absolute error (MAE), root mean square error (RMSE), and structural similarity (SSIM) were used to evaluate image quality. Additionally, 837 radiomic features were extracted for each ROI, and the correlation was evaluated using the concordance correlation coefficient (CCC). RESULTS The MAE, RMSE, SSIM, and PSNR of the body were 91.99, 187.12, 0.97, and 51.15 for Unet and 108.30, 211.63, 0.96, and 49.84 for CycleGAN. For the metrics, Unet was superior to CycleGAN (P < 0.05). For the radiomic features, the percentage of four levels (i.e., excellent, good, moderate, and poor, respectively) were as follows: GTVnx, 8.5%, 14.6%, 26.5%, and 50.4% for Unet and 12.3%, 25%, 38.4%, and 24.4% for CycleGAN; other ROIs, 5.44% ± 3.27%, 5.56% ± 2.92%, 21.38% ± 6.91%, and 67.58% ± 8.96% for Unet and 5.16% ± 1.69%, 3.5% ± 1.52%, 12.68% ± 7.51%, and 78.62% ± 8.57% for CycleGAN. CONCLUSIONS Unet-sCT was superior to CycleGAN-sCT for the IQMs. However, neither exhibited absolute superiority in radiomic features, and both were far less similar to rCT. Therefore, further work is required to improve the radiomic similarity for MRI-to-CT synthesis. TRIAL REGISTRATION This study was a retrospective study, so it was free from registration.
Collapse
Affiliation(s)
- Siqi Yuan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinyuan Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuxiang Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ji Zhu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kuo Men
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jianrong Dai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
6
|
Tian L, Lühr A. Proton range uncertainty caused by synthetic computed tomography generated with deep learning from pelvic magnetic resonance imaging. Acta Oncol 2023; 62:1461-1469. [PMID: 37703314 DOI: 10.1080/0284186x.2023.2256967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND In proton therapy, it is disputed whether synthetic computed tomography (sCT), derived from magnetic resonance imaging (MRI), permits accurate dose calculations. On the one hand, an MRI-only workflow could eliminate errors caused by, e.g., MRI-CT registration. On the other hand, the extra error would be induced due to an sCT generation model. This work investigated the systematic and random model error induced by sCT generation of a widely discussed deep learning model, pix2pix. MATERIAL AND METHODS An open-source image dataset of 19 patients with cancer in the pelvis was employed and split into 10, 5, and 4 for training, testing, and validation of the model, respectively. Proton pencil beams (200 MeV) were simulated on the real CT and generated sCT using the tool for particle simulation (TOPAS). Monte Carlo (MC) dropout was used for error estimation (50 random sCT samples). Systematic and random model errors were investigated for sCT generation and dose calculation on sCT. RESULTS For sCT generation, random model error near the edge of the body (∼200 HU) was higher than that within the body (∼100 HU near the bone edge and <10 HU in soft tissue). The mean absolute error (MAE) was 49 ± 5, 191 ± 23, and 503 ± 70 HU for the whole body, bone, and air in the patient, respectively. Random model errors of the proton range were small (<0.2 mm) for all spots and evenly distributed throughout the proton fields. Systematic errors of the proton range were -1.0(±2.2) mm and 0.4(±0.9)%, respectively, and were unevenly distributed within the proton fields. For 4.5% of the spots, large errors (>5 mm) were found, which may relate to MRI-CT mismatch due to, e.g., registration, MRI distortion anatomical changes, etc. CONCLUSION The sCT model was shown to be robust, i.e., had a low random model error. However, further investigation to reduce and even predict and manage systematic error is still needed for future MRI-only proton therapy.
Collapse
Affiliation(s)
- Liheng Tian
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
7
|
Li T, Wang J, Yang Y, Glide-Hurst CK, Wen N, Cai J. Multi-parametric MRI for radiotherapy simulation. Med Phys 2023; 50:5273-5293. [PMID: 36710376 PMCID: PMC10382603 DOI: 10.1002/mp.16256] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 09/10/2022] [Accepted: 12/06/2022] [Indexed: 01/31/2023] Open
Abstract
Magnetic resonance imaging (MRI) has become an important imaging modality in the field of radiotherapy (RT) in the past decade, especially with the development of various novel MRI and image-guidance techniques. In this review article, we will describe recent developments and discuss the applications of multi-parametric MRI (mpMRI) in RT simulation. In this review, mpMRI refers to a general and loose definition which includes various multi-contrast MRI techniques. Specifically, we will focus on the implementation, challenges, and future directions of mpMRI techniques for RT simulation.
Collapse
Affiliation(s)
- Tian Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jihong Wang
- Department of Radiation Physics, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Yingli Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong Univeristy School of Medicine, Shanghai, China
- SJTU-Ruijing-UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Carri K Glide-Hurst
- Department of Radiation Oncology, University of Wisconsin, Madison, Wisconsin, USA
| | - Ning Wen
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong Univeristy School of Medicine, Shanghai, China
- SJTU-Ruijing-UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- The Global Institute of Future Technology, Shanghai Jiaotong University, Shanghai, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
8
|
Eidex Z, Ding Y, Wang J, Abouei E, Qiu RL, Liu T, Wang T, Yang X. Deep Learning in MRI-guided Radiation Therapy: A Systematic Review. ARXIV 2023:arXiv:2303.11378v2. [PMID: 36994167 PMCID: PMC10055493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
MRI-guided radiation therapy (MRgRT) offers a precise and adaptive approach to treatment planning. Deep learning applications which augment the capabilities of MRgRT are systematically reviewed. MRI-guided radiation therapy offers a precise, adaptive approach to treatment planning. Deep learning applications which augment the capabilities of MRgRT are systematically reviewed with emphasis placed on underlying methods. Studies are further categorized into the areas of segmentation, synthesis, radiomics, and real time MRI. Finally, clinical implications, current challenges, and future directions are discussed.
Collapse
Affiliation(s)
- Zach Eidex
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Yifu Ding
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Jing Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Elham Abouei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Richard L.J. Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Tian Liu
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
9
|
Koike Y, Takegawa H, Anetai Y, Ohira S, Nakamura S, Tanigawa N. Patient-specific three-dimensional dose distribution prediction via deep learning for prostate cancer therapy: Improvement with the structure loss. Phys Med 2023; 107:102544. [PMID: 36774846 DOI: 10.1016/j.ejmp.2023.102544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
PURPOSE Deep learning (DL)-based dose distribution prediction can potentially reduce the cost of inverse planning process. We developed and introduced a structure-focused loss (Lstruct) for 3D dose prediction to improve prediction accuracy. This study investigated the influence of Lstruct on DL-based dose prediction for patients with prostate cancer. The proposed Lstruct, which is similar in concept to dose-volume histogram (DVH)-based optimization in clinical practice, has the potential to provide more interpretable and accurate DL-based optimization. METHODS This study involved 104 patients who underwent prostate radiotherapy. We used 3D U-Net-based architecture to predict dose distributions from computed tomography and contours of the planning target volume and organs-at-risk. We trained two models using different loss functions: L2 loss and Lstruct. Predicted doses were compared in terms of dose-volume parameters and the Dice similarity coefficient of isodose volume. RESULTS DVH analysis showed that the Lstruct model had smaller errors from the ground truth than the L2 model. The Lstruct model achieved more consistent dose distributions than the L2 model, with errors close to zero. The isodose Dice score of the Lstruct model was greater than that of the L2 model by >20% of the prescribed dose. CONCLUSIONS We developed Lstruct using labels of inputted contours for DL-based dose prediction for prostate radiotherapy. Lstruct can be generalized to any DL architecture, thereby enhancing the dose prediction accuracy.
Collapse
Affiliation(s)
- Yuhei Koike
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan.
| | - Hideki Takegawa
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Yusuke Anetai
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 537-8567, Japan
| | - Satoaki Nakamura
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Noboru Tanigawa
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
10
|
Guerini AE, Nici S, Magrini SM, Riga S, Toraci C, Pegurri L, Facheris G, Cozzaglio C, Farina D, Liserre R, Gasparotti R, Ravanelli M, Rondi P, Spiazzi L, Buglione M. Adoption of Hybrid MRI-Linac Systems for the Treatment of Brain Tumors: A Systematic Review of the Current Literature Regarding Clinical and Technical Features. Technol Cancer Res Treat 2023; 22:15330338231199286. [PMID: 37774771 PMCID: PMC10542234 DOI: 10.1177/15330338231199286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Possible advantages of magnetic resonance (MR)-guided radiation therapy (MRgRT) for the treatment of brain tumors include improved definition of treatment volumes and organs at risk (OARs) that could allow margin reductions, resulting in limited dose to the OARs and/or dose escalation to target volumes. Recently, hybrid systems integrating a linear accelerator and an magnetic resonance imaging (MRI) scan (MRI-linacs, MRL) have been introduced, that could potentially lead to a fully MRI-based treatment workflow. METHODS We performed a systematic review of the published literature regarding the adoption of MRL for the treatment of primary or secondary brain tumors (last update November 3, 2022), retrieving a total of 2487 records; after a selection based on title and abstracts, the full text of 74 articles was analyzed, finally resulting in the 52 papers included in this review. RESULTS AND DISCUSSION Several solutions have been implemented to achieve a paradigm shift from CT-based radiotherapy to MRgRT, such as the management of geometric integrity and the definition of synthetic CT models that estimate electron density. Multiple sequences have been optimized to acquire images with adequate quality with on-board MR scanner in limited times. Various sophisticated algorithms have been developed to compensate the impact of magnetic field on dose distribution and calculate daily adaptive plans in a few minutes with satisfactory dosimetric parameters for the treatment of primary brain tumors and cerebral metastases. Dosimetric studies and preliminary clinical experiences demonstrated the feasibility of treating brain lesions with MRL. CONCLUSIONS The adoption of an MRI-only workflow is feasible and could offer several advantages for the treatment of brain tumors, including superior image quality for lesions and OARs and the possibility to adapt the treatment plan on the basis of daily MRI. The growing body of clinical data will clarify the potential benefit in terms of toxicity and response to treatment.
Collapse
Affiliation(s)
- Andrea Emanuele Guerini
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
- Co-first authors
| | - Stefania Nici
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
- Co-first authors
| | - Stefano Maria Magrini
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Stefano Riga
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
| | - Cristian Toraci
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
| | - Ludovica Pegurri
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Giorgio Facheris
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Claudia Cozzaglio
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
| | - Davide Farina
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto Liserre
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Roberto Gasparotti
- Neuroradiology Unit, Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Marco Ravanelli
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Paolo Rondi
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Luigi Spiazzi
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
- Co-last author
| | - Michela Buglione
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
- Co-last author
| |
Collapse
|
11
|
Amini Amirkolaee H, Amini Amirkolaee H. Medical image translation using an edge-guided generative adversarial network with global-to-local feature fusion. J Biomed Res 2022; 36:409-422. [PMID: 35821004 PMCID: PMC9724158 DOI: 10.7555/jbr.36.20220037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In this paper, we propose a framework based deep learning for medical image translation using paired and unpaired training data. Initially, a deep neural network with an encoder-decoder structure is proposed for image-to-image translation using paired training data. A multi-scale context aggregation approach is then used to extract various features from different levels of encoding, which are used during the corresponding network decoding stage. At this point, we further propose an edge-guided generative adversarial network for image-to-image translation based on unpaired training data. An edge constraint loss function is used to improve network performance in tissue boundaries. To analyze framework performance, we conducted five different medical image translation tasks. The assessment demonstrates that the proposed deep learning framework brings significant improvement beyond state-of-the-arts.
Collapse
Affiliation(s)
- Hamed Amini Amirkolaee
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran,Hamed Amini Amirkolaee, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, N Kargar street, Tehran 1417935840, Iran. Tel/Fax: +98-930-9777140/+98-21-88008837, E-mail:
| | - Hamid Amini Amirkolaee
- Civil and Geomatics Engineering Faculty, Tafresh State University, Tafresh 7961139518, Iran
| |
Collapse
|
12
|
Scholey JE, Rajagopal A, Vasquez EG, Sudhyadhom A, Larson PEZ. Generation of synthetic megavoltage CT for MRI-only radiotherapy treatment planning using a 3D deep convolutional neural network. Med Phys 2022; 49:6622-6634. [PMID: 35870154 PMCID: PMC9588542 DOI: 10.1002/mp.15876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/10/2022] [Accepted: 07/01/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Megavoltage computed tomography (MVCT) has been implemented on many radiotherapy treatment machines for on-board anatomical visualization, localization, and adaptive dose calculation. Implementing an MR-only workflow by synthesizing MVCT from magnetic resonance imaging (MRI) would offer numerous advantages for treatment planning and online adaptation. PURPOSE In this work, we sought to synthesize MVCT (sMVCT) datasets from MRI using deep learning to demonstrate the feasibility of MRI-MVCT only treatment planning. METHODS MVCTs and T1-weighted MRIs for 120 patients treated for head-and-neck cancer were retrospectively acquired and co-registered. A deep neural network based on a fully-convolutional 3D U-Net architecture was implemented to map MRI intensity to MVCT HU. Input to the model were volumetric patches generated from paired MRI and MVCT datasets. The U-Net was initialized with random parameters and trained on a mean absolute error (MAE) objective function. Model accuracy was evaluated on 18 withheld test exams. sMVCTs were compared to respective MVCTs. Intensity-modulated volumetric radiotherapy (IMRT) plans were generated on MVCTs of four different disease sites and compared to plans calculated onto corresponding sMVCTs using the gamma metric and dose-volume-histograms (DVHs). RESULTS MAE values between sMVCT and MVCT datasets were 93.3 ± 27.5, 78.2 ± 27.5, and 138.0 ± 43.4 HU for whole body, soft tissue, and bone volumes, respectively. Overall, there was good agreement between sMVCT and MVCT, with bone and air posing the greatest challenges. The retrospective dataset introduced additional deviations due to sinus filling or tumor growth/shrinkage between scans, differences in external contours due to variability in patient positioning, or when immobilization devices were absent from diagnostic MRIs. Dose distributions of IMRT plans evaluated for four test cases showed close agreement between sMVCT and MVCT images when evaluated using DVHs and gamma dose metrics, which averaged to 98.9 ± 1.0% and 96.8 ± 2.6% analyzed at 3%/3 mm and 2%/2 mm, respectively. CONCLUSIONS MVCT datasets can be generated from T1-weighted MRI using a 3D deep convolutional neural network with dose calculation on a sample sMVCT in close agreement with the MVCT. These results demonstrate the feasibility of using MRI-derived sMVCT in an MR-only treatment planning workflow.
Collapse
Affiliation(s)
- Jessica E Scholey
- Department of Radiation Oncology, The University of California, San Francisco; San Francisco, CA 94158 USA
| | - Abhejit Rajagopal
- Department of Radiology and Biomedical Imaging, The University of California, San Francisco; San Francisco, CA 94158 USA
| | - Elena Grace Vasquez
- Department of Physics, The University of California, Berkeley; Berkeley, CA 94720 USA
| | - Atchar Sudhyadhom
- Department of Radiation Oncology, Brigham & Women’s Hospital/Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA; 02115 USA
| | - Peder Eric Zufall Larson
- Department of Radiology and Biomedical Imaging, The University of California, San Francisco; San Francisco, CA 94158 USA
| |
Collapse
|
13
|
Li C, Li W, Liu C, Zheng H, Cai J, Wang S. Artificial intelligence in multi-parametric magnetic resonance imaging: A review. Med Phys 2022; 49:e1024-e1054. [PMID: 35980348 DOI: 10.1002/mp.15936] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/06/2022] Open
Abstract
Multi-parametric magnetic resonance imaging (mpMRI) is an indispensable tool in the clinical workflow for the diagnosis and treatment planning of various diseases. Machine learning-based artificial intelligence (AI) methods, especially those adopting the deep learning technique, have been extensively employed to perform mpMRI image classification, segmentation, registration, detection, reconstruction, and super-resolution. The current availability of increasing computational power and fast-improving AI algorithms have empowered numerous computer-based systems for applying mpMRI to disease diagnosis, imaging-guided radiotherapy, patient risk and overall survival time prediction, and the development of advanced quantitative imaging technology for magnetic resonance fingerprinting. However, the wide application of these developed systems in the clinic is still limited by a number of factors, including robustness, reliability, and interpretability. This survey aims to provide an overview for new researchers in the field as well as radiologists with the hope that they can understand the general concepts, main application scenarios, and remaining challenges of AI in mpMRI. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Cheng Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wen Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chenyang Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shanshan Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Peng Cheng Laboratory, Shenzhen, 518066, China.,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China
| |
Collapse
|
14
|
Ali H, Biswas R, Ali F, Shah U, Alamgir A, Mousa O, Shah Z. The role of generative adversarial networks in brain MRI: a scoping review. Insights Imaging 2022; 13:98. [PMID: 35662369 PMCID: PMC9167371 DOI: 10.1186/s13244-022-01237-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
The performance of artificial intelligence (AI) for brain MRI can improve if enough data are made available. Generative adversarial networks (GANs) showed a lot of potential to generate synthetic MRI data that can capture the distribution of real MRI. Besides, GANs are also popular for segmentation, noise removal, and super-resolution of brain MRI images. This scoping review aims to explore how GANs methods are being used on brain MRI data, as reported in the literature. The review describes the different applications of GANs for brain MRI, presents the most commonly used GANs architectures, and summarizes the publicly available brain MRI datasets for advancing the research and development of GANs-based approaches. This review followed the guidelines of PRISMA-ScR to perform the study search and selection. The search was conducted on five popular scientific databases. The screening and selection of studies were performed by two independent reviewers, followed by validation by a third reviewer. Finally, the data were synthesized using a narrative approach. This review included 139 studies out of 789 search results. The most common use case of GANs was the synthesis of brain MRI images for data augmentation. GANs were also used to segment brain tumors and translate healthy images to diseased images or CT to MRI and vice versa. The included studies showed that GANs could enhance the performance of AI methods used on brain MRI imaging data. However, more efforts are needed to transform the GANs-based methods in clinical applications.
Collapse
Affiliation(s)
- Hazrat Ali
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar.
| | - Rafiul Biswas
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
| | - Farida Ali
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
| | - Uzair Shah
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
| | - Asma Alamgir
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
| | - Osama Mousa
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
| | - Zubair Shah
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar.
| |
Collapse
|
15
|
Ma X, Chen X, Wang Y, Qin S, Yan X, Cao Y, Chen Y, Dai J, Men K. Personalized modeling to improve pseudo-CT images for magnetic resonance imaging-guided adaptive radiotherapy. Int J Radiat Oncol Biol Phys 2022; 113:885-892. [PMID: 35462026 DOI: 10.1016/j.ijrobp.2022.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/24/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Magnetic resonance imaging-guided adaptive radiotherapy (MRIgART) greatly improves daily tumor localization and enables online re-planning to obtain maximum dosimetric benefits. However, accurately predicting patient-specific electron density maps for adaptive radiotherapy (ART) planning remains a challenge. Therefore, this study proposes a personalized modeling framework for generating pseudo-computed tomography (pCT) in MRIgART. METHODS AND MATERIALS Eighty-three patients who received MRIgART were included and CT simulations were performed on all the patients. Daily T2-weighted 1.5 T MRI was acquired using the Unity MR-linac for adaptive planning. Pairs of co-registered CT and daily MRI images of the randomly selected training set (68 patients) were inputted into a generative adversarial network (GAN) to establish a population model. The personalized model for each patient in the test set (15 patients) was acquired using model fine-tuning, which adopted the pair of the deformable-registered CT and the first daily MRI to fine-tune the population model. The pCT quality was quantitatively evaluated in the second and the last fractions with three metrics: intensity accuracy using mean absolute error (MAE); anatomical structure similarity using dice similarity coefficient (DSC); and dosimetric consistency using gamma-passing rate (GPR). RESULTS The image generation speed was 65 slices per second. For the last fractions, and for head-neck, thoracoabdominal, and pelvic cases, the average MAEs were 76.8 HU vs. 123.6 HU, 38.1 HU vs. 52.0 HU, and 29.5 HU vs. 39.7 HU, respectively. Furthermore, the average DSCs of bone were 0.92 vs. 0.80, 0.85 vs. 0.73, and 0.94 vs. 0.88; and the average GPRs (1%/1 mm) were 95.5% vs. 84.7%, 97.7% vs. 92.8%, and 95.5% vs. 88.7%, for personalized vs. population models, respectively. Results of the second fractions were similar. CONCLUSIONS The proposed personalized modeling framework remarkably improved pCT quality for multiple treatment sites and was well suited for the MRIgART clinical setting.
Collapse
Affiliation(s)
- Xiangyu Ma
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China..
| | - Xinyuan Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shirui Qin
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuena Yan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Cao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Chen
- Elekta Technology Co., Shanghai, China
| | - Jianrong Dai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kuo Men
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China..
| |
Collapse
|
16
|
Sreeja S, Muhammad Noorul Mubarak D. Pseudo computed tomography image generation from brain magnetic resonance image using integration of PCA & DCNN-UNET: A comparative analysis. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-213367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
MRI-Only Radiation (RT) now avoids some of the issues associated with employing Computed Tomography(CT) in RT chains, such as MRI registration to a separate CT, excess dosage administration, and the cost of recurrent imaging. The fact that MRI signal intensities are unrelated to the biological tissue’s attenuation coefficient poses a problem. This raises workloads, creates uncertainty as a result of the required inter-modality image registrations, and exposes patients to needless radiation. While using only MRI would be preferable, a method for estimating a pseudo-CT (pCT)or synthetic-CT(sCT) for producing electron density maps and patient positioning reference images is required. As Deep Learning(DL) is revolutionized in so many fields these days, an effective and accurate model is required for generating pCT from MRI. So, this paper depicts an efficient DL model in which the following are the stages: a) Data Acquisition where CT and MRI images are collected b) preprocessing these to avoid the anomalies and noises using techniques like outlier elimination, data smoothening and data normalizing c) feature extraction and selection using Principal Component Analysis (PCA) & regression method d) generating pCT from MRI using Deep Convolutional Neural Network and UNET (DCNN-UNET). We here compare both feature extraction (PCA) and classification model (DCNN-UNET) with other methods such as Discrete Wavelet Tranform(DWT), Independent Component Analysis(ICA), Fourier Transform and VGG16, ResNet, AlexNet, DenseNet, CNN (Convolutional Neural Network)respectively. The performance measures used to evaluate these models are Dice Coefficient(DC), Structured Similarity Index Measure(SSIM), Mean Absolute Error(MAE), Mean Squared Error(MSE), Accuracy, Computation Time in which our proposed system outperforms better with 0.94±0.02 over other state-of-art models.
Collapse
Affiliation(s)
- S Sreeja
- Department of Computer Science, University of Kerala, Karyavattom Campus, Trivandrum, Kerala, India
| | | |
Collapse
|
17
|
Omari EA, Zhang Y, Ahunbay E, Paulson E, Amjad A, Chen X, Liang Y, Li XA. Multi parametric magnetic resonance imaging for radiation treatment planning. Med Phys 2022; 49:2836-2845. [PMID: 35170769 DOI: 10.1002/mp.15534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/05/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
In recent years, multi-parametric magnetic resonance imaging (MpMRI) has played a major role in radiation therapy treatment planning. The superior soft tissue contrast, functional or physiological imaging capabilities and the flexibility of site-specific image sequence development has placed MpMRI at the forefront. In this article, the present status of MpMRI for external beam radiation therapy planning is reviewed. Common MpMRI sequences, preprocessing and QA strategies are briefly discussed, and various image registration techniques and strategies are addressed. Image segmentation methods including automatic segmentation and deep learning techniques for organs at risk and target delineation are reviewed. Due to the advancement in MRI guided online adaptive radiotherapy, treatment planning considerations addressing MRI only planning are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eenas A Omari
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ying Zhang
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ergun Ahunbay
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Asma Amjad
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xinfeng Chen
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ying Liang
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
18
|
Wang C, Uh J, Patni T, Merchant T, Li Y, Hua CH, Acharya S. Toward MR-only proton therapy planning for pediatric brain tumors: synthesis of relative proton stopping power images with multiple sequence MRI and development of an online quality assurance tool. Med Phys 2022; 49:1559-1570. [PMID: 35075670 DOI: 10.1002/mp.15479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To generate synthetic relative proton-stopping-power (sRPSP) images from MRI sequence(s) and develop an online quality assurance (QA) tool for sRPSP to facilitate safe integration of MR-only proton planning into clinical practice. MATERIALS AND METHODS Planning CT and MR images of 195 pediatric brain tumor patients were utilized (training: 150, testing: 45). Seventeen consistent-cycle Generative Adversarial Network (ccGAN) models were trained separately using paired CT-converted RPSP and MRI datasets to transform a subject's MRI into sRPSP. T1-weighted (T1W), T2-weighted (T2W), and FLAIR MRI were permutated to form 17 combinations, with or without preprocessing, for determining the optimal training sequence(s). For evaluation, sRPSP images were converted to synthetic CT (sCT) and compared to the real CT in terms of mean absolute error (MAE) in HU. For QA, sCT was deformed and compared to a reference template built from training dataset to produce a flag map, highlighting pixels that deviate by >100 HU and fall outside the mean ± standard deviation reference intensity. The gamma intensity analysis (10%/3mm) of the deformed sCT against the QA template on the intensity difference was investigated as a surrogate of sCT accuracy. RESULTS The sRPSP images generated from a single T1W or T2W sequence outperformed that generated from multi-MRI sequences in terms of MAE (all P<0.05). Preprocessing with N4 bias and histogram matching reduced MAE of T2W MRI-based sCT (54±21 HU vs. 42±13 HU, P = .002). The gamma intensity analysis of sCT against the QA template was highly correlated with the MAE of sCT against the real CT in the testing cohort (r = -0.89 for T1W sCT; r = -0.93 for T2W sCT). CONCLUSION Accurate sRPSP images can be generated from T1W/T2W MRI for proton planning. A QA tool highlights regions of inaccuracy, flagging problematic cases unsuitable for clinical use. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chuang Wang
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States Of America
| | - Jinsoo Uh
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States Of America
| | - Tushar Patni
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, United States Of America
| | - Thomas Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States Of America
| | - Yimei Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, United States Of America
| | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States Of America
| | - Sahaja Acharya
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States Of America.,Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD, United States Of America
| |
Collapse
|
19
|
Lerner M, Medin J, Jamtheim Gustafsson C, Alkner S, Olsson LE. Prospective Clinical Feasibility Study for MRI-Only Brain Radiotherapy. Front Oncol 2022; 11:812643. [PMID: 35083159 PMCID: PMC8784680 DOI: 10.3389/fonc.2021.812643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/20/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES MRI-only radiotherapy (RT) provides a workflow to decrease the geometric uncertainty introduced by the image registration process between MRI and CT data and to streamline the RT planning. Despite the recent availability of validated synthetic CT (sCT) methods for the head region, there are no clinical implementations reported for brain tumors. Based on a preceding validation study of sCT, this study aims to investigate MRI-only brain RT through a prospective clinical feasibility study with endpoints for dosimetry and patient setup. MATERIAL AND METHODS Twenty-one glioma patients were included. MRI Dixon images were used to generate sCT images using a CE-marked deep learning-based software. RT treatment plans were generated based on MRI delineated anatomical structures and sCT for absorbed dose calculations. CT scans were acquired but strictly used for sCT quality assurance (QA). Prospective QA was performed prior to MRI-only treatment approval, comparing sCT and CT image characteristics and calculated dose distributions. Additional retrospective analysis of patient positioning and dose distribution gamma evaluation was performed. RESULTS Twenty out of 21 patients were treated using the MRI-only workflow. A single patient was excluded due to an MRI artifact caused by a hemostatic substance injected near the target during surgery preceding radiotherapy. All other patients fulfilled the acceptance criteria. Dose deviations in target were within ±1% for all patients in the prospective analysis. Retrospective analysis yielded gamma pass rates (2%, 2 mm) above 99%. Patient positioning using CBCT images was within ± 1 mm for registrations with sCT compared to CT. CONCLUSION We report a successful clinical study of MRI-only brain radiotherapy, conducted using both prospective and retrospective analysis. Synthetic CT images generated using the CE-marked deep learning-based software were clinically robust based on endpoints for dosimetry and patient positioning.
Collapse
Affiliation(s)
- Minna Lerner
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden
| | - Joakim Medin
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Department of Medical Radiation Physics, Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Christian Jamtheim Gustafsson
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden
| | - Sara Alkner
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | - Lars E. Olsson
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden
| |
Collapse
|
20
|
Sun H, Xi Q, Fan R, Sun J, Xie K, Ni X, Yang J. Synthesis of pseudo-CT images from pelvic MRI images based on MD-CycleGAN model for radiotherapy. Phys Med Biol 2021; 67. [PMID: 34879356 DOI: 10.1088/1361-6560/ac4123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/08/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE A multi-discriminator-based cycle generative adversarial network (MD-CycleGAN) model was proposed to synthesize higher-quality pseudo-CT from MRI. APPROACH The MRI and CT images obtained at the simulation stage with cervical cancer were selected to train the model. The generator adopted the DenseNet as the main architecture. The local and global discriminators based on convolutional neural network jointly discriminated the authenticity of the input image data. In the testing phase, the model was verified by four-fold cross-validation method. In the prediction stage, the data were selected to evaluate the accuracy of the pseudo-CT in anatomy and dosimetry, and they were compared with the pseudo-CT synthesized by GAN with generator based on the architectures of ResNet, sU-Net, and FCN. MAIN RESULTS There are significant differences(P<0.05) in the four-fold-cross validation results on peak signal-to-noise ratio and structural similarity index metrics between the pseudo-CT obtained based on MD-CycleGAN and the ground truth CT (CTgt). The pseudo-CT synthesized by MD-CycleGAN had closer anatomical information to the CTgt with root mean square error of 47.83±2.92 HU and normalized mutual information value of 0.9014±0.0212 and mean absolute error value of 46.79±2.76 HU. The differences in dose distribution between the pseudo-CT obtained by MD-CycleGAN and the CTgt were minimal. The mean absolute dose errors of Dosemax, Dosemin and Dosemean based on the planning target volume were used to evaluate the dose uncertainty of the four pseudo-CT. The u-values of the Wilcoxon test were 55.407, 41.82 and 56.208, and the differences were statistically significant. The 2%/2 mm-based gamma pass rate (%) of the proposed method was 95.45±1.91, and the comparison methods (ResNet_GAN, sUnet_GAN and FCN_GAN) were 93.33±1.20, 89.64±1.63 and 87.31±1.94, respectively. SIGNIFICANCE The pseudo-CT obtained based on MD-CycleGAN have higher imaging quality and are closer to the CTgt in terms of anatomy and dosimetry than other GAN models.
Collapse
Affiliation(s)
- Hongfei Sun
- Northwestern Polytechnical University School of Automation, School of Automation, Xi'an, Shaanxi, 710129, CHINA
| | - Qianyi Xi
- The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, ., Changzhou, Jiangsu, 213003, CHINA
| | - Rongbo Fan
- Northwestern Polytechnical University School of Automation, School of Automation, Xi'an, Shaanxi, 710129, CHINA
| | - Jiawei Sun
- The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, ., Changzhou, Jiangsu, 213003, CHINA
| | - Kai Xie
- The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, ., Changzhou, Jiangsu, 213003, CHINA
| | - Xinye Ni
- The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, ., Changzhou, 213003, CHINA
| | - Jianhua Yang
- Northwestern Polytechnical University School of Automation, School of Automation, Xi'an, Shaanxi, 710129, CHINA
| |
Collapse
|
21
|
Boulanger M, Nunes JC, Chourak H, Largent A, Tahri S, Acosta O, De Crevoisier R, Lafond C, Barateau A. Deep learning methods to generate synthetic CT from MRI in radiotherapy: A literature review. Phys Med 2021; 89:265-281. [PMID: 34474325 DOI: 10.1016/j.ejmp.2021.07.027] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
PURPOSE In radiotherapy, MRI is used for target volume and organs-at-risk delineation for its superior soft-tissue contrast as compared to CT imaging. However, MRI does not provide the electron density of tissue necessary for dose calculation. Several methods of synthetic-CT (sCT) generation from MRI data have been developed for radiotherapy dose calculation. This work reviewed deep learning (DL) sCT generation methods and their associated image and dose evaluation, in the context of MRI-based dose calculation. METHODS We searched the PubMed and ScienceDirect electronic databases from January 2010 to March 2021. For each paper, several items were screened and compiled in figures and tables. RESULTS This review included 57 studies. The DL methods were either generator-only based (45% of the reviewed studies), or generative adversarial network (GAN) architecture and its variants (55% of the reviewed studies). The brain and pelvis were the most commonly investigated anatomical localizations (39% and 28% of the reviewed studies, respectively), and more rarely, the head-and-neck (H&N) (15%), abdomen (10%), liver (5%) or breast (3%). All the studies performed an image evaluation of sCTs with a diversity of metrics, with only 36 studies performing dosimetric evaluations of sCT. CONCLUSIONS The median mean absolute errors were around 76 HU for the brain and H&N sCTs and 40 HU for the pelvis sCTs. For the brain, the mean dose difference between the sCT and the reference CT was <2%. For the H&N and pelvis, the mean dose difference was below 1% in most of the studies. Recent GAN architectures have advantages compared to generator-only, but no superiority was found in term of image or dose sCT uncertainties. Key challenges of DL-based sCT generation methods from MRI in radiotherapy is the management of movement for abdominal and thoracic localizations, the standardization of sCT evaluation, and the investigation of multicenter impacts.
Collapse
Affiliation(s)
- M Boulanger
- Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - Jean-Claude Nunes
- Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.
| | - H Chourak
- Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France; CSIRO Australian e-Health Research Centre, Herston, Queensland, Australia
| | - A Largent
- Developing Brain Institute, Department of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - S Tahri
- Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - O Acosta
- Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - R De Crevoisier
- Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - C Lafond
- Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - A Barateau
- Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| |
Collapse
|
22
|
Spadea MF, Maspero M, Zaffino P, Seco J. Deep learning based synthetic-CT generation in radiotherapy and PET: A review. Med Phys 2021; 48:6537-6566. [PMID: 34407209 DOI: 10.1002/mp.15150] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/06/2021] [Accepted: 07/13/2021] [Indexed: 01/22/2023] Open
Abstract
Recently,deep learning (DL)-based methods for the generation of synthetic computed tomography (sCT) have received significant research attention as an alternative to classical ones. We present here a systematic review of these methods by grouping them into three categories, according to their clinical applications: (i) to replace computed tomography in magnetic resonance (MR) based treatment planning, (ii) facilitate cone-beam computed tomography based image-guided adaptive radiotherapy, and (iii) derive attenuation maps for the correction of positron emission tomography. Appropriate database searching was performed on journal articles published between January 2014 and December 2020. The DL methods' key characteristics were extracted from each eligible study, and a comprehensive comparison among network architectures and metrics was reported. A detailed review of each category was given, highlighting essential contributions, identifying specific challenges, and summarizing the achievements. Lastly, the statistics of all the cited works from various aspects were analyzed, revealing the popularity and future trends and the potential of DL-based sCT generation. The current status of DL-based sCT generation was evaluated, assessing the clinical readiness of the presented methods.
Collapse
Affiliation(s)
- Maria Francesca Spadea
- Department Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, 88100, Italy
| | - Matteo Maspero
- Division of Imaging & Oncology, Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan, Utrecht, The Netherlands.,Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan, Utrecht, The Netherlands
| | - Paolo Zaffino
- Department Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, 88100, Italy
| | - Joao Seco
- Division of Biomedical Physics in Radiation Oncology, DKFZ German Cancer Research Center, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
23
|
Koh H, Park TY, Chung YA, Lee JH, Kim H. Acoustic simulation for transcranial focused ultrasound using GAN-based synthetic CT. IEEE J Biomed Health Inform 2021; 26:161-171. [PMID: 34388098 DOI: 10.1109/jbhi.2021.3103387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transcranial focused ultrasound (tFUS) is a promising non-invasive technique for treating neurological and psychiatric disorders. One of the challenges for tFUS is the disruption of wave propagation through the skull. Consequently, despite the risks associated with exposure to ionizing radiation, computed tomography (CT) is required to estimate the acoustic transmission through the skull. This study aims to generate synthetic CT (sCT) from T1-weighted magnetic resonance imaging (MRI) and investigate its applicability to tFUS acoustic simulation. We trained a 3D conditional generative adversarial network (3D-cGAN) with 15 subjects. We then assessed image quality with 15 test subjects: mean absolute error (MAE) = 85.72± 9.50 HU (head) and 280.25±24.02 HU (skull), dice coefficient similarity (DSC) = 0.88±0.02 (skull). In terms of skull density ratio (SDR) and skull thickness (ST), no significant difference was found between sCT and real CT (rCT). When the acoustic simulation results of rCT and sCT were compared, the intracranial peak acoustic pressure ratio was found to be less than 4%, and the distance between focal points less than 1 mm.
Collapse
|
24
|
Fortier V, Fortin MA, Pater P, Souhami L, Levesque IR. A role for magnetic susceptibility in synthetic computed tomography. Phys Med 2021; 85:137-146. [PMID: 34004446 DOI: 10.1016/j.ejmp.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Radiotherapy treatment planning based on magnetic resonance imaging (MRI) benefits from increased soft-tissue contrast and functional imaging. MRI-only planning is attractive but limited by the lack of electron density information required for dose calculation, and the difficulty to differentiate air and bone. MRI can map magnetic susceptibility to separate bone from air. A method is introduced to produce synthetic CT (sCT) through automatic voxel-wise assignment of CT numbers from an MRI dataset processed that includes magnetic susceptibility mapping. METHODS Volumetric multi-echo gradient echo datasets were acquired in the heads of five healthy volunteers and fourteen patients with cancer using a 3 T MRI system. An algorithm for CT synthesis was designed using the volunteer data, based on fuzzy c-means clustering and adaptive thresholding of the MR data (magnitude, fat, water, and magnetic susceptibility). Susceptibility mapping was performed using a modified version of the iterative phase replacement algorithm. On patient data, the algorithm was assessed by direct comparison to X-ray computed tomography (CT) scans. RESULTS The skull, spine, teeth, and major sinuses were clearly distinguished in all sCT, from healthy volunteers and patients. The mean absolute CT number error between X-ray CT and sCT in patients ranged from 78 and 134 HU. CONCLUSION Susceptibility mapping using MRI can differentiate air and bone for CT synthesis. The proposed method is automated, fast, and based on a commercially available MRI pulse sequence. The method avoids registration errors and does not rely on a priori information, making it suitable for nonstandard anatomy.
Collapse
Affiliation(s)
- Véronique Fortier
- Medical Physics Unit, McGill University, Montréal, QC, Canada; Biomedical Engineering, McGill University, Montréal, QC, Canada.
| | | | - Piotr Pater
- Medical Physics Unit, McGill University, Montréal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada
| | - Luis Souhami
- Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada; Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Ives R Levesque
- Medical Physics Unit, McGill University, Montréal, QC, Canada; Biomedical Engineering, McGill University, Montréal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada; Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
25
|
Groot Koerkamp ML, de Hond YJM, Maspero M, Kontaxis C, Mandija S, Vasmel JE, Charaghvandi RK, Philippens MEP, van Asselen B, van den Bongard HJGD, Hackett SS, Houweling AC. Synthetic CT for single-fraction neoadjuvant partial breast irradiation on an MRI-linac. Phys Med Biol 2021; 66. [PMID: 33761491 DOI: 10.1088/1361-6560/abf1ba] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023]
Abstract
A synthetic computed tomography (sCT) is required for daily plan optimization on an MRI-linac. Yet, only limited information is available on the accuracy of dose calculations on sCT for breast radiotherapy. This work aimed to (1) evaluate dosimetric accuracy of treatment plans for single-fraction neoadjuvant partial breast irradiation (PBI) on a 1.5 T MRI-linac calculated on a) bulk-density sCT mimicking the current MRI-linac workflow and b) deep learning-generated sCT, and (2) investigate the number of bulk-density levels required. For ten breast cancer patients we created three bulk-density sCTs of increasing complexity from the planning-CT, using bulk-density for: (1) body, lungs, and GTV (sCTBD1); (2) volumes for sCTBD1plus chest wall and ipsilateral breast (sCTBD2); (3) volumes for sCTBD2plus ribs (sCTBD3); and a deep learning-generated sCT (sCTDL) from a 1.5 T MRI in supine position. Single-fraction neoadjuvant PBI treatment plans for a 1.5 T MRI-linac were optimized on each sCT and recalculated on the planning-CT. Image evaluation was performed by assessing mean absolute error (MAE) and mean error (ME) in Hounsfield Units (HU) between the sCTs and the planning-CT. Dosimetric evaluation was performed by assessing dose differences, gamma pass rates, and dose-volume histogram (DVH) differences. The following results were obtained (median across patients for sCTBD1/sCTBD2/sCTBD3/sCTDLrespectively): MAE inside the body contour was 106/104/104/75 HU and ME was 8/9/6/28 HU, mean dose difference in the PTVGTVwas 0.15/0.00/0.00/-0.07 Gy, median gamma pass rate (2%/2 mm, 10% dose threshold) was 98.9/98.9/98.7/99.4%, and differences in DVH parameters were well below 2% for all structures except for the skin in the sCTDL. Accurate dose calculations for single-fraction neoadjuvant PBI on an MRI-linac could be performed on both bulk-density and deep learning sCT, facilitating further implementation of MRI-guided radiotherapy for breast cancer. Balancing simplicity and accuracy, sCTBD2showed the optimal number of bulk-density levels for a bulk-density approach.
Collapse
Affiliation(s)
- M L Groot Koerkamp
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Y J M de Hond
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - M Maspero
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.,Computational Imaging Group for MR diagnostics & therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C Kontaxis
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S Mandija
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.,Computational Imaging Group for MR diagnostics & therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J E Vasmel
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R K Charaghvandi
- Department of Radiation Oncology, Radboudumc, Nijmegen, The Netherlands
| | - M E P Philippens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - B van Asselen
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - S S Hackett
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A C Houweling
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
26
|
Yan C, Lin J, Li H, Xu J, Zhang T, Chen H, Woodruff HC, Wu G, Zhang S, Xu Y, Lambin P. Cycle-Consistent Generative Adversarial Network: Effect on Radiation Dose Reduction and Image Quality Improvement in Ultralow-Dose CT for Evaluation of Pulmonary Tuberculosis. Korean J Radiol 2021; 22:983-993. [PMID: 33739634 PMCID: PMC8154783 DOI: 10.3348/kjr.2020.0988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/22/2020] [Accepted: 12/21/2020] [Indexed: 01/15/2023] Open
Abstract
Objective To investigate the image quality of ultralow-dose CT (ULDCT) of the chest reconstructed using a cycle-consistent generative adversarial network (CycleGAN)-based deep learning method in the evaluation of pulmonary tuberculosis. Materials and Methods Between June 2019 and November 2019, 103 patients (mean age, 40.8 ± 13.6 years; 61 men and 42 women) with pulmonary tuberculosis were prospectively enrolled to undergo standard-dose CT (120 kVp with automated exposure control), followed immediately by ULDCT (80 kVp and 10 mAs). The images of the two successive scans were used to train the CycleGAN framework for image-to-image translation. The denoising efficacy of the CycleGAN algorithm was compared with that of hybrid and model-based iterative reconstruction. Repeated-measures analysis of variance and Wilcoxon signed-rank test were performed to compare the objective measurements and the subjective image quality scores, respectively. Results With the optimized CycleGAN denoising model, using the ULDCT images as input, the peak signal-to-noise ratio and structural similarity index improved by 2.0 dB and 0.21, respectively. The CycleGAN-generated denoised ULDCT images typically provided satisfactory image quality for optimal visibility of anatomic structures and pathological findings, with a lower level of image noise (mean ± standard deviation [SD], 19.5 ± 3.0 Hounsfield unit [HU]) than that of the hybrid (66.3 ± 10.5 HU, p < 0.001) and a similar noise level to model-based iterative reconstruction (19.6 ± 2.6 HU, p > 0.908). The CycleGAN-generated images showed the highest contrast-to-noise ratios for the pulmonary lesions, followed by the model-based and hybrid iterative reconstruction. The mean effective radiation dose of ULDCT was 0.12 mSv with a mean 93.9% reduction compared to standard-dose CT. Conclusion The optimized CycleGAN technique may allow the synthesis of diagnostically acceptable images from ULDCT of the chest for the evaluation of pulmonary tuberculosis.
Collapse
Affiliation(s)
- Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,The D-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Jie Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haixia Li
- Clinical and Technical Solution, Philips Healthcare, Guangzhou, China
| | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tianjing Zhang
- Clinical and Technical Solution, Philips Healthcare, Guangzhou, China
| | - Hao Chen
- Jiangsu JITRI Sioux Technologies Co., Ltd., Suzhou, China
| | - Henry C Woodruff
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Imaging, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Guangyao Wu
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Siqi Zhang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Imaging, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
27
|
Yuan J, Fredman E, Jin JY, Choi S, Mansur D, Sloan A, Machtay M, Zheng Y. Monte Carlo Dose Calculation Using MRI Based Synthetic CT Generated by Fully Convolutional Neural Network for Gamma Knife Radiosurgery. Technol Cancer Res Treat 2021; 20:15330338211046433. [PMID: 34632872 PMCID: PMC8504229 DOI: 10.1177/15330338211046433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
The aim of this work is to study the dosimetric effect from generated synthetic computed tomography (sCT) from magnetic resonance (MR) images using a deep learning algorithm for Gamma Knife (GK) stereotactic radiosurgery (SRS). The Monte Carlo (MC) method is used for dose calculations. Thirty patients were retrospectively selected with our institution IRB's approval. All patients were treated with GK SRS based on T1-weighted MR images and also underwent conventional external beam treatment with a CT scan. Image datasets were preprocessed with registration and were normalized to obtain similar intensity for the pairs of MR and CT images. A deep convolutional neural network arranged in an encoder-decoder fashion was used to learn the direct mapping from MR to the corresponding CT. A number of metrics including the voxel-wise mean error (ME) and mean absolute error (MAE) were used for evaluating the difference between generated sCT and the true CT. To study the dosimetric accuracy, MC simulations were performed based on the true CT and sCT using the same treatment parameters. The method produced an MAE of 86.6 ± 34.1 Hundsfield units (HU) and a mean squared error (MSE) of 160.9 ± 32.8. The mean Dice similarity coefficient was 0.82 ± 0.05 for HU > 200. The difference for dose-volume parameter D95 between the ground true dose and the dose calculated with sCT was 1.1% if a synthetic CT-to-density table was used, and 4.9% compared with the calculations based on the water-brain phantom.
Collapse
Affiliation(s)
- Jiankui Yuan
- University Hospitals Cleveland Medical Center, Cleveland, USA
| | - Elisha Fredman
- University Hospitals Cleveland Medical Center, Cleveland, USA
| | - Jian-Yue Jin
- University Hospitals Cleveland Medical Center, Cleveland, USA
| | - Serah Choi
- University Hospitals Cleveland Medical Center, Cleveland, USA
| | - David Mansur
- University Hospitals Cleveland Medical Center, Cleveland, USA
| | - Andrew Sloan
- University Hospitals Cleveland Medical Center, Cleveland, USA
| | | | - Yiran Zheng
- University Hospitals Cleveland Medical Center, Cleveland, USA
| |
Collapse
|
28
|
Wang T, Lei Y, Fu Y, Wynne JF, Curran WJ, Liu T, Yang X. A review on medical imaging synthesis using deep learning and its clinical applications. J Appl Clin Med Phys 2021; 22:11-36. [PMID: 33305538 PMCID: PMC7856512 DOI: 10.1002/acm2.13121] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
This paper reviewed the deep learning-based studies for medical imaging synthesis and its clinical application. Specifically, we summarized the recent developments of deep learning-based methods in inter- and intra-modality image synthesis by listing and highlighting the proposed methods, study designs, and reported performances with related clinical applications on representative studies. The challenges among the reviewed studies were then summarized with discussion.
Collapse
Affiliation(s)
- Tonghe Wang
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
- Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Yang Lei
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
| | - Yabo Fu
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
| | - Jacob F. Wynne
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
| | - Walter J. Curran
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
- Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Tian Liu
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
- Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Xiaofeng Yang
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
- Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| |
Collapse
|
29
|
Massa HA, Johnson JM, McMillan AB. Comparison of deep learning synthesis of synthetic CTs using clinical MRI inputs. Phys Med Biol 2020; 65:23NT03. [PMID: 33120371 DOI: 10.1088/1361-6560/abc5cb] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
There has been substantial interest in developing techniques for synthesizing CT-like images from MRI inputs, with important applications in simultaneous PET/MR and radiotherapy planning. Deep learning has recently shown great potential for solving this problem. The goal of this research was to investigate the capability of four common clinical MRI sequences (T1-weighted gradient-echo [T1], T2-weighted fat-suppressed fast spin-echo [T2-FatSat], post-contrast T1-weighted gradient-echo [T1-Post], and fast spin-echo T2-weighted fluid-attenuated inversion recovery [CUBE-FLAIR]) as inputs into a deep CT synthesis pipeline. Data were obtained retrospectively in 92 subjects who had undergone an MRI and CT scan on the same day. The patient's MR and CT scans were registered to one another using affine registration. The deep learning model was a convolutional neural network encoder-decoder with skip connections similar to the U-net architecture and Inception V3 inspired blocks instead of sequential convolution blocks. After training with 150 epochs and a batch size of 6, the model was evaluated using structural similarity index (SSIM), peak SNR (PSNR), mean absolute error (MAE), and dice coefficient. We found that feasible results were attainable for each image type, and no single image type was superior for all analyses. The MAE (in HU) of the resulting synthesized CT in the whole brain was 51.236 ± 4.504 for CUBE-FLAIR, 45.432 ± 8.517 for T1, 44.558 ± 7.478 for T1-Post, and 45.721 ± 8.7767 for T2, showing not only feasible, but also very compelling results on clinical images. Deep learning-based synthesis of CT images from MRI is possible with a wide range of inputs, suggesting that viable images can be created from a wide range of clinical input types.
Collapse
Affiliation(s)
- Haley A Massa
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin, United States of America. Department of Radiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | | | | |
Collapse
|
30
|
Burgos N, Bottani S, Faouzi J, Thibeau-Sutre E, Colliot O. Deep learning for brain disorders: from data processing to disease treatment. Brief Bioinform 2020; 22:1560-1576. [PMID: 33316030 DOI: 10.1093/bib/bbaa310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
In order to reach precision medicine and improve patients' quality of life, machine learning is increasingly used in medicine. Brain disorders are often complex and heterogeneous, and several modalities such as demographic, clinical, imaging, genetics and environmental data have been studied to improve their understanding. Deep learning, a subpart of machine learning, provides complex algorithms that can learn from such various data. It has become state of the art in numerous fields, including computer vision and natural language processing, and is also growingly applied in medicine. In this article, we review the use of deep learning for brain disorders. More specifically, we identify the main applications, the concerned disorders and the types of architectures and data used. Finally, we provide guidelines to bridge the gap between research studies and clinical routine.
Collapse
|
31
|
Thummerer A, de Jong BA, Zaffino P, Meijers A, Marmitt GG, Seco J, Steenbakkers RJHM, Langendijk JA, Both S, Spadea MF, Knopf AC. Comparison of the suitability of CBCT- and MR-based synthetic CTs for daily adaptive proton therapy in head and neck patients. ACTA ACUST UNITED AC 2020; 65:235036. [DOI: 10.1088/1361-6560/abb1d6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Leu SC, Huang Z, Lin Z. Generation of Pseudo-CT using High-Degree Polynomial Regression on Dual-Contrast Pelvic MRI Data. Sci Rep 2020; 10:8118. [PMID: 32415138 PMCID: PMC7229007 DOI: 10.1038/s41598-020-64842-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/20/2020] [Indexed: 01/06/2023] Open
Abstract
Increasing interests in using magnetic resonance imaging only in radiation therapy require methods for predicting the computed tomography numbers from MRI data. Here we propose a simple voxel method to generate the pseudo-CT (pCT) image using dual-contrast pelvic MRI data. The method is first trained with the CT data and dual-contrast MRI data (two sets of MRI with different sequences) of multiple patients, where the anatomical structures in the images after deformable image registration are segmented into several regions, and after MRI intensity normalizations a regression analysis is used to determine a two-variable polynomial function for each region to relate a voxel's two MRI intensity values to its CT number. We first evaluate the accuracy via the Hounsfield unit (HU) difference between the pseudo-CT and reference-CT (rCT) images and obtain the average mean absolute error as 40.3 ± 2.9 HU from leave-one-out-cross-validation (LOOCV) across all six patients, which is better than most previous results and comparable to another study using the more complicated atlas-based method. We also perform a dosimetric evaluation of the treatment plans based on pCT and rCT images and find the average passing rate within 2% dose difference to be 95.4% in point-to-point dose comparisons. Therefore, our method shows encouraging results in predicting the CT numbers. This polynomial method needs less computer storage than the interpolation method and can be readily extended to the case of more than two MRI sequences.
Collapse
Affiliation(s)
- Samuel C Leu
- Department of Physics, C-209 Howell Science Complex, East Carolina University, Greenville, NC, 27858, USA
| | - Zhibin Huang
- Department of Physics, C-209 Howell Science Complex, East Carolina University, Greenville, NC, 27858, USA
- Global Medical Consulting, LLC, Brentwood, TN, 37027, USA
| | - Ziwei Lin
- Department of Physics, C-209 Howell Science Complex, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|