1
|
GAO J, PAN T, CHEN X, Wei Q, Xu L. Proteomic analysis of Masson pine with high resistance to pine wood nematodes. PLoS One 2022; 17:e0273010. [PMID: 35960732 PMCID: PMC9374249 DOI: 10.1371/journal.pone.0273010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Pine wilt disease is a dangerous pine disease globally. We used Masson pine (Pinus massoniana) clones, selected through traditional breeding and testing for 20 years, to study the molecular mechanism of their high resistance to pine wood nematodes (PWN,Bursaphelenchus xylophilus). Nine strains of seedlings of genetically stable Masson pine screened from different families with high resistance to PWN were used. The same number of sensitive clones were used as susceptible controls. Total proteins were extracted for tandem mass tag (TMT) quantitative proteomic analysis. The key proteins were verified by parallel reaction monitoring (PRM). A threshold of upregulation greater than 1.3-fold or downregulation greater than 0.3-fold was considered significant in highly resistant strains versus sensitive strains. A total of 3491 proteins were identified from the seedling tissues, among which 2783 proteins contained quantitative information. A total of 42 proteins were upregulated and 96 proteins were downregulated in the resistant strains. Functional enrichment analysis found significant differences in the proteins with pectin esterase activity or peroxidase activity. The proteins participating in salicylic acid metabolism, antioxidant stress reaction, polysaccharide degradation, glucose acid ester sheath lipid biosynthesis, and the sugar glycosaminoglycan degradation pathway were also changed significantly. The PRM results showed that pectin acetyl esterase, carbonic anhydrase, peroxidase, and chitinase were significantly downregulated, while aspartic protease was significantly upregulated, which was consistent with the proteomic data. These results suggest that Masson pine can degrade nematode-related proteins by increasing protease to inhibit their infestation, and can enhance the resistance of Masson pine to PWN by downregulating carbon metabolism to limit the carbon available to PWN or for involvement in cell wall components or tissue softening. Most of the downregulated proteins are supposed to act as an alternative mechanism for latter enhancement after pathogen attacks. The highly resistant Masson pine, very likely, harbors multiple pathways, both passive and active, to defend against PWN infestation.
Collapse
Affiliation(s)
- Jingbin GAO
- Anhui Vocational & Technical College of Forestry, Hefei, China
- State Key Laboratory of the National Forestry and Grassland Administration for Pine Wood Nematode Disease Prevention and Control Technology, Hefei, China
| | - Ting PAN
- State Key Laboratory of the National Forestry and Grassland Administration for Pine Wood Nematode Disease Prevention and Control Technology, Hefei, China
- Anhui Academy of Forestry, Hefei, China
| | - Xuelian CHEN
- State Key Laboratory of the National Forestry and Grassland Administration for Pine Wood Nematode Disease Prevention and Control Technology, Hefei, China
- Anhui Academy of Forestry, Hefei, China
| | - Qiang Wei
- State Key Laboratory of the National Forestry and Grassland Administration for Pine Wood Nematode Disease Prevention and Control Technology, Hefei, China
- Anhui Academy of Forestry, Hefei, China
| | - Liuyi Xu
- State Key Laboratory of the National Forestry and Grassland Administration for Pine Wood Nematode Disease Prevention and Control Technology, Hefei, China
- Anhui Academy of Forestry, Hefei, China
- * E-mail:
| |
Collapse
|
2
|
Fischerová L, Gemperlová L, Cvikrová M, Matušíková I, Moravčíková J, Gerši Z, Malbeck J, Kuderna J, Pavlíčková J, Motyka V, Eliášová K, Vondráková Z. The humidity level matters during the desiccation of Norway spruce somatic embryos. FRONTIERS IN PLANT SCIENCE 2022; 13:968982. [PMID: 35968100 PMCID: PMC9372446 DOI: 10.3389/fpls.2022.968982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
In Norway spruce, as in many other conifers, the germination capacity of somatic embryos is strongly influenced by the desiccation phase inserted after maturation. The intensity of drying during desiccation eminently affected the formation of emblings (i.e., seedlings developed from somatic embryos). Compared to non-desiccated embryos, the germination capacity of embryos desiccated at 100% relative humidity was about three times higher, but the reduction of relative humidity to 95 and 90% had a negative effect on the subsequent embryo development. The water loss observed in these embryos did not lead to an increase in lipid peroxidation, as shown by malondialdehyde levels. Another metabolic pathway in plants that mediates a response to abiotic stresses is directed toward the biosynthesis of polyamines (PAs). The activities of PA biosynthetic enzymes increased steadily in embryos during desiccation at 100% relative humidity, whereas they decreased at lower humidity. The total content of free PAs in the embryos gradually decreased throughout desiccation. The increase in free putrescine (Put) and perchloric acid-insoluble Put conjugates was observed in embryos desiccated at lower humidity. These changes were accompanied to some extent by the transcription of the genes for the PA biosynthesis enzymes. Desiccation at 100% relative humidity increased the activity of the cell wall-modifying enzymes β-1,3-glucanases and chitinases; the activities of these enzymes were also significantly suppressed at reduced humidity. The same pattern was observed in the transcription of some β-1,3-glucanase and chitinase genes. Desiccation treatments triggered metabolic processes that responded to water availability, suggesting an active response of the embryo to the reduction in humidity. A positive effect was demonstrated only for desiccation at high relative humidity. Some of the physiological characteristics described can be used as markers of inappropriate relative humidity during somatic embryo desiccation.
Collapse
Affiliation(s)
- Lucie Fischerová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Lenka Gemperlová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Milena Cvikrová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Ildiko Matušíková
- Department of Ecochemistry and Radioecology, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Jana Moravčíková
- Department of Biotechnologies, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Zuzana Gerši
- Department of Biology, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Jiří Malbeck
- Laboratory of Mass Spectroscopy, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jan Kuderna
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Pavlíčková
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Václav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Kateřina Eliášová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Vondráková
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Shi QF, Long JM, Yin ZP, Jiang N, Feng MQ, Zheng B, Guo WW, Wu XM. miR171 modulates induction of somatic embryogenesis in citrus callus. PLANT CELL REPORTS 2022; 41:1403-1415. [PMID: 35381869 DOI: 10.1007/s00299-022-02865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Overexpression of miR171 restored SE competence in the recalcitrant citrus callus, and inhibition of miR171 function weakened SE competence in the strongly embryogenic citrus callus. Somatic embryogenesis (SE) is an important way of in vitro regeneration for plants. For perennial woody crops such as citrus, embryogenic callus is usually induced from unfertilized aborted ovules and widely used in biotechnology aided breeding. However, SE capacity always declines in callus during subculture, which makes regeneration difficult and hinders the application of biotechnology. We previously found that miR171 may be a regulator of SE in citrus, based on the abundant expression of csi-miR171c in the embryogenic callus and during SE of citrus. Here, we report that miR171 promotes SE and is required for SE in citrus. Overexpression of miR171 restored SE competence in the recalcitrant callus of 'Guoqing No.1' Satsuma mandarin (G1), whereas inhibition of miR171 function by Short Tandem Target Mimic (STTM) weakened SE competence in the strongly embryogenic callus of 'Valencia' sweet orange (V). The comparative transcriptomic analysis in miR171 overexpressed callus line (OE) and the wild type callus (WT) indicated that overexpression of miR171 decreased the expression level of its SCARECROW-LIKE (CsSCL) targets, and activated stress response related biological processes and metabolic processes that are required for cell differentiation. However, CsSCLs were up-regulated in the OE callus during SE induction process, which activated the cell division and developmental processes that are required for embryogenesis progress. Our results validate the function of miR171 in regulation of SE and reveal the biological responses provoked by miR171 in citrus that may promote SE.
Collapse
Affiliation(s)
- Qiao-Fang Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian-Mei Long
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhao-Ping Yin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Jiang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng-Qi Feng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Abady SM, M Ghanem K, Ghanem NB, Embaby AM. Molecular cloning, heterologous expression, and in silico sequence analysis of Enterobacter GH19 class I chitinase (chiRAM gene). Mol Biol Rep 2021; 49:951-969. [PMID: 34773550 DOI: 10.1007/s11033-021-06914-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/30/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Using in silico sequence analyses, the present study aims to clone and express the gene-encoding sequence of a GH19 chitinase from Enterobacter sp. in Escherichia coli. METHODS AND RESULTS The putative open reading frame of a GH19 chitinase from Enterobacter sp. strain EGY1 was cloned and expressed into pGEM®-T and pET-28a (+) vectors, respectively using a degenerate primer. The isolated nucleotide sequence (1821 bp, GenBank accession no.: MK533791.2) was translated to a chiRAM protein (606 amino acids, UniProt accession no.: A0A4D6J2L9). The in silico protein sequence analysis of chiRAM revealed a class I GH19 chitinase: an N-terminus signal peptide (Met1-Ala23), a catalytic domain (Val83-Glu347 and the catalytic triad Glu149, Glu171, and Ser218), a proline-rich hinge region (Pro414 -Pro450), a polycystic kidney disease protein motif (Gly 465-Ser 533), a C-terminus chitin-binding domain (Ala553- Glu593), and conserved class I motifs (NYNY and AQETGG). A three-dimensional model was constructed by LOMETS MODELLER of PDB template: 2dkvA (class I chitinase of Oryza sativa L. japonica). Recombinant chiRAM was overexpressed as inclusion bodies (IBs) (~ 72 kDa; SDS-PAGE) in 1.0 mM IPTG induced E. coli BL21 (DE3) Rosetta strain at room temperature 18 h after induction. Optimized expression yielded active chiRAM with 1.974 ± 0.0002 U/mL, on shrimp colloidal chitin (SCC), in induced E. coli BL21 (DE3) Rosetta cells growing in SB medium. LC-MS/MS identified a band of 72 kDa in the soluble fraction with a 52.3% coverage sequence exclusive to the GH19 chitinase of Enterobacter cloacae (WP_063869339.1). CONCLUSIONS Although chiRAM of Enterobacter sp. was successfully cloned and expressed in E. coli with appreciable chitinase activity, future studies should focus on minimizing IBs to facilitate chiRAM purification and characterization.
Collapse
Affiliation(s)
- Shahinaz M Abady
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, 1 Baghdad Street-Moharam Bek, Alexandria, 21568, Egypt
| | - Khaled M Ghanem
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, 1 Baghdad Street-Moharam Bek, Alexandria, 21568, Egypt
| | - Nevine B Ghanem
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, 1 Baghdad Street-Moharam Bek, Alexandria, 21568, Egypt
| | - Amira M Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, P.O.Box 832, 163 Horreya Avenue, Chatby, Alexandria, 21526, Egypt.
| |
Collapse
|
5
|
Liu M, Jaber E, Zeng Z, Kovalchuk A, Asiegbu FO. Physiochemical and molecular features of the necrotic lesion in the Heterobasidion-Norway spruce pathosystem. TREE PHYSIOLOGY 2021; 41:791-800. [PMID: 33105481 DOI: 10.1093/treephys/tpaa141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/03/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
In the forest of Northern Hemisphere, the fungi Heterobasidion annosum (Fr.) Bref. s.l. causes severe root and stem rot diseases, dramatically reducing the wood quality of conifer trees. The hallmark of the host response during the infection process is the formation of necrotic lesions and reaction zones. To characterize physiochemical and molecular features of the necrotic lesion, we conducted artificial inoculations on Norway spruce plants at different developmental stages: seedlings, young and mature trees. The results were further compared against data available on the formation of reaction zones. Strong necrosis browning or enlarged necrotic lesions were observed in infected tissues. This was accompanied by elevated pH. However, the increased pH, around 6.0 in necrotic lesions, was not as high as that documented in reaction zones, above 7.0 as marked by the intensity of the blue colour in response to 2,6-dichlorophenol indophenol dye. Peroxidase activity increased in infected plants and RNA-seq analysis of necrotic lesions showed marked upregulation of defence-related genes. Our findings highlight similarities and differences between the reaction zone and necrotic lesion formation in response of conifer trees to biotic stress.
Collapse
Affiliation(s)
- Mengxia Liu
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, FIN-00014, Helsinki, Finland
| | - Emad Jaber
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, FIN-00014, Helsinki, Finland
| | - Zhen Zeng
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, FIN-00014, Helsinki, Finland
| | - Andriy Kovalchuk
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, FIN-00014, Helsinki, Finland
| | - Fred O Asiegbu
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, FIN-00014, Helsinki, Finland
| |
Collapse
|
6
|
Gautier F, Eliášová K, Leplé JC, Vondráková Z, Lomenech AM, Le Metté C, Label P, Costa G, Trontin JF, Teyssier C, Lelu-Walter MA. Repetitive somatic embryogenesis induced cytological and proteomic changes in embryogenic lines of Pseudotsuga menziesii [Mirb.]. BMC PLANT BIOLOGY 2018; 18:164. [PMID: 30097018 PMCID: PMC6086078 DOI: 10.1186/s12870-018-1337-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/31/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND To explore poorly understood differences between primary and subsequent somatic embryogenic lines of plants, we induced secondary (2ry) and tertiary (3ry) lines from cotyledonary somatic embryos (SEs) of two Douglas-fir genotypes: SD4 and TD17. The 2ry lines exhibited significantly higher embryogenic potential (SE yields) than the 1ry lines initiated from zygotic embryos (SD4, 2155 vs 477; TD17, 240 vs 29 g- 1 f.w.). Moreover, we observed similar differences in yield between 2ry and 3ry lines of SD4 (2400 vs 3921 g- 1 f.w.). To elucidate reasons for differences in embryogenic potential induced by repetitive somatic embryogenesis we then compared 2ry vs 1ry and 2ry vs 3ry lines at histo-cytological (using LC-MS/MS) and proteomic levels. RESULTS Repetitive somatic embryogenesis dramatically improved the proliferating lines' cellular organization (genotype SD4's most strongly). Frequencies of singulated, bipolar SEs and compact polyembryogenic centers with elongated suspensors and apparently cleavable embryonal heads increased in 2ry and (even more) 3ry lines. Among 2300-2500 identified proteins, 162 and 228 were classified significantly differentially expressed between 2ry vs 1ry and 3ry vs 2ry lines, respectively, with special emphasis on "Proteolysis" and "Catabolic process" Gene Ontology categories. Strikingly, most of the significant proteins (> 70%) were down-regulated in 2ry relative to 1ry lines, but up-regulated in 3ry relative to 2ry lines, revealing a down-up pattern of expression. GO category enrichment analyses highlighted the opposite adjustments of global protein patterns, particularly for processes involved in chitin catabolism, lignin and L-phenylalanine metabolism, phenylpropanoid biosynthesis, oxidation-reduction, and response to karrikin. Sub-Network Enrichment Analyses highlighted interactions between significant proteins and both plant growth regulators and secondary metabolites after first (especially jasmonic acid, flavonoids) and second (especially salicylic acid, abscisic acid, lignin) embryogenesis cycles. Protein networks established after each induction affected the same "Plant development" and "Defense response" biological processes, but most strongly after the third cycle, which could explain the top embryogenic performance of 3ry lines. CONCLUSIONS This first report of cellular and molecular changes after repetitive somatic embryogenesis in conifers shows that each cycle enhanced the structure and singularization of EMs through modulation of growth regulator pathways, thereby improving the lines' embryogenic status.
Collapse
Affiliation(s)
- Florian Gautier
- BioForA, INRA, ONF, F-45075 Orléans, France
- SylvaLIM, University Limoges, F-78060 Limoges, France
| | - Kateřina Eliášová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha, 6-Lysolaje Czech Republic
| | - Jean-Charles Leplé
- BioForA, INRA, ONF, F-45075 Orléans, France
- BIOGECO, INRA, University Bordeaux, F-33610 Cestas, France
| | - Zuzana Vondráková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha, 6-Lysolaje Czech Republic
| | - Anne-Marie Lomenech
- Plateforme Protéome, Centre de Génomique Fonctionnelle, University Bordeaux, F-33000 Bordeaux, France
| | | | - Philippe Label
- University Clermont Auvergne, INRA, PIAF, F-63000 Clermont–Ferrand, France
| | - Guy Costa
- SylvaLIM, University Limoges, F-78060 Limoges, France
| | - Jean-François Trontin
- Pôle Biotechnologie et Sylviculture Avancée, FCBA, Campus Forêt-Bois de Pierroton, F-33610 Cestas, France
| | | | | |
Collapse
|
7
|
Takashima T, Ohnuma T, Fukamizo T. NMR analysis of substrate binding to a two-domain chitinase: Comparison between soluble and insoluble chitins. Carbohydr Res 2018; 458-459:52-59. [DOI: 10.1016/j.carres.2018.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/24/2018] [Accepted: 02/07/2018] [Indexed: 12/23/2022]
|
8
|
Jing D, Zhang J, Xia Y, Kong L, OuYang F, Zhang S, Zhang H, Wang J. Proteomic analysis of stress-related proteins and metabolic pathways in Picea asperata somatic embryos during partial desiccation. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:27-38. [PMID: 27271942 PMCID: PMC5253475 DOI: 10.1111/pbi.12588] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/14/2016] [Accepted: 05/30/2016] [Indexed: 05/22/2023]
Abstract
Partial desiccation treatment (PDT) stimulates germination and enhances the conversion of conifer somatic embryos. To better understand the mechanisms underlying the responses of somatic embryos to PDT, we used proteomic and physiological analyses to investigate these responses during PDT in Picea asperata. Comparative proteomic analysis revealed that, during PDT, stress-related proteins were mainly involved in osmosis, endogenous hormones, antioxidative proteins, molecular chaperones and defence-related proteins. Compared with those in cotyledonary embryos before PDT, these stress-related proteins remained at high levels on days 7 (D7) and 14 (D14) of PDT. The proteins that differentially accumulated in the somatic embryos on D7 were mapped to stress and/or stimuli. They may also be involved in the glyoxylate cycle and the chitin metabolic process. The most significant difference in the differentially accumulated proteins occurred in the metabolic pathways of photosynthesis on D14. Furthermore, in accordance with the changes in stress-related proteins, analyses of changes in water content, abscisic acid, indoleacetic acid and H2 O2 levels in the embryos indicated that PDT is involved in water-deficit tolerance and affects endogenous hormones. Our results provide insight into the mechanisms responsible for the transition from morphologically mature to physiologically mature somatic embryos during the PDT process in P. asperata.
Collapse
Affiliation(s)
- Danlong Jing
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jianwei Zhang
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Yan Xia
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Lisheng Kong
- Department of BiologyCentre for Forest BiologyUniversity of VictoriaVictoriaBCCanada
| | - Fangqun OuYang
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| |
Collapse
|
9
|
Merino I, Abrahamsson M, Sterck L, Craven-Bartle B, Canovas F, von Arnold S. Transcript profiling for early stages during embryo development in Scots pine. BMC PLANT BIOLOGY 2016; 16:255. [PMID: 27863470 PMCID: PMC5116219 DOI: 10.1186/s12870-016-0939-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Characterization of the expression and function of genes regulating embryo development in conifers is interesting from an evolutionary point of view. However, our knowledge about the regulation of embryo development in conifers is limited. During early embryo development in Pinus species the proembyo goes through a cleavage process, named cleavage polyembryony, giving rise to four embryos. One of these embryos develops to a dominant embryo, which will develop further into a mature, cotyledonary embryo, while the other embryos, the subordinate embryos, are degraded. The main goal of this study has been to identify processes that might be important for regulating the cleavage process and for the development of a dominant embryo. RESULTS RNA samples from embryos and megagametophytes at four early developmental stages during seed development in Pinus sylvestris were subjected to high-throughput sequencing. A total of 6.6 million raw reads was generated, resulting in 121,938 transcripts, out of which 36.106 contained ORFs. 18,638 transcripts were differentially expressed (DETs) in embryos and megagametophytes. GO enrichment analysis of transcripts up-regulated in embryos showed enrichment for different cellular processes, while those up-regulated in megagametophytes were enriched for accumulation of storage material and responses to stress. The highest number of DETs was detected during the initiation of the cleavage process. Transcripts related to embryogenic competence, cell wall modifications, cell division pattern, axis specification and response to hormones and stress were highly abundant and differentially expressed during early embryo development. The abundance of representative DETs was confirmed by qRT-PCR analyses. CONCLUSION Based on the processes identified in the GO enrichment analyses and the expression of the selected transcripts we suggest that (i) processes related to embryogenic competence and cell wall loosening are involved in activating the cleavage process; (ii) apical-basal polarization is strictly regulated in dominant embryos but not in the subordinate embryos; (iii) the transition from the morphogenic phase to the maturation phase is not completed in subordinate embryos. This is the first genome-wide transcript expression profiling of the earliest stages during embryo development in a Pinus species. Our results can serve as a framework for future studies to reveal the functions of identified genes.
Collapse
Affiliation(s)
- Irene Merino
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7080, 750 07 Uppsala, Sweden
| | - Malin Abrahamsson
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7080, 750 07 Uppsala, Sweden
| | - Lieven Sterck
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, B-9000 Belgium
| | - Blanca Craven-Bartle
- Department of Molecular Biology and Biochemistry, School of Sciences, Campus de Teatinos, Universidad de Malaga, 29071 Malaga, Spain
| | - Francisco Canovas
- Department of Molecular Biology and Biochemistry, School of Sciences, Campus de Teatinos, Universidad de Malaga, 29071 Malaga, Spain
| | - Sara von Arnold
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7080, 750 07 Uppsala, Sweden
| |
Collapse
|
10
|
Comparative transcriptome and proteome analysis to reveal the biosynthesis of gold nanoparticles in Arabidopsis. Sci Rep 2016; 6:21733. [PMID: 26902325 PMCID: PMC4763195 DOI: 10.1038/srep21733] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/29/2016] [Indexed: 01/18/2023] Open
Abstract
A large number of plants have been tested and exploited in search of a green chemistry approach for the fabrication of gold or other precious metal nanomaterials. Despite the potential of plant based methods, very little is known about the underlying biochemical reactions and genes involved in the biotransformation mechanism of AuCl4 into gold nanoparticles (AuNPs). In this research, we thus focused on studying the effect of Au on growth and nanoparticles formation by analyses of transcriptome, proteome and ionome shift in Arabidopsis. Au exposure favored the growth of Arabidopsis seedling and induced formation of nanoparticles in root and shoot, as indicated by optical and hyperspectral imaging. Root transcriptome analysis demonstrated the differential expression of the members of WRKY, MYB and BHLH gene families, which are involved in the Fe and other essential metals homeostasis. The proteome analysis revealed that Glutathione S-transferases were induced in the shoot and suggested its potential role in the biosynthesis AuNPs. This study also demonstrated the role of plant hormone auxin in determining the Au induced root system architecture. This is the first study using an integrated approach to understand the in planta biotransformation of KAuCl4 into AuNPs.
Collapse
|
11
|
Trontin JF, Klimaszewska K, Morel A, Hargreaves C, Lelu-Walter MA. Molecular Aspects of Conifer Zygotic and Somatic Embryo Development: A Review of Genome-Wide Approaches and Recent Insights. Methods Mol Biol 2016; 1359:167-207. [PMID: 26619863 DOI: 10.1007/978-1-4939-3061-6_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genome-wide profiling (transcriptomics, proteomics, metabolomics) is providing unprecedented opportunities to unravel the complexity of coordinated gene expression during embryo development in trees, especially conifer species harboring "giga-genome." This knowledge should be critical for the efficient delivery of improved varieties through seeds and/or somatic embryos in fluctuating markets and to cope with climate change. We reviewed "omics" as well as targeted gene expression studies during both somatic and zygotic embryo development in conifers and tentatively puzzled over the critical processes and genes involved at the specific developmental and transition stages. Current limitations to the interpretation of these large datasets are going to be lifted through the ongoing development of comprehensive genome resources in conifers. Nevertheless omics already confirmed that master regulators (e.g., transcription and epigenetic factors) play central roles. As in model angiosperms, the molecular regulation from early to late embryogenesis may mainly arise from spatiotemporal modulation of auxin-, gibberellin-, and abscisic acid-mediated responses. Omics also showed the potential for the development of tools to assess the progress of embryo development or to build genotype-independent, predictive models of embryogenesis-specific characteristics.
Collapse
Affiliation(s)
- Jean-François Trontin
- FCBA, Pôle Biotechnologie et Sylviculture Avancée, Campus Forêt-Bois de Pierroton, 71 Route d'Arcachon, Cestas, 33610, France.
| | - Krystyna Klimaszewska
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., 10380, Stn. Sainte-Foy, QC, Canada, G1V 4C7
| | - Alexandre Morel
- INRA, UR 0588 Unité Amélioration, Génétique et Physiologie Forestières, 2163 Avenue de la Pomme de Pin, CS 4001, Ardon, Orléans Cedex 2, 45075, France
| | | | - Marie-Anne Lelu-Walter
- INRA, UR 0588 Unité Amélioration, Génétique et Physiologie Forestières, 2163 Avenue de la Pomme de Pin, CS 4001, Ardon, Orléans Cedex 2, 45075, France
| |
Collapse
|
12
|
Tao L, Zhao Y, Wu Y, Wang Q, Yuan H, Zhao L, Guo W, You X. Transcriptome profiling and digital gene expression by deep sequencing in early somatic embryogenesis of endangered medicinal Eleutherococcus senticosus Maxim. Gene 2015; 578:17-24. [PMID: 26657036 DOI: 10.1016/j.gene.2015.11.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 11/21/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022]
Abstract
Somatic embryogenesis (SE) has been studied as a model system to understand molecular events in physiology, biochemistry, and cytology during plant embryo development. In particular, it is exceedingly difficult to access the morphological and early regulatory events in zygotic embryos. To understand the molecular mechanisms regulating early SE in Eleutherococcus senticosus Maxim., we used high-throughput RNA-Seq technology to investigate its transcriptome. We obtained 58,327,688 reads, which were assembled into 75,803 unique unigenes. To better understand their functions, the unigenes were annotated using the Clusters of Orthologous Groups, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes databases. Digital gene expression libraries revealed differences in gene expression profiles at different developmental stages (embryogenic callus, yellow embryogenic callus, global embryo). We obtained a sequencing depth of >5.6 million tags per sample and identified many differentially expressed genes at various stages of SE. The initiation of SE affected gene expression in many KEGG pathways, but predominantly that in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction. This information on the changes in the multiple pathways related to SE induction in E. senticosus Maxim. embryogenic tissue will contribute to a more comprehensive understanding of the mechanisms involved in early SE. Additionally, the differentially expressed genes may act as molecular markers and could play very important roles in the early stage of SE. The results are a comprehensive molecular biology resource for investigating SE of E. senticosus Maxim.
Collapse
Affiliation(s)
- Lei Tao
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Yue Zhao
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Ying Wu
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Qiuyu Wang
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Hongmei Yuan
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Lijuan Zhao
- Crop Breeding Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Wendong Guo
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Xiangling You
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
13
|
Oliva J, Rommel S, Fossdal CG, Hietala AM, Nemesio-Gorriz M, Solheim H, Elfstrand M. Transcriptional responses of Norway spruce (Picea abies) inner sapwood against Heterobasidion parviporum. TREE PHYSIOLOGY 2015. [PMID: 26209615 DOI: 10.1093/treephys/tpv063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The white-rot fungus Heterobasidion parviporum Niemelä & Korhonen establishes a necrotrophic interaction with Norway spruce (Picea abies (L.) H.Karst.) causing root and butt rot and growth losses in living trees. The interaction occurs first with the bark and the outer sapwood, as the pathogen enters the tree via wounds or root-to-root contacts. Later, when the fungus reaches the heartwood, it spreads therein creating a decay column, and the interaction mainly occurs in the inner sapwood where the tree creates a reaction zone. While bark and outer sapwood interactions are well studied, little is known about the nature of the transcriptional responses leading to the creation of a reaction zone. In this study, we sampled bark and sapwood both proximal and distal to the reaction zone in artificially inoculated and naturally infected trees. We quantified gene expression levels of candidate genes in secondary metabolite, hormone biosynthesis and signalling pathways using quantitative polymerase chain reaction. An up-regulation of mainly the phenylpropanoid pathway and jasmonic acid biosynthesis was found at the inoculation site, when inoculations were compared with wounding. We found that transcriptional responses in inner sapwood were similar to those reported upon infection through the bark. Our data suggest that the defence mechanism is induced due to direct fungal contact irrespective of the tissue type. Understanding the nature of these interactions is important when considering tree breeding-based resistance strategies to reduce the spread of the pathogen between and within trees.
Collapse
Affiliation(s)
- J Oliva
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, S-750 07 Uppsala, Sweden
| | - S Rommel
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, S-750 07 Uppsala, Sweden Institute of Population Genetics, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - C G Fossdal
- NIBIO - Norwegian Institute of Bioeconomy Research, Plant Health and Biotechnology, Box 115, NO-1431 Ås, Norway
| | - A M Hietala
- NIBIO - Norwegian Institute of Bioeconomy Research, Plant Health and Biotechnology, Box 115, NO-1431 Ås, Norway
| | - M Nemesio-Gorriz
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, S-750 07 Uppsala, Sweden
| | - H Solheim
- NIBIO - Norwegian Institute of Bioeconomy Research, Plant Health and Biotechnology, Box 115, NO-1431 Ås, Norway
| | - M Elfstrand
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, S-750 07 Uppsala, Sweden
| |
Collapse
|
14
|
Kim DS, Kim NH, Hwang BK. The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1987-99. [PMID: 25694549 PMCID: PMC4378632 DOI: 10.1093/jxb/erv001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The pepper receptor-like cytoplasmic protein kinase, CaPIK1, which mediates signalling of plant cell death and defence responses was previously identified. Here, the identification of a class IV chitinase, CaChitIV, from pepper plants (Capsicum annuum), which interacts with CaPIK1 and promotes CaPIK1-triggered cell death and defence responses, is reported. CaChitIV contains a signal peptide, chitin-binding domain, and glycol hydrolase domain. CaChitIV expression was up-regulated by Xanthomonas campestris pv. vesicatoria (Xcv) infection. Notably, avirulent Xcv infection rapidly induced CaChitIV expression in pepper leaves. Bimolecular fluorescence complementation and co-immunoprecipitation revealed that CaPIK1 interacts with CaChitIV in planta, and that the CaPIK1-CaChitIV complex is localized mainly in the cytoplasm and plasma membrane. CaChitIV is also localized in the endoplasmic reticulum. Transient co-expression of CaChitIV with CaPIK1 enhanced CaPIK1-triggered cell death response and reactive oxygen species (ROS) and nitric oxide (NO) bursts. Co-silencing of both CaChitIV and CaPIK1 in pepper plants conferred enhanced susceptibility to Xcv infection, which was accompanied by a reduced induction of cell death response, ROS and NO bursts, and defence response genes. Ectopic expression of CaPIK1 in Arabidopsis enhanced basal resistance to Hyaloperonospora arabidopsidis infection. Together, the results suggest that CaChitIV positively regulates CaPIK1-triggered cell death and defence responses through its interaction with CaPIK1.
Collapse
Affiliation(s)
- Dae Sung Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Nak Hyun Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
15
|
Zhao J, Li H, Fu S, Chen B, Sun W, Zhang J, Zhang J. An iTRAQ-based proteomics approach to clarify the molecular physiology of somatic embryo development in Prince Rupprecht's larch (Larix principis-rupprechtii Mayr). PLoS One 2015; 10:e0119987. [PMID: 25781987 PMCID: PMC4363690 DOI: 10.1371/journal.pone.0119987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/18/2015] [Indexed: 12/27/2022] Open
Abstract
Prince Rupprecht's larch (Larix principis-rupprechtii Mayr) is a native high-value forest tree species in North China whose clonal propagation through somatic embryogenesis (SE) has the potential to rapidly capture the benefits of breeding or genetic engineering programs and to improve raw material uniformity and quality. To date, research has focused on clarifying the molecular mechanism of SE, but proteomic studies are still in the early stages. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) analysis was performed on three developmental stages of SE in L. principis-rupprechtii in an attempt to identify a wide range of proteins that are regulated differentially during this process. Proteins were extracted and analyzed from the pro-embryogenic mass (PEM), globular embryo (GE), and cotyledon embryo (CE) stages of embryo development. We detected 503 proteins in total and identified 96 proteins expressed differentially during different developmental stages. The identified proteins were analyzed further to provide information about their expression patterns and functions during SE. Four clusters of proteins based on shared expression profiles were generated. Functional analysis showed that proteins involved in primary metabolism, phosphorylation, and oxidation reduction were upregulated during somatic embryo development. This work provides novel insights into the process of larch embryo development in vitro and a basis for further study of the biological process and opportunities for practical application of this knowledge.
Collapse
Affiliation(s)
- Jian Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of State Forestry Administration, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of State Forestry Administration, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shuangbin Fu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of State Forestry Administration, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Bo Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of State Forestry Administration, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Wenting Sun
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of State Forestry Administration, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Junqi Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of State Forestry Administration, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jinfeng Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of State Forestry Administration, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
- * E-mail:
| |
Collapse
|
16
|
Morel A, Teyssier C, Trontin JF, Eliášová K, Pešek B, Beaufour M, Morabito D, Boizot N, Le Metté C, Belal-Bessai L, Reymond I, Harvengt L, Cadene M, Corbineau F, Vágner M, Label P, Lelu-Walter MA. Early molecular events involved in Pinus pinaster Ait. somatic embryo development under reduced water availability: transcriptomic and proteomic analyses. PHYSIOLOGIA PLANTARUM 2014; 152:184-201. [PMID: 24460664 DOI: 10.1111/ppl.12158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 05/22/2023]
Abstract
Maritime pine somatic embryos (SEs) require a reduction in water availability (high gellan gum concentration in the maturation medium) to reach the cotyledonary stage. This key switch, reported specifically for pine species, is not yet well understood. To facilitate the use of somatic embryogenesis for mass propagation of conifers, we need a better understanding of embryo development. Comparison of both transcriptome (Illumina RNA sequencing) and proteome [two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with mass spectrometry (MS) identification] of immature SEs, cultured on either high (9G) or low (4G) gellan gum concentration, was performed, together with analysis of water content, fresh and dry mass, endogenous abscisic acid (ABA; gas chromatography-MS), soluble sugars (high-pressure liquid chromatography), starch and confocal laser microscope observations. This multiscale, integrated analysis was used to unravel early molecular and physiological events involved in SE development. Under unfavorable conditions (4G), the glycolytic pathway was enhanced, possibly in relation to cell proliferation that may be antagonistic to SE development. Under favorable conditions (9G), SEs adapted to culture constraint by activating specific protective pathways, and ABA-mediated molecular and physiological responses promoting embryo development. Our results suggest that on 9G, germin-like protein and ubiquitin-protein ligase could be used as predictive markers of SE development, whereas protein phosphatase 2C could be a biomarker for culture adaptive responses. This is the first characterization of early molecular mechanisms involved in the development of pine SEs following an increase in gellan gum concentration in the maturation medium, and it is also the first report on somatic embryogenesis in conifers combining transcriptomic and proteomic datasets.
Collapse
Affiliation(s)
- Alexandre Morel
- INRA, UR 0588 Unité Amélioration, Génétique et Physiologie Forestières, 2163 Avenue de la Pomme de Pin, CS 4001, Ardon, F-45075 Orléans Cedex 2, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kolosova N, Breuil C, Bohlmann J. Cloning and characterization of chitinases from interior spruce and lodgepole pine. PHYTOCHEMISTRY 2014; 101:32-39. [PMID: 24564978 DOI: 10.1016/j.phytochem.2014.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/27/2013] [Accepted: 02/03/2014] [Indexed: 06/03/2023]
Abstract
Chitinases have been implicated in the defence of conifers against insects and pathogens. cDNA for six chitinases were cloned from interior spruce (Picea glauca x engelmannii) and four from lodgepole pine (Pinus contorta). The cloned interior spruce chitinases were annotated class I PgeChia1-1 and PgeChia1-2, class II PgeChia2-1, class IV PgeChia4-1, and class VII PgeChia7-1 and PgeChia7-2; lodgepole pine chitinases were annotated class I PcChia1-1, class IV PcChia4-1, and class VII PcChia7-1 and PcChia7-2. Chitinases were expressed in Escherichia coli with maltose-binding-protein tags and soluble proteins purified. Functional characterization demonstrated chitinolytic activity for the three class I chitinases PgeChia1-1, PgeChia1-2 and PcChia1-1. Transcript analysis established strong induction of most of the tested chitinases, including all three class I chitinases, in interior spruce and lodgepole pine in response to inoculation with bark beetle associated fungi (Leptographium abietinum and Grosmannia clavigera) and in interior spruce in response to weevil (Pissodes strobi) feeding. Evidence of chitinolytic activity and inducibility by fungal and insect attack support the involvement of these chitinases in conifer defense.
Collapse
Affiliation(s)
- N Kolosova
- Michael Smith Laboratories, University of British Columbia, 312-2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - C Breuil
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - J Bohlmann
- Michael Smith Laboratories, University of British Columbia, 312-2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
18
|
Nagy NE, Sikora K, Krokene P, Hietala AM, Solheim H, Fossdal CG. Using laser micro-dissection and qRT-PCR to analyze cell type-specific gene expression in Norway spruce phloem. PeerJ 2014; 2:e362. [PMID: 24860697 PMCID: PMC4017884 DOI: 10.7717/peerj.362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/04/2014] [Indexed: 01/01/2023] Open
Abstract
The tangentially oriented polyphenolic parenchyma (PP) and radially organized ray parenchyma in the phloem are central in the defense of conifer stems against insects and pathogens. Laser micro-dissection enables examination of cell-specific defense responses. To examine induced defense responses in Norway spruce stems inoculated with the necrotrophic blue-stain fungus Ceratocystis polonica, RNA extracted from laser micro-dissected phloem parenchyma and vascular cambium was analyzed using real-time RT-PCR (qRT-PCR) to profile transcript levels of selected resistance marker genes. The monitored transcripts included three pathogenesis-related proteins (class IV chitinase (CHI4), defensin (SPI1), peroxidase (PX3), two terpene synthesis related proteins (DXPS and LAS), one ethylene biosynthesis related protein (ACS), and a phenylalanine ammonia-lyase (PAL). Three days following inoculation, four genes (CHI4, PAL, PX3, SPI1) were differentially induced in individual cell and tissue types, both close to the inoculation site (5 mm above) and, to a lesser degree, further away (10 mm above). These resistance marker genes were all highly induced in ray parenchyma, supporting the important role of the rays in spruce defense propagation. CHI4 and PAL were also induced in PP cells and in conducting secondary phloem tissues. Our data suggests that different cell types in the secondary phloem of Norway spruce have overlapping but not fully redundant roles in active host defense. Furthermore, the study demonstrates the usefulness of laser micro-dissection coupled with qRT-PCR to characterize gene expression in different cell types of conifer bark.
Collapse
Affiliation(s)
- Nina E Nagy
- Norwegian Forest and Landscape Institute , Ås , Norway
| | | | - Paal Krokene
- Norwegian Forest and Landscape Institute , Ås , Norway
| | - Ari M Hietala
- Norwegian Forest and Landscape Institute , Ås , Norway
| | | | | |
Collapse
|
19
|
Pandey DK, Chaudhary B. Oxidative Stress Responsive <i>SERK1</i> Gene Directs the Progression of Somatic Embryogenesis in Cotton (<i>Gossypium hirsutum</i> L. cv. Coker 310). ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.51012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
The role of chitinases and glucanases in somatic embryogenesis of black pine and hybrid firs. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0234-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractGlucanase and chitinase enzymes play an important role in different plant processes including defense against pathogens and morphogenesis. Moreover, their role in the processes of somatic embryogenesis has been demonstrated. It has been suggested, that the presence of this type of proteins might be a marker for embryogenic potential of callus cultures. In this work we screened for the presence of glucanases and chitinases in liquid growth media of a set of conifer embryogenic cell lines in order to find correlation with their embryogenic potential. We have found that none of the 12 chitinase isoforms detected in culture media of Pinus nigra Arn. or the nine chitinases detected in media with Abies alba × A. cephalonica and Abies alba × A. numidica embryogenic tissues could be linked to their embryogenic capacity. Similarly, none of the six glucanase isoforms detected in the extracellular fluid of Pinus nigra Arn. cultures can be assigned as a marker of embryogenic potential. Thus, our data indicate the large variability and doubtless importance of glucanases and chitinases for cell growth and development of somatic embryos, however, do not support the premise that they are markers of embryogenesis.
Collapse
|
21
|
Naumann TA, Price NPJ. Truncation of class IV chitinases from Arabidopsis by secreted fungal proteases. MOLECULAR PLANT PATHOLOGY 2012; 13:1135-1139. [PMID: 22512872 PMCID: PMC6638631 DOI: 10.1111/j.1364-3703.2012.00805.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plant class IV chitinases have a small amino-terminal chitin-binding domain and a larger chitinase domain, and are involved in plant defence against fungal infection. Our previous work on the chitinases ChitA and ChitB from the model monocotyledon Zea mays showed that the chitin-binding domain is removed by secreted fungal proteases called fungalysins. In this article, we extend this work to dicotyledons. The effects of fungalysin-like proteases on four class IV chitinases from the model dicotyledon Arabidopsis thaliana were analysed. Four Arabidopsis chitinases were heterologously expressed in Pichia pastoris, purified and shown to have chitinase activity against a chitohexaose (dp6) substrate. The incubation of these four chitinases with Fv-cmp, a fungalysin protease secreted by Fusarium verticillioides, resulted in the truncation of AtchitIV3 and AtchitIV5. Moreover, incubation with secreted proteins from Alternaria brassicae, a pathogen of A. thaliana and brassica crops, also led to a similar truncation of AtchitIV3 and AtchitIV4. Our finding that class IV chitinases from both dicotyledons (A. thaliana) and monocotyledons (Z. mays) are truncated by proteases secreted by specialized pathogens of each plant suggests that this may be a general mechanism of plant-fungal pathogenicity.
Collapse
Affiliation(s)
- Todd A Naumann
- Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agriculture Utilization Research, Peoria, IL 61604, USA.
| | | |
Collapse
|
22
|
Almeida AM, Parreira JR, Santos R, Duque AS, Francisco R, Tomé DFA, Ricardo CP, Coelho AV, Fevereiro P. A proteomics study of the induction of somatic embryogenesis in Medicago truncatula using 2DE and MALDI-TOF/TOF. PHYSIOLOGIA PLANTARUM 2012; 146:236-49. [PMID: 22497501 DOI: 10.1111/j.1399-3054.2012.01633.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Medicago truncatula is a model legume, whose genome is currently being sequenced. Somatic embryogenesis (SE) is a genotype-dependent character and not yet fully understood. In this study, a proteomic approach was used to compare the induction and expression phases of SE of both the highly embryogenic line M9-10a of M. truncatula cv. Jemalong and its non-embryogenic predecessor line, M9. The statistical analysis between the lines revealed 136 proteins with significant differential expression (P < 0.05). Of these, 5 had a presence/absence pattern in M9 vs M9-10a and 22 showed an at least twofold difference in terms of spot volume, were considered of particular relevance to the SE process and therefore chosen for identification. Spots were excised in gel digested with trypsin and proteins were identified using matrix-assisted laser desorption ionization-time of flight/time of flight. Identified proteins indicated a higher adaptability of the embryogenic line toward the stress imposed by the inducing culture conditions. Also, some proteins were shown to have a dual pattern of expression: peroxidase, pyrophosphatase and aspartate aminotransferase. These proteins showed higher expression during the induction phases of the M9 line, whereas in the embryogenic line had higher expression at stages coinciding with embryo formation.
Collapse
Affiliation(s)
- André M Almeida
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Naumann TA, Wicklow DT, Price NPJ. Identification of a chitinase-modifying protein from Fusarium verticillioides: truncation of a host resistance protein by a fungalysin metalloprotease. J Biol Chem 2011; 286:35358-35366. [PMID: 21878653 PMCID: PMC3195611 DOI: 10.1074/jbc.m111.279646] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/23/2011] [Indexed: 11/06/2022] Open
Abstract
Chitinase-modifying proteins (cmps) are proteases secreted by fungal pathogens that truncate the plant class IV chitinases ChitA and ChitB during maize ear rot. cmp activity has been characterized for Bipolaris zeicola and Stenocarpella maydis, but the identities of the proteases are not known. Here, we report that cmps are secreted by multiple species from the genus Fusarium, that cmp from Fusarium verticillioides (Fv-cmp) is a fungalysin metalloprotease, and that it cleaves within a sequence that is conserved in class IV chitinases. Protein extracts from Fusarium cultures were found to truncate ChitA and ChitB in vitro. Based on this activity, Fv-cmp was purified from F. verticillioides. N-terminal sequencing of truncated ChitA and MALDI-TOF-MS analysis of reaction products showed that Fv-cmp is an endoprotease that cleaves a peptide bond on the C-terminal side of the lectin domain. The N-terminal sequence of purified Fv-cmp was determined and compared with a set of predicted proteins, resulting in its identification as a zinc metalloprotease of the fungalysin family. Recombinant Fv-cmp also truncated ChitA, confirming its identity, but had reduced activity, suggesting that the recombinant protease did not mature efficiently from its propeptide-containing precursor. This is the first report of a fungalysin that targets a nonstructural host protein and the first to implicate this class of virulence-related proteases in plant disease.
Collapse
Affiliation(s)
- Todd A Naumann
- Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, Peoria, Illinois 61604.
| | - Donald T Wicklow
- Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, Peoria, Illinois 61604
| | - Neil P J Price
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Peoria, Illinois 61604
| |
Collapse
|
25
|
Ohnuma T, Sørlie M, Fukuda T, Kawamoto N, Taira T, Fukamizo T. Chitin oligosaccharide binding to a family GH19 chitinase from the moss Bryum coronatum. FEBS J 2011; 278:3991-4001. [PMID: 21838762 DOI: 10.1111/j.1742-4658.2011.08301.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED Substrate binding of a family GH19 chitinase from a moss species, Bryum coronatum (BcChi-A, 22 kDa), which is smaller than the 26 kDa family GH19 barley chitinase due to the lack of several loop regions ('loopless'), was investigated by oligosaccharide digestion, thermal unfolding experiments and isothermal titration calorimetry (ITC). Chitin oligosaccharides [β-1,4-linked oligosaccharides of N-acetylglucosamine with a polymerization degree of n, (GlcNAc)(n), n = 3-6] were hydrolyzed by BcChi-A at rates in the order (GlcNAc)(6) > (GlcNAc)(5) > (GlcNAc)(4) >> (GlcNAc)(3). From thermal unfolding experiments using the inactive BcChi-A mutant (BcChi-A-E61A), in which the catalytic residue Glu61 is mutated to Ala, we found that the transition temperature (T(m) ) was elevated upon addition of (GlcNAc)(n) (n = 2-6) and that the elevation (ΔT(m)) was almost proportional to the degree of polymerization of (GlcNAc)(n). ITC experiments provided the thermodynamic parameters for binding of (GlcNAc)(n) (n = 3-6) to BcChi-A-E61A, and revealed that the binding was driven by favorable enthalpy changes with unfavorable entropy changes. The change in heat capacity (ΔC(p)°) for (GlcNAc)(6) binding was found to be relatively small (-105 ± 8 cal·K(-1) ·mol(-1)). The binding free energy changes for (GlcNAc)(6), (GlcNAc)(5), (GlcNAc)(4) and (GlcNAc)(3) were determined to be -8.5, -7.9, -6.6 and -5.0 kcal·mol(-1), respectively. Taken together, the substrate binding cleft of BcChi-A consists of at least six subsites, in contrast to the four-subsites binding cleft of the 'loopless' family 19 chitinase from Streptomyces coelicolor. DATABASE Chitinase, EC 3.2.1.14.
Collapse
Affiliation(s)
- Takayuki Ohnuma
- Department of Advanced Bioscience, Kinki University, Nakamachi, Nara, Japan
| | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Naumann TA. Modification of recombinant maize ChitA chitinase by fungal chitinase-modifying proteins. MOLECULAR PLANT PATHOLOGY 2011; 12:365-72. [PMID: 21453431 PMCID: PMC6640348 DOI: 10.1111/j.1364-3703.2010.00677.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In commercial maize, there are at least two different alleles of the chiA gene that encode alloforms of ChitA chitinase, a protein that is abundant in developing seed. Both known alloforms are modified by Bz-cmp, a chitinase-modifying protein (cmp) secreted by the fungal pathogen Bipolaris zeicola. One alloform (ChitA-B73) is also modified by Stm-cmp, a protein secreted by the fungal pathogen Stenocarpella maydis, whereas the other (ChitA-LH82) is resistant. The two ChitA alloforms possess six differences or polymorphisms (P1-P6). To determine whether the P2 polymorphism in the chitin-binding domain is responsible for resistance or susceptibility to modification by Stm-cmp, and to determine whether Stm-cmp and Bz-cmp are proteases, heterologous expression strains of the yeast Pichia pastoris that produce recombinant maize ChitA (rChitA) alloforms and mutant rChitAs were created. rChitA alloforms and mutant rChitAs were purified from yeast cultures and used as substrates in assays with Stm-cmp and Bz-cmp. As with native protein, Bz-cmp modified both rChitA-LH82 and rChitA-B73, whereas Stm-cmp modified rChitA-B73 only. Mutant rChitAs, in which the P2 amino acids were changed to those of the other alloform, resulted in a significant exchange in Stm-cmp susceptibility. Amino-terminal sequencing of unmodified and modified rChitA-B73 demonstrated that Stm-cmp cleaves the peptide bond on the amino-terminal side of the P2 alanine, whereas Bz-cmp cleaves in the poly-glycine hinge region, the site of P3. The results demonstrate that Stm-cmp and Bz-cmp are proteases that truncate ChitA chitinase at the amino terminus, but at different sites. Both sites correspond to polymorphisms in the two alloforms, suggesting that the sequence diversity at P2 and P3 is the result of selective pressure to prevent truncation by fungal proteases.
Collapse
Affiliation(s)
- Todd A Naumann
- Bacterial Food-borne Pathogens and Mycology Research Unit, National Center for Agriculture Utilization Research, Peoria, IL 61604, USA.
| |
Collapse
|
28
|
Ubhayasekera W. Structure and function of chitinases from glycoside hydrolase family 19. POLYM INT 2011. [DOI: 10.1002/pi.3028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Roowi SH, Ho CL, Alwee SSRS, Abdullah MO, Napis S. Isolation and characterization of differentially expressed transcripts from the suspension cells of oil palm (Elaeis guineensis Jacq.) in response to different concentration of auxins. Mol Biotechnol 2010; 46:1-19. [PMID: 20390382 DOI: 10.1007/s12033-010-9262-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oil palm suspension cultures were initiated by transferring the gel-like friable embryogenic tissue onto liquid medium supplemented with auxins. In this study, transcripts that were differentially expressed in oil palm suspension cells cultured at different auxin concentrations were examined using suppression subtractive hybridization. Total RNA was first isolated from oil palm suspension cells proliferated in liquid medium with different hormone concentrations for 6 months. Four different hormone combinations: T1 (0.1 mg/l 2,4-D and 1.0 mg/l NAA), T2 (0.4 mg/l 2,4-D and 1.0 mg/l NAA), T3 (1.0 mg/l NAA), and T4 (0.4 mg/l 2,4-D) were used for the treatments. The first and second subtractions were performed using samples T1 and T2 in forward and reverse order. The other two subtractions were forward and reverse subtractions of T3 and T4, respectively. Reverse northern analyses showed that 14.13% of these clones were preferentially expressed in T1, 13.70% in T2, 14.75% in T3, and 15.70% in T4. Among the 294 cDNA clones that were sequenced, 61 contigs (assembled from 165 sequences) and 129 singletons were obtained. Among the 61 contigs, 10 contigs consist of sequences from treatment T1, 8 contigs were from treatment T2, 10 contigs were contains sequences of treatment T3 and 13 contigs contains sequences of treatment T4. Northern analyses of five transcripts that were shown to be differentially expressed in the oil palm suspension cells by reverse northern analysis revealed that transcripts 16A1 (a putative lignostilbene-alpha,beta-dioxygenase, EgLSD) and 16H12 (a putative ethylene responsive 6, EgER6) were differentially expressed in oil palm suspension cells treated with different levels of auxin.
Collapse
Affiliation(s)
- Siti Habsah Roowi
- Felda Biotechnology Centre, Lengkuk Technology, Bandar Enstek, Negeri Sembilan, Malaysia.
| | | | | | | | | |
Collapse
|
30
|
Pandit SS, Kulkarni RS, Giri AP, Köllner TG, Degenhardt J, Gershenzon J, Gupta VS. Expression profiling of various genes during the fruit development and ripening of mango. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:426-33. [PMID: 20363641 DOI: 10.1016/j.plaphy.2010.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 02/20/2010] [Indexed: 05/04/2023]
Abstract
Mango (Mangifera indica L. cv. Alphonso) development and ripening are the programmed processes; conventional indices and volatile markers help to determine agronomically important stages of fruit life (fruit-setting, harvesting maturity and ripening climacteric). However, more and precise markers are required to understand this programming; apparently, fruit's transcriptome can be a good source of such markers. Therefore, we isolated 18 genes related to the physiology and biochemistry of the fruit and profiled their expression in developing and ripening fruits, flowers and leaves of mango using relative quantitation PCR. In most of the tissues, genes related to primary metabolism, abiotic stress, ethylene response and protein turnover showed high expression as compared to that of the genes related to flavor production. Metallothionin and/or ethylene-response transcription factor showed highest level of transcript abundance in all the tissues. Expressions of mono- and sesquiterpene synthases and 14-3-3 lowered during ripening; whereas, that of lipoxygenase, ethylene-response factor and ubiquitin-protein ligase increased during ripening. Based on these expression profiles, flower showed better positive correlation with developing and ripening fruits than leaf. Most of the genes showed their least expression on the second day of harvest, suggesting that harvesting signals significantly affect the fruit metabolism. Important stages in the fruit life were clearly indicated by the significant changes in the expression levels of various genes. These indications complemented those from the previous analyses of fruit development, ripening and volatile emission, revealing the harmony between physiological, biochemical and molecular activities of the fruit.
Collapse
Affiliation(s)
- Sagar S Pandit
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
| | | | | | | | | | | | | |
Collapse
|
31
|
Ubhayasekera W, Rawat R, Ho SWT, Wiweger M, Von Arnold S, Chye ML, Mowbray SL. The first crystal structures of a family 19 class IV chitinase: the enzyme from Norway spruce. PLANT MOLECULAR BIOLOGY 2009; 71:277-289. [PMID: 19629717 DOI: 10.1007/s11103-009-9523-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Accepted: 07/04/2009] [Indexed: 05/28/2023]
Abstract
Chitinases help plants defend themselves against fungal attack, and play roles in other processes, including development. The catalytic modules of most plant chitinases belong to glycoside hydrolase family 19. We report here x-ray structures of such a module from a Norway spruce enzyme, the first for any family 19 class IV chitinase. The bi-lobed structure has a wide cleft lined by conserved residues; the most interesting for catalysis are Glu113, the proton donor, and Glu122, believed to be a general base that activate a catalytic water molecule. Comparisons to class I and II enzymes show that loop deletions in the class IV proteins make the catalytic cleft shorter and wider; from modeling studies, it is predicted that only three N-acetylglucosamine-binding subsites exist in class IV. Further, the structural comparisons suggest that the family 19 enzymes become more closed on substrate binding. Attempts to solve the structure of the complete protein including the associated chitin-binding module failed, however, modeling studies based on close relatives indicate that the binding module recognizes at most three N-acetylglucosamine units. The combined results suggest that the class IV enzymes are optimized for shorter substrates than the class I and II enzymes, or alternatively, that they are better suited for action on substrates where only small regions of chitin chain are accessible. Intact spruce chitinase is shown to possess antifungal activity, which requires the binding module; removing this module had no effect on measured chitinase activity.
Collapse
Affiliation(s)
- Wimal Ubhayasekera
- Department of Molecular Biology, Biomedical Center, Swedish University of Agricultural Sciences, 751 24 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
32
|
Karami O, Saidi A. The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 2009; 37:2493-507. [PMID: 19705297 DOI: 10.1007/s11033-009-9764-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 08/14/2009] [Indexed: 11/24/2022]
Abstract
Somatic embryogenesis (SE) has been studied as a model system for understanding of molecular events in the physiology, biochemistry, and biology areas occurring during plant embryo development. Stresses are also the factors that have been increasingly recognized as having important role in the induction of SE. Plant growth regulators such as 2,4-dichlorophenoxyacetic acid (2,4-D), ABA, ethylene, and high concentrations of 2,4-D are known as stress-related substances for acquisition of embryogenic competence by plant cells. Gene expression analysis in both the proteome and transcriptome levels have led to the identification and characterization of some stress-related genes and proteins associated with SE. This review focuses on the molecular basis for stress-induced acquisition of SE.
Collapse
Affiliation(s)
- Omid Karami
- Department of Biotechnology, Bu-Ali Sina University, Hamadan, Iran.
| | | |
Collapse
|
33
|
Taira T, Hayashi H, Tajiri Y, Onaga S, Uechi GI, Iwasaki H, Ohnuma T, Fukamizo T. A plant class V chitinase from a cycad (Cycas revoluta): biochemical characterization, cDNA isolation, and posttranslational modification. Glycobiology 2009; 19:1452-61. [PMID: 19696236 DOI: 10.1093/glycob/cwp119] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chitinase-A (CrChi-A) was purified from leaf rachises of Cycas revoluta by several steps of column chromatography. It was found to be a glycoprotein with a molecular mass of 40 kDa and an isoelectric point of 5.6. CrChi-A produced mainly (GlcNAc)(3) from the substrate (GlcNAc)(6) through a retaining mechanism. More interestingly, CrChi-A exhibited transglycosylation activity, which has not been observed in plant chitinases investigated so far. A cDNA encoding CrChi-A was cloned by rapid amplification of cDNA ends and polymerase chain reaction procedures. It consisted of 1399 nucleotides and encoded an open reading frame of 387-amino-acid residues. Sequence analysis indicated that CrChi-A belongs to the group of plant class V chitinases. From peptide mapping and mass spectrometry of the native and recombinant enzyme, we found that an N-terminal signal peptide and a C-terminal extension were removed from the precursor (M1-A387) to produce a mature N-glycosylated protein (Q24-G370). This is the first report on a plant chitinase with transglycosylation activity and posttranslational modification of a plant class V chitinase.
Collapse
Affiliation(s)
- Toki Taira
- Department of Bioscience and Biotechnology, Ryukyu University, Okinawa 903-0213, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Maillot P, Lebel S, Schellenbaum P, Jacques A, Walter B. Differential regulation of SERK, LEC1-like and pathogenesis-related genes during indirect secondary somatic embryogenesis in grapevine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:743-752. [PMID: 19406655 DOI: 10.1016/j.plaphy.2009.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/23/2009] [Accepted: 03/31/2009] [Indexed: 05/27/2023]
Abstract
A culture model was developed in Vitis vinifera L., cultivar 'Chardonnay' for studying SE (Somatic Embryogenesis). The auxin 2,4-D (2,4-Dichlorophenoxyacetic acid) was used to induce indirect secondary embryogenesis at a high rate, starting from embryos derived from embryogenic cultures previously obtained. Cotyledonary embryos were shown to be more responsive to SE induction than embryos at the torpedo-stage and were used for molecular analyses. The expression of SERK (Somatic Embryogenesis Receptor Kinase), L1L (Leafy Cotyledon1 Like) and a set of PR (Pathogenesis-Related) genes was monitored during the whole SE process. VvSERK1, VvSERK2 and VvL1L were down-regulated by the 2,4-D treatment but expressed in embryonic tissues. On the contrary, VvPR1, VvPR8, VvPR10.1 and VvPR10.3 were strongly up-regulated by the 2,4-D treatment, and their transcripts were not or only weakly detected in clusters of secondary embryos. VvSERK3, VvPR3 and VvPR10.2 were more stably expressed in all tissues examined. The discussion deals with the putative role of the different genes in grapevine SE.
Collapse
Affiliation(s)
- Pascale Maillot
- Université de Haute Alsace, Laboratoire Vigne Biotechnologies & Environnement, 33 rue de Herrlisheim, BP 50568, 68 008 Colmar Cedex, France.
| | | | | | | | | |
Collapse
|
35
|
Yang S, Johnston N, Talideh E, Mitchell S, Jeffree C, Goodrich J, Ingram G. The endosperm-specific ZHOUPI gene of Arabidopsis thaliana regulates endosperm breakdown and embryonic epidermal development. Development 2008; 135:3501-9. [DOI: 10.1242/dev.026708] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During Arabidopsis seed development, the growing embryo invades and consumes the surrounding endosperm tissue. The signalling pathways that coordinate the separation of the embryo from the endosperm and the concomitant breakdown of the endosperm are poorly understood. We have identified a novel bHLH transcription factor, ZHOUPI (ZOU), which mediates these processes. ZOU is expressed exclusively in the endosperm of developing seeds. It is activated in the central cell immediately after fertilization and is initially expressed uniformly in endosperm, subsequently resolving to the embryo surrounding region (ESR). However, zou mutant embryos have defects in cuticle formation and in epidermal cell adhesion,suggesting that ZOU functions non-autonomously to regulate embryonic development. In addition, the endosperm of zou mutant seeds fails to separate from the embryo, restricting embryo expansion and resulting in the production of shrivelled collapsed seeds. zou seeds retain more endosperm than do wild-type seeds at maturity, suggesting that ZOUalso controls endosperm breakdown. We identify several target genes whose expression in the ESR is regulated by ZOU. These include ABNORMAL LEAF SHAPE1, which encodes a subtilisin-like protease previously shown to have a similar role to ZOU in regulating endosperm adhesion and embryonic epidermal development. However, expression of several other ESR-specific genes is independent of ZOU. Therefore, ZOU is not a general regulator of endosperm patterning, but rather controls specific signalling pathways that coordinate embryo invasion and breakdown of surrounding endosperm tissues.
Collapse
Affiliation(s)
- Suxin Yang
- Institute of Molecular Plant Sciences, School of Biology, University of Edinburgh, Rutherford Building, Mayfield Road, Edinburgh EH9 3JH, UK
| | - Niamh Johnston
- Institute of Molecular Plant Sciences, School of Biology, University of Edinburgh, Rutherford Building, Mayfield Road, Edinburgh EH9 3JH, UK
| | - Edmund Talideh
- Institute of Molecular Plant Sciences, School of Biology, University of Edinburgh, Rutherford Building, Mayfield Road, Edinburgh EH9 3JH, UK
| | - Steve Mitchell
- Institute of Molecular Plant Sciences, School of Biology, University of Edinburgh, Rutherford Building, Mayfield Road, Edinburgh EH9 3JH, UK
| | - Chris Jeffree
- Institute of Molecular Plant Sciences, School of Biology, University of Edinburgh, Rutherford Building, Mayfield Road, Edinburgh EH9 3JH, UK
| | - Justin Goodrich
- Institute of Molecular Plant Sciences, School of Biology, University of Edinburgh, Rutherford Building, Mayfield Road, Edinburgh EH9 3JH, UK
| | - Gwyneth Ingram
- Institute of Molecular Plant Sciences, School of Biology, University of Edinburgh, Rutherford Building, Mayfield Road, Edinburgh EH9 3JH, UK
| |
Collapse
|
36
|
Abstract
Somatic embryogenesis, the process in which embryos, similar in morphology to their zygotic counterparts, are induced to develop in culture from somatic cells, is a suitable model system for investigating the regulation of embryo development. Through this process, a large number of embryos at defined stages of development can easily be obtained. Somatic embryogenesis in Norway spruce is comprised of a sequence of steps including initiation, proliferation, early embryo formation, embryo maturation, desiccation and germination. To execute this pathway, a number of critical physical and chemical treatments should be applied with proper timing. Embryogenic cell lines of Norway spruce are initiated from zygotic embryos. The cell lines proliferate as proembryogenic masses (PEMs) in the presence of auxin and cytokinin. Early somatic embryos develop from PEMs after withdrawal of auxin and cytokinin. PEM to somatic embryo transition is a key developmental switch that determines the yield and quality of mature somatic embryos. The embryos develop further, to a stage corresponding to late embryogeny, in the presence of abscisic acid. Some cell lines deviate from normal pattern formation exhibiting developmental arrest at certain stages. These arrested cell lines, together with transgenic lines, are valuable tools for studying embryo development. Particle bombardment is routinely used to produce transgenic plants of Norway spruce.
Collapse
Affiliation(s)
- Sara von Arnold
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | |
Collapse
|
37
|
Shinya T, Hanai K, Gális I, Suzuki K, Matsuoka K, Matsuoka H, Saito M. Characterization of NtChitIV, a class IV chitinase induced by beta-1,3-, 1,6-glucan elicitor from Alternaria alternata 102: Antagonistic effect of salicylic acid and methyl jasmonate on the induction of NtChitIV. Biochem Biophys Res Commun 2007; 353:311-7. [PMID: 17178105 DOI: 10.1016/j.bbrc.2006.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 12/02/2006] [Indexed: 10/23/2022]
Abstract
Tobacco BY-2 class IV chitinases (TBC-1, TBC-3) were rapidly and transiently induced by the beta-1,3-, 1,6-glucan elicitor from Alternaria alternata 102 (AaGlucan). The full-length cDNA and 5'-flanking region of a gene encoding class IV chitinases were isolated on the basis of the amino acid sequence of TBC-1. Sequence analysis indicated that NtChitIV encoded TBC-1, TBC-3, or both. Since purified TBC-1 and TBC-3 from BY-2 cells lack a chitin binding domain in the N-terminal region, these enzymes suggested to be derived from NtChitIV by post-translational proteolytic processing. The transcripts of NtChitIV accumulated rapidly within 1h after treatment with AaGlucan. Accumulation was maximal 3h after treatment. Reporter gene assays were used to analyze the promoter regions involved in the transcriptional control of NtChitIV, and these assays revealed that the 1.89-kb NtChitIV promoter was activated by AaGlucan but not by salicylic acid (SA) or methyl jasmonate (MeJA). The AaGlucan-induced transcriptional activation via 1.89-kb NtChitIV promoter was attenuated by pretreatment with SA or MeJA. These results suggest that NtChitIV expression is particularly induced by AaGlucan and that the AaGlucan-dependent signaling pathway is different from the SA- and MeJA-dependent signaling pathways.
Collapse
Affiliation(s)
- Tomonori Shinya
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Groover AT, Mansfield SD, DiFazio SP, Dupper G, Fontana JR, Millar R, Wang Y. The Populus homeobox gene ARBORKNOX1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium. PLANT MOLECULAR BIOLOGY 2006; 61:917-32. [PMID: 16927204 DOI: 10.1007/s11103-006-0059-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 03/29/2006] [Indexed: 05/11/2023]
Abstract
Secondary growth is supported by a dividing population of meristematic cells within the vascular cambium whose daughter cells are recruited to differentiate within secondary phloem and xylem tissues. We cloned a Populus Class 1 KNOX homeobox gene, ARBORKNOX1 (ARK1), which is orthologous to Arabidopsis SHOOT MERISTEMLESS (STM). ARK1 is expressed in the shoot apical meristem (SAM) and the vascular cambium, and is down-regulated in the terminally differentiated cells of leaves and secondary vascular tissues that are derived from these meristems. Transformation of Populus with either ARK1 or STM over-expression constructs results in similar morphological phenotypes characterized by inhibition of the differentiation of leaves, internode elongation, and secondary vascular cell types in stems. Microarray analysis showed that 41% of genes up-regulated in the stems of ARK1 over-expressing plants encode proteins involved in extracellular matrix synthesis or modification, including proteins involved in cell identity and signaling, cell adhesion, or cell differentiation. These gene expression differences are reflected in alterations of cell wall biochemistry and lignin composition in ARK1 over-expressing plants. Our results suggest that ARK1 has a complex mode of action that may include regulating cell fates through modification of the extracellular matrix. Our findings support the hypothesis that the SAM and vascular cambium are regulated by overlapping genetic programs.
Collapse
MESH Headings
- Amino Acid Sequence
- Cell Wall/chemistry
- Cell Wall/genetics
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Homeodomain Proteins/genetics
- In Situ Hybridization
- Lignin/analysis
- Meristem/genetics
- Meristem/growth & development
- Meristem/ultrastructure
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Oligonucleotide Array Sequence Analysis/methods
- Phylogeny
- Plant Leaves/growth & development
- Plant Leaves/ultrastructure
- Plant Proteins/genetics
- Plant Structures/genetics
- Plant Structures/growth & development
- Plants, Genetically Modified
- Populus/genetics
- Populus/growth & development
- Populus/ultrastructure
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Andrew T Groover
- Institute of Forest Genetics, Pacific Southwest Research Station, USDA Forest Service, 1100 West Chiles Rd., Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Induced Chemical Defenses in Conifers: Biochemical and Molecular Approaches to Studying Their Function. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0079-9920(05)80002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
|
40
|
Hietala AM, Kvaalen H, Schmidt A, Jøhnk N, Solheim H, Fossdal CG. Temporal and spatial profiles of chitinase expression by norway spruce in response to bark colonization by Heterobasidion annosum. Appl Environ Microbiol 2004; 70:3948-53. [PMID: 15240268 PMCID: PMC444825 DOI: 10.1128/aem.70.7.3948-3953.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogen colonization and transcript levels of three host chitinases, putatively representing classes I, II, and IV, were monitored with real-time PCR after wounding and bark infection by Heterobasidion annosum in 32-year-old trees of Norway spruce (Picea abies) with low (clone 409) or high (clone 589) resistance to this pathogen. Three days after inoculation, comparable colonization levels were observed in both clones in the area immediately adjacent to inoculation. At 14 days after infection, pathogen colonization was restricted to the area immediately adjacent to the site of inoculation for clone 589 but had progressed further into the host tissue in clone 409. Transcript levels of the class II and IV chitinases increased after wounding or inoculation, but the transcript level of the class I chitinase declined after these treatments. Transcript levels of the class II and class IV chitinases were higher in areas immediately adjacent to the inoculation site in clone 589 than in similar sites in clone 409 3 days after inoculation. This difference was even more pronounced 2 to 6 mm away from the inoculation point, where no infection was yet established, and suggests that the clones differ in the rate of chitinase-related signal perception or transduction. At 14 days after inoculation, these transcript levels were higher in clone 409 than in clone 589, suggesting that the massive upregulation of class II and IV chitinases after the establishment of infection comes too late to reduce or prevent pathogen colonization.
Collapse
|
41
|
Nagy NE, Dalen LS, Jones DL, Swensen B, Fossdal CG, Eldhuset TD. Cytological and enzymatic responses to aluminium stress in root tips of Norway spruce seedlings. THE NEW PHYTOLOGIST 2004; 163:595-607. [PMID: 33873739 DOI: 10.1111/j.1469-8137.2004.01134.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• Aluminium (Al) stress reduces plant growth. However, some species such as Norway spruce (Picea abies) seem to tolerate high Al concentrations. The aim of this study was to investigate characteristics possibly involved in Al tolerance in Norway spruce seedlings. • Seedlings (10-d-old) were exposed to Al3+ concentrations of 0.5 and 5 mm for up to 168 h. The effect of Al stress on root growth, cell morphology and Al distribution, callose production, and peroxidase and chitinase activity was analysed. • Root growth decreased after 1 d and 2 d with 5 and 0.5 mm Al, respectively. Callose concentration increased strongly after 6 h treatment with 5 mm Al. The activity of many peroxidase and chitinase isoforms decreased after 1-24 h exposure of both treatments. Several isoforms increased after 48-168 h exposure to 5 mm Al. • We postulate that, with external Al concentrations 0.5 mm or lower, an increased production above constitutive levels of peroxidase or chitinase is not required for Al tolerance in young Norway spruce seedlings. High constitutive levels of peroxidase and chitinase in this species may be part of this Al tolerance.
Collapse
Affiliation(s)
| | | | - David L Jones
- School of Agricultural and Forest Sciences, University of Wales, Bangor, Gwynedd, LL57 2UW, UK
| | - Berit Swensen
- Norwegian Forest Research Institute, Høgskoleveien 8, N-1432 Ås, Norway
| | | | - Toril D Eldhuset
- Norwegian Forest Research Institute, Høgskoleveien 8, N-1432 Ås, Norway
| |
Collapse
|