1
|
Jain H, Rawal E, Kumar P, Sain SK, Siwach P. In Silico Investigation of the Interactions Between Cotton Leaf Curl Multan Virus Proteins and the Transcriptional Gene Silencing Factors of Gossypium hirsutum L. J Mol Evol 2024; 92:891-911. [PMID: 39542922 DOI: 10.1007/s00239-024-10216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
The highly dynamic nature of the Cotton leaf curl virus (CLCuV) complex (causing Cotton leaf curl disease, a significant global threat to cotton) presents a formidable challenge in unraveling precise molecular mechanisms governing viral-host interactions. To address this challenge, the present study investigated the molecular interactions of 6 viral proteins (Rep, TrAP, C4, C5, V2, and βC1) with 18 cotton Transcriptional Gene Silencing (TGS) proteins. Protein-protein dockings conducted for different viral-host protein pairs using Clustered Protein Docking (ClusPro) and Global RAnge Molecular Matching (GRAMM) (216 docking runs), revealed variable binding energies. The interacting pairs with the highest binding affinities were further scrutinized using bioCOmplexes COntact MAPS (COCOMAPS) server, which revealed robust binding of three viral proteins- TrAP, C4, and C5 with 14 TGS proteins, identifying several novel interactions (not reported yet by earlier studies), such as TrAP targeting DCL3, HDA6, and SUVH6; C4 targeting RAV2, CMT2, and DMT1; and C5 targeting CLSY1, RDR1, RDR2, AGO4, SAMS, and SAHH. Visualizing these interactions in PyMol provided a detailed insight into interacting regions. Further assessment of the impact of 18 variants of the C4 protein on interaction with CMT2 revealed no correlation between sequence variation and docking energies. However, conserved residues in the C4 binding regions emerged as potential targets for disrupting viral integrity. Hence, this study provides valuable insights into the viral-host interplay, advancing our understanding of Cotton leaf curl Multan virus pathogenicity and opening novel avenues for devising various antiviral strategies by targeting the host-viral interacting regions after experimental validation.
Collapse
Affiliation(s)
- Heena Jain
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana, 125055, India
| | - Ekta Rawal
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana, 125055, India
| | - Prabhat Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana, 125055, India
| | - Satish Kumar Sain
- ICAR-Central Institute of Cotton Research, Regional Station-Sirsa, Sirsa, Haryana, 125055, India
| | - Priyanka Siwach
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana, 125055, India.
| |
Collapse
|
2
|
Kamal H, Zafar MM, Razzaq A, Parvaiz A, Ercisli S, Qiao F, Jiang X. Functional role of geminivirus encoded proteins in the host: Past and present. Biotechnol J 2024; 19:e2300736. [PMID: 38900041 DOI: 10.1002/biot.202300736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024]
Abstract
During plant-pathogen interaction, plant exhibits a strong defense system utilizing diverse groups of proteins to suppress the infection and subsequent establishment of the pathogen. However, in response, pathogens trigger an anti-silencing mechanism to overcome the host defense machinery. Among plant viruses, geminiviruses are the second largest virus family with a worldwide distribution and continue to be production constraints to food, feed, and fiber crops. These viruses are spread by a diverse group of insects, predominantly by whiteflies, and are characterized by a single-stranded DNA (ssDNA) genome coding for four to eight proteins that facilitate viral infection. The most effective means to managing these viruses is through an integrated disease management strategy that includes virus-resistant cultivars, vector management, and cultural practices. Dynamic changes in this virus family enable the species to manipulate their genome organization to respond to external changes in the environment. Therefore, the evolutionary nature of geminiviruses leads to new and novel approaches for developing virus-resistant cultivars and it is essential to study molecular ecology and evolution of geminiviruses. This review summarizes the multifunctionality of each geminivirus-encoded protein. These protein-based interactions trigger the abrupt changes in the host methyl cycle and signaling pathways that turn over protein normal production and impair the plant antiviral defense system. Studying these geminivirus interactions localized at cytoplasm-nucleus could reveal a more clear picture of host-pathogen relation. Data collected from this antagonistic relationship among geminivirus, vector, and its host, will provide extensive knowledge on their virulence mode and diversity with climate change.
Collapse
Affiliation(s)
- Hira Kamal
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - Muhammad Mubashar Zafar
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Abdul Razzaq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Aqsa Parvaiz
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan, Pakistan
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Fei Qiao
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Xuefei Jiang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| |
Collapse
|
3
|
Cao X, Tang L, Song J. Circular Single-Stranded DNA: Discovery, Biological Effects, and Applications. ACS Synth Biol 2024; 13:1038-1058. [PMID: 38501391 DOI: 10.1021/acssynbio.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The field of nucleic acid therapeutics has witnessed a significant surge in recent times, as evidenced by the increasing number of approved genetic drugs. However, current platform technologies containing plasmids, lipid nanoparticle-mRNAs, and adeno-associated virus vectors encounter various limitations and challenges. Thus, we are devoted to finding a novel nucleic acid vector and have directed our efforts toward investigating circular single-stranded DNA (CssDNA), an ancient form of nucleic acid. CssDNAs are ubiquitous, but generally ignored. Accumulating evidence suggests that CssDNAs possess exceptional properties as nucleic acid vectors, exhibiting great potential for clinical applications in genetic disorders, gene editing, and immune cell therapy. Here, we comprehensively review the discovery and biological effects of CssDNAs as well as their applications in the field of biomedical research for the first time. Undoubtedly, as an ancient form of DNA, CssDNA holds immense potential and promises novel insights for biomedical research.
Collapse
Affiliation(s)
- Xisen Cao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linlin Tang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
4
|
Jiang Z, Lozano-Durán R. Do plant histone variants stand idly by while DNA viruses invade the nucleus? STRESS BIOLOGY 2023; 3:46. [PMID: 37955829 PMCID: PMC10643808 DOI: 10.1007/s44154-023-00129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Affiliation(s)
- Zhihao Jiang
- Department of Plant Biochemistry, Center for Molecular Plant Biology (ZMBP), Eberhard-Karls University of Tübingen, Tübingen, Germany.
| | - Rosa Lozano-Durán
- Department of Plant Biochemistry, Center for Molecular Plant Biology (ZMBP), Eberhard-Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Wang Y, Hu T, He Y, Su C, Wang Z, Zhou X. N-terminal acetylation of the βC1 protein encoded by the betasatellite of tomato yellow leaf curl China virus is critical for its viral pathogenicity. Virology 2023; 586:1-11. [PMID: 37473501 DOI: 10.1016/j.virol.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
N-terminal acetylation (N-acetylation) is one of the most common protein modifications and plays crucial roles in viability and stress responses in animals and plants. However, very little is known about N-acetylation of viral proteins. Here, we identified the Thr residue at position 2 (Thr-2) in the βC1 protein encoded by the betasatellite of tomato yellow leaf curl China virus (TYLCCNB-βC1) as a novel N-acetylation site. Furthermore, the effects of TYLCCNB-βC1 N-acetylation on its function as a pathogenicity factor were determined via N-acetylation mutants in Nicotiana benthamiana plants. We found that N-acetylation of TYLCCNB-βC1 is critical for its self-interaction in the nucleus and viral pathogenesis, and that removal of N-acetylation of TYLCCNB-βC1 attenuated tomato yellow leaf curl China virus-induced symptoms and led to accelerated degradation of TYLCCNB-βC1 through the ubiquitin-proteasome system. Our data reveal a protective effect of N-acetylation of TYLCCNB-βC1 on its pathogenesis and demonstrate an antagonistic crosstalk between N-acetylation and ubiquitination in this geminiviral protein.
Collapse
Affiliation(s)
- Yaqin Wang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tao Hu
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuting He
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chenlu Su
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000, China.
| | - Xueping Zhou
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
6
|
Baebler Š, Coll A, Malacarne G. Editorial: Women in plant pathogen interactions: 2022. FRONTIERS IN PLANT SCIENCE 2023; 14:1249821. [PMID: 37564388 PMCID: PMC10409640 DOI: 10.3389/fpls.2023.1249821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Affiliation(s)
- Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Giulia Malacarne
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
7
|
Mulaudzi PE, Koorsen G, Mwaba I, Mahomed NB, Allie F. The identification of the methylation patterns of tomato curly stunt virus in resistant and susceptible tomato lines. FRONTIERS IN PLANT SCIENCE 2023; 14:1135442. [PMID: 37346143 PMCID: PMC10281181 DOI: 10.3389/fpls.2023.1135442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
Tomato curly stunt virus (ToCSV) is a monopartite begomovirus infecting tomatoes in South Africa, with sequence similarity to tomato yellow leaf curl virus (TYLCV). While there are numerous reports on the mechanism of TYLCV resistance in tomato, the underlying mechanisms in the tomato-ToCSV pathosystem is still relatively unknown. The main aim of this study was to investigate and compare the global methylation profile of ToCSV in two near-isogenic tomato lines, one with a tolerant phenotype (T, NIL396) and one with a susceptible phenotype (S, NIL395). Bisulfite conversion and PCR amplification, coupled with a next-generation sequencing approach, were used to elucidate the global pattern of methylation of ToCSV cytosine residues in T and S leave tissue at 35 days post-infection (dpi). The extent of methylation was more pronounced in tolerant plants compared to susceptible plants in all sequence (CG, CHG and CHH) contexts, however, the overall methylation levels were relatively low (<3%). Notably, a significant interaction (p < 0.05) was observed between the viral genomic region and susceptible vs. tolerant status for CG methylated regions where it was observed that the 3'IR CG methylation was significantly (p < 0.05) higher than CG methylation of other genomic regions in tolerant and susceptible plants. Additionally, statistically significant (EdgeR p < 0.05) differentially methylated cytosines were located primarily in the genomic regions V2/V1 and C4/C1 of ToCSV. The relative expression, using RT-qPCR, was also employed in order to quantify the expression of various key methylation-related genes, MET1, CMT2, KYP4/SUVH4, DML2, RDM1, AGO4 and AGO6 in T vs. S plants at 35dpi. The differential expression between T and S was significant for MET1, KYP4/SUVH4 and RDM1 at p<0.05 which further supports more pronounced methylation observed in ToCSV from T plants vs. S plants. While this study provides new insights into the differences in methylation profiles of ToCSV in S vs. T tomato plants, further research is required to link tolerance and susceptibility to ToCSV.
Collapse
|
8
|
Kumar R, Dasgupta I. Geminiviral C4/AC4 proteins: An emerging component of the viral arsenal against plant defence. Virology 2023; 579:156-168. [PMID: 36693289 DOI: 10.1016/j.virol.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/26/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Virus infection triggers a plethora of defence reactions in plants to incapacitate the intruder. Viruses, in turn, have added additional functions to their genes so that they acquire capabilities to neutralize the above defence reactions. In plant-infecting viruses, the family Geminiviridae comprises members, majority of whom encode 6-8 genes in their small single-stranded DNA genomes. Of the above genes, one which shows the most variability in its amino acid sequence is the C4/AC4. Recent studies have uncovered evidence, which point towards a wide repertoire of functions performed by C4/AC4 revealing its role as a major player in suppressing plant defence. This review summarizes the various plant defence mechanisms against viruses and highlights how C4/AC4 has evolved to counter most of them.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
9
|
H. El-Sappah A, Qi S, A. Soaud S, Huang Q, M. Saleh A, A. S. Abourehab M, Wan L, Cheng GT, Liu J, Ihtisham M, Noor Z, Rouf Mir R, Zhao X, Yan K, Abbas M, Li J. Natural resistance of tomato plants to Tomato yellow leaf curl virus. FRONTIERS IN PLANT SCIENCE 2022; 13:1081549. [PMID: 36600922 PMCID: PMC9807178 DOI: 10.3389/fpls.2022.1081549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is one of the most harmful afflictions in the world that affects tomato growth and production. Six regular antagonistic genes (Ty-1, Ty-2, Ty-3, Ty-4, ty-5, and Ty-6) have been transferred from wild germplasms to commercial cultivars as TYLCV protections. With Ty-1 serving as an appropriate source of TYLCV resistance, only Ty-1, Ty-2, and Ty-3 displayed substantial levels of opposition in a few strains. It has been possible to clone three TYLCV opposition genes (Ty-1/Ty-3, Ty-2, and ty-5) that target three antiviral safety mechanisms. However, it significantly impacts obtaining permanent resistance to TYLCV, trying to maintain opposition whenever possible, and spreading opposition globally. Utilizing novel methods, such as using resistance genes and identifying new resistance resources, protects against TYLCV in tomato production. To facilitate the breeders make an informed decision and testing methods for TYLCV blockage, this study highlights the portrayal of typical obstruction genes, common opposition sources, and subatomic indicators. The main goal is to provide a fictitious starting point for the identification and application of resistance genes as well as the maturation of tomato varieties that are TYLCV-resistant.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Shiming Qi
- College of Agriculture and Ecological Engineering, Hexi University, Zhangye, China
| | - Salma A. Soaud
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Qiulan Huang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Alaa M. Saleh
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Lingyun Wan
- Key Laboratory of Guangxi for High-quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Guo-ting Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, China
| | - Jingyi Liu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Muhammad Ihtisham
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Zarqa Noor
- School of Chemical Engineering Beijing Institute of Technology, Beijing, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), SKUAST–Kashmir, Sopore, India
| | - Xin Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Kuan Yan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
10
|
Siriwan W, Hemniam N, Vannatim N, Malichan S, Chaowongdee S, Roytrakul S, Charoenlappanit S, Sawwa A. Analysis of proteomic changes in cassava cv. Kasetsart 50 caused by Sri Lankan cassava mosaic virus infection. BMC PLANT BIOLOGY 2022; 22:573. [PMID: 36494781 PMCID: PMC9737768 DOI: 10.1186/s12870-022-03967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Sri Lankan cassava mosaic virus (SLCMV) is a plant virus causing significant economic losses throughout Southeast Asia. While proteomics has the potential to identify molecular markers that could assist the breeding of virus resistant cultivars, the effects of SLCMV infection in cassava have not been previously explored in detail. RESULTS Liquid Chromatography-Tandem Mass Spectrometry (LC/MS-MS) was used to identify differentially expressed proteins in SLCMV infected leaves, and qPCR was used to confirm changes at mRNA levels. LC/MS-MS identified 1,813 proteins, including 479 and 408 proteins that were upregulated in SLCMV-infected and healthy cassava plants respectively, while 109 proteins were detected in both samples. Most of the identified proteins were involved in biosynthetic processes (29.8%), cellular processes (20.9%), and metabolism (18.4%). Transport proteins, stress response molecules, and proteins involved in signal transduction, plant defense responses, photosynthesis, and cellular respiration, although present, only represented a relatively small subset of the detected differences. RT-qPCR confirmed the upregulation of WRKY 77 (A0A140H8T1), WRKY 83 (A0A140H8T7), NAC 6 (A0A0M4G3M4), NAC 35 (A0A0M5JAB4), NAC 22 (A0A0M5J8Q6), NAC 54 (A0A0M4FSG8), NAC 70 (A0A0M4FEU9), MYB (A0A2C9VER9 and A0A2C9VME6), bHLH (A0A2C9UNL9 and A0A2C9WBZ1) transcription factors. Additional upregulated transcripts included receptors, such as receptor-like serine/threonine-protein kinase (RSTK) (A0A2C9UPE4), Toll/interleukin-1 receptor (TIR) (A0A2C9V5Q3), leucine rich repeat N-terminal domain (LRRNT_2) (A0A2C9VHG8), and cupin (A0A199UBY6). These molecules participate in innate immunity, plant defense mechanisms, and responses to biotic stress and to phytohormones. CONCLUSIONS We detected 1,813 differentially expressed proteins infected cassava plants, of which 479 were selectively upregulated. These could be classified into three main biological functional groups, with roles in gene regulation, plant defense mechanisms, and stress responses. These results will help identify key proteins affected by SLCMV infection in cassava plants.
Collapse
Affiliation(s)
- Wanwisa Siriwan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand.
| | - Nuannapa Hemniam
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Nattachai Vannatim
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Srihunsa Malichan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Somruthai Chaowongdee
- Center of Excellence On Agricultural Biotechnology (AG-BIO/MHESI), Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom, 73140, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic and Engineering and Biotechnology (BIOTECH), National Science and Technology Development Agency, Pathumthani, 12100, Thailand
| | - Sawanya Charoenlappanit
- National Center for Genetic and Engineering and Biotechnology (BIOTECH), National Science and Technology Development Agency, Pathumthani, 12100, Thailand
| | - Aroonothai Sawwa
- Biotechnology Research and Development Office, Department of Agriculture, Thanyaburi, Pathumthani, 12110, Thailand
| |
Collapse
|
11
|
Guo Y, Jia MA, Li S, Li F. Geminiviruses boost active DNA demethylation for counter-defense. Trends Microbiol 2022; 30:1121-1124. [PMID: 35249803 DOI: 10.1016/j.tim.2022.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 01/13/2023]
Abstract
DNA methylation regulates gene expression under abiotic and biotic stresses. Recently, Gui et al. discovered that geminiviruses subverted DNA methylation-mediated defense through boosting the active DNA demethylation mediated by host DNA glycosylases to promote viral virulence. Their findings reveal a distinctive counter-defense strategy exploited by invading pathogens to achieve successful infection.
Collapse
Affiliation(s)
- Yushuang Guo
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, 550081, China
| | - Meng-Ao Jia
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, 550081, China
| | - Shaofang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
12
|
Arora H, Singh RK, Sharma S, Sharma N, Panchal A, Das T, Prasad A, Prasad M. DNA methylation dynamics in response to abiotic and pathogen stress in plants. PLANT CELL REPORTS 2022; 41:1931-1944. [PMID: 35833989 DOI: 10.1007/s00299-022-02901-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
DNA methylation is a dynamic epigenetic mechanism that plays a significant role in gene expression and also maintains chromatin stability. The process is conserved in both plants and animals, and crucial for development and stress responses. Differential DNA methylation during adverse environmental conditions or pathogen attack facilitates the selective expression of defense-related genes. Both stress-induced DNA hypomethylation and hypermethylation play beneficial roles in activating the defense response. These DNA marks may be carried to the next generation making the progenies 'primed' for abiotic and biotic stress responses. Over the recent years, rapid advancements in the area of high throughput sequencing have enabled the detection of methylation status at genome levels in several plant species. Epigenotyping offers an alternative tool to plant breeders in addition to conventional markers for the selection of the desired offspring. In this review, we briefly discuss the mechanism of DNA methylation, recent understanding of DNA methylation-mediated gene regulation during abiotic and biotic stress responses, and stress memory in plants.
Collapse
Affiliation(s)
- Heena Arora
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shambhavi Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Institute of Life Sciences, NALCO Nagar, Bhubaneswar, 751023, India
| | - Anurag Panchal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Tuhin Das
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
13
|
Wang Y, Liu H, Wang Z, Guo Y, Hu T, Zhou X. P25 and P37 proteins encoded by firespike leafroll-associated virus are viral suppressors of RNA silencing. Front Microbiol 2022; 13:964156. [PMID: 36051767 PMCID: PMC9424829 DOI: 10.3389/fmicb.2022.964156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Firespike leafroll-associated virus (FLRaV) is a major pathogen associated with firespike (Odontonema tubaeforme) leafroll disease. Phylogenetic analysis showed that FLRaV possesses typical traits of subgroup II members of ampeloviruses, but encodes two additional proteins, P25 and P37. Here, we determined the microfilament localization of P25 protein. Posttranscriptional gene silencing (PTGS) assay showed that both FLRaV P25 and P37 were able to suppress the local and systemic PTGS and FLRaV P25 was capable of suppressing the green fluorescent protein (GFP) gene silencing triggered by both sense RNA-induced PTGS (S-PTGS) and inverted repeat RNA-induced PTGS (IR-PTGS). In contrast, FLRaV P37 was only able to inhibit the GFP silencing triggered by the S-PTGS but not the IR-PTGS. In the transcriptional gene silencing (TGS) assay, only FLRaV P25 was found to be able to reverse established TGS-mediated silencing of GFP in 16-TGS plants. We also found that FLRaV P25 could aggravate the disease symptom and viral titer of potato virus X in N. benthamiana. These results suggest that FLRaV P25 and P37 may have crucial roles in overcoming host RNA silencing, which provides key insights into our understanding of the molecular mechanisms underlying FLRaV infection.
Collapse
Affiliation(s)
- Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hui Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, China
| | - Yushuang Guo
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Tao Hu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Tao Hu,
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Xueping Zhou,
| |
Collapse
|
14
|
Huang W, Zhao Y, Liu X, Ling L, Han D, Huang L, Gao C, Yang C, Lai J. ABA INSENSITIVE 5 confers geminivirus resistance via suppression of the viral promoter activity in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153742. [PMID: 35696829 DOI: 10.1016/j.jplph.2022.153742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Geminiviruses are a large group of plant viruses that have been a serious threat to worldwide agriculture. Transcription of the virus-encoded genes is necessary for geminiviruses to complete their life cycle, but the host proteins which directly target geminivirus promoters for suppression of viral gene transcription remain to be identified. Using Beet severe curly top virus (BSCTV) which causes severe plant symptoms as a system, we performed a yeast one-hybrid screening and identified ABA INSENSITIVE 5 (ABI5), a critical transcription factor in Abscisic acid (ABA) signaling transduction, as an interactor with the viral promoter. Further data showed that an ABA-responsive element in the viral promoter is necessary for its interaction with ABI5 and symptom development. Overexpression of ABI5 suppresses the transcription activity of the viral promoter and BSCTV infection in Nicotiana benthamiana and Arabidopsis; whilst depletion of ABI5 enhances the infection of BSCTV in Arabidopsis. Taken together, our study uncovered the function of ABI5 in the plant-virus interaction and will provide us with a new strategy to protect crops from geminivirus infection.
Collapse
Affiliation(s)
- Wei Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Yawen Zhao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Xiaoshi Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Lishan Ling
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Liting Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China.
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China.
| |
Collapse
|
15
|
Li S, Lyu S, Liu Y, Luo M, Shi S, Deng S. Cauliflower mosaic virus P6 Dysfunctions Histone Deacetylase HD2C to Promote Virus Infection. Cells 2021; 10:2278. [PMID: 34571927 PMCID: PMC8464784 DOI: 10.3390/cells10092278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 12/30/2022] Open
Abstract
Histone deacetylases (HDACs) are vital epigenetic modifiers not only in regulating plant development but also in abiotic- and biotic-stress responses. Though to date, the functions of HD2C-an HD2-type HDAC-In plant development and abiotic stress have been intensively explored, its function in biotic stress remains unknown. In this study, we have identified HD2C as an interaction partner of the Cauliflower mosaic virus (CaMV) P6 protein. It functions as a positive regulator in defending against CaMV infection. The hd2c mutants show enhanced susceptibility to CaMV infection. In support, the accumulation of viral DNA, viral transcripts, and the deposition of histone acetylation on the viral minichromosomes are increased in hd2c mutants. P6 interferes with the interaction between HD2C and HDA6, and P6 overexpression lines have similar phenotypes with hd2c mutants. In further investigations, P6 overexpression lines, together with CaMV infection plants, are more sensitive to ABA and NaCl with a concomitant increasing expression of ABA/NaCl-regulated genes. Moreover, the global levels of histone acetylation are increased in P6 overexpression lines and CaMV infection plants. Collectively, our results suggest that P6 dysfunctions histone deacetylase HD2C by physical interaction to promote CaMV infection.
Collapse
Affiliation(s)
- Shun Li
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Shanwu Lyu
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
| | - Yujuan Liu
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Shulin Deng
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- National Engineering Research Center of Navel Orange, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
16
|
Ghosh D, M M, Chakraborty S. Impact of viral silencing suppressors on plant viral synergism: a global agro-economic concern. Appl Microbiol Biotechnol 2021; 105:6301-6313. [PMID: 34423406 DOI: 10.1007/s00253-021-11483-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022]
Abstract
Plant viruses are known for their devastating impact on global agriculture. These intracellular biotrophic pathogens can infect a wide variety of plant hosts all over the world. The synergistic association of plant viruses makes the situation more alarming. It usually promotes the replication, movement, and transmission of either or both the coexisting synergistic viral partners. Although plants elicit a robust antiviral immune reaction, including gene silencing, to limit these infamous invaders, viruses counter it by encoding viral suppressors of RNA silencing (VSRs). Growing evidence also suggests that VSRs play a driving role in mediating the plant viral synergism. This review briefly discusses the evil impacts of mixed infections, especially synergism, and then comprehensively describes the emerging roles of VSRs in mediating the synergistic association of plant viruses. KEY POINTS: • Synergistic associations of plant viruses have devastating impacts on global agriculture. • Viral suppressors of RNA silencing (VSRs) play key roles in driving plant viral synergism.
Collapse
Affiliation(s)
- Dibyendu Ghosh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Malavika M
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
17
|
Gupta N, Reddy K, Bhattacharyya D, Chakraborty✉ S. Plant responses to geminivirus infection: guardians of the plant immunity. Virol J 2021; 18:143. [PMID: 34243802 PMCID: PMC8268416 DOI: 10.1186/s12985-021-01612-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Geminiviruses are circular, single-stranded viruses responsible for enormous crop loss worldwide. Rapid expansion of geminivirus diversity outweighs the continuous effort to control its spread. Geminiviruses channelize the host cell machinery in their favour by manipulating the gene expression, cell signalling, protein turnover, and metabolic reprogramming of plants. As a response to viral infection, plants have evolved to deploy various strategies to subvert the virus invasion and reinstate cellular homeostasis. MAIN BODY Numerous reports exploring various aspects of plant-geminivirus interaction portray the subtlety and flexibility of the host-pathogen dynamics. To leverage this pool of knowledge towards raising antiviral resistance in host plants, a comprehensive account of plant's defence response against geminiviruses is required. This review discusses the current knowledge of plant's antiviral responses exerted to geminivirus in the light of resistance mechanisms and the innate genetic factors contributing to the defence. We have revisited the defence pathways involving transcriptional and post-transcriptional gene silencing, ubiquitin-proteasomal degradation pathway, protein kinase signalling cascades, autophagy, and hypersensitive responses. In addition, geminivirus-induced phytohormonal fluctuations, the subsequent alterations in primary and secondary metabolites, and their impact on pathogenesis along with the recent advancements of CRISPR-Cas9 technique in generating the geminivirus resistance in plants have been discussed. CONCLUSIONS Considering the rapid development in the field of plant-virus interaction, this review provides a timely and comprehensive account of molecular nuances that define the course of geminivirus infection and can be exploited in generating virus-resistant plants to control global agricultural damage.
Collapse
Affiliation(s)
- Neha Gupta
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Kishorekumar Reddy
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Dhriti Bhattacharyya
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Supriya Chakraborty✉
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
18
|
Basu S, Singh AK, Singh D, Sahu SK, Chakraborty S. Role of viral suppressors governing asymmetric synergism between tomato-infecting begomoviruses. Appl Microbiol Biotechnol 2021; 105:1107-1121. [PMID: 33417040 DOI: 10.1007/s00253-020-11070-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/01/2020] [Accepted: 12/17/2020] [Indexed: 11/29/2022]
Abstract
Mixed viral infections are common in fields and frequently exacerbate disease severity via synergistic interactions among individual viral genomic components leading to major crop loss. Two predominant species of tomato-infecting begomoviruses, Tomato leaf curl New Delhi virus (ToLCNDV) and Tomato leaf curl Gujarat virus (ToLCGuV), are known to cause severe leaf curl disease of tomato in India. Previously, we have demonstrated asymmetric synergism between these two distinct begomovirus species during mixed infection in solanaceous hosts. In the present study, we have identified the underlying proteins that positively regulate asymmetric synergism and their effect on plant defense machinery. During co-infection, the AC2 and AV2 of ToLCGuV enhanced ToLCNDV DNA accumulation in Nicotiana benthamiana as well as in their natural host, tomato. Furthermore, we found that AC2 and AV2 of ToLCNDV and AV2 of ToLCGuV play a critical role in suppression of post transcriptional gene silencing (PTGS) machinery. Taken together, AC2 and AV2 encoded proteins of ToLCGuV are the crucial viral factors promoting asymmetric synergism with ToLCNDV. KEY POINTS: • Begomoviral suppressors play vital roles in viral synergism. • AC2 and AV2 of ToLCGuV asymmetrically enhance ToLCNDV accumulation. • AC2 and AV2 of ToLCNDV and ToLCGuV AV2 are major PTGS suppressors.
Collapse
Affiliation(s)
- Saumik Basu
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Ashish Kumar Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Divya Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Sanjeeb Kumar Sahu
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
- Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India.
| |
Collapse
|