1
|
Tünnermann L, Aguetoni Cambui C, Franklin O, Merkel P, Näsholm T, Gratz R. Plant organic nitrogen nutrition: costs, benefits, and carbon use efficiency. THE NEW PHYTOLOGIST 2025; 245:1018-1028. [PMID: 39545649 PMCID: PMC11711965 DOI: 10.1111/nph.20285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Differences in soil mobility and assimilation costs between organic and inorganic nitrogen (N) compounds would hypothetically induce plant phenotypic plasticity to optimize acquisition of, and performance on, the different N forms. Here we evaluated this hypothesis experimentally and theoretically. We grew Arabidopsis in split-root setups combined with stable isotope labelling to study uptake and distribution of carbon (C) and N from l-glutamine (l-gln) and NO3 - and assessed the effect of the N source on biomass partitioning and carbon use efficiency (CUE). Analyses of stable isotopes showed that 40-48% of C acquired from l-gln resided in plants, contributing 7-8% to total C of both shoots and roots. Plants grown on l-gln exhibited increased root mass fraction and root hair length and a significantly lower N uptake rate per unit root biomass but displayed significantly enhanced CUE. Our data suggests that organic N nutrition is linked to a particular phenotype with extensive growth of roots and root hairs that optimizes for uptake of less mobile N forms. Increased CUE and lower N uptake per unit root growth may be key facets linked to the organic N phenotype.
Collapse
Affiliation(s)
- Laura Tünnermann
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences90183UmeåSweden
| | - Camila Aguetoni Cambui
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences90183UmeåSweden
| | - Oskar Franklin
- International Institute for Applied Systems AnalysisSchlossplatz 1LaxenburgA‐2361Austria
- Department of Forest Ecology and ManagementSwedish University of Agricultural Sciences90183UmeåSweden
| | - Patrizia Merkel
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences90183UmeåSweden
| | - Torgny Näsholm
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences90183UmeåSweden
- Department of Forest Ecology and ManagementSwedish University of Agricultural Sciences90183UmeåSweden
| | - Regina Gratz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences90183UmeåSweden
- Department of Forest Ecology and ManagementSwedish University of Agricultural Sciences90183UmeåSweden
| |
Collapse
|
2
|
Zhu M, Du BY, Tan YQ, Yang Y, Zhang Y, Wang YF. CPK1 activates CNGCs through phosphorylation for Ca 2+ signaling to promote root hair growth in Arabidopsis. Nat Commun 2025; 16:676. [PMID: 39809784 PMCID: PMC11733299 DOI: 10.1038/s41467-025-56008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Cyclic nucleotide-gated channel 5 (CNGC5), CNGC6, and CNGC9 (CNGC5/6/9 for simplicity) control Arabidopsis root hair (RH) growth by mediating the influx of external Ca2+ to establish and maintain a sharp cytosolic Ca2+ gradient at RH tips. However, the underlying mechanisms for the regulation of CNGCs remain unknown. We report here that calcium dependent protein kinase 1 (CPK1) directly activates CNGC5/6/9 to promote Arabidopsis RH growth. The loss-of-function mutants cpk1-1, cpk1-2, cngc5-1 cngc6-2 cngc9-1 (shrh1/short root hair 1), and cpk1 shrh1 show similar RH phenotypes, including shorter RHs, more RH branching, and dramatically attenuated cytosolic Ca2+ gradients at RH tips. The main CPK1-target sites are identified as Ser20, Ser27, and Ser26 for CNGC5/6/9, respectively, and the corresponding alanine substitution mutants fail to rescue RH growth in shrh1 and cpk1-1, while phospho-mimic versions restore the cytosolic Ca2+ gradient at RH apex and rescue the RH phenotypes in the same Arabidopsis mutants. Thus we discover the CPK1-CNGC modules essential for the Ca2+ signaling regulation and RH growth in Arabidopsis.
Collapse
Affiliation(s)
- Meijun Zhu
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo-Ya Du
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan-Qiu Tan
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Yang Yang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yang Zhang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yong-Fei Wang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China.
- University of Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
3
|
Pietrzyk P, Phan-Udom N, Chutoe C, Pingault L, Roy A, Libault M, Saengwilai PJ, Bucksch A. DIRT/µ: automated extraction of root hair traits using combinatorial optimization. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:285-298. [PMID: 39269014 PMCID: PMC11714758 DOI: 10.1093/jxb/erae385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
As with phenotyping of any microscopic appendages, such as cilia or antennae, phenotyping of root hairs has been a challenge due to their complex intersecting arrangements in two-dimensional images and the technical limitations of automated measurements. Digital Imaging of Root Traits at Microscale (DIRT/μ) is a newly developed algorithm that addresses this issue by computationally resolving intersections and extracting individual root hairs from two-dimensional microscopy images. This solution enables automatic and precise trait measurements of individual root hairs. DIRT/μ rigorously defines a set of rules to resolve intersecting root hairs and minimizes a newly designed cost function to combinatorically identify each root hair in the microscopy image. As a result, DIRT/μ accurately measures traits such as root hair length distribution and root hair density, which are impractical for manual assessment. We tested DIRT/μ on three datasets to validate its performance and showcase potential applications. By measuring root hair traits in a fraction of the time manual methods require, DIRT/μ eliminates subjective biases from manual measurements. Automating individual root hair extraction accelerates phenotyping and quantifies trait variability within and among plants, creating new possibilities to characterize root hair function and their underlying genetics.
Collapse
Affiliation(s)
- Peter Pietrzyk
- Department of Plant Biology, University of Georgia, 120 Carlton Street, Athens, GA 30602, USA
| | - Neen Phan-Udom
- Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400Thailand
| | - Chartinun Chutoe
- Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400Thailand
| | - Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Ankita Roy
- Department of Plant Biology, University of Georgia, 120 Carlton Street, Athens, GA 30602, USA
| | - Marc Libault
- Division of Plant Science and Technology, University of Missouri, 1201 E. Rollins, Columbia, MO 65201, USA
| | | | - Alexander Bucksch
- School of Plant Sciences, The University of Arizona, 1140 E South Campus Dr., Tucson, AZ 85721, USA
| |
Collapse
|
4
|
Zhang S, Xu L, Zheng Q, Hu J, Jiang D, Dai T, Tian Z. The tetraploid wheat (Triticum dicoccum (Schrank) Schuebl.) improves nitrogen uptake and assimilation adaptation to nitrogen-deficit stress. PLANTA 2024; 259:151. [PMID: 38733553 DOI: 10.1007/s00425-024-04432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
MAIN CONCLUSION The genetic diversity in tetraploid wheat provides a genetic pool for improving wheat productivity and environmental resilience. The tetraploid wheat had strong N uptake, translocation, and assimilation capacity under N deficit stress, thus alleviating growth inhibition and plant N loss to maintain healthy development and adapt to environments with low N inputs. Tetraploid wheat with a rich genetic variability provides an indispensable genetic pool for improving wheat yield. Mining the physiological mechanisms of tetraploid wheat in response to nitrogen (N) deficit stress is important for low-N-tolerant wheat breeding. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese spring (CS, hexaploid) as materials. We investigated the differences in the response of root morphology, leaf and root N accumulation, N uptake, translocation, and assimilation-related enzymes and gene expression in wheat seedlings of different ploidy under N deficit stress through hydroponic experiments. The tetraploid wheat (Kronos) had stronger adaptability to N deficit stress than the hexaploid wheats (YM25, CS). Kronos had better root growth under low N stress, expanding the N uptake area and enhancing N uptake to maintain higher NO3- and soluble protein contents. Kronos exhibited high TaNRT1.1, TaNRT2.1, and TaNRT2.2 expression in roots, which promoted NO3- uptake, and high TaNRT1.5 and TaNRT1.8 expression in roots and leaves enhanced NO3- translocation to the aboveground. NR and GS activity in roots and leaves of Kronos was higher by increasing the expression of TANIA2, TAGS1, and TAGS2, which enhanced the reduction and assimilation of NO3- as well as the re-assimilation of photorespiratory-released NH4+. Overall, Kronos had strong N uptake, translocation, and assimilation capacity under N deficit stress, alleviating growth inhibition and plant N loss and thus maintaining a healthy development. This study reveals the physiological mechanisms of tetraploid wheat that improve nitrogen uptake and assimilation adaptation under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Libing Xu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Qiaomei Zheng
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jinling Hu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Dong Jiang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Dong B, Xu Z, Wang X, Li J, Xiao Y, Huang D, Lv Z, Chen W. TrichomeLess Regulator 3 is required for trichome initial and cuticle biosynthesis in Artemisia annua. MOLECULAR HORTICULTURE 2024; 4:10. [PMID: 38500223 PMCID: PMC10949617 DOI: 10.1186/s43897-024-00085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
Artemisinin is primarily synthesized and stored in the subepidermal space of the glandular trichomes of Artemisia annua. The augmentation of trichome density has been demonstrated to enhance artemisinin yield. However, existing literature lacks insights into the correlation between the stratum corneum and trichomes. This study aims to unravel the involvement of TrichomeLess Regulator 3 (TLR3), which encodes the transcription factor, in artemisinin biosynthesis and its potential association with the stratum corneum. TLR3 was identified as a candidate gene through transcriptome analysis. The role of TLR3 in trichome development and morphology was investigated using yeast two-hybrid, pull-down analysis, and RNA electrophoresis mobility assay. Our research revealed that TLR3 negatively regulates trichome development. It modulates the morphology of Arabidopsis thaliana trichomes by inhibiting branching and inducing the formation of abnormal trichomes in Artemisia annua. Overexpression of the TLR3 gene disrupts the arrangement of the stratum corneum and reduces artemisinin content. Simultaneously, TLR3 possesses the capacity to regulate stratum corneum development and trichome follicle morphology by interacting with TRICHOME AND ARTEMISININ REGULATOR 1, and CycTL. Consequently, our findings underscore the pivotal role of TLR3 in the development of glandular trichomes and stratum corneum biosynthesis, thereby influencing the morphology of Artemisia annua trichomes.
Collapse
Affiliation(s)
- Boran Dong
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zihan Xu
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xingxing Wang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - JinXing Li
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Xiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Doudou Huang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
6
|
Labella R, Bochicchio R, Addesso R, Labella D, Franco A, Falabella P, Amato M. Germination Behavior and Geographical Information System-Based Phenotyping of Root Hairs to Evaluate the Effects of Different Sources of Black Soldier Fly ( Hermetia illucens) Larval Frass on Herbaceous Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:230. [PMID: 38256783 PMCID: PMC10819484 DOI: 10.3390/plants13020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Insect larval frass has been proposed as a fertilizer and amendment, but methods for testing its effects on plants are poorly developed and need standardization. We obtained different types of black soldier fly (Hermetia illucens) frass via the factorial combination of (a) two insect diets, as follows: G (Gainesville = 50% wheat bran, 30% alfalfa meal, 20% maize meal) and W (43% sheep whey + 57% seeds); (b) two frass thermal treatments: NT = untreated and T = treated at 70 °C for 1 h. We tested the effects on the germination of cress (Lepidium sativum L.) and wheat (Triticum durum Desf.) by applying 1:2 w:w water extracts at 0, 25, 50, 75 and 100% concentration. Standardizing frass water content before extraction affected chemical composition. Frass extracts showed high electrical conductivity (8.88 to 13.78 mS cm-1). The W diet was suppressive towards Escherichia coli and showed a lower content of nitrates (e.g., WNT 40% lower than GNT) and a concentration-dependent phytotoxic effect on germinating plants. At 25% concentration, germination indices of G were 4.5 to 40-fold those at 100%. Root and shoot length and root hair area were affected by diet and concentration of frass extracts (e.g., root and shoot length in cress at 25% were, respectively, 4.53 and 2 times higher than at 100%), whereas the effects of the thermal treatment were few or inconclusive. On barley (Hordeum vulgare L.) grown in micropots on a silty loam soil, root mass was reduced by 37% at high extract concentration. A quick procedure for root hair surface area was developed based on the geographic information system (GIS) and may provide a fast method for incorporating root hair phenotyping in frass evaluation. The results indicate that below-ground structures need to be addressed in research on frass effects. For this, phyotoxicity tests should encompass different extract dilutions, and frass water content should be standardized before extraction in the direction of canonical procedures to allow comparisons.
Collapse
Affiliation(s)
- Rosanna Labella
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy; (R.L.); (D.L.)
| | - Rocco Bochicchio
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy; (R.L.); (D.L.)
| | - Rosangela Addesso
- Department of European and Mediterranean Cultures, Environment, and Cultural Heritage, University of Basilicata, 85100 Potenza, Italy;
| | - Donato Labella
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy; (R.L.); (D.L.)
| | - Antonio Franco
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.F.); (P.F.)
- Spinoff XFlies s.r.l., University of Basilicata, 85100 Potenza, Italy
| | - Patrizia Falabella
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.F.); (P.F.)
- Spinoff XFlies s.r.l., University of Basilicata, 85100 Potenza, Italy
| | - Mariana Amato
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy; (R.L.); (D.L.)
| |
Collapse
|
7
|
Nan Y, Xie Y, He H, Wu H, Gao L, Atif A, Zhang Y, Tian H, Hui J, Gao Y. Integrated BSA-seq and RNA-seq analysis to identify candidate genes associated with nitrogen utilization efficiency (NUtE) in rapeseed (Brassica napus L.). Int J Biol Macromol 2024; 254:127771. [PMID: 38287600 DOI: 10.1016/j.ijbiomac.2023.127771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Rapeseed (Brassica napus L.) is one of the important oil crops, with a high demand for nitrogen (N). It is essential to explore the potential of rapeseed to improve nitrogen utilization efficiency (NUtE). Rapeseed is an allotetraploid crop with a relatively large and complex genome, and there are few studies on the mapping of genes related to NUtE regulation. In this study, we used the combination of bulk segregant analysis sequencing (BSA-Seq) and RNA sequencing (RNA-Seq) to analyze the N-efficient genotype 'Zheyou 18' and N-inefficient genotype 'Sollux', to identify the genetic regulatory mechanisms. Several candidate genes were screened, such as the high-affinity nitrate transporter gene NRT2.1 (BnaC08g43370D) and the abscisic acid (ABA) signal transduction-related genes (BnaC02g14540D, BnaA03g20760D, and BnaA05g01330D). BnaA05g01330D was annotated as ABA-INDUCIBLE bHLH-TYPE TRANSCRIPTION FACTOR (AIB/bHLH17), which was highly expressed in the root. The results showed that the primary root length of the ataib mutant was significantly longer than that of the wild type under low N conditions. Overexpression of BnaA5.AIB could reduce the NUtE under low N levels in Arabidopsis (Arabidopsis thaliana). Candidate genes identified in this study may be involved in the regulation of NUtE in rapeseed, and new functions of AIB in orchestrating N uptake and utilization have been revealed. It is indicated that BnaA5.AIB may be the key factor that links ABA to N signaling and a negative regulator of NUtE. It will provide a theoretical basis and application prospect for resource conservation, environmental protection, and sustainable agricultural development.
Collapse
Affiliation(s)
- Yunyou Nan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuyu Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Huiying He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Han Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Lixing Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Ayub Atif
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Hui Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jing Hui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yajun Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China.
| |
Collapse
|
8
|
Liu B, Wang T, Liu L, Xiao D, Yang Y, Yuan L, Zhang A, Xu K, Liu S, Liu K, Chen L. MYB6/bHLH13-AbSUS2 involved in sugar metabolism regulates root hair initiation of Abies beshanzuensis. THE NEW PHYTOLOGIST 2023; 240:2386-2403. [PMID: 37817383 DOI: 10.1111/nph.19301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/16/2023] [Indexed: 10/12/2023]
Abstract
Root hair is regarded as a pivotal complementary survival tactic for mycorrhizal plant like Abies beshanzuensis when symbiosis is disrupted. Relatively little is known about the mechanism underlying root hair morphogenesis in plant species that are strongly dependent on mycorrhizal symbiosis. Many of these species are endangered, and this knowledge is critical for ensuring their survival. Here, a MYB6/bHLH13-sucrose synthase 2 (AbSUS2) module was newly identified and characterized in A. beshanzuensis using bioinformatics, histochemistry, molecular biology, and transgenesis. Functional, expression pattern, and localization analysis showed that AbSUS2 participated in sucrose synthesis and was involved in root hair initiation in A. beshanzuensis. Additionally, the major enzymatic product of AbSUS2 was found to suppress root hair initiation in vitro. Our data further showed that a complex involving the transcription factors AbMYB6 and AbbHLH13 directly interacted with the promoter of AbSUS2 and strengthened its expression, thereby inhibiting root hair initiation in response to exogenous sucrose. Our findings offer novel insights into how root hair morphogenesis is regulated in mycorrhizal plants and also provide a new strategy for the preservation of endangered mycorrhizal plant species.
Collapse
Affiliation(s)
- Bin Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tingjin Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lingjuan Liu
- Longquan Preserve Center of Qianjiangyuan-Baishanzu National Park, Longquan, Zhejiang, 323714, China
| | - Duohong Xiao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yang Yang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lu Yuan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Aijun Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Kexin Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shenglong Liu
- Longquan Preserve Center of Qianjiangyuan-Baishanzu National Park, Longquan, Zhejiang, 323714, China
| | - Ke Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
9
|
Lee S, Tri Le Q, Yang S, Hwang KY, Lee H. Arabidopsis ecotype Ct-1, with its altered nitrate sensing ability, exhibits enhanced growth under low nitrate conditions in comparison to Col-0. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111827. [PMID: 37586419 DOI: 10.1016/j.plantsci.2023.111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
To address the urgent need for sustainable solutions to the increased use of nitrogen fertilizers in agriculture, it is imperative to acquire an in-depth comprehension of the intricate interplay between plants and nitrogen. In this context, our research aimed to elucidate the molecular mechanism behind NO3- sensing/signaling in plants, which can enhance nitrogen utilization efficiency. Previous reports have revealed that the density and quantity of root hairs exhibit responsive behavior to varying levels of NO3-, while the precise molecular mechanisms governing these changes remain elusive. To further investigate this phenomenon, we specifically selected the Ct-1 ecotype, which manifested a greater abundance of root hairs compared to the Col-0 ecotype under conditions of low NO3-. Our investigations unveiled that the dissimilarities in the amino acid sequence of NRT1.1, a transceptor responsible for regulating nitrate signaling and transport, accounted for the observed variation in root hair numbers. These results suggest that NRT1.1 represents a promising target for gene editing technology, offering potential applications in enhancing the efficiency of nitrogen utilization in agricultural crops.
Collapse
Affiliation(s)
- Seokjin Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713, the Republic of Korea
| | - Quang Tri Le
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713, the Republic of Korea
| | - Seonyoung Yang
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713, the Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713, the Republic of Korea
| | - Hojoung Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713, the Republic of Korea.
| |
Collapse
|
10
|
Jia Z, Giehl RFH, Hartmann A, Estevez JM, Bennett MJ, von Wirén N. A spatially concerted epidermal auxin signaling framework steers the root hair foraging response under low nitrogen. Curr Biol 2023; 33:3926-3941.e5. [PMID: 37699396 DOI: 10.1016/j.cub.2023.08.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/08/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
As a major determinant of the nutrient-acquiring root surface, root hairs (RHs) provide a low-input strategy to enhance nutrient uptake. Although primary and lateral roots exhibit elongation responses under mild nitrogen (N) deficiency, the foraging response of RHs and underlying regulatory mechanisms remain elusive. Employing transcriptomics and functional studies revealed a framework of molecular components composing a cascade of auxin synthesis, transport, and signaling that triggers RH elongation for N acquisition. Through upregulation of Tryptophan Aminotransferase of Arabidopsis 1 (TAA1) and YUCCA8, low N increases auxin accumulation in the root apex. Auxin is then directed to the RH differentiation zone via the auxin transport machinery, AUXIN TRANSPORTER PROTEIN 1 (AUX1) and PIN-FORMED 2 (PIN2). Upon arrival to the RH zone, auxin activates the transcription factors AUXIN RESPONSE FACTOR 6 and 8 (ARF6/8) to promote the epidermal and auxin-inducible transcriptional module ROOT HAIR DEFECTIVE 6 (RHD6)-LOTUS JAPONICA ROOT HAIRLESS-LIKE 3 (LRL3) to steer RH elongation in response to low N. Our study uncovers a spatially defined regulatory signaling cascade for N foraging by RHs, expanding the mechanistic framework of hormone-regulated nutrient sensing in plant roots.
Collapse
Affiliation(s)
- Zhongtao Jia
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany; State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Ricardo F H Giehl
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Anja Hartmann
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Jose M Estevez
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile; Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Malcolm J Bennett
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany.
| |
Collapse
|
11
|
Griffiths M, Liu AE, Gunn SL, Mutan NM, Morales EY, Topp CN. A temporal analysis and response to nitrate availability of 3D root system architecture in diverse pennycress ( Thlaspi arvense L.) accessions. FRONTIERS IN PLANT SCIENCE 2023; 14:1145389. [PMID: 37426970 PMCID: PMC10327891 DOI: 10.3389/fpls.2023.1145389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Introduction Roots have a central role in plant resource capture and are the interface between the plant and the soil that affect multiple ecosystem processes. Field pennycress (Thlaspi arvense L.) is a diploid annual cover crop species that has potential utility for reducing soil erosion and nutrient losses; and has rich seeds (30-35% oil) amenable to biofuel production and as a protein animal feed. The objective of this research was to (1) precisely characterize root system architecture and development, (2) understand plastic responses of pennycress roots to nitrate nutrition, (3) and determine genotypic variance available in root development and nitrate plasticity. Methods Using a root imaging and analysis pipeline, the 4D architecture of the pennycress root system was characterized under four nitrate regimes, ranging from zero to high nitrate concentrations. These measurements were taken at four time points (days 5, 9, 13, and 17 after sowing). Results Significant nitrate condition response and genotype interactions were identified for many root traits, with the greatest impact observed on lateral root traits. In trace nitrate conditions, a greater lateral root count, length, density, and a steeper lateral root angle was observed compared to high nitrate conditions. Additionally, genotype-by-nitrate condition interaction was observed for root width, width:depth ratio, mean lateral root length, and lateral root density. Discussion These findings illustrate root trait variance among pennycress accessions. These traits could serve as targets for breeding programs aimed at developing improved cover crops that are responsive to nitrate, leading to enhanced productivity, resilience, and ecosystem service.
Collapse
|
12
|
Madani I, Peltier JB, Boeglin M, Sentenac H, Véry AA. Plasticity of wheat seedling responses to K + deficiency highlighted by integrated phenotyping of roots and root hairs over the whole root system. STRESS BIOLOGY 2023; 3:5. [PMID: 37676444 PMCID: PMC10441938 DOI: 10.1007/s44154-023-00083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/22/2023] [Indexed: 09/08/2023]
Abstract
The availability in the soil of potassium (K+), a poorly mobile macronutrient required in large quantities for plant growth, is generally suboptimal for crop production in the absence of fertilization, making improvement of the ability of crops to adapt to K+ deficiency stress a major issue. Increasing the uptake capacity of the root system is among the main strategies to achieve this goal. Here, we report an integrative approach to examine the effect of K+ deficiency on the development of young plant entire root system, including root hairs which are known to provide a significant contribution to the uptake of poorly mobile nutrients such as K+, in two genetically distant wheat varieties. A rhizobox-type methodology was developed to obtain highly-resolved images of root and root hairs, allowing to describe global root and root hair traits over the whole root system via image analysis procedures. The two wheat varieties responded differently to the K+ shortage: Escandia, a wheat ancestor, reduced shoot biomass in condition of K+ shortage and substantially increased the surface area of its root system, specifically by increasing the total root hair area. Oued Zenati, a landrace, conversely appeared unresponsive to the K+ shortage but was shown to constitutively express, independently of the external K+ availability, favorable traits to cope with reduced K+ availability, among which a high total root hair area. Thus, valuable information on root system adaptation to K+ deficiency was provided by global analyses including root hairs, which should also be relevant for other nutrient stresses.
Collapse
Affiliation(s)
- Ikram Madani
- Institut des Sciences des Plantes de Montpellier, UMR 5004 CNRS- 386 INRAE- Université Montpellier- Institut Agro, Campus SupAgro-INRAE Bat 7, Place Viala, Montpellier, 34060 Cedex 2, France
| | - Jean-Benoît Peltier
- Institut des Sciences des Plantes de Montpellier, UMR 5004 CNRS- 386 INRAE- Université Montpellier- Institut Agro, Campus SupAgro-INRAE Bat 7, Place Viala, Montpellier, 34060 Cedex 2, France
| | - Martin Boeglin
- Institut des Sciences des Plantes de Montpellier, UMR 5004 CNRS- 386 INRAE- Université Montpellier- Institut Agro, Campus SupAgro-INRAE Bat 7, Place Viala, Montpellier, 34060 Cedex 2, France
| | - Hervé Sentenac
- Institut des Sciences des Plantes de Montpellier, UMR 5004 CNRS- 386 INRAE- Université Montpellier- Institut Agro, Campus SupAgro-INRAE Bat 7, Place Viala, Montpellier, 34060 Cedex 2, France
| | - Anne-Aliénor Véry
- Institut des Sciences des Plantes de Montpellier, UMR 5004 CNRS- 386 INRAE- Université Montpellier- Institut Agro, Campus SupAgro-INRAE Bat 7, Place Viala, Montpellier, 34060 Cedex 2, France.
| |
Collapse
|
13
|
Deng N, Zhu H, Xiong J, Gong S, Xie K, Shang Q, Yang X. Magnesium deficiency stress in rice can be alleviated by partial nitrate nutrition supply. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:463-471. [PMID: 36758293 DOI: 10.1016/j.plaphy.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The problem of nitrogen (N) excess and magnesium (Mg) deficiency in farmland is becoming more common, severe, and widespread in southern China. Magnesium is known to be an essential nutrient for higher plants; however, the physiological responses of field crops to Mg deficiency, particularly to its interaction with N forms, remain largely unknown. In this study, a hydroponic experiment was conducted using three Mg levels (0.01, 1.00, and 5.00 mM) and three nitrate/ammonium ratios (NO3-/NH4+ of 0/100, 25/75, and 50/50) under greenhouse conditions. The results show that Mg deficiency (0.01 mM) could result in yellow leaves, dwarf plants, and fewer tillers during rice growth. Furthermore, Mg deficiency induced a major reduction in root morphology and activity, photosynthetic properties, and nutrient accumulation, while it resulted in a clear increase in malondialdehyde, superoxide dismutase, peroxidase, and catalase activities in rice. However, under Mg-deficiency stress, the supply of partial NO3- led to a significant drop in these antioxidant enzyme activities. Moreover, partial NO3- supply significantly improved the net photosynthetic rate, transpiration rate, stomatal conductance, and intercellular CO2 concentrations under Mg-deficiency conditions. In particular, the supply of partial NO3- dramatically promoted the growth of the root system, boosted the occurrence of lateral roots, and enhanced root vitality under Mg-deficiency stress. Additionally, the supply of partial NO3- led to significant increases in dry weight and N and Mg contents under Mg deficiency. The results of this study suggest that the symptoms of Mg-deficiency stress in rice can be alleviated by partial NO3- supply.
Collapse
Affiliation(s)
- Na Deng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Hongyan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Jiangbo Xiong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Shidao Gong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Kailiu Xie
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Qingyin Shang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xiuxia Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
14
|
Liu C, Qiu Q, Zou B, Wu Q, Ye X, Wan Y, Huang J, Wu X, Sun Y, Yan H, Fan Y, Jiang L, Zheng X, Zhao G, Zou L, Xiang D. Comparative transcriptome and genome analysis unravels the response of Tatary buckwheat root to nitrogen deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:647-660. [PMID: 36796235 DOI: 10.1016/j.plaphy.2023.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum Garetn.), a dicotyledonous herbaceous crop, has good adaptation to low nitrogen (LN) condition. The plasticity of roots drives the adaption of Tartary buckwheat under LN, but the detailed mechanism behind the response of TB roots to LN remains unclear. In this study, the molecular mechanism of two Tartary buckwheat genotypes' roots with contrasting sensitivity in response to LN was investigated by integrating physiological, transcriptome and whole-genome re-sequencing analysis. LN improved primary and lateral root growth of LN-sensitive genotype, whereas the roots of LN-insensitive genotype showed no response to LN. 2, 661 LN-responsive differentially expressed genes (DEGs) were identified by transcriptome analysis. Of these genes, 17 N transport and assimilation-related and 29 hormone biosynthesis and signaling genes showed response to LN, and they may play important role in Tartary buckwheat root development under LN. The flavonoid biosynthetic genes' expression was improved by LN, and their transcriptional regulations mediated by MYB and bHLH were analyzed. 78 transcription factors, 124 small secreted peptides and 38 receptor-like protein kinases encoding genes involved in LN response. 438 genes were differentially expressed between LN-sensitive and LN-insensitive genotypes by comparing their transcriptome, including 176 LN-responsive DEGs. Furthermore, nine key LN-responsive genes with sequence variation were identified, including FtNRT2.4, FtNPF2.6 and FtMYB1R1. This paper provided useful information on the response and adaptation of Tartary buckwheat root to LN, and the candidate genes for breeding Tartary buckwheat with high N use efficiency were identified.
Collapse
Affiliation(s)
- Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| | - Qingcheng Qiu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Bangxing Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China; Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, PR China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Yanxia Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Huiling Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Liangzhen Jiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Xiaoqin Zheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| |
Collapse
|
15
|
Burgess AJ, Masclaux‐Daubresse C, Strittmatter G, Weber APM, Taylor SH, Harbinson J, Yin X, Long S, Paul MJ, Westhoff P, Loreto F, Ceriotti A, Saltenis VLR, Pribil M, Nacry P, Scharff LB, Jensen PE, Muller B, Cohan J, Foulkes J, Rogowsky P, Debaeke P, Meyer C, Nelissen H, Inzé D, Klein Lankhorst R, Parry MAJ, Murchie EH, Baekelandt A. Improving crop yield potential: Underlying biological processes and future prospects. Food Energy Secur 2022; 12:e435. [PMID: 37035025 PMCID: PMC10078444 DOI: 10.1002/fes3.435] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.
Collapse
Affiliation(s)
- Alexandra J. Burgess
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | | | - Günter Strittmatter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | | | - Jeremy Harbinson
- Laboratory for Biophysics Wageningen University and Research Wageningen The Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences Wageningen University & Research Wageningen The Netherlands
| | - Stephen Long
- Lancaster Environment Centre Lancaster University Lancaster UK
- Plant Biology and Crop Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | | | - Peter Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy (CNR), Rome, Italy and University of Naples Federico II Napoli Italy
| | - Aldo Ceriotti
- Institute of Agricultural Biology and Biotechnology National Research Council (CNR) Milan Italy
| | - Vandasue L. R. Saltenis
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Philippe Nacry
- BPMP, Univ Montpellier, INRAE, CNRS Institut Agro Montpellier France
| | - Lars B. Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Poul Erik Jensen
- Department of Food Science University of Copenhagen Copenhagen Denmark
| | - Bertrand Muller
- Université de Montpellier ‐ LEPSE – INRAE Institut Agro Montpellier France
| | | | - John Foulkes
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Peter Rogowsky
- INRAE UMR Plant Reproduction and Development Lyon France
| | | | - Christian Meyer
- IJPB UMR1318 INRAE‐AgroParisTech‐Université Paris Saclay Versailles France
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Erik H. Murchie
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| |
Collapse
|
16
|
The Pyla-1 Natural Accession of Arabidopsis thaliana Shows Little Nitrate-Induced Plasticity of Root Development. NITROGEN 2022. [DOI: 10.3390/nitrogen3030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Optimizing root system architecture is a strategy for coping with soil fertility, such as low nitrogen input. An ample number of Arabidopsis thaliana natural accessions have set the foundation for studies on mechanisms that regulate root morphology. This report compares the Columbia-0 (Col-0) reference and Pyla-1 (Pyl-1) from a coastal zone in France, known for having the tallest sand dune in Europe. Seedlings were grown on vertical agar plates with different nitrate concentrations. The lateral root outgrowth of Col-0 was stimulated under mild depletion and repressed under nitrate enrichment. The Pyl-1 produced a long primary root and any or very few visible lateral roots across the nitrate supplies. This could reflect an adaptation to sandy soil conditions, where the primary root grows downwards to the lower strata to take up water and mobile soil resources without elongating the lateral roots. Microscopic observations revealed similar densities of lateral root primordia in both accessions. The Pyl-1 maintained the ability to initiate lateral root primordia. However, the post-initiation events seemed to be critical in modulating the lateral-root-less phenotype. In Pyl-1, the emergence of primordia through the primary root tissues was slowed, and newly formed lateral roots stayed stunted. In brief, Pyl-1 is a fascinating genotype for studying the nutritional influences on lateral root development.
Collapse
|
17
|
Vincent C, Ebert R, Hermans C. Root hair quantification is an accessible approach to phenotyping important functional traits. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3304-3307. [PMID: 35290442 DOI: 10.1093/jxb/erac102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Christopher Vincent
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Rebecca Ebert
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Christian Hermans
- Crop Production and Biostimulation Laboratory, Université libre de Bruxelles, B-1050 Brussels, Belgium
| |
Collapse
|