1
|
Stack GM, Quade MA, Wilkerson DG, Monserrate LA, Bentz PC, Carey SB, Grimwood J, Toth JA, Crawford S, Harkess A, Smart LB. Comparison of Recombination Rate, Reference Bias, and Unique Pangenomic Haplotypes in Cannabis sativa Using Seven De Novo Genome Assemblies. Int J Mol Sci 2025; 26:1165. [PMID: 39940933 PMCID: PMC11818205 DOI: 10.3390/ijms26031165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Genomic characterization of Cannabis sativa has accelerated rapidly in the last decade as sequencing costs have decreased and public and private interest in the species has increased. Here, we present seven new chromosome-level haplotype-phased genomes of C. sativa. All of these genotypes were alive at the time of publication, and several have numerous years of associated phenotype data. We performed a k-mer-based pangenome analysis to contextualize these assemblies within over 200 existing assemblies. This allowed us to identify unique haplotypes and genomic diversity among Cannabis sativa genotypes. We leveraged linkage maps constructed from F2 progeny of two of the assembled genotypes to characterize the recombination rate across the genome showing strong periphery-biased recombination. Lastly, we re-aligned a bulk segregant analysis dataset for the major-effect flowering locus Early1 to several of the new assemblies to evaluate the impact of reference bias on the mapping results and narrow the locus to a smaller region of the chromosome. These new assemblies, combined with the continued propagation of the genotypes, will contribute to the growing body of genomic resources for C. sativa to accelerate future research efforts.
Collapse
Affiliation(s)
- George M. Stack
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA; (G.M.S.); (M.A.Q.); (D.G.W.); (L.A.M.); (J.A.T.)
| | - Michael A. Quade
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA; (G.M.S.); (M.A.Q.); (D.G.W.); (L.A.M.); (J.A.T.)
| | - Dustin G. Wilkerson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA; (G.M.S.); (M.A.Q.); (D.G.W.); (L.A.M.); (J.A.T.)
| | - Luis A. Monserrate
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA; (G.M.S.); (M.A.Q.); (D.G.W.); (L.A.M.); (J.A.T.)
| | - Philip C. Bentz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; (P.C.B.); (S.B.C.); (J.G.); (A.H.)
| | - Sarah B. Carey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; (P.C.B.); (S.B.C.); (J.G.); (A.H.)
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; (P.C.B.); (S.B.C.); (J.G.); (A.H.)
| | - Jacob A. Toth
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA; (G.M.S.); (M.A.Q.); (D.G.W.); (L.A.M.); (J.A.T.)
| | | | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; (P.C.B.); (S.B.C.); (J.G.); (A.H.)
| | - Lawrence B. Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA; (G.M.S.); (M.A.Q.); (D.G.W.); (L.A.M.); (J.A.T.)
| |
Collapse
|
2
|
Lazare S, Golshmid P, Krassin A, Simhon E, Cohen TL, Dag A. Grafting of Cannabis - The effect of the rootstock on vegetative and reproductive indices of the scion. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112210. [PMID: 39096974 DOI: 10.1016/j.plantsci.2024.112210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Among the commercial cannabis varieties, some are high yielders but characterized by a relatively poor root system. Roots absorb water and minerals from the soil, enabling vegetative development that directly affects yield, as vigorous plants have more resources to support reproduction. Moreover, healthy foliage is a primary key to high assimilation rates, leading to better production of photosynthetic products, including cannabinoids and terpenes, which are the main active components of cannabis. We grafted a high-THC variety, named 'Freud Super-Ego' (FSE) onto three chemotypes of rootstocks: high-THC (T), high-CBD (C), and Balanced (B). All the rootstocks had significantly greater root biomass compared to FSE. All the grafting treatments significantly improved FSE's vegetative indices and yield. The best overall vegetative performance - height, stem circumference, number of mature leaves - was that of plants grafted onto the Balanced and high-CBD rootstocks, resulting in high yields as well. However, the greatest number of inflorescences was counted when FSE was grafted onto a high-THC rootstock. According to leaf mineral content analysis, the highest nitrogen and phosphorus levels were found in leaves of FSE grafted on the balanced rootstock. The cannabinoid content profile analysis revealed that all grafting treatments raised the THC level in FSE's inflorescences by 8-12 % in comparison to the non-grafted control, and the THC rootstock led to the highest THC level. The results indicate the importance of grafting in cannabis as a tool to increase the productivity and quality of the product.
Collapse
Affiliation(s)
- Silit Lazare
- RCK Science-based Cannabis Genetics, Ruhama 7918000, Israel.
| | | | - Adi Krassin
- RCK Science-based Cannabis Genetics, Ruhama 7918000, Israel
| | - Ella Simhon
- RCK Science-based Cannabis Genetics, Ruhama 7918000, Israel
| | | | - Arnon Dag
- Gilat Research Center, Agricultural Research Organization, M.P. Negev, Gilat 8528000, Israel
| |
Collapse
|
3
|
Wang Y, Liu C, Hu J, Wu K, Gong B, Xu Y. A Flowering Morphological Investigation, Fruit Fatty Acids, and Mineral Elements Dynamic Changes of Idesia polycarpa Maxim. PLANTS (BASEL, SWITZERLAND) 2024; 13:2663. [PMID: 39339639 PMCID: PMC11434854 DOI: 10.3390/plants13182663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Idesia polycarpa Maxim is a high-value species of fruit oil with edible, abundant linoleic acid and polyphenols. Idesia polycarpa is described as a dioecious species, and the flowers are male; female and bisexual flowers are produced on separate plants. In order to explore the flower types of Idesia polycarpa, the morphology of its flowers and inflorescence were investigated in this study. The flower and inflorescence types, the diameter, and the flowering sequencing in male and female inflorescence were determined. We also detected the length, width, and fresh weight of leaves, shoots, and female inflorescence, as well as the length and fresh weight of the petiole during the development. Additionally, we compared the length, width, the length/width ratio, and the flowering density between 5- and 7-year-old female trees. The phenological period observation of Idesia polycarpa showed that the development process can be roughly divided into 12 stages, including bud burst, leaf expansion, inflorescence growth, initial flowering, full flowering, flower decline, initial fruiting, fruit enlargement, fruit color change, fruit ripening, post-ripening of fruit, and leaf fall periods. Furthermore, four elites' fruit determined the oil content and the composition of fatty acid content during the development. The dynamic of fatty acids contents, the palrnitic acid, palmitoleic acid, stearic acid, oleic acid, and linolenic acid contents were detected during the fruit development of four elites. Moreover, the mineral elements content of fruit of four elites during development were determined. The patterns of vegetative and reproductive growth in young dioecious trees of Idesia polycarpa provided the theoretical basis for artificial pruning and training.
Collapse
Affiliation(s)
- Yanpeng Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.W.); (C.L.); (K.W.); (B.G.)
| | - Cuiyu Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.W.); (C.L.); (K.W.); (B.G.)
| | - Jiasong Hu
- Guizhou Forestry and Grassland Development Co., Ltd., Guiyang 550000, China;
| | - Kaiyun Wu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.W.); (C.L.); (K.W.); (B.G.)
| | - Bangchu Gong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.W.); (C.L.); (K.W.); (B.G.)
| | - Yang Xu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.W.); (C.L.); (K.W.); (B.G.)
| |
Collapse
|
4
|
Dowling CA, Shi J, Toth JA, Quade MA, Smart LB, McCabe PF, Schilling S, Melzer R. A FLOWERING LOCUS T ortholog is associated with photoperiod-insensitive flowering in hemp (Cannabis sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:383-403. [PMID: 38625758 DOI: 10.1111/tpj.16769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Hemp (Cannabis sativa L.) is an extraordinarily versatile crop, with applications ranging from medicinal compounds to seed oil and fibre products. Cannabis sativa is a short-day plant, and its flowering is highly controlled by photoperiod. However, substantial genetic variation exists for photoperiod sensitivity in C. sativa, and photoperiod-insensitive ("autoflower") cultivars are available. Using a bi-parental mapping population and bulked segregant analysis, we identified Autoflower2, a 0.5 Mbp locus significantly associated with photoperiod-insensitive flowering in hemp. Autoflower2 contains an ortholog of the central flowering time regulator FLOWERING LOCUS T (FT) from Arabidopsis thaliana which we termed CsFT1. We identified extensive sequence divergence between alleles of CsFT1 from photoperiod-sensitive and insensitive cultivars of C. sativa, including a duplication of CsFT1 and sequence differences, especially in introns. Furthermore, we observed higher expression of one of the CsFT1 copies found in the photoperiod-insensitive cultivar. Genotyping of several mapping populations and a diversity panel confirmed a correlation between CsFT1 alleles and photoperiod response, affirming that at least two independent loci involved in the photoperiodic control of flowering, Autoflower1 and Autoflower2, exist in the C. sativa gene pool. This study reveals the multiple independent origins of photoperiod insensitivity in C. sativa, supporting the likelihood of a complex domestication history in this species. By integrating the genetic relaxation of photoperiod sensitivity into novel C. sativa cultivars, expansion to higher latitudes will be permitted, thus allowing the full potential of this versatile crop to be reached.
Collapse
Affiliation(s)
- Caroline A Dowling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Jiaqi Shi
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Jacob A Toth
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, New York, USA
| | - Michael A Quade
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, New York, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, New York, USA
| | - Paul F McCabe
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Susanne Schilling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Rainer Melzer
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Ford T, Aina A, Ellison S, Gordon T, Stansell Z. Utilizing digitized occurrence records of Midwestern feral Cannabis sativa to develop ecological niche models. Ecol Evol 2024; 14:e11325. [PMID: 39005882 PMCID: PMC11239322 DOI: 10.1002/ece3.11325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 07/16/2024] Open
Abstract
Hemp (Cannabis sativa L.) has historically played a vital role in agriculture across the globe. Feral and wild populations have served as genetic resources for breeding, conservation, and adaptation to changing environmental conditions. However, feral populations of Cannabis, specifically in the Midwestern United States, remain poorly understood. This study aims to characterize the abiotic tolerances of these populations, estimate suitable areas, identify regions at risk of abiotic suitability change, and highlight the utility of ecological niche models (ENMs) in germplasm conservation. The Maxent algorithm was used to construct a series of ENMs. Validation metrics and MOP (Mobility-oriented Parity) analysis were used to assess extrapolation risk and model performance. We also projected the final projected under current and future climate scenarios (2021-2040 and 2061-2080) to assess how abiotic suitability changes with time. Climate change scenarios indicated an expansion of suitable habitat, with priority areas for germplasm collection in Indiana, Illinois, Kansas, Missouri, and Nebraska. This study demonstrates the application of ENMs for characterizing feral Cannabis populations and highlights their value in germplasm conservation and breeding efforts. Populations of feral C. sativa in the Midwest are of high interest, and future research should focus on utilizing tools to aid the collection of materials for the characterization of genetic diversity and adaptation to a changing climate.
Collapse
Affiliation(s)
- Tori Ford
- USDA‐Agricultural Research Service, Plant Genetic Resources UnitGenevaNew YorkUSA
| | - Ademola Aina
- Department of Plant and Agroecosystem SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Shelby Ellison
- Department of Plant and Agroecosystem SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Tyler Gordon
- USDA‐Agricultural Research Service, Plant Genetic Resources UnitGenevaNew YorkUSA
| | - Zachary Stansell
- USDA‐Agricultural Research Service, Plant Genetic Resources UnitGenevaNew YorkUSA
| |
Collapse
|
6
|
Balant M, Garnatje T, Vitales D, Hidalgo O, Chitwood DH. Intra-leaf modeling of Cannabis leaflet shape produces leaf models that predict genetic and developmental identities. THE NEW PHYTOLOGIST 2024; 243:781-796. [PMID: 38757746 DOI: 10.1111/nph.19817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Abstract
The iconic, palmately compound leaves of Cannabis have attracted significant attention in the past. However, investigations into the genetic basis of leaf shape or its connections to phytochemical composition have yielded inconclusive results. This is partly due to prominent changes in leaflet number within a single plant during development, which has so far prevented the proper use of common morphometric techniques. Here, we present a new method that overcomes the challenge of nonhomologous landmarks in palmate, pinnate, and lobed leaves, using Cannabis as an example. We model corresponding pseudo-landmarks for each leaflet as angle-radius coordinates and model them as a function of leaflet to create continuous polynomial models, bypassing the problems associated with variable number of leaflets between leaves. We analyze 341 leaves from 24 individuals from nine Cannabis accessions. Using 3591 pseudo-landmarks in modeled leaves, we accurately predict accession identity, leaflet number, and relative node number. Intra-leaf modeling offers a rapid, cost-effective means of identifying Cannabis accessions, making it a valuable tool for future taxonomic studies, cultivar recognition, and possibly chemical content analysis and sex identification, in addition to permitting the morphometric analysis of leaves in any species with variable numbers of leaflets or lobes.
Collapse
Affiliation(s)
- Manica Balant
- Institut Botànic de Barcelona, IBB (CSIC-CMCNB), Passeig del Migdia s.n., 08038, Barcelona, Spain
- Laboratori de Botànica, Unitat Associada al CSIC, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Teresa Garnatje
- Institut Botànic de Barcelona, IBB (CSIC-CMCNB), Passeig del Migdia s.n., 08038, Barcelona, Spain
- Jardí Botànic Marimurtra - Fundació Carl Faust, pg. Carles Faust, 9, 17300, Blanes, Spain
| | - Daniel Vitales
- Institut Botànic de Barcelona, IBB (CSIC-CMCNB), Passeig del Migdia s.n., 08038, Barcelona, Spain
| | - Oriane Hidalgo
- Institut Botànic de Barcelona, IBB (CSIC-CMCNB), Passeig del Migdia s.n., 08038, Barcelona, Spain
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK
| | - Daniel H Chitwood
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Department of Computational Mathematics, Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
7
|
Munir M, Smith H, Valentine T, Leonberger K, Szarka D, Dixon E, Anthony N, Ricciardi M, Adedokun T, Keene T, Pearce R, Gauthier N. Leaf Spot Disease Development and Its Effect on Yield of Essential Oil-Producing Hemp Cultivars in Kentucky. PLANT DISEASE 2024; 108:1621-1631. [PMID: 38175655 DOI: 10.1094/pdis-11-23-2483-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Leaf spot diseases are common on field hemp, causing defoliation, and blighting. The most prevalent leaf spot diseases of hemp in Kentucky are Bipolaris leaf spot (Bipolaris gigantea), Cercospora leaf spot (Cercospora flagellaris), and Septoria leaf spot (Septoria cannabis). In this study, disease progression, cultivar susceptibility, and yield loss were examined using cultivars from four relatedness groups at two locations and in two growing seasons. Septoria leaf spot was the first leaf spot disease to be observed in the field, followed by Bipolaris leaf spot. Both diseases reduced canopy density. Cercospora leaf spot developed in the late reproductive stages as harvest approached. A wide range of susceptibility was documented, suggesting genetic variability across cultivars. Trump group cultivars were the most susceptible, while Otto II group cultivars were the least susceptible. Most importantly, leaf spot diseases had minimal influence on floral biomass and no effect on CBD yield, suggesting that, regardless of disease severity, leaf spot diseases may seldom warrant management. While the importance of foliar disease and corresponding yield loss can shift over time, variation in disease progress among leaf spot diseases and susceptibility of hemp cultivars documented in this study suggest potential disease management through cultural practices such as cultivar and planting date selections.
Collapse
Affiliation(s)
- Misbakhul Munir
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| | - Henry Smith
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| | - Tara Valentine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546
| | - Kim Leonberger
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| | - Desiree Szarka
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| | - Ed Dixon
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| | - Noah Anthony
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| | | | - Toni Adedokun
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| | - Tom Keene
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546
| | - Robert Pearce
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546
| | - Nicole Gauthier
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| |
Collapse
|
8
|
Babaei M, Nemati H, Arouiee H, Torkamaneh D. Characterization of indigenous populations of cannabis in Iran: a morphological and phenological study. BMC PLANT BIOLOGY 2024; 24:151. [PMID: 38418942 PMCID: PMC10902964 DOI: 10.1186/s12870-024-04841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Cannabis is a historically, culturally, and economically significant crop in human societies, owing to its versatile applications in both industry and medicine. Over many years, native cannabis populations have acclimated to the various environments found throughout Iran, resulting in rich genetic and phenotypic diversity. Examining phenotypic diversity within and between indigenous populations is crucial for effective plant breeding programs. This study aimed to classify indigenous cannabis populations in Iran to meet the needs of breeders and breeding programs in developing new cultivars. RESULTS Here, we assessed phenotypic diversity in 25 indigenous populations based on 12 phenological and 14 morphological traits in male and female plants. The extent of heritability for each parameter was estimated in both genders, and relationships between quantitative and time-based traits were explored. Principal component analysis (PCA) identified traits influencing population distinctions. Overall, populations were broadly classified into early, medium, and late flowering groups. The highest extent of heritability of phenological traits was found in Start Flower Formation Time in Individuals (SFFI) for females (0.91) Flowering Time 50% in Individuals (50% of bracts formed) (FT50I) for males (0.98). Populations IR7385 and IR2845 exhibited the highest commercial index (60%). Among male plants, the highest extent of Relative Growth Rate (RGR) was observed in the IR2845 population (0.122 g.g- 1.day- 1). Finally, populations were clustered into seven groups according to the morphological traits in female and male plants. CONCLUSIONS Overall, significant phenotypic diversity was observed among indigenous populations, emphasizing the potential for various applications. Early-flowering populations, with their high RGR and Harvest Index (HI), were found as promising options for inclusion in breeding programs. The findings provide valuable insights into harnessing the genetic diversity of indigenous cannabis for diverse purposes.
Collapse
Affiliation(s)
- Mehdi Babaei
- Department of Horticultural Sciences, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Razavi Khorasan, Iran
- Département de Phytologie, Université Laval, Rue de l'Université, Québec City, Québec, G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Rue de l'Université, Québec City, Québec, G1V 0A6, Canada
- Centre de recherche et d'innovation sur les végétaux (CRIV), Rue de l'Agriculture , Université Laval, Québec City, Québec, G1V 0A6, Canada
- Institute Intelligence and Data (IID), Rue de l'Agriculture Québec City, Université Laval, Québec City, Québec, G1V 0A6, Canada
| | - Hossein Nemati
- Department of Horticultural Sciences, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Razavi Khorasan, Iran.
| | - Hossein Arouiee
- Department of Horticultural Sciences, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Razavi Khorasan, Iran
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Rue de l'Université, Québec City, Québec, G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Rue de l'Université, Québec City, Québec, G1V 0A6, Canada
- Centre de recherche et d'innovation sur les végétaux (CRIV), Rue de l'Agriculture , Université Laval, Québec City, Québec, G1V 0A6, Canada
- Institute Intelligence and Data (IID), Rue de l'Agriculture Québec City, Université Laval, Québec City, Québec, G1V 0A6, Canada
| |
Collapse
|
9
|
Stack GM, Cala AR, Quade MA, Toth JA, Monserrate LA, Wilkerson DG, Carlson CH, Mamerto A, Michael TP, Crawford S, Smart CD, Smart LB. Genetic Mapping, Identification, and Characterization of a Candidate Susceptibility Gene for Powdery Mildew in Cannabis sativa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:51-61. [PMID: 37750850 DOI: 10.1094/mpmi-04-23-0043-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Powdery mildew (PM) in Cannabis sativa is most frequently caused by the biotrophic fungus Golovinomyces ambrosiae. Based on previously characterized variation in susceptibility to PM, biparental populations were developed by crossing the most resistant cultivar evaluated, 'FL 58', with a susceptible cultivar, 'TJ's CBD'. F1 progeny were evaluated and displayed a range of susceptibility, and two were self-pollinated to generate two F2 populations. In 2021, the F2 populations (n = 706) were inoculated with PM and surveyed for disease severity. In both F2 populations, 25% of the progeny were resistant, while the remaining 75% showed a range of susceptibility. The F2 populations, as well as selected F1 progeny and the parents, were genotyped with a single-nucleotide polymorphism array, and a consensus genetic map was produced. A major effect quantitative trait locus on C. sativa chromosome 1 (Chr01) and other smaller-effect quantitative trait loci (QTL) on four other chromosomes were identified. The most associated marker on Chr01 was located near CsMLO1, a candidate susceptibility gene. Genomic DNA and cDNA sequencing of CsMLO1 revealed a 6.8-kb insertion in FL 58, relative to TJ's CBD, of which 846 bp are typically spliced into the mRNA transcript encoding a premature stop codon. Molecular marker assays were developed using CsMLO1 sequences to distinguish PM-resistant and PM-susceptible genotypes. These data support the hypothesis that a mutated MLO susceptibility gene confers resistance to PM in C. sativa and provides new genetic resources to develop resistant cultivars. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- George M Stack
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456, U.S.A
| | - Ali R Cala
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456, U.S.A
| | - Michael A Quade
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456, U.S.A
| | - Jacob A Toth
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456, U.S.A
| | - Luis A Monserrate
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456, U.S.A
| | - Dustin G Wilkerson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456, U.S.A
| | - Craig H Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456, U.S.A
| | - Allen Mamerto
- Plant Molecular and Cellular Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, U.S.A
| | - Todd P Michael
- Plant Molecular and Cellular Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, U.S.A
| | | | - Christine D Smart
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456, U.S.A
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456, U.S.A
| |
Collapse
|
10
|
Lapierre É, de Ronne M, Boulanger R, Torkamaneh D. Comprehensive Phenotypic Characterization of Diverse Drug-Type Cannabis Varieties from the Canadian Legal Market. PLANTS (BASEL, SWITZERLAND) 2023; 12:3756. [PMID: 37960111 PMCID: PMC10648736 DOI: 10.3390/plants12213756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Cannabis (Cannabis sativa L.) stands as a historically significant and culturally important plant, embodying economic, social, and medicinal relevance for human societies. However, years of prohibition and stigmatization have hindered the cannabis research community, which is hugely undersized and suffers from a scarcity of understanding of cannabis genetics and how key traits are expressed or inherited. In this study, we conducted a comprehensive phenotypic characterization of 176 drug-type cannabis accessions, representative of Canada's legal market. We assessed germination methods, evaluated various traits including agronomic, morphological, and cannabinoid profiles, and uncovered significant variation within this population. Notably, the yield displayed a negative correlation with maturity-related traits but a positive correlation with the fresh biomass. Additionally, the potential THC content showed a positive correlation with maturity-related traits but a negative correlation with the yield. Significant differences were observed between the plants derived from regular female seeds and feminized seeds, as well as between the plants derived from cuttings and seeds for different traits. This study advances our understanding of cannabis cultivation, offering insights into germination practices, agronomic traits, morphological characteristics, and biochemical diversity. These findings establish a foundation for precise breeding and cultivar development, enhancing cannabis's potential in the legal market.
Collapse
Affiliation(s)
- Éliana Lapierre
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada; (É.L.); (M.d.R.); (R.B.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
- Institut Intelligence et Données (IID), Université Laval, Québec, QC G1V 0A6, Canada
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada; (É.L.); (M.d.R.); (R.B.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
- Institut Intelligence et Données (IID), Université Laval, Québec, QC G1V 0A6, Canada
| | - Rosemarie Boulanger
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada; (É.L.); (M.d.R.); (R.B.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada; (É.L.); (M.d.R.); (R.B.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
- Institut Intelligence et Données (IID), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
11
|
Hesami M, Pepe M, Jones AMP. Morphological Characterization of Cannabis sativa L. Throughout Its Complete Life Cycle. PLANTS (BASEL, SWITZERLAND) 2023; 12:3646. [PMID: 37896109 PMCID: PMC10610221 DOI: 10.3390/plants12203646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
This study extensively characterizes the morphological characteristics, including the leaf morphology, plant structure, flower development, and trichome features throughout the entire life cycle of Cannabis sativa L. cv. White Widow. The developmental responses to photoperiodic variations were investigated from germination to mature plant senescence. The leaf morphology showed a progression of complexity, beginning with serrations in the 1st true leaves, until the emergence of nine leaflets in the 6th true leaves, followed by a distinct shift to eight, then seven leaflets with the 14th and 15th true leaves, respectively. Thereafter, the leaf complexity decreased, culminating in the emergence of a single leaflet from the 25th node. The leaf area peaked with the 12th leaves, which coincided with a change from opposite to alternate phyllotaxy. The stipule development at nodes 5 and 6 signified the vegetative phase, followed by bract and solitary flower development emerging in nodes 7-12, signifying the reproductive phase. The subsequent induction of short-day photoperiod triggered the formation of apical inflorescence. Mature flowers displayed abundant glandular trichomes on perigonal bracts, with stigma color changing from whitish-yellow to reddish-brown. A pronounced increase in trichome density was evident, particularly on the abaxial bract surface, following the onset of flowering. The trichomes exhibited simultaneous growth in stalk length and glandular head diameter and pronounced shifts in color. Hermaphroditism occurred well after the general harvest date. This comprehensive study documents the intricate photoperiod-driven morphological changes throughout the complete lifecycle of Cannabis sativa L. cv. White Widow. The developmental responses characterized provide valuable insights for industrial and research applications.
Collapse
|
12
|
Steel L, Welling M, Ristevski N, Johnson K, Gendall A. Comparative genomics of flowering behavior in Cannabis sativa. FRONTIERS IN PLANT SCIENCE 2023; 14:1227898. [PMID: 37575928 PMCID: PMC10421669 DOI: 10.3389/fpls.2023.1227898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023]
Abstract
Cannabis sativa L. is a phenotypically diverse and multi-use plant used in the production of fiber, seed, oils, and a class of specialized metabolites known as phytocannabinoids. The last decade has seen a rapid increase in the licit cultivation and processing of C. sativa for medical end-use. Medical morphotypes produce highly branched compact inflorescences which support a high density of glandular trichomes, specialized epidermal hair-like structures that are the site of phytocannabinoid biosynthesis and accumulation. While there is a focus on the regulation of phytocannabinoid pathways, the genetic determinants that govern flowering time and inflorescence structure in C. sativa are less well-defined but equally important. Understanding the molecular mechanisms that underly flowering behavior is key to maximizing phytocannabinoid production. The genetic basis of flowering regulation in C. sativa has been examined using genome-wide association studies, quantitative trait loci mapping and selection analysis, although the lack of a consistent reference genome has confounded attempts to directly compare candidate loci. Here we review the existing knowledge of flowering time control in C. sativa, and, using a common reference genome, we generate an integrated map. The co-location of known and putative flowering time loci within this resource will be essential to improve the understanding of C. sativa phenology.
Collapse
Affiliation(s)
| | | | | | | | - Anthony Gendall
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
13
|
Stack GM, Carlson CH, Toth JA, Philippe G, Crawford JL, Hansen JL, Viands DR, Rose JKC, Smart LB. Correlations among morphological and biochemical traits in high-cannabidiol hemp ( Cannabis sativa L.). PLANT DIRECT 2023; 7:e503. [PMID: 37347078 PMCID: PMC10280002 DOI: 10.1002/pld3.503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Cannabis sativa is cultivated for multiple uses including the production of cannabinoids. In developing improved production systems for high-cannabinoid cultivars, scientists and cultivators must consider the optimization of complex and interacting sets of morphological, phenological, and biochemical traits, which have historically been shaped by natural and anthropogenic selection. Determining factors that modulate cannabinoid variation within and among genotypes is fundamental to developing efficient production systems and understanding the ecological significance of cannabinoids. Thirty-two high-cannabinoid hemp cultivars were characterized for traits including flowering date and shoot-tip cannabinoid concentration. Additionally, a set of plant architecture traits, as well as wet, dry, and stripped inflorescence biomass were measured at harvest. One plant per plot was partitioned post-harvest to quantify intra-plant variation in inflorescence biomass production and cannabinoid concentration. Some cultivars showed intra-plant variation in cannabinoid concentration, while many had a consistent concentration regardless of canopy position. There was both intra- and inter-cultivar variation in architecture that correlated with intra-plant distribution of inflorescence biomass, and concentration of cannabinoids sampled from various positions within a plant. These relationships among morphological and biochemical traits will inform future decisions by cultivators, regulators, and plant breeders.
Collapse
Affiliation(s)
- George M. Stack
- Horticulture Section, School of Integrative Plant ScienceCornell University, Cornell AgriTechGenevaNew YorkUSA
| | - Craig H. Carlson
- Horticulture Section, School of Integrative Plant ScienceCornell University, Cornell AgriTechGenevaNew YorkUSA
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research, CenterUSDA‐ARSFargoNorth DakotaUSA
| | - Jacob A. Toth
- Horticulture Section, School of Integrative Plant ScienceCornell University, Cornell AgriTechGenevaNew YorkUSA
| | - Glenn Philippe
- Plant Biology Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Jamie L. Crawford
- Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Julie L. Hansen
- Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Donald R. Viands
- Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Jocelyn K. C. Rose
- Plant Biology Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Lawrence B. Smart
- Horticulture Section, School of Integrative Plant ScienceCornell University, Cornell AgriTechGenevaNew YorkUSA
| |
Collapse
|
14
|
Toth JA, Stack GM, Carlson CH, Smart LB. Identification and mapping of major-effect flowering time loci Autoflower1 and Early1 in Cannabis sativa L. FRONTIERS IN PLANT SCIENCE 2022; 13:991680. [PMID: 36212374 PMCID: PMC9533707 DOI: 10.3389/fpls.2022.991680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Flowering time is an important trait for all major market classes of hemp (Cannabis sativa), affecting yields and quality of grain, fiber, and cannabinoids. C. sativa is usually considered a short-day plant, flowering once night length reaches a critical threshold. Variations in flowering time within and across cultivars in outdoor grown populations have been previously identified, likely corresponding to genetic differences in this critical night length. Further, some C. sativa are photoperiod insensitive, colloquially referred to as "autoflowering." This trait has anecdotally been described as a simple recessive trait with major impacts on phenology and yield. In this work, the locus responsible for the "autoflower" trait (Autoflower1), as well as a major-effect flowering time locus, Early1, were mapped using bulked segregant analysis. Breeder-friendly high-throughput molecular marker assays were subsequently developed for both loci. Also detailed are the flowering responses of diverse cultivars grown in continuous light and the result of crossing two photoperiod insensitive cultivars of differing pedigree.
Collapse
|
15
|
Carlson CH, Fiedler JD, Naraghi SM, Nazareno ES, Ardayfio NK, McMullen MS, Kianian SF. Archetypes of inflorescence: genome-wide association networks of panicle morphometric, growth, and disease variables in a multiparent oat population. Genetics 2022; 223:6700642. [PMID: 36106985 PMCID: PMC9910404 DOI: 10.1093/genetics/iyac128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
There is limited information regarding the morphometric relationships of panicle traits in oat (Avena sativa) and their contribution to phenology and growth, physiology, and pathology traits important for yield. To model panicle growth and development and identify genomic regions associated with corresponding traits, 10 diverse spring oat mapping populations (n = 2,993) were evaluated in the field and 9 genotyped via genotyping-by-sequencing. Representative panicles from all progeny individuals, parents, and check lines were scanned, and images were analyzed using manual and automated techniques, resulting in over 60 unique panicle, rachis, and spikelet variables. Spatial modeling and days to heading were used to account for environmental and phenological variances, respectively. Panicle variables were intercorrelated, providing reproducible archetypal and growth models. Notably, adult plant resistance for oat crown rust was most prominent for taller, stiff stalked plants having a more open panicle structure. Within and among family variance for panicle traits reflected the moderate-to-high heritability and mutual genome-wide associations (hotspots) with numerous high-effect loci. Candidate genes and potential breeding applications are discussed. This work adds to the growing genetic resources for oat and provides a unique perspective on the genetic basis of panicle architecture in cereal crops.
Collapse
Affiliation(s)
- Craig H Carlson
- Corresponding author: Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA.
| | - Jason D Fiedler
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, USA
| | | | - Eric S Nazareno
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
| | - Naa Korkoi Ardayfio
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Michael S McMullen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58105, USA
| | | |
Collapse
|