1
|
Höfer M, Schäfer M, Wang Y, Wink S, Xu S. Genetic Mechanism of Non-Targeted-Site Resistance to Diquat in Spirodela polyrhiza. PLANTS (BASEL, SWITZERLAND) 2024; 13:845. [PMID: 38592881 PMCID: PMC10975167 DOI: 10.3390/plants13060845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Understanding non-target-site resistance (NTSR) to herbicides represents a pressing challenge as NTSR is widespread in many weeds. Using giant duckweed (Spirodela polyrhiza) as a model, we systematically investigated genetic and molecular mechanisms of diquat resistance, which can only be achieved via NTSR. Quantifying the diquat resistance of 138 genotypes, we revealed an 8.5-fold difference in resistance levels between the most resistant and most susceptible genotypes. Further experiments suggested that diquat uptake and antioxidant-related processes jointly contributed to diquat resistance in S. polyrhiza. Using a genome-wide association approach, we identified several candidate genes, including a homolog of dienelactone hydrolase, that are associated with diquat resistance in S. polyrhiza. Together, these results provide new insights into the mechanisms and evolution of NTSR in plants.
Collapse
Affiliation(s)
- Martin Höfer
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| | - Martin Schäfer
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| | - Yangzi Wang
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| | - Samuel Wink
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Shuqing Xu
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| |
Collapse
|
2
|
Thanthrige N, Weston-Olliver G, Das Bhowmik S, Friedl J, Rowlings D, Kabbage M, Ferguson BJ, Mundree S, Williams B. The cytoprotective co-chaperone, AtBAG4, supports increased nodulation and seed protein content in chickpea without yield penalty. Sci Rep 2023; 13:18553. [PMID: 37899486 PMCID: PMC10613627 DOI: 10.1038/s41598-023-45771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023] Open
Abstract
Drought and extreme temperatures significantly limit chickpea productivity worldwide. The regulation of plant programmed cell death pathways is emerging as a key component of plant stress responses to maintain homeostasis at the cellular-level and a potential target for crop improvement against environmental stresses. Arabidopsis thaliana Bcl-2 associated athanogene 4 (AtBAG4) is a cytoprotective co-chaperone that is linked to plant responses to environmental stress. Here, we investigate whether exogenous expression of AtBAG4 impacts nodulation and nitrogen fixation. Transgenic chickpea lines expressing AtBAG4 are more drought tolerant and produce higher yields under drought stress. Furthermore, AtBAG4 expression supports higher nodulation, photosynthetic levels, nitrogen fixation and seed nitrogen content under well-watered conditions when the plants were inoculated with Mesorhizobium ciceri. Together, our findings illustrate the potential use of cytoprotective chaperones to improve crop performance at least in the greenhouse in future uncertain climates with little to no risk to yield under well-watered and water-deficient conditions.
Collapse
Affiliation(s)
- Nipuni Thanthrige
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Grace Weston-Olliver
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sudipta Das Bhowmik
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Johannes Friedl
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - David Rowlings
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brett J Ferguson
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Sagadevan Mundree
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brett Williams
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia.
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Yukhymuk VV, Radchenko MP, Sytnik SK, Morderer YY. Effects of interaction and effectiveness of weed control when using tank mixtures of herbicides in maize crops. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Many countries are now facing the problem of increase in resistant biotypes of weeds. The spread of herbicide-resistant weeds across agrophytocenoses poses a threat of decrease in the effectiveness of use of herbicides in agricultural fields. In order to develop anti-resistant compositions of herbicides for protection of maize (Zea mays L.) crops, we studied effects of interaction and efficiency of weed control in greenhouse and field experiments. We studied the possibility of combined use of 4-hydroxyphenyl pyruvate dioxygenase-inhibiting herbicide tolpyralate and inhibitor of transport of electrons in photosystem 2 of chloroplasts – terbuthylazine – and acetolactate synthase-inhibiting rimsulfuron. In greenhouse experiments on model objects, we found that interaction in the mixtures of tolpyralate with rimsulfuron was antagonistic, but the antagonism may be overcome by increasing the rate of applied rimsulfuron. At joint use of tolpyralate and terbuthylazine, a synergistic increase in phytotoxic effect was observed, caused by increase in the effectiveness of the blocking electron-transport chain and increase in intensity of formation of reactive oxygen species. According to the results of the field experiments, we drew the conclusion that the efficacy of using the mixture of tolpyralate and rimsulfuron depends on the species composition of weeds. In the presence of rimsulfuron-resistant weeds, interaction with tolpyralate becomes antagonistic even in the conditions of increased rate of application of rimsulfuron, and thus the effectiveness of the protection significantly decreases. At the same time, after applying tank mixture of tolpyralate with terbuthylazine, the synergistic character of the interaction was maintained toward a broad range of species of grass and dicotyledonous weeds, providing high efficiency of maize crop protection. The herbicide compositions that were analyzed and are presented in the article allow one to decrease the possibility of emergence of resistant biotypes of weeds, and also to effectively control the already existing resistant biotypes.
Collapse
|
4
|
Melicher P, Dvořák P, Krasylenko Y, Shapiguzov A, Kangasjärvi J, Šamaj J, Takáč T. Arabidopsis Iron Superoxide Dismutase FSD1 Protects Against Methyl Viologen-Induced Oxidative Stress in a Copper-Dependent Manner. FRONTIERS IN PLANT SCIENCE 2022; 13:823561. [PMID: 35360337 PMCID: PMC8963501 DOI: 10.3389/fpls.2022.823561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Iron superoxide dismutase 1 (FSD1) was recently characterized as a plastidial, cytoplasmic, and nuclear enzyme with osmoprotective and antioxidant functions. However, the current knowledge on its role in oxidative stress tolerance is ambiguous. Here, we characterized the role of FSD1 in response to methyl viologen (MV)-induced oxidative stress in Arabidopsis thaliana. In accordance with the known regulation of FSD1 expression, abundance, and activity, the findings demonstrated that the antioxidant function of FSD1 depends on the availability of Cu2+ in growth media. Arabidopsis fsd1 mutants showed lower capacity to decompose superoxide at low Cu2+ concentrations in the medium. Prolonged exposure to MV led to reduced ascorbate levels and higher protein carbonylation in fsd1 mutants and transgenic plants lacking a plastid FSD1 pool as compared to the wild type. MV induced a rapid increase in FSD1 activity, followed by a decrease after 4 h long exposure. Genetic disruption of FSD1 negatively affected the hydrogen peroxide-decomposing ascorbate peroxidase in fsd1 mutants. Chloroplastic localization of FSD1 is crucial to maintain redox homeostasis. Proteomic analysis showed that the sensitivity of fsd1 mutants to MV coincided with decreased abundances of ferredoxin and photosystem II light-harvesting complex proteins. These mutants have higher levels of chloroplastic proteases indicating an altered protein turnover in chloroplasts. Moreover, FSD1 disruption affects the abundance of proteins involved in the defense response. Collectively, the study provides evidence for the conditional antioxidative function of FSD1 and its possible role in signaling.
Collapse
Affiliation(s)
- Pavol Melicher
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Petr Dvořák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Yuliya Krasylenko
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Alexey Shapiguzov
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Production Systems Unit, Natural Resources Institute Finland (Luke), Piikkiö, Finland
- Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Tomáš Takáč
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
5
|
Thanthrige N, Jain S, Bhowmik SD, Ferguson BJ, Kabbage M, Mundree S, Williams B. Centrality of BAGs in Plant PCD, Stress Responses, and Host Defense. TRENDS IN PLANT SCIENCE 2020; 25:1131-1140. [PMID: 32467063 DOI: 10.1016/j.tplants.2020.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 05/02/2023]
Abstract
Programmed cell death (PCD) is a genetically regulated process for the selective demise of unwanted and damaged cells. Although our understanding of plant PCD pathways has advanced significantly, doubts remain on the extent of conservation of animal apoptosis in plants. At least at the primary sequence level, plants do not encode the regulators of animal apoptosis. Structural analyses have enabled the identification of the B cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) family of co-chaperones in plants. This discovery suggests that some aspects of animal PCD are conserved in plants, while the varied subcellular localization of plant BAGs indicates that they may have evolved distinct functions. Here we review plant BAG proteins, with an emphasis on their roles in the regulation of plant PCD.
Collapse
Affiliation(s)
- Nipuni Thanthrige
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Sachin Jain
- Department of Plant Pathology, University of Wisconsin-, Madison, WI 53706, USA
| | - Sudipta Das Bhowmik
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Brett J Ferguson
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-, Madison, WI 53706, USA
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
6
|
Sunisha C, Sowmya HD, Usharani TR, Umesha M, Gopalkrishna HR, Sriram S. Induction of Ced9 mediated anti-apoptosis in commercial banana cultivar Rasthali for stable resistance against Fusarium wilt. 3 Biotech 2020; 10:371. [PMID: 32832331 DOI: 10.1007/s13205-020-02357-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/24/2020] [Indexed: 11/30/2022] Open
Abstract
Anti-apoptotic gene Ced-9 enhanced resistance against Fusarium oxysporum f. sp. cubense (Foc) in the susceptible banana cultivar Rasthali by arresting tissue necrosis. The embryogenic cell suspension of banana cultivar Rasthali was stably transformed with Ced-9 gene and transformed lines were regenerated independently. The putative transgenic lines were analyzed with PCR using gene primers and further subjected to Southern blot to estimate copy number. The root-challenge bioassay with Foc showed 17-51% Vascular Discoloration Index in independent transformants compared to untransformed banana cv Rasthali (98% VDI). Four transgenic events showed a higher level of resistance over a period of 6 months. Overcoming tissue necrosis is the most ideal method to avoid Fusarium multiplication and spread in banana. Oxidative stress-induced cell necrosis is prevented by the activation of antiapoptotic pathways by Ced-9 and is proving to be an effective method to control this dreaded disease. This is the first report from India on the generation of transgenic banana cultivar Rasthali expressing antiapoptotic Ced-9 gene for resistance to Fusarium wilt.
Collapse
Affiliation(s)
- C Sunisha
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089 India
- Department of Biotechnology and Biochemistry, Centre for Postgraduate Studies, Jain University, Bangalore, India
| | - H D Sowmya
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089 India
| | - T R Usharani
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089 India
| | - M Umesha
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089 India
| | - H R Gopalkrishna
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089 India
| | - S Sriram
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089 India
| |
Collapse
|
7
|
Qi W, Wang F, Ma L, Qi Z, Liu S, Chen C, Wu J, Wang P, Yang C, Wu Y, Sun W. Physiological and Biochemical Mechanisms and Cytology of Cold Tolerance in Brassica napus. FRONTIERS IN PLANT SCIENCE 2020; 11:1241. [PMID: 32903421 PMCID: PMC7434931 DOI: 10.3389/fpls.2020.01241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/28/2020] [Indexed: 05/18/2023]
Abstract
Cold damage has negatively impacted the yield, growth and quality of the edible cooking oil in Northern China and Brassica napus L.(rapeseed) planting areas decreased because of cold damage. In the present study we analyzed two Brassica napus cultivars of 16NTS309 (highly resistant to cold damage) and Tianyou2238 (cold sensitive) from Gansu Province, China using physiological, biochemical and cytological methods to investigate the plant's response to cold stress. The results showed that cold stress caused seedling dehydration, and the contents of malondialdehyde (MDA), relative electrolyte leakage and O2 - and H2O2 were increased in Tianyou2238 than 16NTS309 under cold stress at 4°C for 48 h, as well as the proline, soluble protein and soluble sugars markedly accumulated, and antioxidant enzymes of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) were higher in 16NTS309 compared with in Tianyou2238, which play key roles in prevention of cell damage. After exposure to cold stress, the accumulation of the blue formazan precipitate and reddish brown precipitate indicated that O2 - and H2O2, respectively, were produced in the root, stem, and leaf were higher than under non-cold conditions. Contents of O2 - and H2O2 in cultivar Tianyou2238 were higher than 16NTS309, this is consistent with the phenotypic result. To understand the specific distribution of O2 - in the sub-cellular, we found that in both cultivars O2 - signals were distributed mainly in cambium tissue, meristematic cells, mesophyll cytoplasm, and surrounding the cell walls of root, stem, leaves, and leaf vein by morphoanatomical analysis, but the quantities varied. Cold stress also triggered obvious ultrastructural alterations in leaf mesophyll of Tianyou2238 including the damage of membrane system, destruction of chloroplast and swelling of mitochondria. This study are useful to provide new insights about the physiological and biochemical mechanisms and cytology associated with the response of B. napus to cold stress for use in breeding cold-resistant varieties.
Collapse
Affiliation(s)
- Weiliang Qi
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Crop Genetics Improvement and Germplasm Enhancement of Gansu Province, Lanzhou, China
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, China
| | - Fei Wang
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, China
| | - Li Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Crop Genetics Improvement and Germplasm Enhancement of Gansu Province, Lanzhou, China
| | - Ze Qi
- College of Metallurgy, Northeastern University, Shenyang, China
| | - Songqing Liu
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, China
| | - Cun Chen
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, China
| | - Junyan Wu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Crop Genetics Improvement and Germplasm Enhancement of Gansu Province, Lanzhou, China
| | - Ping Wang
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, China
| | - Cairong Yang
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, China
| | - Yong Wu
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, China
| | - Wancang Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Crop Genetics Improvement and Germplasm Enhancement of Gansu Province, Lanzhou, China
- *Correspondence: Wancang Sun,
| |
Collapse
|
8
|
Tixeira R, Poon IKH. Disassembly of dying cells in diverse organisms. Cell Mol Life Sci 2019; 76:245-257. [PMID: 30317529 PMCID: PMC11105331 DOI: 10.1007/s00018-018-2932-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 01/09/2023]
Abstract
Programmed cell death (PCD) is a conserved phenomenon in multicellular organisms required to maintain homeostasis. Among the regulated cell death pathways, apoptosis is a well-described form of PCD in mammalian cells. One of the characteristic features of apoptosis is the change in cellular morphology, often leading to the fragmentation of the cell into smaller membrane-bound vesicles through a process called apoptotic cell disassembly. Interestingly, some of these morphological changes and cell disassembly are also noted in cells of other organisms including plants, fungi and protists while undergoing 'apoptosis-like PCD'. This review will describe morphologic features leading to apoptotic cell disassembly, as well as its regulation and function in mammalian cells. The occurrence of cell disassembly during cell death in other organisms namely zebrafish, fly and worm, as well as in other eukaryotic cells will also be discussed.
Collapse
Affiliation(s)
- Rochelle Tixeira
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
9
|
Pan D, Li QX, Lin Z, Chen Z, Tang W, Pan C, Tan H, Zeng D. Interactions between salicylic acid and antioxidant enzymes tilting the balance of H 2O 2 from photorespiration in non-target crops under halosulfuron-methyl stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:214-223. [PMID: 29183595 DOI: 10.1016/j.pestbp.2017.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/14/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Halosulfuron-methyl (HSM) is a safe, selective and effective sulfonylurea herbicide (SU) for the control of sedge and broadleaf weeds in sugarcane, corn, tomato, and other crops. The primary site of action is acetolactate synthase (ALS), a key enzyme of branched chain amino acids (BCAAs) synthesis. In addition to ALS inhibition, BCAAs deficiencies and oxidative damage may be involved in toxic effects of SUs. However, secondary targets of HSM relevant to plant physiological responses are unclear. In the present study, comparative growth inhibition and peroxidization injury between sensitive and tolerance crops were observed at biochemical and physiological levels suggesting involvement of H2O2, ethylene, salicylic acid (SA) in the oxidative stress responses to HSM. HSM caused accumulation of H2O2, stimulated photorespiration and consequent accumulation of SA that worsened the peroxidization injury to the sensitive C3 plant soybean (Glycine max). The growth inhibition at low concentrations of HSM could be lessened by supplementary BCAAs, reactive oxygen species scavengers or ethylene inducers, whereas the oxidation damage at high concentrations of HSM could not be reversed and ultimately lead to plant death. H2O2 at a low level stimulated the antioxidase system including glutathione S-transferase activities in the HSM-tolerant C4 maize (Zea mays), which contributes to HSM tolerance. H2O2 plays an important role on HSM stress responses in both HSM-sensitive and HSM-tolerant soybean and maize.
Collapse
Affiliation(s)
- Dongjin Pan
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, Guangxi 530005, China; Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Zhangxing Lin
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, Guangxi 530005, China
| | - Zhaojie Chen
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, Guangxi 530005, China
| | - Wenwei Tang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, Guangxi 530005, China
| | - Canping Pan
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Huihua Tan
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, Guangxi 530005, China.
| | - Dongqiang Zeng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, Guangxi 530005, China.
| |
Collapse
|
10
|
Dickman M, Williams B, Li Y, de Figueiredo P, Wolpert T. Reassessing apoptosis in plants. NATURE PLANTS 2017; 3:773-779. [PMID: 28947814 DOI: 10.1038/s41477-017-0020-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/22/2017] [Indexed: 05/19/2023]
Abstract
Cell death can be driven by a genetically programmed signalling pathway known as programmed cell death (PCD). In plants, PCD occurs during development as well as in response to environmental and biotic stimuli. Our understanding of PCD regulation in plants has advanced significantly over the past two decades; however, the molecular machinery responsible for driving the system remains elusive. Thus, whether conserved PCD regulatory mechanisms include plant apoptosis remains enigmatic. Animal apoptotic regulators, including Bcl-2 family members, have not been identified in plants but expression of such regulators can trigger or suppress plant PCD. Moreover, plants exhibit nearly all of the biochemical and morphological features of apoptosis. One difference between plant and animal PCD is the absence of phagocytosis in plants. Evidence is emerging that the vacuole may be key to removal of unwanted plant cells, and may carry out functions that are analogous to animal phagocytosis. Here, we provide context for the argument that apoptotic-like cell death occurs in plants.
Collapse
Affiliation(s)
- Martin Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas, 77843, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, 77843, USA.
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, 4001, QLD, Australia.
| | - Yurong Li
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas, 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, 77843, USA
| | - Paul de Figueiredo
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas, 77843, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Texas A&M University, Bryan, Texas, 77807, USA
| | - Thomas Wolpert
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, 97331, USA
| |
Collapse
|
11
|
Korani WA, Chu Y, Holbrook C, Clevenger J, Ozias-Akins P. Genotypic Regulation of Aflatoxin Accumulation but Not Aspergillus Fungal Growth upon Post-Harvest Infection of Peanut (Arachis hypogaea L.) Seeds. Toxins (Basel) 2017; 9:E218. [PMID: 28704974 PMCID: PMC5535165 DOI: 10.3390/toxins9070218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/07/2017] [Indexed: 11/18/2022] Open
Abstract
Aflatoxin contamination is a major economic and food safety concern for the peanut industry that largely could be mitigated by genetic resistance. To screen peanut for aflatoxin resistance, ten genotypes were infected with a green fluorescent protein (GFP)-expressing Aspergillus flavus strain. Percentages of fungal infected area and fungal GFP signal intensity were documented by visual ratings every 8 h for 72 h after inoculation. Significant genotypic differences in fungal growth rates were documented by repeated measures and area under the disease progress curve (AUDPC) analyses. SICIA (Seed Infection Coverage and Intensity Analyzer), an image processing software, was developed to digitize fungal GFP signals. Data from SICIA image analysis confirmed visual rating results validating its utility for quantifying fungal growth. Among the tested peanut genotypes, NC 3033 and GT-C20 supported the lowest and highest fungal growth on the surface of peanut seeds, respectively. Although differential fungal growth was observed on the surface of peanut seeds, total fungal growth in the seeds was not significantly different across genotypes based on a fluorometric GFP assay. Significant differences in aflatoxin B levels were detected across peanut genotypes. ICG 1471 had the lowest aflatoxin level whereas Florida-07 had the highest. Two-year aflatoxin tests under simulated late-season drought also showed that ICG 1471 had reduced aflatoxin production under pre-harvest field conditions. These results suggest that all peanut genotypes support A. flavus fungal growth yet differentially influence aflatoxin production.
Collapse
Affiliation(s)
- Walid Ahmed Korani
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA 31793, USA.
| | - Ye Chu
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA 31793, USA.
| | - Corley Holbrook
- The United States Department of Agriculture-Agricultural Research Service, Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA.
| | - Josh Clevenger
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA 31793, USA.
| | - Peggy Ozias-Akins
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA 31793, USA.
| |
Collapse
|
12
|
Kabbage M, Kessens R, Bartholomay LC, Williams B. The Life and Death of a Plant Cell. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:375-404. [PMID: 28125285 DOI: 10.1146/annurev-arplant-043015-111655] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Like all eukaryotic organisms, plants possess an innate program for controlled cellular demise termed programmed cell death (PCD). Despite the functional conservation of PCD across broad evolutionary distances, an understanding of the molecular machinery underpinning this fundamental program in plants remains largely elusive. As in mammalian PCD, the regulation of plant PCD is critical to development, homeostasis, and proper responses to stress. Evidence is emerging that autophagy is key to the regulation of PCD in plants and that it can dictate the outcomes of PCD execution under various scenarios. Here, we provide a broad and comparative overview of PCD processes in plants, with an emphasis on stress-induced PCD. We also discuss the implications of the paradox that is functional conservation of apoptotic hallmarks in plants in the absence of core mammalian apoptosis regulators, what that means, and whether an equivalent form of death occurs in plants.
Collapse
Affiliation(s)
- Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| | - Ryan Kessens
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland 4001, Australia;
| |
Collapse
|
13
|
Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis. Cell Death Differ 2016; 23:1493-501. [PMID: 27058316 PMCID: PMC5072426 DOI: 10.1038/cdd.2016.34] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 02/10/2016] [Accepted: 03/01/2016] [Indexed: 01/13/2023] Open
Abstract
Programmed cell death (PCD) is used by plants for development and survival to biotic and abiotic stresses. The role of caspases in PCD is well established in animal cells. Over the past 15 years, the importance of caspase-3-like enzymatic activity for plant PCD completion has been widely documented despite the absence of caspase orthologues. In particular, caspase-3 inhibitors blocked nearly all plant PCD tested. Here, we affinity-purified a plant caspase-3-like activity using a biotin-labelled caspase-3 inhibitor and identified Arabidopsis thaliana cathepsin B3 (AtCathB3) by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Consistent with this, recombinant AtCathB3 was found to have caspase-3-like activity and to be inhibited by caspase-3 inhibitors. AtCathepsin B triple-mutant lines showed reduced caspase-3-like enzymatic activity and reduced labelling with activity-based caspase-3 probes. Importantly, AtCathepsin B triple mutants showed a strong reduction in the PCD induced by ultraviolet (UV), oxidative stress (H2O2, methyl viologen) or endoplasmic reticulum stress. Our observations contribute to explain why caspase-3 inhibitors inhibit plant PCD and provide new tools to further plant PCD research. The fact that cathepsin B does regulate PCD in both animal and plant cells suggests that this protease may be part of an ancestral PCD pathway pre-existing the plant/animal divergence that needs further characterisation.
Collapse
|
14
|
Sinha RK, Pospíšil P, Maheshwari P, Eudes F. Bcl-2△21 and Ac-DEVD-CHO Inhibit Death of Wheat Microspores. FRONTIERS IN PLANT SCIENCE 2016; 7:1931. [PMID: 28082995 PMCID: PMC5184288 DOI: 10.3389/fpls.2016.01931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/05/2016] [Indexed: 05/06/2023]
Abstract
Microspore cell death and low green plant production efficiency are an integral obstacle in the development of doubled haploid production in wheat. The aim of the current study was to determine the effect of anti-apoptotic recombinant human B-cell lymphoma-2 (Bcl-2△21) and caspase-3-inhibitor (Ac-DEVD-CHO) in microspore cell death in bread wheat cultivars AC Fielder and AC Andrew. Induction medium containing Bcl-2△21 and Ac-DEVD-CHO yielded a significantly higher number of viable microspores, embryo-like structures and total green plants in wheat cultivars AC Fielder and AC Andrew. Total peroxidase activity was lower in Bcl-2△21 treated microspore cultures at 96 h of treatment compared to control and Ac-DEVD-CHO. Electron paramagnetic resonance study of total microspore protein showed a different scavenging activity for Bcl-2△21 and Ac-DEVD-CHO. Bcl-2△21 scavenged approximately 50% hydroxyl radical (HO•) formed, whereas Ac-DEVD-CHO scavenged approximately 20% of HO•. Conversely, reduced caspase-3-like activities were detected in the presence of Bcl-2△21 and Ac-DEVD-CHO, supporting the involvement of Bcl-2△21 and Ac-DEVD-CHO in increasing microspore viability by reducing oxidative stress and caspase-3-like activity. Our results indicate that Bcl-2△21 and Ac-DEVD-CHO protects cells from cell death following different pathways. Bcl-2△21 prevents cell damage by detoxifying HO• and suppressing caspase-3-like activity, while Ac-DEVD-CHO inhibits the cell death pathways by modulating caspase-like activity.
Collapse
Affiliation(s)
- Rakesh K. Sinha
- Cereal Biotechnology, Agriculture and Agri-Food Canada, LethbridgeAB, Canada
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
- *Correspondence: Rakesh K. Sinha,
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký UniversityOlomouc, Czechia
| | - Priti Maheshwari
- Cereal Biotechnology, Agriculture and Agri-Food Canada, LethbridgeAB, Canada
| | - François Eudes
- Cereal Biotechnology, Agriculture and Agri-Food Canada, LethbridgeAB, Canada
| |
Collapse
|
15
|
Van Aken O, Van Breusegem F. Licensed to Kill: Mitochondria, Chloroplasts, and Cell Death. TRENDS IN PLANT SCIENCE 2015; 20:754-766. [PMID: 26442680 DOI: 10.1016/j.tplants.2015.08.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/03/2015] [Accepted: 08/10/2015] [Indexed: 05/18/2023]
Abstract
Programmed cell death (PCD) is crucial in plant organogenesis and survival. In this review the involvement of mitochondria and chloroplasts in PCD execution is critically assessed. Recent findings support a central role for mitochondria in PCD, with newly identified components of the mitochondrial electron transport chain (mETC), FOF1 ATP synthase, cardiolipins, and ATPase AtOM66. While chloroplasts received less attention, their contribution to PCD is well supported, suggesting that they possibly contribute by producing reactive oxygen species (ROS) in the presence of light or even contribute through cytochrome f release. Finally we discuss two working models where mitochondria and chloroplasts could cooperatively execute PCD: mitochondria initiate the commitment steps and recruit chloroplasts for swift execution or, alternatively, mitochondria and chloroplasts could operate in parallel.
Collapse
Affiliation(s)
- Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Australia.
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, Ghent University, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|
16
|
Abstract
Excessive Ca(2+) entry during glutamate receptor overactivation ("excitotoxicity") induces acute or delayed neuronal death. We report here that deficiency in bax exerted broad neuroprotection against excitotoxic injury and oxygen/glucose deprivation in mouse neocortical neuron cultures and reduced infarct size, necrotic injury, and cerebral edema formation after middle cerebral artery occlusion in mice. Neuronal Ca(2+) and mitochondrial membrane potential (Δψm) analysis during excitotoxic injury revealed that bax-deficient neurons showed significantly reduced Ca(2+) transients during the NMDA excitation period and did not exhibit the deregulation of Δψm that was observed in their wild-type (WT) counterparts. Reintroduction of bax or a bax mutant incapable of proapoptotic oligomerization equally restored neuronal Ca(2+) dynamics during NMDA excitation, suggesting that Bax controlled Ca(2+) signaling independently of its role in apoptosis execution. Quantitative confocal imaging of intracellular ATP or mitochondrial Ca(2+) levels using FRET-based sensors indicated that the effects of bax deficiency on Ca(2+) handling were not due to enhanced cellular bioenergetics or increased Ca(2+) uptake into mitochondria. We also observed that mitochondria isolated from WT or bax-deficient cells similarly underwent Ca(2+)-induced permeability transition. However, when Ca(2+) uptake into the sarco/endoplasmic reticulum was blocked with the Ca(2+)-ATPase inhibitor thapsigargin, bax-deficient neurons showed strongly elevated cytosolic Ca(2+) levels during NMDA excitation, suggesting that the ability of Bax to support dynamic ER Ca(2+) handling is critical for cell death signaling during periods of neuronal overexcitation.
Collapse
|
17
|
Krishna G, Singh BK, Kim EK, Morya VK, Ramteke PW. Progress in genetic engineering of peanut (Arachis hypogaea L.)--a review. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:147-62. [PMID: 25626474 DOI: 10.1111/pbi.12339] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/27/2014] [Accepted: 12/17/2014] [Indexed: 05/20/2023]
Abstract
Peanut (Arachis hypogaea L.) is a major species of the family, Leguminosae, and economically important not only for vegetable oil but as a source of proteins, minerals and vitamins. It is widely grown in the semi-arid tropics and plays a role in the world agricultural economy. Peanut production and productivity is constrained by several biotic (insect pests and diseases) and abiotic (drought, salinity, water logging and temperature aberrations) stresses, as a result of which crop experiences serious economic losses. Genetic engineering techniques such as Agrobacterium tumefaciens and DNA-bombardment-mediated transformation are used as powerful tools to complement conventional breeding and expedite peanut improvement by the introduction of agronomically useful traits in high-yield background. Resistance to several fungal, virus and insect pest have been achieved through variety of approaches ranging from gene coding for cell wall component, pathogenesis-related proteins, oxalate oxidase, bacterial chloroperoxidase, coat proteins, RNA interference, crystal proteins etc. To develop transgenic plants withstanding major abiotic stresses, genes coding transcription factors for drought and salinity, cytokinin biosynthesis, nucleic acid processing, ion antiporter and human antiapoptotic have been used. Moreover, peanut has also been used in vaccine production for the control of several animal diseases. In addition to above, this study also presents a comprehensive account on the influence of some important factors on peanut genetic engineering. Future research thrusts not only suggest the use of different approaches for higher expression of transgene(s) but also provide a way forward for the improvement of crops.
Collapse
Affiliation(s)
- Gaurav Krishna
- Jacob School of Biotechnology & Bioengineering, Sam Higginbottom Institute of Agriculture, Technology & Sciences (Formerly Allahabad Agricultural Institute), Deemed University, Allahabad, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
18
|
Ambastha V, Tripathy BC, Tiwari BS. Programmed cell death in plants: A chloroplastic connection. PLANT SIGNALING & BEHAVIOR 2015; 10:e989752. [PMID: 25760871 PMCID: PMC4622501 DOI: 10.4161/15592324.2014.989752] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 05/18/2023]
Abstract
Programmed cell death (PCD) is an integral cellular program by which targeted cells culminate to demise under certain developmental and pathological conditions. It is essential for controlling cell number, removing unwanted diseased or damaged cells and maintaining the cellular homeostasis. The details of PCD process has been very well elucidated and characterized in animals but similar understanding of the process in plants has not been achieved rather the field is still in its infancy that sees some sporadic reports every now and then. The plants have 2 energy generating sub-cellular organelles- mitochondria and chloroplasts unlike animals that just have mitochondria. The presence of chloroplast as an additional energy transducing and ROS generating compartment in a plant cell inclines to advocate the involvement of chloroplasts in PCD execution process. As chloroplasts are supposed to be progenies of unicellular photosynthetic organisms that evolved as a result of endosymbiosis, the possibility of retaining some of the components involved in bacterial PCD by chloroplasts cannot be ruled out. Despite several excellent reviews on PCD in plants, there is a void on an update of information at a place on the regulation of PCD by chloroplast. This review has been written to provide an update on the information supporting the involvement of chloroplast in PCD process and the possible future course of the field.
Collapse
Affiliation(s)
- Vivek Ambastha
- School of Life Sciences; Jawaharlal Nehru University; New Delhi, India
| | | | | |
Collapse
|
19
|
Robert G, Muñoz N, Melchiorre M, Sánchez F, Lascano R. Expression of animal anti-apoptotic gene Ced-9 enhances tolerance during Glycine max L.-Bradyrhizobium japonicum interaction under saline stress but reduces nodule formation. PLoS One 2014; 9:e101747. [PMID: 25050789 PMCID: PMC4106779 DOI: 10.1371/journal.pone.0101747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/10/2014] [Indexed: 12/30/2022] Open
Abstract
The mechanisms by which the expression of animal cell death suppressors in economically important plants conferred enhanced stress tolerance are not fully understood. In the present work, the effect of expression of animal antiapoptotic gene Ced-9 in soybean hairy roots was evaluated under root hairs and hairy roots death-inducing stress conditions given by i) Bradyrhizobium japonicum inoculation in presence of 50 mM NaCl, and ii) severe salt stress (150 mM NaCl), for 30 min and 3 h, respectively. We have determined that root hairs death induced by inoculation in presence of 50 mM NaCl showed characteristics of ordered process, with increased ROS generation, MDA and ATP levels, whereas the cell death induced by 150 mM NaCl treatment showed non-ordered or necrotic-like characteristics. The expression of Ced-9 inhibited or at least delayed root hairs death under these treatments. Hairy roots expressing Ced-9 had better homeostasis maintenance, preventing potassium release; increasing the ATP levels and controlling the oxidative damage avoiding the increase of reactive oxygen species production. Even when our results demonstrate a positive effect of animal cell death suppressors in plant cell ionic and redox homeostasis under cell death-inducing conditions, its expression, contrary to expectations, drastically inhibited nodule formation even under control conditions.
Collapse
Affiliation(s)
- Germán Robert
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nacira Muñoz
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Melchiorre
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, Córdoba, Argentina
| | - Federico Sánchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ramiro Lascano
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
20
|
Kim Y, Wang M, Bai Y, Zeng Z, Guo F, Han N, Bian H, Wang J, Pan J, Zhu M. Bcl-2 suppresses activation of VPEs by inhibiting cytosolic Ca²⁺ level with elevated K⁺ efflux in NaCl-induced PCD in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 80:168-75. [PMID: 24787501 DOI: 10.1016/j.plaphy.2014.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/05/2014] [Indexed: 05/21/2023]
Abstract
Bcl-2 is one of the most important antiapoptotic members in mammals and prevents many forms of apoptosis in a variety of cell types. Our previous study revealed that overexpression of Bcl-2 significantly suppressed H2O2/NaCl-induced programmed cell death via inhibiting the transcriptional activation of OsVPE2 and OsVPE3 in transgenic rice. However, Ca(2+) and K(+) homeostasis of this process remains largely unknown. In the present study, we investigate whether nonselective cation channels (NSCC) blockers affect Bcl-2 function in rice under salt stress and how Bcl-2 affects ion homeostasis in salt stress-induced PCD. The results showed that overexpression of Bcl-2 significantly decreased transient elevations in the cytosolic Ca(2+) levels, inhibited NaCl-induced K(+) efflux but not H(+) efflux across the plasma membrane, and further suppressed the expression levels of OsVPE2 and OsVPE3, leading to the inhibition of salt-induced PCD and increase of tolerance to salt stress in transgenic rice. During the NaCl-induced PCD, the effects of a NSCC blocker La(3+) on ion homeostasis and VPEs expression in wild-type were similar to the effects of Bcl-2 overexpression in transgenic line. However, a synergistic effect of Bcl-2 and La(3+) was not obviously detectable. Our results suggested that Bcl-2 played an important role in suppression of NaCl-induced PCD by disruption of ion homeostasis, providing an insight into the mechanistic study of plant VPEs, cytosolic Ca(2+) level and K(+) efflux.
Collapse
Affiliation(s)
- Yongho Kim
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingqiang Wang
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Bai
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhanghui Zeng
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fu Guo
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ning Han
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongwu Bian
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Junhui Wang
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Muyuan Zhu
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Abstract
SIGNIFICANCE Postharvest pathogens can start its attack process immediately after spores land on wounded tissue, whereas other pathogens can forcibly breach the unripe fruit cuticle and then remain quiescent for months until fruit ripens and then cause major losses. RECENT ADVANCES Postharvest fungal pathogens activate their development by secreting organic acids or ammonia that acidify or alkalinize the host ambient surroundings. CRITICAL ISSUES These fungal pH modulations of host environment regulate an arsenal of enzymes to increase fungal pathogenicity. This arsenal includes genes and processes that compromise host defenses, contribute to intracellular signaling, produce cell wall-degrading enzymes, regulate specific transporters, induce redox protectant systems, and generate factors needed by the pathogen to effectively cope with the hostile environment found within the host. Further, evidence is accumulating that the secreted molecules (organic acids and ammonia) are multifunctional and together with effect of the ambient pH, they activate virulence factors and simultaneously hijack the plant defense response and induce program cell death to further enhance their necrotrophic attack. FUTURE DIRECTIONS Global studies of the effect of secreted molecules on fruit pathogen interaction, will determine the importance of these molecules on quiescence release and the initiation of fungal colonization leading to fruit and vegetable losses.
Collapse
Affiliation(s)
- Noam Alkan
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
22
|
Wang J, Bayles KW. Programmed cell death in plants: lessons from bacteria? TRENDS IN PLANT SCIENCE 2013; 18:133-139. [PMID: 23083702 PMCID: PMC3556228 DOI: 10.1016/j.tplants.2012.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/10/2012] [Accepted: 09/13/2012] [Indexed: 05/29/2023]
Abstract
Programmed cell death (PCD) has well-established roles in the development and physiology of animals, plants, and fungi. Although aspects of PCD control appear evolutionarily conserved between these organisms, the extent of conservation remains controversial. Recently, a putative bacterial PCD protein homolog in plants was found to play a significant role in cell death control, indicating a conservation of function between these highly divergent organisms. Interestingly, these bacterial proteins are thought to be evolutionarily linked to the Bcl-2 family of proteins. In this opinion article, we propose a new unifying model to describe the relationship between bacterial and plant PCD systems and propose that the underlying control of PCD is conserved across at least three Kingdoms of life.
Collapse
Affiliation(s)
- Junhui Wang
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | | |
Collapse
|
23
|
Sarwat M, Naqvi AR, Ahmad P, Ashraf M, Akram NA. Phytohormones and microRNAs as sensors and regulators of leaf senescence: assigning macro roles to small molecules. Biotechnol Adv 2013; 31:1153-71. [PMID: 23453916 DOI: 10.1016/j.biotechadv.2013.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 01/26/2013] [Accepted: 02/02/2013] [Indexed: 10/27/2022]
Abstract
Ageing or senescence is an intricate and highly synchronized developmental phase in the life of plant parts including leaf. Senescence not only means death of a plant part, but during this process, different macromolecules undergo degradation and the resulting components are transported to other parts of the plant. During the period from when a leaf is young and green to the stage when it senesces, a multitude of factors such as hormones, environmental factors and senescence associated genes (SAGs) are involved. Plant hormones including salicylic acid, abscisic acid, jasmonic acid and ethylene advance leaf senescence, whereas others like cytokinins, gibberellins, and auxins delay this process. The environmental factors which generally affect plant development and growth, can hasten senescence, the examples being nutrient dearth, water stress, pathogen attack, radiations, high temperature and light intensity, waterlogging, and air, water or soil contamination. Other important influences include carbohydrate accumulation and high carbon/nitrogen level. To date, although several genes involved in this complex process have been identified, still not much information exists in the literature on the signalling mechanism of leaf senescence. Now, the Arabidopsis mutants have paved our way and opened new vistas to elucidate the signalling mechanism of leaf senescence for which various mutants are being utilized. Recent studies demonstrating the role of microRNAs in leaf senescence have reinforced our knowledge of this intricate process. This review provides a comprehensive and critical analysis of the information gained particularly on the roles of several plant growth regulators and microRNAs in regulation of leaf senescence.
Collapse
Affiliation(s)
- Maryam Sarwat
- Pharmaceutical Biotechnology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh (AUUP), NOIDA, India.
| | | | | | | | | |
Collapse
|
24
|
Nawkar GM, Maibam P, Park JH, Sahi VP, Lee SY, Kang CH. UV-Induced cell death in plants. Int J Mol Sci 2013; 14:1608-28. [PMID: 23344059 PMCID: PMC3565337 DOI: 10.3390/ijms14011608] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/05/2012] [Accepted: 01/04/2013] [Indexed: 12/01/2022] Open
Abstract
Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).
Collapse
Affiliation(s)
| | | | - Jung Hoon Park
- Division of Applied Life Sciences (BK21 program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; E-Mails: (G.M.N.); (P.M.); (J.H.P.); (V.P.S.)
| | - Vaidurya Pratap Sahi
- Division of Applied Life Sciences (BK21 program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; E-Mails: (G.M.N.); (P.M.); (J.H.P.); (V.P.S.)
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21 program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; E-Mails: (G.M.N.); (P.M.); (J.H.P.); (V.P.S.)
| | - Chang Ho Kang
- Division of Applied Life Sciences (BK21 program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; E-Mails: (G.M.N.); (P.M.); (J.H.P.); (V.P.S.)
| |
Collapse
|
25
|
Dickman MB, Fluhr R. Centrality of host cell death in plant-microbe interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:543-70. [PMID: 23915134 DOI: 10.1146/annurev-phyto-081211-173027] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Programmed cell death (PCD) is essential for proper growth, development, and cellular homeostasis in all eukaryotes. The regulation of PCD is of central importance in plant-microbe interactions; notably, PCD and features associated with PCD are observed in many host resistance responses. Conversely, pathogen induction of inappropriate cell death in the host results in a susceptible phenotype and disease. Thus, the party in control of PCD has a distinct advantage in these battles. PCD processes appear to be of ancient origin, as indicated by the fact that many features of cell death strategy are conserved between animals and plants; however, some of the details of death execution differ. Mammalian core PCD genes, such as caspases, are not present in plant genomes. Similarly, pro- and antiapoptotic mammalian regulatory elements are absent in plants, but, remarkably, when expressed in plants, successfully impact plant PCD. Thus, subtle structural similarities independent of sequence homology appear to sustain operational equivalence. The vacuole is emerging as a key organelle in the modulation of plant PCD. Under different signals for cell death, the vacuole either fuses with the plasmalemma membrane or disintegrates. Moreover, the vacuole appears to play a key role in autophagy; evidence suggests a prosurvival function for autophagy, but other studies propose a prodeath phenotype. Here, we describe and discuss what we know and what we do not know about various PCD pathways and how the host integrates signals to activate salicylic acid and reactive oxygen pathways that orchestrate cell death. We suggest that it is not cell death as such but rather the processes leading to cell death that contribute to the outcome of a given plant-pathogen interaction.
Collapse
Affiliation(s)
- Martin B Dickman
- Institute for Plant Genomics and Biotechnology, Center for Cell Death and Differentiation, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA.
| | | |
Collapse
|
26
|
Lord CEN, Gunawardena AHLAN. Programmed cell death in C. elegans, mammals and plants. Eur J Cell Biol 2012; 91:603-13. [PMID: 22512890 DOI: 10.1016/j.ejcb.2012.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 02/08/2023] Open
Abstract
Programmed cell death (PCD) is the regulated removal of cells within an organism and plays a fundamental role in growth and development in nearly all eukaryotes. In animals, the model organism Caenorhabditis elegans (C. elegans) has aided in elucidating many of the pathways involved in the cell death process. Various analogous PCD processes can also be found within mammalian PCD systems, including vertebrate limb development. Plants and animals also appear to share hallmarks of PCD, both on the cellular and molecular level. Cellular events visualized during plant PCD resemble those seen in animals including: nuclear condensation, DNA fragmentation, cytoplasmic condensation, and plasma membrane shrinkage. Recently the molecular mechanisms involved in plant PCD have begun to be elucidated. Although few regulatory proteins have been identified as conserved across all eukaryotes, molecular features such as the participation of caspase-like proteases, Bcl-2-like family members and mitochondrial proteins appear to be conserved between plant and animal systems. Transgenic expression of mammalian and C. elegans pro- and anti-apoptotic genes in plants has been observed to dramatically influence the regulatory pathways of plant PCD. Although these genes often show little to no sequence similarity they can frequently act as functional substitutes for one another, thus suggesting that action may be more important than sequence resemblance. Here we present a summary of these findings, focusing on the similarities, between mammals, C. elegans, and plants. An emphasis will be placed on the mitochondria and its role in the cell death pathway within each organism. Through the comparison of these systems on both a cellular and molecular level we can begin to better understand PCD in plant systems, and perhaps shed light on the pathways, which are controlling the process. This manuscript adds to the field of PCD in plant systems by profiling apoptotic factors, to scale on a protein level, and also by filling in gaps detailing plant apoptotic factors not yet amalgamated within the literature.
Collapse
Affiliation(s)
- Christina E N Lord
- Dalhousie University, Department of Biology, 1355 Oxford Street Halifax, Nova Scotia, B3H 4R2 Canada.
| | | |
Collapse
|
27
|
Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmium-induced cell death in Arabidopsis thaliana. Biol Cell 2012; 101:629-43. [DOI: 10.1042/bc20090015] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Paul JY, Becker DK, Dickman MB, Harding RM, Khanna HK, Dale JL. Apoptosis-related genes confer resistance to Fusarium wilt in transgenic 'Lady Finger' bananas. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:1141-1148. [PMID: 21819535 DOI: 10.1111/j.1467-7652.2011.00639.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most devastating diseases of banana (Musa spp.). Apart from resistant cultivars, there are no effective control measures for the disease. We investigated whether the transgenic expression of apoptosis-inhibition-related genes in banana could be used to confer disease resistance. Embryogenic cell suspensions of the banana cultivar, 'Lady Finger', were stably transformed with animal genes that negatively regulate apoptosis, namely Bcl-xL, Ced-9 and Bcl-2 3' UTR, and independently transformed plant lines were regenerated for testing. Following a 12-week exposure to Foc race 1 in small-plant glasshouse bioassays, seven transgenic lines (2 × Bcl-xL, 3 × Ced-9 and 2 × Bcl-2 3' UTR) showed significantly less internal and external disease symptoms than the wild-type susceptible 'Lady Finger' banana plants used as positive controls. Of these, one Bcl-2 3' UTR line showed resistance that was equivalent to that of wild-type Cavendish bananas that were included as resistant negative controls. Further, the resistance of this line continued for 23-week postinoculation at which time the experiment was terminated. Using TUNEL assays, Foc race 1 was shown to induce apoptosis-like features in the roots of wild-type 'Lady Finger' plants consistent with a necrotrophic phase in the life cycle of this pathogen. This was further supported by the observed reduction in these effects in the roots of the resistant Bcl-2 3' UTR-transgenic line. This is the first report on the generation of transgenic banana plants with resistance to Fusarium wilt.
Collapse
Affiliation(s)
- Jean-Yves Paul
- Centre for Tropical Crops and Biocommodities, Faculty of Science and Technology, Queensland University of Technology, Brisbane, Qld, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Deng M, Bian H, Xie Y, Kim Y, Wang W, Lin E, Zeng Z, Guo F, Pan J, Han N, Wang J, Qian Q, Zhu M. Bcl-2 suppresses hydrogen peroxide-induced programmed cell death via OsVPE2 and OsVPE3, but not via OsVPE1 and OsVPE4, in rice. FEBS J 2011; 278:4797-810. [DOI: 10.1111/j.1742-4658.2011.08380.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Brar HK, Swaminathan S, Bhattacharyya MK. The Fusarium virguliforme toxin FvTox1 causes foliar sudden death syndrome-like symptoms in soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1179-88. [PMID: 21635141 DOI: 10.1094/mpmi-12-10-0285] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fusarium virguliforme causes sudden death syndrome (SDS) in soybean. The pathogen has never been isolated from diseased foliar tissues; therefore, one or more toxins have been considered to cause foliar SDS development. Cell-free F. virguliforme culture filtrates containing a toxin causes foliar SDS in soybean. A low-molecular-weight protein of approximately 13.5 kDa (FvTox1), purified from F. virguliforme culture filtrates, produces foliar SDS-like symptoms in cut soybean seedlings. Anti-FvTox1 monoclonal antibodies raised against the purified FvTox1 were used in isolating the FvTox1 gene. In the presence of light, recombinant FvTox1 protein expressed in an insect cell line resulted in chlorosis and necrosis in soybean leaf disks that are typical foliar SDS symptoms. SDS-susceptible but not the SDS-resistant soybean lines were sensitive to the baculovirus-expressed toxin. The requirement of light for foliar SDS-like symptom development indicates that FvTox1 induces foliar SDS in soybean, most likely through production of free radicals by interrupting photosynthesis.
Collapse
Affiliation(s)
- Hargeet K Brar
- Department of Agronomy, Iowa State University, Ames, Iowa 50011-1010, USA
| | | | | |
Collapse
|
31
|
Zubo YO, Yamburenko MV, Kusnetsov VV, Börner T. Methyl jasmonate, gibberellic acid, and auxin affect transcription and transcript accumulation of chloroplast genes in barley. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1335-44. [PMID: 21316794 DOI: 10.1016/j.jplph.2011.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/14/2011] [Accepted: 01/17/2011] [Indexed: 05/21/2023]
Abstract
Phytohormones control growth and development of plants. Their effects on the expression of nuclear genes are well investigated. Although they influence plastid-related processes, it is largely unknown whether phytohormones exert their control also by regulating the expression of plastid/chloroplast genes. We have therefore studied the effects of methyl jasmonate (MeJA), gibberellic acid (GA(3)), an auxin (indole-3-acetic acid, IAA), a brassinosteroid (24-epibrassinolide, BR) and a cytokinin (6-benzyladenine) on transcription (run-on assays) and transcript levels (RNA blot hybridization) of chloroplast genes after incubation of detached barley leaves in hormone solutions. BR was the only hormone without significant influence on chloroplast transcription. It showed, however, a weak reducing effect on transcript accumulation. MeJA, IAA and GA(3) repressed both transcription and transcript accumulation, while BA counteracted the effects of the other hormones. Effects of phytohormones on transcription differed in several cases from their influence on transcript levels suggesting that hormones may act via separate signaling pathways on transcription and transcript accumulation in chloroplasts. We observed striking differences in the response of chloroplast gene expression on phytohormones between the lower (young cells) and the upper segments (oldest cells) of barley leaves. Quantity and quality of the hormone effects on chloroplast gene expression seem to depend therefore on the age and/or developmental stage of the cells. As the individual chloroplast genes responded in different ways on phytohormone treatment, gene- and transcript-specific factors should be involved. Our data suggest that phytohormones adjust gene expression in the nucleo-cytoplasmic compartment and in plastids/chloroplasts in response to internal and external cues.
Collapse
Affiliation(s)
- Yan O Zubo
- Institute of Biology-Genetics, Humboldt University, Chausseestrasse 117, Berlin, Germany
| | | | | | | |
Collapse
|
32
|
Watanabe N, Lam E. Arabidopsis metacaspase 2d is a positive mediator of cell death induced during biotic and abiotic stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:969-82. [PMID: 21395887 DOI: 10.1111/j.1365-313x.2011.04554.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cysteine proteases such as caspases play important roles in programmed cell death (PCD) of metazoans. Plant metacaspases (MCPs), a family of cysteine proteases structurally related to caspases, have been hypothesized to be ancestors of metazoan caspases, despite their different substrate specificity. Arabidopsis thaliana contains six type II MCP genes (AtMCP2a-f). Whether and how these individual members are involved in controlling PCD in plants remains largely unknown. Here we investigated the function and regulation of AtMCP2d, the predominant and constitutively expressed member of type II MCPs, in stress-inducible PCD. Two AtMCP2d mutants (mcp2d-1 and mcp2d-3) exhibited reduced sensitivity to PCD-inducing mycotoxin fumonisin B1 as well as oxidative stress inducers, whereas AtMCP2d over-expressors were more sensitive to these agents, and exhibited accelerated cell-death progression. We found that AtMCP2d exclusively localizes to the cytosol, and its accumulation and self-processing patterns were age-dependent in leaves. Importantly, active proteolytic processing of AtMCP2d proteins dependent on its catalytic activity was observed in mature leaves during mycotoxin-induced cell death. We also found that mcp2d-1 leaves exhibited reduced cell death in response to Pseudomonas syringae carrying avirulent gene avrRpt2, and that self-processing of AtMCP2d was also detected in wild-type leaves in response to this pathogen. Furthermore, increases in processed AtMCP2d proteins were found to correlate with conditional cell-death induction in two lesion-mimic mutants (cpr22 and ssi4) that exhibit spontaneous cell-death phenotypes. Taken together, our data strongly suggest that AtMCP2d plays a positive regulatory role in biotic and abiotic stress-induced PCD.
Collapse
Affiliation(s)
- Naohide Watanabe
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8550, USA
| | | |
Collapse
|
33
|
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:909-30. [PMID: 20870416 DOI: 10.1016/j.plaphy.2010.08.016] [Citation(s) in RCA: 4467] [Impact Index Per Article: 319.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 08/11/2010] [Accepted: 08/28/2010] [Indexed: 05/18/2023]
Abstract
Various abiotic stresses lead to the overproduction of reactive oxygen species (ROS) in plants which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA which ultimately results in oxidative stress. The ROS comprises both free radical (O(2)(-), superoxide radicals; OH, hydroxyl radical; HO(2), perhydroxy radical and RO, alkoxy radicals) and non-radical (molecular) forms (H(2)O(2), hydrogen peroxide and (1)O(2), singlet oxygen). In chloroplasts, photosystem I and II (PSI and PSII) are the major sites for the production of (1)O(2) and O(2)(-). In mitochondria, complex I, ubiquinone and complex III of electron transport chain (ETC) are the major sites for the generation of O(2)(-). The antioxidant defense machinery protects plants against oxidative stress damages. Plants possess very efficient enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaicol peroxidase, GOPX and glutathione-S- transferase, GST) and non-enzymatic (ascorbic acid, ASH; glutathione, GSH; phenolic compounds, alkaloids, non-protein amino acids and α-tocopherols) antioxidant defense systems which work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS. ROS also influence the expression of a number of genes and therefore control the many processes like growth, cell cycle, programmed cell death (PCD), abiotic stress responses, pathogen defense, systemic signaling and development. In this review, we describe the biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery.
Collapse
Affiliation(s)
- Sarvajeet Singh Gill
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | |
Collapse
|
34
|
Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W. Sugar signalling and antioxidant network connections in plant cells. FEBS J 2010; 277:2022-37. [PMID: 20412056 DOI: 10.1111/j.1742-4658.2010.07633.x] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sugars play important roles as both nutrients and regulatory molecules throughout plant life. Sugar metabolism and signalling function in an intricate network with numerous hormones and reactive oxygen species (ROS) production, signalling and scavenging systems. Although hexokinase is well known to fulfil a crucial role in glucose sensing processes, a scenario is emerging in which the catalytic activity of mitochondria-associated hexokinase regulates glucose-6-phosphate and ROS levels, stimulating antioxidant defence mechanisms and the synthesis of phenolic compounds. As a new concept, it can be hypothesized that the synergistic interaction of sugars (or sugar-like compounds) and phenolic compounds forms part of an integrated redox system, quenching ROS and contributing to stress tolerance, especially in tissues or organelles with high soluble sugar concentrations.
Collapse
|
35
|
Darehshouri A, Lütz-Meindl U. H2O2 localization in the green alga Micrasterias after salt and osmotic stress by TEM-coupled electron energy loss spectroscopy. PROTOPLASMA 2010; 239:49-56. [PMID: 19902325 PMCID: PMC2826641 DOI: 10.1007/s00709-009-0081-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 10/19/2009] [Indexed: 05/24/2023]
Abstract
Reactive oxygen species (ROS), including hydrogen peroxide (H(2)O(2)), are constantly generated as by-products of normal metabolic cellular pathways and can be overproduced in response to stress. In this study, we investigated ROS production and localization of H(2)O(2) after salt (200 mM KCl) and osmotic (iso-osmotic sorbitol concentration) stress in the unicellular green alga Micrasterias. By means of the dye H(2)DCFDA and confocal laser scanning microscopy, most ROS production could be detected in KCl-treated cells when compared to sorbitol-exposed cells and controls. For ultrastructural detection of H(2)O(2), CeCl(3), which reacts with H(2)O(2) and produces cerium perhydroxide deposits, has been used. Cerium was identified by transmission electron microscopy (TEM)-coupled electron energy loss spectroscopy (EELS) in organelles of KCl- and sorbitol-treated cells and in controls. Statistical measurements of the presence of the cerium M(4,5) edge were performed in mitochondria, chloroplasts, cell walls, and cytoplasmic sites of five individual cells after each treatment. The most pronounced increase in H(2)O(2) production was found in chloroplasts of KCl- and sorbitol-treated cells. This shows that the chloroplast reveals the strongest response in H(2)O(2) production after stress induction in Micrasterias. Significant elevation of H(2)O(2) production also occurred in mitochondria and cytoplasm, whereas H(2)O(2) levels remained unchanged or even slightly decreased in cell walls of treated cells. Additionally, TEM micrographs and EELS analyses provided indirect evidence for an increased H(2)O(2) production at the plasma membrane of KCl-treated cells, indicating an involvement of the plasma membrane NADPH oxidase in H(2)O(2) generation.
Collapse
Affiliation(s)
- Anza Darehshouri
- Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
- Present Address: Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| | - Ursula Lütz-Meindl
- Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| |
Collapse
|
36
|
Doyle SM, Diamond M, McCabe PF. Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures. JOURNAL OF EXPERIMENTAL BOTANY 2009; 61:473-82. [PMID: 19933317 PMCID: PMC2803215 DOI: 10.1093/jxb/erp320] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/22/2009] [Accepted: 10/12/2009] [Indexed: 05/20/2023]
Abstract
Chloroplasts produce reactive oxygen species (ROS) during cellular stress. ROS are known to act as regulators of programmed cell death (PCD) in plant and animal cells, so it is possible that chloroplasts have a role in regulating PCD in green tissue. Arabidopsis thaliana cell suspension cultures are model systems in which to test this, as here it is shown that their cells contain well-developed, functional chloroplasts when grown in the light, but not when grown in the dark. Heat treatment at 55 degrees C induced apoptotic-like (AL)-PCD in the cultures, but light-grown cultures responded with significantly less AL-PCD than dark-grown cultures. Chloroplast-free light-grown cultures were established using norflurazon, spectinomycin, and lincomycin and these cultures responded to heat treatment with increased AL-PCD, demonstrating that chloroplasts affect AL-PCD induction in light-grown cultures. Antioxidant treatment of light-grown cultures also resulted in increased AL-PCD induction, suggesting that chloroplast-produced ROS may be involved in AL-PCD regulation. Cycloheximide treatment of light-grown cultures prolonged cell viability and attenuated AL-PCD induction; however, this effect was less pronounced in dark-grown cultures, and did not occur in antioxidant-treated light-grown cultures. This suggests that a complex interplay between light, chloroplasts, ROS, and nuclear protein synthesis occurs during plant AL-PCD. The results of this study highlight the importance of taking into account the time-point at which cells are observed and whether the cells are light-grown and chloroplast-containing or not, for any study on plant AL-PCD, as it appears that chloroplasts can play a significant role in AL-PCD regulation.
Collapse
Affiliation(s)
- Siamsa M Doyle
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | | | | |
Collapse
|
37
|
Zuppini A, Gerotto C, Moscatiello R, Bergantino E, Baldan B. Chlorella saccharophila cytochrome f and its involvement in the heat shock response. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:4189-200. [PMID: 19773387 PMCID: PMC2755035 DOI: 10.1093/jxb/erp264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/15/2009] [Accepted: 07/30/2009] [Indexed: 05/08/2023]
Abstract
Cytochrome f is an essential component of the major redox complex of the thylakoid membrane. Cloning and characterization are presented here of a novel partial cDNA (ChspetA) encoding cytochrome f in the psychrophile unicellular green alga Chlorella saccharophila and its involvement in the heat shock (HS) response pathway has been analysed. Semi-quantitative reverse transcriptase PCR analysis showed that ChspetA expression is up-regulated in heat-shocked cells and the protein profile of cytochrome f highlighted a release of cytochrome f into the cytosol depending on the time lapse from the HS. Evans Blue assay, analysis of chromatin condensation, and chloroplast alterations showed the induction of cell death in cell suspensions treated with cytosolic extracts from heat-shocked cells. This study identifies cytochrome f in C. saccharophila that seems to be involved in the HS-induced programmed cell death process. The data suggest that cytochrome f fulfils its role through a modulation of its transcription and translation levels, together with its intracellular localization. This work focuses on a possible role of cytochrome f into the programmed cell death-like process in a unicellular chlorophyte and suggests the existence of chloroplast-mediated programmed cell death machinery in an organism belonging to one of the primary lineages of photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Anna Zuppini
- Dipartimento di Biologia, Università di Padova, via U. Bassi 58/B, 35131 Padova, Italy.
| | | | | | | | | |
Collapse
|
38
|
Validation of gel-free, label-free quantitative proteomics approaches: Applications for seed allergen profiling. J Proteomics 2009; 72:555-66. [DOI: 10.1016/j.jprot.2008.11.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/24/2008] [Accepted: 11/07/2008] [Indexed: 01/07/2023]
|
39
|
Wang Z, Song J, Zhang Y, Yang B, Chen S. Expression of baculovirus anti-apoptotic p35 gene in tobacco enhances tolerance to abiotic stress. Biotechnol Lett 2009; 31:585-9. [PMID: 19030783 DOI: 10.1007/s10529-008-9879-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 11/03/2008] [Accepted: 11/10/2008] [Indexed: 01/16/2023]
Abstract
Expression of baculovirus anti-apoptotic p35 gene in plants on biotic stress responses has been well studied but its function on abiotic stress has not been documented. In the present study, the p35 gene from Autographa californica multiple nucleopolyhedrovirus (AcMNPV) was expressed in tobacco. A detached leaf assay was used to test tolerance of p35 transgenic plants to various abiotic stress responses. Expression of p35 gene in tobacco gave tolerance to treatment with methanol and H2O2 and also delayed leaf senescence under starvation in the dark. Germination of T(0) seeds on NaCl-containing medium also demonstrated to increase salt tolerance.
Collapse
Affiliation(s)
- Zhihua Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, The Chinese Academy of Sciences, Xiaohongshan #44, Wuhan 430071, Hubei Province, China
| | | | | | | | | |
Collapse
|
40
|
Valtaud C, Foyer CH, Fleurat-Lessard P, Bourbouloux A. Systemic effects on leaf glutathione metabolism and defence protein expression caused by esca infection in grapevines. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:260-279. [PMID: 32688645 DOI: 10.1071/fp08293] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 01/12/2009] [Indexed: 05/26/2023]
Abstract
Esca is a devastating disease of Vitis vinifera L., caused by fungal pathogen(s) inhabiting the wood. The pathogens induce symptoms in the foliage, which are associated with structural and biochemical changes in leaves. The present study was undertaken to examine the effects of the disease on leaf glutathione metabolism in field-grown plants. The glutathione pool decreased and defence proteins such as PR-proteins and chitinases were expressed in the leaves before the appearance of visible symptoms in esca-infected canes. Glutathione depletion was increased as the disease developed in the leaves. The ratio of glutathione disulfide (GSSG) to the total glutathione pool was slightly decreased in leaves without visible symptoms, but it was significantly increased as the disease progressed. The abundance of γ-glutamylcysteine synthetase (γ-ECS) transcripts and of γ-ECS protein was greatly decreased in leaves exhibiting esca symptoms. Although glutathione reductase and glutathione peroxidase transcripts were largely unchanged by the spread of the esca disease, leaf glutathione S-transferase (GST) activities, the amounts of mRNAs encoding GSTU1 and GSTF2 and the abundance of the GSTU1 and GSTF2 proteins were highest at the early stages of infection and then decreased as visible symptoms appeared in the leaves. The GSTF2 protein, which was more abundant than GSTU1, was found in the nucleus and in the cytoplasm, whereas the GSTU1 protein was found largely in the plastids. These data demonstrate that the fungi involved in the esca disease induce pronounced systemic effects in the leaves before the appearance of visible damage. We conclude that the expression of GSTs, the extent of glutathione accumulation and the ratio of GSSG to total glutathione are early indicators of the presence of the esca disease in grapevine canes and thus these parameters can be used as stress markers in field-grown vines.
Collapse
Affiliation(s)
- Christophe Valtaud
- Université de Poitiers, Laboratoire de Physiologie et Biochimie Végétales, UMR-CNRS 6161, Bâtiment Botanique, 40 Avenue du Recteur Pineau, F-86022 Poitiers, France
| | - Christine H Foyer
- School of Agriculture, Food and Rural Development, Agriculture Building, The University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Pierrette Fleurat-Lessard
- Université de Poitiers, Laboratoire de Physiologie et Biochimie Végétales, UMR-CNRS 6161, Bâtiment Botanique, 40 Avenue du Recteur Pineau, F-86022 Poitiers, France
| | - Andrée Bourbouloux
- Université de Poitiers, Laboratoire de Physiologie et Biochimie Végétales, UMR-CNRS 6161, Bâtiment Botanique, 40 Avenue du Recteur Pineau, F-86022 Poitiers, France
| |
Collapse
|
41
|
Chu Y, Faustinelli P, Ramos ML, Hajduch M, Stevenson S, Thelen JJ, Maleki SJ, Cheng H, Ozias-Akins P. Reduction of IgE binding and nonpromotion of Aspergillus flavus fungal growth by simultaneously silencing Ara h 2 and Ara h 6 in peanut. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:11225-11233. [PMID: 19007236 DOI: 10.1021/jf802600r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The most potent peanut allergens, Ara h 2 and Ara h 6, were silenced in transgenic plants by RNA interference. Three independent transgenic lines were recovered after microprojectile bombardment, of which two contained single, integrated copies of the transgene. The third line contained multiple copies of the transgene. Ara h 2 expression was significantly suppressed in all three lines, whereas Ara h 6 was reduced in two lines. Expression of peanut allergens Ara h 1 and Ara h 3 was not noticeably affected. Significant reduction of human IgE binding to Ara h 2 and Ara h 6 also was observed. Seed weight and germination data from transgenic and nontransgenic segregants showed no significant differences. Data collected from in vitro Aspergillus flavus infection indicate no significant difference in fungal growth between the transgenic lines and the nontransgenic controls. These data suggest that silencing Ara h 2 and Ara h 6 is a feasible approach to produce hypoallergenic peanut.
Collapse
Affiliation(s)
- Ye Chu
- Department of Horticulture, University of Georgia, 31793, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Holbrook C, Ozias-Akins P, Timper P, Wilson DM, Cantonwine E, Guo BZ, Sullivan DG, Dong W. RESEARCH FROM THE COASTAL PLAIN EXPERIMENT STATION, TIFTON, GEORGIA, TO MINIMIZE AFLATOXIN CONTAMINATION IN PEANUT. TOXIN REV 2008. [DOI: 10.1080/15569540802497673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Li C, Barker SJ, Gilchrist DG, Lincoln JE, Cowling WA. Leptosphaeria maculans elicits apoptosis coincident with leaf lesion formation and hyphal advance in Brassica napus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1143-53. [PMID: 18700819 DOI: 10.1094/mpmi-21-9-1143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Programmed cell death, with many of the morphological markers of apoptosis, is increasingly recognized as an important process in plant disease. We have investigated the involvement and potential role of apoptosis during the formation of leaf lesions by the fungus Leptosphaeria maculans on susceptible Brassica napus cv. Westar. There were no signs of host cell damage until 7 to 8 days postinoculation (dpi), when trypan-blue-stained leaf mesophyll cells were first detected. Hyphae were visible in the intercellular spaces of the inoculated area from 5 dpi and were associated with trypan-blue-stained cells at 8 to 9 dpi. Hallmarks of apoptosis, observed coincident with or immediately prior to the formation of leaf lesions at 8 to 10 dpi, included membrane shrinkage of the mesophyll cell cytoplasm, loss of cell to cell contact in mesophyll cells, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling of nuclei in apparently "healthy" tissue immediately adjacent to dead areas. Hyphae were highly branched and prolific in the "healthy" tissue immediately adjacent to dead areas 9 to 10 dpi, and formed pycnidia inside dead areas 11 to 12 dpi. Coinfiltration of the tetrapeptide caspase inhibitor Ac-DEVD-CHO with spores of the pathogen significantly suppressed development of leaf lesions but did not affect fungus viability. We hypothesize that L. maculans elicits apoptosis as a dependent component of pathogenesis in susceptible B. napus, and that the fungus uses apoptotic cells as a source of nutrition for reproduction and further growth.
Collapse
Affiliation(s)
- Caixia Li
- School of Plant Biology, The University of Western Australia, Crawley, WA, Australia
| | | | | | | | | |
Collapse
|
44
|
Williams B, Dickman M. Plant programmed cell death: can't live with it; can't live without it. MOLECULAR PLANT PATHOLOGY 2008; 9:531-44. [PMID: 18705866 PMCID: PMC6640338 DOI: 10.1111/j.1364-3703.2008.00473.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The decision of whether a cell should live or die is fundamental for the wellbeing of all organisms. Despite intense investigation into cell growth and proliferation, only recently has the essential and equally important idea that cells control/programme their own demise for proper maintenance of cellular homeostasis gained recognition. Furthermore, even though research into programmed cell death (PCD) has been an extremely active area of research there are significant gaps in our understanding of the process in plants. In this review, we discuss PCD during plant development and pathogenesis, and compare/contrast this with mammalian apoptosis.
Collapse
Affiliation(s)
- Brett Williams
- Institute for Plant Genomics and Biotechnology, Texas A&M University, Department of Plant Pathology and Microbiology, College Station, TX 77843, USA
| | | |
Collapse
|
45
|
Zhang L, Xing D. Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. PLANT & CELL PHYSIOLOGY 2008; 49:1092-111. [PMID: 18535010 DOI: 10.1093/pcp/pcn086] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Methyl jasmonate (MeJa) is a well-known plant stress hormone. Upon exposure to stress, MeJa is produced and causes activation of programmed cell death (PCD) and defense mechanisms in plants. However, the early events and the signaling mechanisms of MeJa-induced cell death have yet to be fully elucidated. To obtain some insights into the early events of this cell death process, we investigated mitochondrial dynamics, chloroplast morphology and function, production and localization of reactive oxygen species (ROS) at the single-cell level as well as photosynthetic capacity at the whole-seedling level under MeJa stimulation. Our results demonstrated that MeJa induction of ROS production, which first occurred in mitochondria after 1 h of MeJa treatment and subsequently in chloroplasts by 3 h of treatment, caused a series of alterations in mitochondrial dynamics including the cessation of mitochondrial movement, the loss of mitochondrial transmembrane potential (MPT), and the morphological transition and aberrant distribution of mitochondria. Thereafter, photochemical efficiency dramatically declined before obvious distortion in chloroplast morphology, which is prior to MeJa-induced cell death in protoplasts or intact seedlings. Moreover, treatment of protoplasts with ascorbic acid or catalase prevented ROS production, organelle change, photosynthetic dysfunction and subsequent cell death. The permeability transition pore inhibitor cyclosporin A gave significant protection against MPT loss, mitochondrial swelling and subsequent cell death. These results suggested that MeJa induces ROS production and alterations of mitochondrial dynamics as well as subsequent photosynthetic collapse, which occur upstream of cell death and are necessary components of the cell death process.
Collapse
Affiliation(s)
- Lingrui Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, PR China
| | | |
Collapse
|
46
|
Programmed cell death suppression in transformed plant tissue by tomato cDNAs identified from an Agrobacterium rhizogenes-based functional screen. Mol Genet Genomics 2008; 279:509-21. [DOI: 10.1007/s00438-008-0329-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/31/2008] [Indexed: 01/17/2023]
|
47
|
Gao C, Xing D, Li L, Zhang L. Implication of reactive oxygen species and mitochondrial dysfunction in the early stages of plant programmed cell death induced by ultraviolet-C overexposure. PLANTA 2008; 227:755-767. [PMID: 17972096 DOI: 10.1007/s00425-007-0654-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 10/12/2007] [Indexed: 05/25/2023]
Abstract
Recent studies have suggested that ultraviolet-C (UV-C) overexposure induces programmed cell death (PCD) in Arabidopsis thaliana (L.) Heynh, and this process includes participation of caspase-like proteases, DNA laddering as well as fragmentation of the nucleus. To investigate possible early signal events, we used microscopic observations to monitor in vivo the behaviour of mitochondria, as well as the production and localization of reactive oxygen species (ROS) during protoplast PCD induced by UV-C. A quick burst of ROS was detected when the protoplasts were kept in continuous light after UV-C exposure, which was restricted in chloroplasts and the adjacent mitochondria. Pre-incubation with ascorbic acid (AsA, antioxidant molecule) or 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea (DCMU, an inhibitor of photosynthetic electron transport) decreased the ROS production and partially protected protoplasts from PCD. A mitochondrial transmembrane potential (MTP) loss occurred prior to cell death; thereafter, the mitochondria irregularly clumped around chloroplasts or aggregated in other places within the cytoplasm, and the movement of mitochondria was concomitantly blocked. Pre-treatment with an inhibitor of mitochondrial permeability transition pores (MPTP), cyclosporine (CsA), effectively retarded the decrease of MTP and reduced the percentage of protoplasts undergoing PCD after UV-C overexposure. Our results suggest that the MTP loss and the changes in distribution and mobility of mitochondria, as well as the production of ROS play important roles during UV-induced plant PCD, which is in good accordance with what has been reported in many types of apoptotic cell death, both in animals and plants.
Collapse
Affiliation(s)
- Caiji Gao
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631, People's Republic of China
| | | | | | | |
Collapse
|
48
|
Bonneau L, Ge Y, Drury GE, Gallois P. What happened to plant caspases? JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:491-9. [PMID: 18272922 DOI: 10.1093/jxb/erm352] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The extent of conservation in the programmed cell death pathways that are activated in species belonging to different kingdoms is not clear. Caspases are key components of animal apoptosis; caspase activities are detected in both animal and plant cells. Yet, while animals have caspase genes, plants do not have orthologous sequences in their genomes. It is 10 years since the first caspase activity was reported in plants, and there are now at least eight caspase activities that have been measured in plant extracts using caspase substrates. Various caspase inhibitors can block many forms of plant programmed cell death, suggesting that caspase-like activities are required for completion of the process. Since plant metacaspases do not have caspase activities, a major challenge is to identify the plant proteases that are responsible for the caspase-like activities and to understand how they relate, if at all, to animal caspases. The protease vacuolar processing enzyme, a legumain, is responsible for the cleavage of caspase-1 synthetic substrate in plant extracts. Saspase, a serine protease, cleaves caspase-8 and some caspase-6 synthetic substrates. Possible scenarios that could explain why plants have caspase activities without caspases are discussed.
Collapse
Affiliation(s)
- Laurent Bonneau
- Faculty of Life Sciences, University of Manchester, 3.614 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
49
|
Chu Y, Deng XY, Faustinelli P, Ozias-Akins P. Bcl-xL transformed peanut (Arachis hypogaea L.) exhibits paraquat tolerance. PLANT CELL REPORTS 2008; 27:85-92. [PMID: 17891400 DOI: 10.1007/s00299-007-0444-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 08/07/2007] [Accepted: 09/03/2007] [Indexed: 05/17/2023]
Abstract
The human Bcl-xL gene was transformed into peanut cultivar Georgia Green via microprojectile bombardment. Following selection on hygromycin-containing medium and regeneration, eighty hygromycin-resistant callus clusters were recovered. Southern blot analysis of ten fertile lines revealed multiple insertions of the Bcl-xL transgene in most lines. Western blot analysis of primary plants and T1 progenies demonstrated detectable levels of Bcl-xL expression in four transgenic lines. We could not detect Bcl-xL protein in other tested lines even though transcripts were identified by RT-PCR and northern blot. Three of the western-positive transgenic lines either were sterile or the progenies lost the expressive copy of Bcl-xL. Only T1 progenies from line BX25-4-2a-19 continued to express an intermediate level of Bcl-xL. This line demonstrated paraquat tolerance at the 5 microM level. Tolerance to salt of T1 and T2 seeds from seven other transgenic lines also was tested, but no tolerance was found in these lines. A high level of Bcl-xL transgene expression may be deleterious to plant growth and development even though the gene may confer tolerance to other abiotic and biotic stresses such as drought and pathogens.
Collapse
Affiliation(s)
- Y Chu
- Department of Horticulture, The University of Georgia, Tifton, GA, 31973-0748, USA
| | | | | | | |
Collapse
|
50
|
Shabala S, Cuin TA, Prismall L, Nemchinov LG. Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress. PLANTA 2007; 227:189-97. [PMID: 17712568 DOI: 10.1007/s00425-007-0606-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Accepted: 07/29/2007] [Indexed: 05/16/2023]
Abstract
Apoptosis, one form of programmed cell death (PCD), plays an important role in mediating plant adaptive responses to the environment. Recent studies suggest that expression of animal anti-apoptotic genes in transgenic plants may significantly improve a plant's ability to tolerate a variety of biotic and abiotic stresses. The underlying cellular mechanisms of this process remain unexplored. In this study, we investigated specific ion flux "signatures" in Nicotiana benthamiana plants transiently expressing CED-9 anti-apoptotic gene and undergoing salt- and oxidative stresses. Using a range of electrophysiological techniques, we show that expression of CED-9 increased plant salt and oxidative stress tolerance by altering K(+) and H(+) flux patterns across the plasma membrane. Our data shows that PVX/CED-9 plants are capable of preventing stress-induced K(+) efflux from mesophyll cells, so maintaining intracellular K(+) homeostasis. We attribute these effects to the ability of CED-9 to control at least two types of K(+)-permeable channels; outward-rectifying depolarization-activating K(+) channels (KOR) and non-selective cation channels (NSCC). A possible scenario linking CED-9 expression and ionic relations in plant cell is suggested. To the best of our knowledge, this study is the first to link "ion flux signatures" and mechanisms involved in regulation of PCD in plants.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, TAS, 7001, Australia.
| | | | | | | |
Collapse
|