1
|
Bian S, Li Z, Song S, Zhang X, Shang J, Wang W, Zhang D, Ni D. Enhancing Crop Resilience: Insights from Labdane-Related Diterpenoid Phytoalexin Research in Rice ( Oryza sativa L.). Curr Issues Mol Biol 2024; 46:10677-10695. [PMID: 39329985 PMCID: PMC11430374 DOI: 10.3390/cimb46090634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Rice (Oryza sativa L.), as one of the most significant food crops worldwide, holds paramount importance for global food security. Throughout its extensive evolutionary journey, rice has evolved a diverse array of defense mechanisms to fend off pest and disease infestations. Notably, labdane-related diterpenoid phytoalexins play a crucial role in aiding rice in its response to both biotic and abiotic stresses. This article provides a comprehensive review of the research advancements pertaining to the chemical structures, biological activities, and biosynthetic pathways, as well as the molecular regulatory mechanisms, underlying labdane-related diterpenoid phytoalexins discovered in rice. This insight into the molecular regulation of labdane-related diterpenoid phytoalexin biosynthesis offers valuable perspectives for future research aimed at improving crop resilience and productivity.
Collapse
Affiliation(s)
- Shiquan Bian
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zhong Li
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shaojie Song
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiao Zhang
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Jintao Shang
- Agricultural Technology Extension Center of Linping District, Hangzhou 311199, China
| | - Wanli Wang
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Dewen Zhang
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Dahu Ni
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
2
|
Eroğlu ÇG, Bennett AA, Steininger-Mairinger T, Hann S, Puschenreiter M, Wirth J, Gfeller A. Neighbour-induced changes in root exudation patterns of buckwheat results in altered root architecture of redroot pigweed. Sci Rep 2024; 14:8679. [PMID: 38622223 PMCID: PMC11018816 DOI: 10.1038/s41598-024-58687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Roots are crucial in plant adaptation through the exudation of various compounds which are influenced and modified by environmental factors. Buckwheat root exudate and root system response to neighbouring plants (buckwheat or redroot pigweed) and how these exudates affect redroot pigweed was investigated. Characterising root exudates in plant-plant interactions presents challenges, therefore a split-root system which enabled the application of differential treatments to parts of a single root system and non-destructive sampling was developed. Non-targeted metabolome profiling revealed that neighbour presence and identity induces systemic changes. Buckwheat and redroot pigweed neighbour presence upregulated 64 and 46 metabolites, respectively, with an overlap of only 7 metabolites. Root morphology analysis showed that, while the presence of redroot pigweed decreased the number of root tips in buckwheat, buckwheat decreased total root length and volume, surface area, number of root tips, and forks of redroot pigweed. Treatment with exudates (from the roots of buckwheat and redroot pigweed closely interacting) on redroot pigweed decreased the total root length and number of forks of redroot pigweed seedlings when compared to controls. These findings provide understanding of how plants modify their root exudate composition in the presence of neighbours and how this impacts each other's root systems.
Collapse
Affiliation(s)
- Çağla Görkem Eroğlu
- Herbology in Field Crops, Plant Production Systems, Agroscope, Nyon, Switzerland
| | - Alexandra A Bennett
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190, Vienna, Austria
| | - Teresa Steininger-Mairinger
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190, Vienna, Austria
| | - Stephan Hann
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190, Vienna, Austria
| | - Markus Puschenreiter
- Department of Forest and Soil Sciences, Institute of Soil Research, Rhizosphere Ecology & Biogeochemistry Group, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Judith Wirth
- Herbology in Field Crops, Plant Production Systems, Agroscope, Nyon, Switzerland
| | - Aurélie Gfeller
- Herbology in Field Crops, Plant Production Systems, Agroscope, Nyon, Switzerland.
| |
Collapse
|
3
|
Kumar N, Singh H, Giri K, Kumar A, Joshi A, Yadav S, Singh R, Bisht S, Kumari R, Jeena N, Khairakpam R, Mishra G. Physiological and molecular insights into the allelopathic effects on agroecosystems under changing environmental conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:417-433. [PMID: 38633277 PMCID: PMC11018569 DOI: 10.1007/s12298-024-01440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/12/2024] [Accepted: 03/16/2024] [Indexed: 04/19/2024]
Abstract
Allelopathy is a natural phenomenon of competing and interfering with other plants or microbial growth by synthesizing and releasing the bioactive compounds of plant or microbial origin known as allelochemicals. This is a sub-discipline of chemical ecology concerned with the effects of bioactive compounds produced by plants or microorganisms on the growth, development and distribution of other plants and microorganisms in natural communities or agricultural systems. Allelochemicals have a direct or indirect harmful effect on one plant by others, especially on the development, survivability, growth, and reproduction of species through the production of chemical inhibitors released into the environment. Cultivation systems that take advantage of allelopathic plants' stimulatory/inhibitory effects on plant growth and development while avoiding allelopathic autotoxicity is critical for long-term agricultural development. Allelopathy is one element that defines plant relationships and is involved in weed management, crop protection, and microbial contact. Besides, the allelopathic phenomenon has also been reported in the forest ecosystem; however, its presence depends on the forest type and the surrounding environment. In the present article, major aspects addressed are (1) literature review on the impacts of allelopathy in agroecosystems and underpinning the research gaps, (2) chemical, physiological, and ecological mechanisms of allelopathy, (3) genetic manipulations, plant defense, economic benefits, fate, prospects and challenges of allelopathy. The literature search and consolidation efforts in this article shall pave the way for future research on the potential application of allelopathic interactions across various ecosystems.
Collapse
Affiliation(s)
- Narendra Kumar
- Forest Research Institute, Dehradun, 248006 India
- Present Address: College of Agriculture, Central Agriculture University (I), Kyrdemkulai, Meghalaya, India
| | - Hukum Singh
- Forest Research Institute, Dehradun, 248006 India
| | - Krishna Giri
- Indian Council of Forestry Research and Education, Dehradun, 248006 India
| | - Amit Kumar
- Department of Forestry, North Eastern Hill University, Tura Campus, Tura, 794002 India
| | - Amit Joshi
- Department of Biochemistry, Kalinga University, Naya-Raipur, Chhattisgarh 492101 India
| | | | - Ranjeet Singh
- G.B. Pant National Institute of Himalayan Environment, Itanagar, Arunchal Pradesh, India
| | - Sarita Bisht
- Forest Research Institute, Dehradun, 248006 India
| | - Rama Kumari
- Forest Research Institute, Dehradun, 248006 India
| | - Neha Jeena
- Department of Microbiology, Central University, Rajasthan, 305817 India
| | - Rowndel Khairakpam
- School of Agriculture, Graphic Era Hill University, Dehradun, 248001 India
| | - Gaurav Mishra
- Indian Council of Forestry Research and Education, Dehradun, 248006 India
| |
Collapse
|
4
|
Han M, Yang H, Huang H, Du J, Zhang S, Fu Y. Allelopathy and allelobiosis: efficient and economical alternatives in agroecosystems. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:11-27. [PMID: 37751515 DOI: 10.1111/plb.13582] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023]
Abstract
Chemical interactions in plants often involve plant allelopathy and allelobiosis. Allelopathy is an ecological phenomenon leading to interference among organisms, while allelobiosis is the transmission of information among organisms. Crop failures and low yields caused by inappropriate management can be related to both allelopathy and allelobiosis. Therefore, research on these two phenomena and the role of chemical substances in both processes will help us to understand and upgrade agroecosystems. In this review, substances involved in allelopathy and allelobiosis in plants are summarized. The influence of environmental factors on the generation and spread of these substances is discussed, and relationships between allelopathy and allelobiosis in interspecific, intraspecific, plant-micro-organism, plant-insect, and mechanisms, are summarized. Furthermore, recent results on allelopathy and allelobiosis in agroecosystem are summarized and will provide a reference for the future application of allelopathy and allelobiosis in agroecosystem.
Collapse
Affiliation(s)
- M Han
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - H Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - H Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - J Du
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - S Zhang
- The College of Forestry, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, China
| | - Y Fu
- The College of Forestry, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, China
| |
Collapse
|
5
|
Patni B, Bhattacharyya M, Pokhriyal A. The role of signaling compounds in enhancing rice allelochemicals for sustainable agriculture: an overview. PLANTA 2023; 258:90. [PMID: 37775539 DOI: 10.1007/s00425-023-04241-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
MAIN CONCLUSION Plant phytotoxin synthesis is influenced by intricate signaling networks like jasmonic acid (JA) and salicylic acid (SA). These compounds not only induce allelochemical production but also aid weed suppression and plant immunity. (-)-Loliolide, JA, SA, and their derivatives trigger rice allelochemical synthesis and gene expression. Enhancing allelochemical synthesis in crops offers an alternative, reducing reliance on traditional herbicides for effective weed management. Rice (Oryza sativa L.) serves as a crucial staple food crop, nourishing over half of the global population, particularly in South Asia. Within rice plants, various secondary metabolites are produced, contributing to its nutritional value and providing energy to consumers. Over the last 5 decades, researchers have investigated 276 distinct types of secondary metabolites found in rice plants. These metabolites predominantly include phenolic acids, flavonoids, steroids, alkaloids, terpenoids, and their derivatives. The role of these secondary metabolites is to regulate the growth and development of the rice plant. In this research paper, we have focused on the allelopathic potential of rice, which involves its active defense strategy to suppress other species in its vicinity. This defense mechanism is regulated by plant signaling compounds. These signaling compounds enable rice plants to recognize and detect competitors, pathogens, and herbivores in their environment. As a response, the rice plants elevate the production of defensive secondary metabolites. One crucial aspect of rice allelopathy is the phenomenon of neighbor detection. Rice plants can sense the presence of neighboring plants and respond accordingly to establish their competitive advantage and ensure their survival. This paper specifically highlights the impact of exogenously applied signaling compounds, namely Methyl salicylate (MeSA) and Methyl Jasmonate (MeJA), on paddy rice. The aim is to provide deeper insights into the signaling mechanisms involved in rice allelopathy and how the exogenous application of signaling compounds influence the induction and regulation of defensive secondary metabolites in rice plants. Comprehensive analysis of various researchers' studies clearly reveals that the application of these elicitor compounds noticeably augments the allelopathic potential of rice, resulting in heightened accumulation of phenolic acid compounds. Expansion in more enlistment of phenolics may be because of expansion in the activities of enzymes, such as cinnamate 4-hydroxylase (C4H) and phenylalanine ammonia-lyase (PAL), the two main enzymes of the phenylpropanoid pathway, which are associated with allelopathic crop plants, and along this, they recognize the presence of weeds and react by expanding allelochemical focuses. Consequently, substantial endeavors have been dedicated in recent times to discover and characterize plant-derived signaling molecules. In bioassays conducted by Patni et al. in 2019, both competitive and non-competitive rice genotypes exhibited elevated phytotoxicity against Echino colona following treatment with MeSA. MeSA-treated rice plants displayed accelerated growth, increased yield, and concurrently demonstrated weed-suppressing properties. Published studies from 1976 to 2021 are reviewed in this paper. The study indicates that signaling compounds induce allelochemical concentrations, enhancing allelopathic activity. This insight may lead to development of novel herbicides for effective sustainable weed management.
Collapse
Affiliation(s)
- Babita Patni
- High Altitude Plant Physiology Research Centre, H. N. B. Garhwal University (A Central University), Garhwal, Srinagar, Uttarakhand, 246174, India.
| | - Malini Bhattacharyya
- High Altitude Plant Physiology Research Centre, H. N. B. Garhwal University (A Central University), Garhwal, Srinagar, Uttarakhand, 246174, India
| | - Anshika Pokhriyal
- High Altitude Plant Physiology Research Centre, H. N. B. Garhwal University (A Central University), Garhwal, Srinagar, Uttarakhand, 246174, India
| |
Collapse
|
6
|
Xie Z, Zhao S, Li Y, Deng Y, Shi Y, Chen X, Li Y, Li H, Chen C, Wang X, Liu E, Tu Y, Shi P, Tong J, Gutierrez-Beltran E, Li J, Bozhkov PV, Qian W, Zhou M, Wang W. Phenolic acid-induced phase separation and translation inhibition mediate plant interspecific competition. NATURE PLANTS 2023; 9:1481-1499. [PMID: 37640933 DOI: 10.1038/s41477-023-01499-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Phenolic acids (PAs) secreted by donor plants suppress the growth of their susceptible plant neighbours. However, how structurally diverse ensembles of PAs are perceived by plants to mediate interspecific competition remains a mystery. Here we show that a plant stress granule (SG) marker, RNA-BINDING PROTEIN 47B (RBP47B), is a sensor of PAs in Arabidopsis. PAs, including salicylic acid, 4-hydroxybenzoic acid, protocatechuic acid and so on, directly bind RBP47B, promote its phase separation and trigger SG formation accompanied by global translation inhibition. Salicylic acid-induced global translation inhibition depends on RBP47 family members. RBP47s regulate the proteome rather than the absolute quantity of SG. The rbp47 quadruple mutant shows a reduced sensitivity to the inhibitory effect of the PA mixture as well as to that of PA-rich rice when tested in a co-culturing ecosystem. In this Article, we identified the long sought-after PA sensor as RBP47B and illustrated that PA-induced SG-mediated translational inhibition was one of the PA perception mechanisms.
Collapse
Affiliation(s)
- Zhouli Xie
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Shuai Zhao
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Ying Li
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Yuhua Deng
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yabo Shi
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaoyuan Chen
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yue Li
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Haiwei Li
- College of Life Sciences, Capital Normal University, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Changtian Chen
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Xingwei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Enhui Liu
- College of Life Sciences, Capital Normal University, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Yuchen Tu
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Peng Shi
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Jinjin Tong
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Emilio Gutierrez-Beltran
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Instituto de Bioquímica Vegetal y Fotosíntesis, University of Sevilla, Sevilla, Spain
| | - Jiayu Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Weiqiang Qian
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Mian Zhou
- College of Life Sciences, Capital Normal University, Beijing, China.
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China.
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA.
| | - Wei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Center for Life Sciences, Beijing, China.
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
7
|
Hickman DT, Comont D, Rasmussen A, Birkett MA. Novel and holistic approaches are required to realize allelopathic potential for weed management. Ecol Evol 2023; 13:e10018. [PMID: 37091561 PMCID: PMC10121234 DOI: 10.1002/ece3.10018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
Allelopathy, that is, plant-plant inhibition via the release of secondary metabolites into the environment, has potential for the management of weeds by circumventing herbicide resistance. However, mechanisms underpinning allelopathy are notoriously difficult to elucidate, hindering real-world application either in the form of commercial bioherbicides or allelopathic crops. Such limited application is exemplified by evidence of limited knowledge of the potential benefits of allelopathy among end users. Here, we examine potential applications of this phenomenon, paying attention to novel approaches and influential factors requiring greater consideration, with the intention of improving the reputation and uptake of allelopathy. Avenues to facilitate more effective allelochemical discovery are also considered, with a view to stimulating the identification of new compounds and allelopathic species. Synthesis and Applications: We conclude that tackling increasing weed pressure on agricultural productivity would benefit from greater integration of the phenomenon of allelopathy, which in turn would be greatly served by a multi-disciplinary and exhaustive approach, not just through more effective isolation of the interactions involved, but also through greater consideration of factors which may influence them in the field, facilitating optimization of their benefits for weed management.
Collapse
Affiliation(s)
- Darwin T. Hickman
- Protecting Crops and the EnvironmentRothamsted ResearchHarpendenUK
- School of BiosciencesUniversity of NottinghamSutton BoningtonUK
| | - David Comont
- Protecting Crops and the EnvironmentRothamsted ResearchHarpendenUK
| | | | | |
Collapse
|
8
|
Kato-Noguchi H. Defensive Molecules Momilactones A and B: Function, Biosynthesis, Induction and Occurrence. Toxins (Basel) 2023; 15:toxins15040241. [PMID: 37104180 PMCID: PMC10140866 DOI: 10.3390/toxins15040241] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Labdane-related diterpenoids, momilactones A and B were isolated and identified in rice husks in 1973 and later found in rice leaves, straws, roots, root exudate, other several Poaceae species and the moss species Calohypnum plumiforme. The functions of momilactones in rice are well documented. Momilactones in rice plants suppressed the growth of fungal pathogens, indicating the defense function against pathogen attacks. Rice plants also inhibited the growth of adjacent competitive plants through the root secretion of momilactones into their rhizosphere due to the potent growth-inhibitory activity of momilactones, indicating a function in allelopathy. Momilactone-deficient mutants of rice lost their tolerance to pathogens and allelopathic activity, which verifies the involvement of momilactones in both functions. Momilactones also showed pharmacological functions such as anti-leukemia and anti-diabetic activities. Momilactones are synthesized from geranylgeranyl diphosphate through cyclization steps, and the biosynthetic gene cluster is located on chromosome 4 of the rice genome. Pathogen attacks, biotic elicitors such as chitosan and cantharidin, and abiotic elicitors such as UV irradiation and CuCl2 elevated momilactone production through jasmonic acid-dependent and independent signaling pathways. Rice allelopathy was also elevated by jasmonic acid, UV irradiation and nutrient deficiency due to nutrient competition with neighboring plants with the increased production and secretion of momilactones. Rice allelopathic activity and the secretion of momilactones into the rice rhizosphere were also induced by either nearby Echinochloa crus-galli plants or their root exudates. Certain compounds from Echinochloa crus-galli may stimulate the production and secretion of momilactones. This article focuses on the functions, biosynthesis and induction of momilactones and their occurrence in plant species.
Collapse
|
9
|
Valletta A, Iozia LM, Fattorini L, Leonelli F. Rice Phytoalexins: Half a Century of Amazing Discoveries; Part I: Distribution, Biosynthesis, Chemical Synthesis, and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:260. [PMID: 36678973 PMCID: PMC9862927 DOI: 10.3390/plants12020260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Cultivated rice is a staple food for more than half of the world's population, providing approximately 20% of the world's food energy needs. A broad spectrum of pathogenic microorganisms causes rice diseases leading to huge yield losses worldwide. Wild and cultivated rice species are known to possess a wide variety of antimicrobial secondary metabolites, known as phytoalexins, which are part of their active defense mechanisms. These compounds are biosynthesized transiently by rice in response to pathogens and certain abiotic stresses. Rice phytoalexins have been intensively studied for over half a century, both for their biological role and their potential application in agronomic and pharmaceutical fields. In recent decades, the growing interest of the research community, combined with advances in chemical, biological, and biomolecular investigation methods, has led to a notable acceleration in the growth of knowledge on rice phytoalexins. This review provides an overview of the knowledge gained in recent decades on the diversity, distribution, biosynthesis, chemical synthesis, and bioactivity of rice phytoalexins, with particular attention to the most recent advances in this research field.
Collapse
Affiliation(s)
- Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Maria Iozia
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Fattorini
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Leonelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
10
|
Rahaman F, Shukor Juraimi A, Rafii MY, Uddin K, Hassan L, Chowdhury AK, Karim SMR, Yusuf Rini B, Yusuff O, Bashar HMK, Hossain A. Allelopathic potential in rice - a biochemical tool for plant defence against weeds. FRONTIERS IN PLANT SCIENCE 2022; 13:1072723. [PMID: 36589133 PMCID: PMC9795009 DOI: 10.3389/fpls.2022.1072723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Rice is a key crop for meeting the global food demand and ensuring food security. However, the crop has been facing great problems to combat the weed problem. Synthetic herbicides pose a severe threat to the long-term viability of agricultural output, agroecosystems, and human health. Allelochemicals, secondary metabolites of allelopathic plants, are a powerful tool for biological and eco-friendly weed management. The dynamics of weed species in various situations are determined by crop allelopathy. Phenolics and momilactones are the most common allelochemicals responsible for herbicidal effects in rice. The dispersion of allelochemicals is influenced not only by crop variety but also by climatic conditions. The most volatile chemicals, such as terpenoids, are usually emitted by crop plants in drought-stricken areas whereas the plants in humid zones release phytotoxins that are hydrophilic in nature, including phenolics, flavonoids, and alkaloids. The allelochemicals can disrupt the biochemical and physiological processes in weeds causing them to die finally. This study insight into the concepts of allelopathy and allelochemicals, types of allelochemicals, techniques of investigating allelopathic potential in rice, modes of action of allelochemicals, pathways of allelochemical production in plants, biosynthesis of allelochemicals in rice, factors influencing the production of allelochemicals in plants, genetical manipulation through breeding to develop allelopathic traits in rice, the significance of rice allelopathy in sustainable agriculture, etc. Understanding these biological phenomena may thus aid in the development of new and novel weed-control tactics while allowing farmers to manage weeds in an environmentally friendly manner.
Collapse
Affiliation(s)
- Ferdoushi Rahaman
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
| | - Abdul Shukor Juraimi
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
| | - Mohd Y. Rafii
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Selangor, Malaysia
| | - Kamal Uddin
- Department of Land Management, University Putra Malaysia (UPM), Serdang, Malaysia
| | - Lutful Hassan
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Abul Kashem Chowdhury
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | | | - Bashir Yusuf Rini
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | - Oladosu Yusuff
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Selangor, Malaysia
| | - H. M. Khairul Bashar
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
- On-Farm Research Division (OFRD), Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Akbar Hossain
- Soil Science Division, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
11
|
Knoch E, Kovács J, Deiber S, Tomita K, Shanmuganathan R, Serra Serra N, Okada K, Becker C, Schandry N. Transcriptional response of a target plant to benzoxazinoid and diterpene allelochemicals highlights commonalities in detoxification. BMC PLANT BIOLOGY 2022; 22:402. [PMID: 35974304 PMCID: PMC9382751 DOI: 10.1186/s12870-022-03780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Plants growing in proximity to other plants are exposed to a variety of metabolites that these neighbors release into the environment. Some species produce allelochemicals to inhibit growth of neighboring plants, which in turn have evolved ways to detoxify these compounds. RESULTS In order to understand how the allelochemical-receiving target plants respond to chemically diverse compounds, we performed whole-genome transcriptome analysis of Arabidopsis thaliana exposed to either the benzoxazinoid derivative 2-amino- 3H-phenoxazin-3-one (APO) or momilactone B. These two allelochemicals belong to two very different compound classes, benzoxazinoids and diterpenes, respectively, produced by different Poaceae crop species. CONCLUSIONS Despite their distinct chemical nature, we observed similar molecular responses of A. thaliana to these allelochemicals. In particular, many of the same or closely related genes belonging to the three-phase detoxification pathway were upregulated in both treatments. Further, we observed an overlap between genes upregulated by allelochemicals and those involved in herbicide detoxification. Our findings highlight the overlap in the transcriptional response of a target plant to natural and synthetic phytotoxic compounds and illustrate how herbicide resistance could arise via pathways involved in plant-plant interaction.
Collapse
Affiliation(s)
- Eva Knoch
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Judit Kovács
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Sebastian Deiber
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Keisuke Tomita
- Agro-Biotechnology Research Center (AgTECH), Graduate School of Agricultural and Life Sciences (GSALS), The University of Tokyo, Tokyo, 113-8657, Japan
| | - Reshi Shanmuganathan
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Núria Serra Serra
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Kazunori Okada
- Agro-Biotechnology Research Center (AgTECH), Graduate School of Agricultural and Life Sciences (GSALS), The University of Tokyo, Tokyo, 113-8657, Japan
| | - Claude Becker
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany.
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria.
| | - Niklas Schandry
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany.
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria.
| |
Collapse
|
12
|
Li J, Lin S, Ma H, Wang Y, He H, Fang C. Spatial-Temporal Distribution of Allelopathic Rice Roots in Paddy Soil and Its Impact on Weed-Suppressive Activity at the Seedling Stages. FRONTIERS IN PLANT SCIENCE 2022; 13:940218. [PMID: 35865295 PMCID: PMC9294529 DOI: 10.3389/fpls.2022.940218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Allelochemicals secreted by allelopathic rice roots are transmitted to the receptor rhizosphere through the soil medium to inhibit the growth of the surrounding weeds. This research aimed to explore the relationships between the spatial-temporal distribution of rice roots in soil and weed-suppression ability at its seedling stage. RESULTS This study first examined the root distribution of three rice cultivars in paddy soil in both vertical and horizontal directions at 3-6 leaf stage. Then, an experiment using rice-barnyardgrass mixed culture was conducted to analyze the allelopathic potential and allelochemical content secreted by rice roots in different lateral soil layers. The results showed that allelopathic rice had a smaller root diameter and larger root length density, root surface area density, and root dry weight density than those of non-allelopathic rice, in the top 5 cm at 5- and 6-leaf stages. In particular, there were significant differences in root distribution at the horizontal distance of 6-12 cm. Besides, allelopathic rice significantly inhibited the above-ground growth of barnyardgrass co-cultured at 12 cm lateral distance in situ, and the content of benzoic acid derivatives in allelopathic rice in a 6-12 cm soil circle was higher than that observed at 0-6 cm distance. Moreover, correlation analysis confirmed that the distribution of roots in the horizontal distance was significantly correlated with weed inhibition effect and allelochemical content. CONCLUSION These results implied that spatial distribution of allelopathic rice roots in paddy soil, particularly at the lateral distance, appears to have important impact on its weed-suppressive activity at the seedling stage, suggesting that modifying root distribution in soil may be a novel method to strengthen the ability of rice seedlings to resist paddy weeds.
Collapse
Affiliation(s)
- Jiayu Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shunxian Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huayan Ma
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanping Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin He
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Changxun Fang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Oburger E, Schmidt H, Staudinger C. Harnessing belowground processes for sustainable intensification of agricultural systems. PLANT AND SOIL 2022; 478:177-209. [PMID: 36277079 PMCID: PMC9579094 DOI: 10.1007/s11104-022-05508-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/18/2022] [Indexed: 06/16/2023]
Abstract
Increasing food demand coupled with climate change pose a great challenge to agricultural systems. In this review we summarize recent advances in our knowledge of how plants, together with their associated microbiota, shape rhizosphere processes. We address (molecular) mechanisms operating at the plant-microbe-soil interface and aim to link this knowledge with actual and potential avenues for intensifying agricultural systems, while at the same time reducing irrigation water, fertilizer inputs and pesticide use. Combining in-depth knowledge about above and belowground plant traits will not only significantly advance our mechanistic understanding of involved processes but also allow for more informed decisions regarding agricultural practices and plant breeding. Including belowground plant-soil-microbe interactions in our breeding efforts will help to select crops resilient to abiotic and biotic environmental stresses and ultimately enable us to produce sufficient food in a more sustainable agriculture in the upcoming decades.
Collapse
Affiliation(s)
- Eva Oburger
- Department of Forest and Soil Science, Institute of Soil Research, University of Natural Resources and Life Sciences, Konrad Lorenzstrasse 24, 3430 Tulln an der Donau, Austria
| | - Hannes Schmidt
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Christiana Staudinger
- Department of Forest and Soil Science, Institute of Soil Research, University of Natural Resources and Life Sciences, Konrad Lorenzstrasse 24, 3430 Tulln an der Donau, Austria
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, Japan
| |
Collapse
|
14
|
Xu Y, Cheng HF, Kong CH, Meiners SJ. Intra-specific kin recognition contributes to inter-specific allelopathy: A case study of allelopathic rice interference with paddy weeds. PLANT, CELL & ENVIRONMENT 2021; 44:3479-3491. [PMID: 33993534 DOI: 10.1111/pce.14083] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Species interactions and mechanisms affect plant coexistence and community assembly. Despite increasing knowledge of kin recognition and allelopathy in regulating inter-specific and intra-specific interactions among plants, little is known about whether kin recognition mediates allelopathic interference. We used allelopathic rice cultivars with the ability for kin recognition grown in kin versus non-kin mixtures to determine their impacts on paddy weeds in field trials and a series of controlled experiments. We experimentally tested potential mechanisms of the interaction via altered root behaviour, allelochemical production and resource partitioning in the dominant weed competitor, as well as soil microbial communities. We consistently found that the establishment and growth of paddy weeds were more inhibited by kin mixtures compared to non-kin mixtures. The effect was driven by kin recognition that induced changes in root placement, altered weed carbon and nitrogen partitioning, but was associated with similar soil microbial communities. Importantly, genetic relatedness enhanced the production of intrusive roots towards weeds and reduced the production of rice allelochemicals. These findings suggest that relatedness allows allelopathic plants to discriminate their neighbouring collaborators (kin) or competitors and adjust their growth, competitiveness and chemical defense accordingly.
Collapse
Affiliation(s)
- You Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Hui-Fang Cheng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Chui-Hua Kong
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Scott J Meiners
- Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois, USA
| |
Collapse
|
15
|
Abd-ElGawad AM, Bonanomi G, Al-Rashed SA, Elshamy AI. Persicaria lapathifolia Essential Oil: Chemical Constituents, Antioxidant Activity, and Allelopathic Effect on the Weed Echinochloa colona. PLANTS 2021; 10:plants10091798. [PMID: 34579331 PMCID: PMC8466483 DOI: 10.3390/plants10091798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
The exploration of new green, ecofriendly bioactive compounds has attracted the attention of researchers and scientists worldwide to avoid the harmful effects of chemically synthesized compounds. Persicaria lapathifolia has been reported to have various bioactive compounds, while its essential oil (EO) has not been determined yet. The current work dealt with the first description of the chemical composition of the EO from the aerial parts of P. lapathifolia, along with studying its free radical scavenging activity and herbicidal effect on the weed Echinochloa colona. Twenty-one volatile compounds were identified via GC–MS analysis. Nonterpenoids were the main components, with a relative concentration of 58.69%, in addition to terpenoids (37.86%) and carotenoid-derived compounds (1.75%). n-dodecanal (22.61%), α-humulene (11.29%), 2,4-dimethylicosane (8.97%), 2E-hexenoic acid (8.04%), γ-nonalactone (3.51%), and limonene (3.09%) were characterized as main compounds. The extracted EO exhibited substantial allelopathic activity against the germination, seedling root, and shoot growth of the weed E. colona in a dose-dependent manner, showing IC50 values of 77.27, 60.84, and 33.80 mg L−1, respectively. In addition, the P. lapathifolia EO showed substantial antioxidant activity compared to ascorbic acid as a standard antioxidant. The EO attained IC50 values of 159.69 and 230.43 mg L−1, for DPPH and ABTS, respectively, while ascorbic acid exhibited IC50 values 47.49 and 56.68 mg L−1, respectively. The present results showed that the emergent leafy stems of aquatic plants such as P. lapathifolia have considerably low content of the EO, which exhibited substantial activities such as antioxidant and allelopathic activities. Further study is recommended to evaluate the effects of various environmental and climatic conditions on the production and composition of the EOs of P. lapathifolia.
Collapse
Affiliation(s)
- Ahmed M. Abd-ElGawad
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Botany, Faculty of Sciences, Mansoura University, Mansoura 35516, Egypt
- Correspondence: ; Tel.: +966-562680864
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy;
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Sarah A. Al-Rashed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia;
| | - Abdelsamed I. Elshamy
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| |
Collapse
|
16
|
González FG, Manavella PA. Prospects for plant productivity: from the canopy to the nucleus. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3931-3935. [PMID: 34003934 DOI: 10.1093/jxb/erab147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Population growth has been closely associated with agricultural production, since the first famine predicted by Malthus (1798) up to the Green Revolution of the past century. Today, we continue to face increasing demand for food and crop production (Tilman et al., 2011). Considering the combined caloric or protein content of the 275 major crops used directly as human foods or as livestock and fish feeds, Tilman et al. (2011) forecast a 100% increase in global demand for crops from 2005 to 2050. Meeting this demand with the lowest impact on the environment could be achieved by sustainable intensification of existing cropland with reduced land clearing (Tilman et al., 2011; Fischer and Connor, 2018).
Collapse
Affiliation(s)
- Fernanda G González
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET- UNNOBA-UNSADA), 2700 Pergamino, Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), EEA 2700 Pergamino, Buenos Aires, Argentina
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|