1
|
Yaaran A, Erez E, Procko C, Moshelion M. Leaf hydraulic maze: Abscisic acid effects on bundle sheath, palisade, and spongy mesophyll conductance. PLANT PHYSIOLOGY 2023; 193:1349-1364. [PMID: 37390615 PMCID: PMC10517257 DOI: 10.1093/plphys/kiad372] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Leaf hydraulic conductance (Kleaf) facilitates the supply of water, enabling continual CO2 uptake while maintaining plant water status. We hypothesized that bundle sheath and mesophyll cells play key roles in regulating the radial flow of water out of the xylem by responding to abscisic acid (ABA). Thus, we generated transgenic Arabidopsis thaliana plants that are insensitive to ABA in their bundle sheath (BSabi) and mesophyll (MCabi) cells. We also introduced tissue-specific fluorescent markers to distinguish between cells of the palisade mesophyll, spongy mesophyll, and bundle sheath. Both BSabi and MCabi plants showed greater Kleaf and transpiration under optimal conditions. MCabi plants had larger stomatal apertures, higher stomatal index, and greater vascular diameter and biomass relative to the wild-type (WT) and BSabi plants. In response to xylem-fed ABA, both transgenic and WT plants reduced their Kleaf and transpiration. The membrane osmotic water permeability (Pf) of the WT's spongy mesophyll was higher than that of the WT's palisade mesophyll. While the palisade mesophyll maintained a low Pf in response to high ABA, the spongy mesophyll Pf was reduced. Compared to the WT, BSabi bundle sheath cells had a higher Pf, but MCabi spongy mesophyll had an unexpected lower Pf. These results suggest that tissue-specific regulation of Pf by ABA may be confounded by whole-leaf hydraulics and transpiration. ABA increased the symplastic permeability, but its contribution to Kleaf was negligible. We suggest that the bundle sheath spongy mesophyll pathway dynamically responds to the fluctuations in water availability, while the palisade mesophyll serves as a hydraulic buffer.
Collapse
Affiliation(s)
- Adi Yaaran
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Eyal Erez
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Carl Procko
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Menachem Moshelion
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
2
|
Leaf and Branch Hydraulic Plasticity of Two Light-Demanding Broadleaved Tree Species Differing in Water-Use Strategy. FORESTS 2022. [DOI: 10.3390/f13040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Global climate change creates new environmental scenarios and selective pressures; thus, a better understanding of the plasticity of plant functional traits is needed to predict how plant species will respond to shifts in climate. Among the important functional traits for plants are their hydraulic properties which ultimately determine their photosynthetic capacity, growth rate, and survival in a changing environment. In this study, the light sensitivity of leaf (KL) and branch hydraulic conductance (KB) to fast changes in irradiance, and hydraulic plasticity (PIh) was studied in two broadleaved tree species differing in water-use strategy—silver birch (Betula pendula) and hybrid aspen (Populus × wettsteinii). The KL increased by a factor of 3.5 and 1.5 from minimal values recorded in darkness to maximal values in high light conditions for birch and aspen, respectively, indicating a significantly higher PIh for birch (0.72) than for aspen leaves (0.35). KB increased 1.5-fold from dark to light conditions for both species. The high light sensitivity of KL and KB provides a regulatory mechanism to maintain a balance between transpirational demand and hydraulic supply. The plasticity of these traits increases the ability of plants to cope with a rapidly changing environment and to adapt to global climate change.
Collapse
|
3
|
Trifilò P, Petruzzellis F, Abate E, Nardini A. The extra-vascular water pathway regulates dynamic leaf hydraulic decline and recovery in Populus nigra. PHYSIOLOGIA PLANTARUM 2021; 172:29-40. [PMID: 33161600 DOI: 10.1111/ppl.13266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Leaf hydraulic conductance (Kleaf ) is highly dynamic and typically responds to changes in water status and irradiance. However, the relative contribution of vascular (Kx ) and extra-vascular (Kox ) water pathways to Kleaf changes in response to water potential decline and recovery in function of light conditions remains poorly investigated. We investigated the dynamic responses of leaf hydraulics in Populus nigra L. by measuring Kleaf , Kx , and Kox changes under drought and upon recovery. Measurements were done at both low and high irradiance (LI and HI, respectively). Kleaf increased and became more vulnerable to dehydration under HI conditions than LI, due to marked changes of Kox . After re-watering, Kleaf recovered in parallel with Kox recovery, but Kleaf response to irradiance remained inhibited. Strong correlations between Kleaf and drought-induced membrane damage demonstrated the relevance of the cell-to-cell water pathway in driving the dynamic responses of Kleaf under drought and recovery. Our findings highlight the importance of coordination between water and light availability in modulating the overall Kleaf response to environmental conditions.
Collapse
Affiliation(s)
- Patrizia Trifilò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | | | - Elisa Abate
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| |
Collapse
|
4
|
Õunapuu-Pikas E, Sellin A. Plasticity and light sensitivity of leaf hydraulic conductance to fast changes in irradiance in common hazel (Corylus avellana L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110299. [PMID: 31779902 DOI: 10.1016/j.plantsci.2019.110299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Forest understory species have to acclimatize to highly heterogeneous light conditions inside forest canopies in order to utilize available resources efficiently. Light sensitivity and response speed of hydraulic conductance (KL) of common hazel (Corylus avellana L.) to fast changes in irradiance was studied in leaves from three different growth light conditions-sun-exposed, moderate shade, and deep shade. The KL of sun-exposed leaves was approximately 3-fold higher when compared to deep-shade leaves, indicating a strong dependence of leaf hydraulic capacity on light conditions. The KL of sun-exposed leaves increased by a factor of nearly four from minimal values recorded in darkness to maximal values in high light compared to deep-shade leaves. Reaction speed of KL to reach maximum values in response to light was nearly five times higher for sun-exposed vs deep-shade leaves. Plasticity indices of KL for sun-exposed and deep-shade leaves were 0.44 and 0.27, respectively. Higher light sensitivity enables a faster and more plastic response of KL to variable light conditions in sun leaves and enhances the ability of plants to maximize resource utilization under more beneficial environmental conditions.
Collapse
Affiliation(s)
- Eele Õunapuu-Pikas
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005, Tartu, Estonia.
| | - Arne Sellin
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005, Tartu, Estonia
| |
Collapse
|
5
|
Comparison of Branch Water Relations in Two Riparian Species: Populus euphratica and Tamarix ramosissima. SUSTAINABILITY 2019. [DOI: 10.3390/su11195461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Water relations in plants maintain healthy tree branches and drought conditions during plant growth may affect water relations, but the mechanisms are poorly known. In our study, we determined the stomatal conductance, hydraulic conductance, water potential and ion concentration of xylem sap to increase the understanding of changes in water relations in branches of Populus euphratica (P. euphratica) and Tamarix ramosissima (T. ramosissima), which are the dominant plant species in the lower reaches of the Heihe River Basin in China. The results showed that both species responded to vapor pressure deficit (VPD) during the growing season by adjusting stomatal conductance to achieve homeostasis in leaf water potentials. The leaf-specific hydraulic conductance (LSC) of the branch was determined using water status in the branch, and the LSC of the leaf was determined using water status in the leaf. Because of homeostasis in leaf water potentials, hydraulic conductance in leaves remained stable. As a result, branch dieback, which might be induced by deficits in water supply, could rarely be seen in T. ramosissima owing to the homeostasis in branch and leaf water status. The ion sensitivity of xylem hydraulic conductance in P. euphratica induced an increase in hydraulic conductance caused by the deficits in the water supply which might lead to branch dieback. The evaluation of water relations provides a further understanding of the internal mechanisms of drought acclimation for riparian plants.
Collapse
|
6
|
Harayama H, Kitao M, Agathokleous E, Ishida A. Effects of major vein blockage and aquaporin inhibition on leaf hydraulics and stomatal conductance. Proc Biol Sci 2019; 286:20190799. [PMID: 31161902 PMCID: PMC6571453 DOI: 10.1098/rspb.2019.0799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/08/2019] [Indexed: 01/25/2023] Open
Abstract
The density and architecture of leaf veins determine the network and efficiency of water transport within laminae and resultant leaf gas exchange and vary widely among plant species. Leaf hydraulic conductance ( Kleaf) can be regulated by vein architecture in conjunction with the water channel protein aquaporin. However, our understanding of how leaf veins and aquaporins affect leaf hydraulics and stomatal conductance ( gs) remains poor. By inducing blockage of the major veins and inhibition of aquaporin activity using HgCl2, we examined the effects of major veins and aquaporins on Kleaf and gs in species with different venation types. A vine species, with thick first-order veins and low vein density, displayed a rapidly declined gs with high leaf water potential in response to vein blockage and a greatly reduced Kleaf and gs in response to aquaporin inhibition, suggesting that leaf aquaporins are involved in isohydric/anisohydric stomatal behaviour. Across species, the decline in Kleaf and gs due to aquaporin inhibition increased linearly with decreasing major vein density, possibly indicating that a trade-off function between vein architecture (apoplastic pathway) and aquaporin activity (cell-to-cell pathway) affects leaf hydraulics.
Collapse
Affiliation(s)
- Hisanori Harayama
- Hokkaido Research Center, Forestry and Forest Products Research Institute, 7 Hitsujigaoka, Toyohira-Ku, Sapporo, Hokkaido 062-8516, Japan
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute, 7 Hitsujigaoka, Toyohira-Ku, Sapporo, Hokkaido 062-8516, Japan
| | - Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute, 7 Hitsujigaoka, Toyohira-Ku, Sapporo, Hokkaido 062-8516, Japan
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, People's Republic of China
| | - Atsushi Ishida
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| |
Collapse
|
7
|
Abstract
Stable hydraulic conductivity in forest trees maintains healthy tree crowns and contributes to productivity in forest ecosystems. Drought conditions break down this relationship, but the mechanisms are poorly known and may depend on drought severity. To increase the understanding of changes in hydraulic conductivity during drought, we determined hydraulic parameters in Populus euphratica Oliv. (P. euphratica) in naturally arid conditions and in a simulated severe drought using a high-pressure flow meter. The results showed that leaf-specific hydraulic conductance (LSC) of leaf blades was less variable in mild drought, and increased significantly in severe drought. Plants attempted to maintain stability in leaf blade LSC under moderate water stress. In extreme drought, LSC was enhanced by increasing hydraulic conductance in plant parts with less hydraulic limitation, decreasing it in other parts, and decreasing leaf area; this mechanism protected the integrity of water transport in portions of tree crowns, and induced scorched branches and partial mortality in other parts of crowns. We conclude that limitation in water supply and elastic regulation of hydraulic characteristics may drive the mortality of tree branches as a result of severe drought. Evaluation of adaptive water transport capacity in riparian plants in arid areas provides a scientific basis for riparian forest restoration.
Collapse
|
8
|
Petruzzellis F, Nardini A, Savi T, Tonet V, Castello M, Bacaro G. Less safety for more efficiency: water relations and hydraulics of the invasive tree Ailanthus altissima (Mill.) Swingle compared with native Fraxinus ornus L. TREE PHYSIOLOGY 2019; 39:76-87. [PMID: 29982793 DOI: 10.1093/treephys/tpy076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/03/2018] [Indexed: 05/23/2023]
Abstract
Invasion of natural habitats by alien trees is a threat to forest conservation. Our understanding of fundamental ecophysiological mechanisms promoting plant invasions is still limited, and hydraulic and water relation traits have been only seldom included in studies comparing native and invasive trees. We compared several leaf and wood functional and mechanistic traits in co-occurring Ailanthus altissima (Mill.) Swingle (Aa) and Fraxinus ornus L. (Fo). Aa is one of the most invasive woody species in Europe and North America, currently outcompeting several native trees including Fo. We aimed at quantifying inter-specific differences in terms of: (i) performance in resource use and acquisition; (ii) hydraulic efficiency and safety; (iii) carbon costs associated to leaf and wood construction; and (iv) plasticity of functional and mechanistic traits in response to light availability. Traits related to leaf and wood construction and drought resistance significantly differed between the two species. Fo sustained higher structural costs than Aa, but was more resistant to drought. The lower resistance to drought stress of Aa was counterbalanced by higher water transport efficiency, but possibly required mechanisms of resilience to drought-induced hydraulic damage. Larger phenotypic plasticity of Aa in response to light availability could also promote the invasive potential of the species.
Collapse
Affiliation(s)
- Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, Italy
| | - Tadeja Savi
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, Italy
- University of Natural Resources and Life Sciences, Division of Viticulture and Pomology, Department of Crop Sciences, Konrad Lorenz Straße 24, Tulln, Vienna, Austria
| | - Vanessa Tonet
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, Italy
| | - Miris Castello
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, Italy
| | - Giovanni Bacaro
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, Italy
| |
Collapse
|
9
|
Rishmawi L, Bühler J, Jaegle B, Hülskamp M, Koornneef M. Quantitative trait loci controlling leaf venation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:1429-1441. [PMID: 28252189 DOI: 10.1111/pce.12938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/31/2017] [Accepted: 02/13/2017] [Indexed: 05/23/2023]
Abstract
Leaf veins provide the mechanical support and are responsible for the transport of nutrients and water to the plant. High vein density is a prerequisite for plants to have C4 photosynthesis. We investigated the genetic variation and genetic architecture of leaf venation traits within the species Arabidopsis thaliana using natural variation. Leaf venation traits, including leaf vein density (LVD) were analysed in 66 worldwide accessions and 399 lines of the multi-parent advanced generation intercross population. It was shown that there is no correlation between LVD and photosynthesis parameters within A. thaliana. Association mapping was performed for LVD and identified 16 and 17 putative quantitative trait loci (QTLs) in the multi-parent advanced generation intercross and worldwide sets, respectively. There was no overlap between the identified QTLs suggesting that many genes can affect the traits. In addition, linkage mapping was performed using two biparental recombinant inbred line populations. Combining linkage and association mapping revealed seven candidate genes. For one of the candidate genes, RCI2c, we demonstrated its function in leaf venation patterning.
Collapse
Affiliation(s)
- Louai Rishmawi
- Botanical Institute, University of Cologne, Cologne Biocenter, 50674, Cologne, Germany
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Universitätsstrasse 1, Cluster of Excellence on Plant Sciences, D-40225, Düsseldorf, Germany
| | - Jonas Bühler
- Forschungszentrum Jülich GmbH, IBG-2: Plant Sciences, 52425, Jülich, Germany
| | - Benjamin Jaegle
- Botanical Institute, University of Cologne, Cologne Biocenter, 50674, Cologne, Germany
| | - Martin Hülskamp
- Botanical Institute, University of Cologne, Cologne Biocenter, 50674, Cologne, Germany
- Universitätsstrasse 1, Cluster of Excellence on Plant Sciences, D-40225, Düsseldorf, Germany
| | - Maarten Koornneef
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Laboratory of Genetics, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Universitätsstrasse 1, Cluster of Excellence on Plant Sciences, D-40225, Düsseldorf, Germany
| |
Collapse
|
10
|
Dayer S, Peña JP, Gindro K, Torregrosa L, Voinesco F, Martínez L, Prieto JA, Zufferey V. Changes in leaf stomatal conductance, petiole hydraulics and vessel morphology in grapevine (Vitis vinifera cv. Chasselas) under different light and irrigation regimes. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:679-693. [PMID: 32480598 DOI: 10.1071/fp16041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/21/2017] [Indexed: 06/11/2023]
Abstract
Hydraulic conductance and water transport in plants may be affected by environmental factors, which in turn regulate leaf gas exchange, plant growth and yield. In this study, we assessed the combined effects of radiation and water regimes on leaf stomatal conductance (gs), petiole specific hydraulic conductivity (Kpetiole) and anatomy (vessel number and size); and leaf aquaporin gene expression of field-grown grapevines at the Agroscope Research Station (Leytron, Switzerland). Chasselas vines were subjected to two radiation (sun and shade) levels combined with two water (irrigated and water-stressed) regimes. The sun and shade leaves received ~61.2 and 1.48molm-2day-1 of photosynthetically active radiation, respectively, during a clear-sky day. The irrigated vines were watered weekly from bloom to veraison whereas the water-stressed vines did not receive any irrigation during the season. Water stress reduced gs and Kpetiole relative to irrigated vines throughout the season. The petioles from water-stressed vines showed fewer large-sized vessels than those from irrigated vines. The shaded leaves from the irrigated vines exhibited a higher Kpetiole than the sun leaves at the end of the season, which was partially explained by a higher number of vessels per petiole and possibly by the upregulation of some of the aquaporins measured in the leaf. These results suggest that not only plant water status but also the light environment at the leaf level affected leaf and petiole hydraulics.
Collapse
Affiliation(s)
- Silvina Dayer
- INTA EEA Mendoza, San Martín 3853, Luján de Cuyo (5507), Mendoza, Argentina
| | - Jorge Perez Peña
- INTA EEA Mendoza, San Martín 3853, Luján de Cuyo (5507), Mendoza, Argentina
| | - Katia Gindro
- Agroscope, Institut des sciences en production végétale IPV, Route de Duillier 50, 1260 Nyon, Switzerland
| | - Laurent Torregrosa
- Montpellier SupAgro, UMR AGAP - DAAV research group, 2 place Viala, 34060 Montpellier Cedex 01, France
| | - Francine Voinesco
- Agroscope, Institut des sciences en production végétale IPV, Route de Duillier 50, 1260 Nyon, Switzerland
| | - Liliana Martínez
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, UNCuyo, Almirante Brown 500, 5507 Chacras de Coria, Argentina
| | - Jorge A Prieto
- INTA EEA Mendoza, San Martín 3853, Luján de Cuyo (5507), Mendoza, Argentina
| | - Vivian Zufferey
- Agroscope, Institut des sciences en production végétale IPV, Route de Duillier 50, 1260 Nyon, Switzerland
| |
Collapse
|
11
|
Diurnal dynamics of PIP2-aquaporin gene expression in leaves of aerial-aquatic and terrestrial plants of Sium latifolium (Apiaceae) under different water supply. UKRAINIAN BOTANICAL JOURNAL 2017. [DOI: 10.15407/ukrbotj74.01.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Zheng L, Van Labeke MC. Long-Term Effects of Red- and Blue-Light Emitting Diodes on Leaf Anatomy and Photosynthetic Efficiency of Three Ornamental Pot Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:917. [PMID: 28611818 PMCID: PMC5447751 DOI: 10.3389/fpls.2017.00917] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/16/2017] [Indexed: 05/20/2023]
Abstract
Light quality critically affects plant development and growth. Development of light-emitting diodes (LEDs) enables the use of narrow band red and/or blue wavelengths as supplementary lighting in ornamental production. Yet, long periods under these wavelengths will affect leaf morphology and physiology. Leaf anatomy, stomatal traits, and stomatal conductance, leaf hydraulic conductance (Kleaf), and photosynthetic efficiency were investigated in three ornamental pot plants, namely Cordyline australis (monocot), Ficus benjamina (dicot, evergreen leaves), and Sinningia speciosa (dicot, deciduous leaves) after 8 weeks under LED light. Four light treatments were applied at 100 μmol m-2 s-1 and a photoperiod of 16 h using 100% red (R), 100% blue (B), 75% red with 25% blue (RB), and full spectrum white light (W), respectively. B and RB resulted in a greater maximum quantum yield (Fv/Fm) and quantum efficiency (ΦPSII) in all species compared to R and W and this correlated with a lower biomass under R. B increased the stomatal conductance compared with R. This increase was linked to an increasing stomatal index and/or stomatal density but the stomatal aperture area was unaffected by the applied light quality. Leaf hydraulic conductance (Kleaf) was not significantly affected by the applied light qualities. Blue light increased the leaf thickness of F. benjamina, and a relative higher increase in palisade parenchyma was observed. Also in S. speciosa, increase in palisade parenchyma was found under B and RB, though total leaf thickness was not affected. Palisade parenchyma tissue thickness was correlated to the leaf photosynthetic quantum efficiency (ΦPSII). In conclusion, the role of blue light addition in the spectrum is essential for the normal anatomical leaf development which also impacts the photosynthetic efficiency in the three studied species.
Collapse
|
13
|
Carins Murphy MR, Jordan GJ, Brodribb TJ. Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade. ANNALS OF BOTANY 2016; 118:1127-1138. [PMID: 27578763 PMCID: PMC5963197 DOI: 10.1093/aob/mcw167] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/26/2016] [Accepted: 06/28/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS It has been proposed that modification of leaf size, driven by epidermal cell size, balances leaf water supply (determined by veins) with transpirational demand (generated by stomata) during acclimation to local irradiance. We aimed to determine whether this is a general pattern among plant species with contrasting growth habits. METHODS We compared observed relationships between leaf minor vein density, stomatal density, epidermal cell size and leaf size in four pairs of herbs and woody species from the same families grown under sun and shade conditions with modelled relationships assuming vein and stomatal densities respond passively to epidermal cell expansion. Leaf lignin content was also quantified to assess whether construction costs of herbaceous leaf veins differ from those of woody plants and the leaf mass fraction invested in veins. KEY RESULTS Modelled relationships accurately described observed relationships, indicating that in all species, co-ordinated changes to the density of minor veins and stomata were mediated by a common relationship between epidermal cell size, vein density and stomatal density, with little or no impact from stomatal index. This co-ordination was independent of changes in leaf size and is likely to be an adaptive process driven by the significant proportion of biomass invested in veins (13·1 % of sun leaf dry weight and 21·7 % of shade leaf dry weight). Relative costs of venation increased in the shade, intensifying selective pressure towards economizing investment in vein density. CONCLUSIONS Modulation of epidermal cell size appears to be a general mechanism among our experimental species to maintain a constant ratio between leaf anatomical traits that control leaf water fluxes independently of habit. We propose that this process may co-ordinate plasticity in hydraulic supply and demand in the majority of eudicot angiosperms.
Collapse
Affiliation(s)
| | - Gregory J Jordan
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
14
|
Taneda H, Kandel DR, Ishida A, Ikeda H. Altitudinal changes in leaf hydraulic conductance across five Rhododendron species in eastern Nepal. TREE PHYSIOLOGY 2016; 36:1272-1282. [PMID: 27417514 DOI: 10.1093/treephys/tpw058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
Abstract
This study investigated altitudinal changes in leaf-lamina hydraulic conductance (KL) and leaf morphological traits related to KL using five Rhododendron species growing at different altitudes (2500-4500 m above sea level) in Jaljale Himal region in eastern Nepal. Sun leaves were collected from the highest and the lowest altitude populations of each species, and KL was measured with a high pressure flow meter method. Leaf-lamina hydraulic conductance ranged from 7.7 to 19.3 mmol m-2 s-1 MPa-1 and was significantly positively correlated with altitude. The systematic increase with altitude was also found in KL, leaf nitrogen content and stomatal pore index. These relationships suggest that plants from higher-altitude habitats had a large CO2 supply to the intercellular space in a leaf and high CO2 assimilation capacity, which enables efficient photosynthesis at high altitude. The variation in KL was associated with the variation in several leaf morphological traits. High KL was found in leaves with small leaf area and round shape, both of which result in shorter major veins. These results suggest that the short major veins were important for efficient water transport in unlobed leaves of Rhododendron species. The extent of lignification in bundle sheaths and bundle sheath extension was associated with KL Lignified compound primary walls inhibit water conduction along apoplastic routes. All species analyzed had heterobaric leaves, in which bundle sheath extensions developed from minor veins, but strongly lignified compound primary walls were found in Rhododendron species with low KL It is still unclear why cell walls in bundle sheath at minor veins were markedly lignified in Rhododendron species growing at lower altitude. The lignified cell wall provides a high pathogenic resistance to infection and increases the mechanical strength of cell wall. The data imply that lignified bundle sheath may provide a trade-off between leaf hydraulic efficiency and leaf mechanical toughness or longevity.
Collapse
Affiliation(s)
- Haruhiko Taneda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Dhan Raj Kandel
- Department of Plant Resources, National Herbarium and Plant Laboratories, Godawari, Lalitpur 44709, Nepal
| | - Atsushi Ishida
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Ohtsu, Shiga 520-2113, Japan
| | - Hiroshi Ikeda
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Yaaran A, Moshelion M. Role of Aquaporins in a Composite Model of Water Transport in the Leaf. Int J Mol Sci 2016; 17:E1045. [PMID: 27376277 PMCID: PMC4964421 DOI: 10.3390/ijms17071045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 01/02/2023] Open
Abstract
Water-transport pathways through the leaf are complex and include several checkpoints. Some of these checkpoints exhibit dynamic behavior that may be regulated by aquaporins (AQPs). To date, neither the relative weight of the different water pathways nor their molecular mechanisms are well understood. Here, we have collected evidence to support a putative composite model of water pathways in the leaf and the distribution of water across those pathways. We describe how water moves along a single transcellular path through the parenchyma and continues toward the mesophyll and stomata along transcellular, symplastic and apoplastic paths. We present evidence that points to a role for AQPs in regulating the relative weight of each path in the overall leaf water-transport system and the movement of water between these paths as a result of the integration of multiple signals, including transpiration demand, water potential and turgor. We also present a new theory, the hydraulic fuse theory, to explain effects of the leaf turgor-loss-point on water paths alternation and the subsequent reduction in leaf hydraulic conductivity. An improved understating of leaf water-balance management may lead to the development of crops that use water more efficiently, and responds better to environmental changes.
Collapse
Affiliation(s)
- Adi Yaaran
- Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Menachem Moshelion
- Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
16
|
Zhang ZS, Liu MJ, Gao HY, Jin LQ, Li YT, Li QM, Ai XZ. Water Status Related Root-to-Shoot Communication Regulates the Chilling Tolerance of Shoot in Cucumber (Cucumis sativus L.) Plants. Sci Rep 2015; 5:13094. [PMID: 26471979 PMCID: PMC4607976 DOI: 10.1038/srep13094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/27/2015] [Indexed: 11/24/2022] Open
Abstract
Although root-to-shoot communication has been intensively investigated in plants under drought, few studies have examined root-to-shoot communication under chilling. Here we explored whether root-to-shoot communication contributes to the chilling-light tolerance of cucumber shoots and clarified the key signal involves in this communication. After leaf discs chilling-light treatment, the photoinhibitions of Photosystem I (PSI) and Photosystem II (PSII) were similar in leaf discs of two cucumber varieties (JY-3 and JC-4). When the whole plants, including roots, were chilled under light, the photosynthetic performances in JC-4 leaves decreased more seriously than that in JY-3 leaves. However, when the water status of leaves was maintained by warming roots or floating the attached leaves on water, the PSII activity and amount of PSI in the leaves of the two varieties were similar after chilling-light treatment. In addition, the differences of PSII activities and amount of PSI between the two varieties under whole plant chilling-light treatment were independent of ABA pretreatment. Above results indicate that (1) the better water status in leaves under chilling contributes to the higher chilling tolerance of JY-3; (2) the water status, rather than an ABA signal, dominates root-to-shoot communication under chilling and the chilling tolerance of cucumber shoot.
Collapse
Affiliation(s)
- Zi-Shan Zhang
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong Province, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Mei-Jun Liu
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Hui-Yuan Gao
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Li-Qiao Jin
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Yu-Ting Li
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Qing-Ming Li
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Xi-Zhen Ai
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong Province, China
| |
Collapse
|
17
|
Miniussi M, Del Terra L, Savi T, Pallavicini A, Nardini A. Aquaporins in Coffea arabica L.: Identification, expression, and impacts on plant water relations and hydraulics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 95:92-102. [PMID: 26241904 DOI: 10.1016/j.plaphy.2015.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/21/2015] [Indexed: 05/02/2023]
Abstract
Plant aquaporins (AQPs) are involved in the transport of water and other small solutes across cell membranes, and thus play major roles in the regulation of plant water balance, as well as in growth regulation and response to abiotic stress factors. Limited information is currently available about the presence and role of AQPs in Coffea arabica L., despite the economic importance of the species and its vulnerability to drought stress. We identified candidate AQP genes by screening a proprietary C. arabica transcriptome database, resulting in the identification of nine putative aquaporins. A phylogenetic analysis based on previously characterized AQPs from Arabidopsis thaliana and Solanum tuberosum allowed to assign the putative coffee AQP sequences to the Tonoplast (TIP) and Plasma membrane (PIP) subfamilies. The possible functional role of coffee AQPs was explored by measuring hydraulic conductance and aquaporin gene expression on leaf and root tissues of two-year-old plants (C. arabica cv. Pacamara) subjected to different experimental conditions. In a first experiment, we tested plants for root and leaf hydraulic conductance both before dawn and at mid-day, to check the eventual impact of light on AQP activity and plant hydraulics. In a second experiment, we measured plant hydraulic responses to different water stress levels as eventually affected by changes in AQPs expression levels. Our results shed light on the possible roles of AQPs in the regulation of C. arabica hydraulics and water balance, opening promising research lines to improve the sustainability of coffee cultivation under global climate change scenarios.
Collapse
Affiliation(s)
- Matilda Miniussi
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | | | - Tadeja Savi
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Alberto Pallavicini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy.
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy.
| |
Collapse
|
18
|
Beauzamy L, Nakayama N, Boudaoud A. Flowers under pressure: ins and outs of turgor regulation in development. ANNALS OF BOTANY 2014; 114:1517-33. [PMID: 25288632 PMCID: PMC4204789 DOI: 10.1093/aob/mcu187] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/01/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Turgor pressure is an essential feature of plants; however, whereas its physiological importance is unequivocally recognized, its relevance to development is often reduced to a role in cell elongation. SCOPE This review surveys the roles of turgor in development, the molecular mechanisms of turgor regulation and the methods used to measure turgor and related quantities, while also covering the basic concepts associated with water potential and water flow in plants. Three key processes in flower development are then considered more specifically: flower opening, anther dehiscence and pollen tube growth. CONCLUSIONS Many molecular determinants of turgor and its regulation have been characterized, while a number of methods are now available to quantify water potential, turgor and hydraulic conductivity. Data on flower opening, anther dehiscence and lateral root emergence suggest that turgor needs to be finely tuned during development, both spatially and temporally. It is anticipated that a combination of biological experiments and physical measurements will reinforce the existing data and reveal unexpected roles of turgor in development.
Collapse
Affiliation(s)
- Léna Beauzamy
- Reproduction et Développement des Plantes, INRA, CNRS, ENS de Lyon, UCBL Lyon I, 46 Allée d'Italie, 69364 Lyon Cedex 07, France Laboratoire Joliot-Curie, CNRS, ENS de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Naomi Nakayama
- Reproduction et Développement des Plantes, INRA, CNRS, ENS de Lyon, UCBL Lyon I, 46 Allée d'Italie, 69364 Lyon Cedex 07, France Laboratoire Joliot-Curie, CNRS, ENS de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France Institute of Molecular Plant Sciences, University of Edinburgh, Mayfield Rd, King's Buildings, Edinburgh EH9 3JH, UK
| | - Arezki Boudaoud
- Reproduction et Développement des Plantes, INRA, CNRS, ENS de Lyon, UCBL Lyon I, 46 Allée d'Italie, 69364 Lyon Cedex 07, France Laboratoire Joliot-Curie, CNRS, ENS de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
19
|
Hu J, Yang QY, Huang W, Zhang SB, Hu H. Effects of temperature on leaf hydraulic architecture of tobacco plants. PLANTA 2014; 240:489-96. [PMID: 24915747 DOI: 10.1007/s00425-014-2097-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/16/2014] [Indexed: 06/03/2023]
Abstract
MAIN CONCLUSION Modifications in leaf anatomy of tobacco plants induced greater leaf water transport capacity, meeting greater transpirational demands and acclimating to warmer temperatures with a higher vapor pressure deficit. Temperature is one of the most important environmental factors affecting photosynthesis and growth of plants. However, it is not clear how it may alter leaf hydraulic architecture. We grew plants of tobacco (Nicotiana tabacum) 'k326' in separate glasshouse rooms set to different day/night temperature conditions: low (LT 24/18 °C), medium (MT 28/22 °C), or high (HT 32/26 °C). After 40 days of such treatment, their leaf anatomies, leaf hydraulics, photosynthetic rates, and instantaneous water-use efficiency (WUEi) were measured. Compared with those under LT, plants exposed to HT or MT conditions had significantly higher values for minor vein density (MVD), stomatal density (SD), leaf area, leaf hydraulic conductance (K leaf), and light-saturated photosynthetic rate (A sat), but lower values for leaf water potential (ψ l) and WUEi. However, those parameters did not differ significantly between HT and MT conditions. Correlation analyses demonstrated that SD and K leaf increased in parallel with MVD. Moreover, greater SD and K leaf were partially associated with accelerated stomatal conductance. And then stomatal conductance was positively correlated with A sat. Therefore, under well-watered, fertilized conditions, when relative humidity was optimal, changes in leaf anatomy seemed to facilitate the hydraulic acclimation to higher temperatures, meeting greater transpirational demands and contributing to the maintenance of great photosynthetic rates. Because transpiration rate increased more with temperature than photosynthetic rate, WUEi reduced under warmer temperatures. Our results indicate that the modifications of leaf hydraulic architecture are important anatomical and physiological strategies for tobacco plants acclimating to warmer temperatures under a higher vapor pressure deficit.
Collapse
Affiliation(s)
- Jing Hu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Lopez D, Venisse JS, Fumanal B, Chaumont F, Guillot E, Daniels MJ, Cochard H, Julien JL, Gousset-Dupont A. Aquaporins and leaf hydraulics: poplar sheds new light. PLANT & CELL PHYSIOLOGY 2013; 54:1963-1975. [PMID: 24058149 DOI: 10.1093/pcp/pct135] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To help understand leaf hydraulic conductance (Kleaf) modulation under high irradiance, well-watered poplars (Populus trichocarpa Torr. & Gray ex Hook and Populus nigra L.) were studied diurnally at molecular and ecophysiological scales. Transcriptional and translational modulations of plasma membrane intrinsic protein (PIP) aquaporins were evaluated in leaf samples during diurnal time courses. Among the 15 poplar PIP genes, a subset of two PIP1s and seven PIP2s are precociously induced within the first hour of the photoperiod concomitantly with a Kleaf increase. Since expression patterns were cyclic and reproducible over several days, we hypothesized that endogenous signals could be involved in PIP transcriptional regulation. To address this question, plants were submitted to forced darkness during their subjective photoperiod and compared with their control counterparts, which showed that some PIP1s and PIP2s have circadian regulation while others did not. Promoter analysis revealed that a large number of hormone, light, stress response and circadian elements are present. Finally, involvement of aquaporins is supported by the reduction of Kleaf by HgCl2 treatment.
Collapse
Affiliation(s)
- David Lopez
- Clermont Université, Université Blaise Pascal, UMR547 PIAF, BP 10448, F-63000 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Flexas J, Scoffoni C, Gago J, Sack L. Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3965-81. [PMID: 24123453 DOI: 10.1093/jxb/ert319] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Two highly contrasting variables summarizing the efficiency of transport of materials within the leaf are recognized as playing central roles in determining gas exchange and plant performance. This paper summarizes current approaches for the measurement of mesophyll conductance to CO2 (g m) and leaf hydraulic conductance (K leaf) and addresses the physiological integration of these parameters. First, the most common methods to determine g m and K leaf are summarized. Next, novel data compilation is analysed, which indicates that, across diverse species, g m is strongly linked with gas exchange parameters such as net CO2 assimilation (A area) and stomatal conductance (g s), and with K leaf, independently of leaf vein length per leaf area. Based on their parallel responses to a number of environmental variables, this review proposes that g m is linked to the outside-xylem but not to the xylem component of K leaf. Further, a mechanistic hypothesis is proposed to explain the interactions among all these and other physiological parameters. Finally, the possibility of estimating g m based on this hypothesis was tested using a regression analysis and a neurofuzzy logic approach. These approaches enabled the estimation of g m of given species from K leaf and leaf mass per area, providing a higher predictive power than from either parameter alone. The possibility of estimating g m from measured K leaf or vice-versa would result in a rapid increase in available data. Studies in which g m, K leaf, and leaf mass per area are simultaneously determined are needed in order to confirm and strengthen predictive and explanatory models for these parameters and importantly improve resolution of the integrated hydraulic-stomatal-photosynthetic system.
Collapse
Affiliation(s)
- Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07121 Palma de Mallorca, Illes Balears, Spain
| | | | | | | |
Collapse
|
23
|
Prado K, Maurel C. Regulation of leaf hydraulics: from molecular to whole plant levels. FRONTIERS IN PLANT SCIENCE 2013; 4:255. [PMID: 23874349 PMCID: PMC3711007 DOI: 10.3389/fpls.2013.00255] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 06/24/2013] [Indexed: 05/18/2023]
Abstract
The water status of plant leaves is dependent on both stomatal regulation and water supply from the vasculature to inner tissues. The present review addresses the multiple physiological and mechanistic facets of the latter process. Inner leaf tissues contribute to at least a third of the whole resistance to water flow within the plant. Physiological studies indicated that leaf hydraulic conductance (K leaf) is highly dependent on the anatomy, development and age of the leaf and can vary rapidly in response to physiological or environmental factors such as leaf hydration, light, temperature, or nutrient supply. Differences in venation pattern provide a basis for variations in K leaf during development and between species. On a short time (hour) scale, the hydraulic resistance of the vessels can be influenced by transpiration-induced cavitations, wall collapses, and changes in xylem sap composition. The extravascular compartment includes all living tissues (xylem parenchyma, bundle sheath, and mesophyll) that transport water from xylem vessels to substomatal chambers. Pharmacological inhibition and reverse genetics studies have shown that this compartment involves water channel proteins called aquaporins (AQPs) that facilitate water transport across cell membranes. In many plant species, AQPs are present in all leaf tissues with a preferential expression in the vascular bundles. The various mechanisms that allow adjustment of K leaf to specific environmental conditions include transcriptional regulation of AQPs and changes in their abundance, trafficking, and intrinsic activity. Finally, the hydraulics of inner leaf tissues can have a strong impact on the dynamic responses of leaf water potential and stomata, and as a consequence on plant carbon economy and leaf expansion growth. The manipulation of these functions could help optimize the entire plant performance and its adaptation to extreme conditions over short and long time scales.
Collapse
Affiliation(s)
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2Montpellier, France
| |
Collapse
|
24
|
Õunapuu E, Sellin A. Daily dynamics of leaf and soil-to-branch hydraulic conductance in silver birch (Betula pendula) measured in situ. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 68:104-10. [PMID: 23681117 DOI: 10.1016/j.plaphy.2013.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 04/11/2013] [Indexed: 05/13/2023]
Abstract
Daily dynamics of leaf (K(L)) and soil-to-branch hydraulic conductance (KS-B) was investigated in silver birch (Betula pendula Roth.) using evaporative flux method in situ: water potential drop was measured with a pressure chamber and evaporative flux was estimated as sap flux density measured with sap flow gauges. Canopy position had a significant (P < 0.001) effect on both K(L) and K(S-B). Upper-canopy leaves exhibited 1.7 and soil-to-branch pathway 2.3 times higher hydraulic efficiency than those for lower-canopy. K(L) varied significantly with time of day: K(L) for both upper- and lower-canopy leaves was lowest in the morning and rose gradually achieving maximal values in late afternoon (4.75 and 3.38 mmol m⁻² s⁻¹ MPa⁻¹, respectively). Relevant environmental factors affecting K(L) were photosynthetic photon flux density (Q(P)), air relative humidity (RH) and air temperature (T(A)). K(S-B) started rising in the morning and reached maximum in the lower canopy (1.44 mmol m⁻² s⁻¹ MPa⁻¹) at 1300 h and in the upper canopy (2.52 mmol m⁻² s⁻¹ MPa⁻¹) at 1500 h, decreasing afterwards. Environmental factors controlling K(S-B) were Ψ(S) and Q(P). The diurnal patterns of K(L) reflect a combination of environmental factors and endogenous rhythms. The temporal pattern of K(S-B) refers to daily up- and down-regulation of hydraulic conductance of water transport pathway from soil-root interface to leaves with respect to changing irradiance.
Collapse
Affiliation(s)
- Eele Õunapuu
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 21, 51014 Tartu, Estonia.
| | | |
Collapse
|
25
|
Galmés J, Ochogavía JM, Gago J, Roldán EJ, Cifre J, Conesa MÀ. Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: anatomical adaptations in relation to gas exchange parameters. PLANT, CELL & ENVIRONMENT 2013; 36:920-35. [PMID: 23057729 DOI: 10.1111/pce.12022] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In a previous study, important acclimation to water stress was observed in the Ramellet tomato cultivar (TR) from the Balearic Islands, related to an increase in the water-use efficiency through modifications in both stomatal (g(s)) and mesophyll conductances (g(m)). In the present work, the comparison of physiological and morphological traits between TR accessions grown with and without water stress confirmed that variability in the photosynthetic capacity was mostly explained by differences in the diffusion of CO2 through stomata and leaf mesophyll. Maximization of gm under both treatments was mainly achieved through adjustments in the mesophyll thickness and porosity and the surface area of chloroplasts exposed to intercellular airspace (S(c)). In addition, the lower g(m) /S(c) ratio for a given porosity in drought-acclimated plants suggests that the decrease in gm was due to an increased cell wall thickness. Stomatal conductance was also affected by drought-associated changes in the morphological properties of stomata, in an accession and treatment-dependent manner. The results confirm the presence of advantageous physiological traits in the response to drought stress in Mediterranean accessions of tomato, and relate them to particular changes in the leaf anatomical properties, suggesting specific adaptive processes operating at the leaf anatomical level.
Collapse
Affiliation(s)
- Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma, Spain.
| | | | | | | | | | | |
Collapse
|
26
|
Ocheltree TW, Nippert JB, Kirkham MB, Prasad PVV. Partitioning hydraulic resistance in Sorghum bicolor leaves reveals unique correlations with stomatal conductance during drought. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 41:25-36. [PMID: 32480963 DOI: 10.1071/fp12316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 05/31/2013] [Indexed: 06/11/2023]
Abstract
The hydraulic architecture of leaves represents the final path along which liquid water travels through the plant and comprises a significant resistance for water movement, especially for grasses. We partitioned leaf hydraulic resistance of six genotypes of Sorghum bicolor L. (Moench) into leaf specific hydraulic resistance within the large longitudinal veins (r*LV) and outside the large veins (r*OLV), and correlated these resistances with the response of stomatal conductance (gs) and photosynthesis (A) to drought. Under well-watered conditions, gs was tightly correlated with r*OLV (r2=0.95), but as soil moisture decreased, gs was more closely correlated with r*LV (r2=0.97). These results suggest that r*OLV limits maximum rates of gas exchange, but the ability to efficiently move water long distances (low r*LV) becomes more important for the maintenance of cell turgor and gas exchange as soil moisture declines. Hydraulic resistance through the leaf was negatively correlated with evapotranspiration (P<0.001) resulting in more conservative water use in genotypes with large leaf resistance. These results illustrate the functional significance of leaf resistance partitioning to declining soil moisture in a broadly-adapted cereal species.
Collapse
Affiliation(s)
- Troy W Ocheltree
- Department of Forest Resources, University of Minnesota, 1530 Cleveland Avenue N., St. Paul, MN 55108, USA
| | - Jesse B Nippert
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Mary Beth Kirkham
- Department of Agronomy, Kansas State University, 2004 Throckmorton Hall, Manhattan, KS 66506, USA
| | - P Vara V Prasad
- Department of Agronomy, Kansas State University, 2004 Throckmorton Hall, Manhattan, KS 66506, USA
| |
Collapse
|
27
|
Way DA, Domec JC, Jackson RB. Elevated growth temperatures alter hydraulic characteristics in trembling aspen (Populus tremuloides) seedlings: implications for tree drought tolerance. PLANT, CELL & ENVIRONMENT 2013; 36:103-15. [PMID: 22690910 DOI: 10.1111/j.1365-3040.2012.02557.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Although climate change will alter both soil water availability and evaporative demand, our understanding of how future climate conditions will alter tree hydraulic architecture is limited. Here, we demonstrate that growth at elevated temperatures (ambient +5 °C) affects hydraulic traits in seedlings of the deciduous boreal tree species Populus tremuloides, with the strength of the effect varying with the plant organ studied. Temperature altered the partitioning of hydraulic resistance, with greater resistance attributed to stems and less to roots in warm-grown seedlings (P < 0.02), and a 46% (but marginally significant, P = 0.08) increase in whole plant conductance at elevated temperature. Vulnerability to cavitation was greater in leaves grown at high than at ambient temperatures, but vulnerability in stems was similar between treatments. A soil-plant-atmosphere (SPA) model suggests that these coordinated changes in hydraulic physiology would lead to more frequent drought stress and reduced water-use efficiency in aspen that develop at warmer temperatures. Tissue-specific trade-offs in hydraulic traits in response to high growth temperatures would be difficult to detect when relying solely on whole plant measurements, but may have large-scale ecological implications for plant water use, carbon cycling and, possibly, plant drought survival.
Collapse
Affiliation(s)
- Danielle A Way
- Department of Biology Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| | | | | |
Collapse
|
28
|
Perrone I, Gambino G, Chitarra W, Vitali M, Pagliarani C, Riccomagno N, Balestrini R, Kaldenhoff R, Uehlein N, Gribaudo I, Schubert A, Lovisolo C. The grapevine root-specific aquaporin VvPIP2;4N controls root hydraulic conductance and leaf gas exchange under well-watered conditions but not under water stress. PLANT PHYSIOLOGY 2012; 160:965-77. [PMID: 22923680 PMCID: PMC3461569 DOI: 10.1104/pp.112.203455] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/21/2012] [Indexed: 05/04/2023]
Abstract
We functionally characterized the grape (Vitis vinifera) VvPIP2;4N (for Plasma membrane Intrinsic Protein) aquaporin gene. Expression of VvPIP2;4N in Xenopus laevis oocytes increased their swelling rate 54-fold. Northern blot and quantitative reverse transcription-polymerase chain reaction analyses showed that VvPIP2;4N is the most expressed PIP2 gene in root. In situ hybridization confirmed root localization in the cortical parenchyma and close to the endodermis. We then constitutively overexpressed VvPIP2;4N in grape 'Brachetto', and in the resulting transgenic plants we analyzed (1) the expression of endogenous and transgenic VvPIP2;4N and of four other aquaporins, (2) whole-plant, root, and leaf ecophysiological parameters, and (3) leaf abscisic acid content. Expression of transgenic VvPIP2;4N inhibited neither the expression of the endogenous gene nor that of other PIP aquaporins in both root and leaf. Under well-watered conditions, transgenic plants showed higher stomatal conductance, gas exchange, and shoot growth. The expression level of VvPIP2;4N (endogenous + transgene) was inversely correlated to root hydraulic resistance. The leaf component of total plant hydraulic resistance was low and unaffected by overexpression of VvPIP2;4N. Upon water stress, the overexpression of VvPIP2;4N induced a surge in leaf abscisic acid content and a decrease in stomatal conductance and leaf gas exchange. Our results show that aquaporin-mediated modifications of root hydraulics play a substantial role in the regulation of water flow in well-watered grapevine plants, while they have a minor role upon drought, probably because other signals, such as abscisic acid, take over the control of water flow.
Collapse
Affiliation(s)
| | | | - Walter Chitarra
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| | - Marco Vitali
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| | - Chiara Pagliarani
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| | - Nadia Riccomagno
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| | - Raffaella Balestrini
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| | - Ralf Kaldenhoff
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| | - Norbert Uehlein
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| | - Ivana Gribaudo
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| | - Andrea Schubert
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| | - Claudio Lovisolo
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| |
Collapse
|
29
|
Aasamaa KT, S Ber A. Light sensitivity of shoot hydraulic conductance in five temperate deciduous tree species. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:661-669. [PMID: 32480817 DOI: 10.1071/fp12047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/18/2012] [Indexed: 06/11/2023]
Abstract
The light sensitivity of the shoot hydraulic conductance in five temperate deciduous tree species was measured using two methods to clarify the role of light sensitivity and the suitability of the methods used to study it. The light sensitivity measured using a method that included an interruption of ≤10min in shoot light acclimation did not differ from that measured using a method with continuous illumination. The 'noncontinuous light' methods are suitable for measuring hydraulic conductance and its light response. Light sensitivity correlated with other leaf water traits as follows: positively with the ion-mediated increase in xylem hydraulic conductance; a relative decrease in the hydraulic conductance of the laminae in response to HgCl2; a relative change in stomatal conductance in response to changes in PAR intensity or atmospheric CO2 concentration, or to a decrease in air humidity or leaf water potential; and with instantaneous water use efficiency. The traits correlated negatively with shoot hydraulic conductance, stomatal conductance and relative increases in stomatal conductance in response to increases in leaf water potential. We suggest that high light sensitivity should be considered as one of the characteristics of conservative water use in trees. Low blue light increased shoot hydraulic conductance to a similar extent to moderate white light and twice as much as moderate red light. Blue light perception is important in the light sensitivity mechanism.
Collapse
Affiliation(s)
- Kr T Aasamaa
- University of Helsinki, Department of Biosciences, Plant Biology, PO Box 65, Helsinki 00014, Finland
| | - Anu S Ber
- University of Tartu, Institute of Ecology and Earth Sciences, Department of Botany, Lai 40, Tartu 51005, Estonia
| |
Collapse
|
30
|
Nardini A, Ped G, Salleo S. Alternative methods for scaling leaf hydraulic conductance offer new insights into the structure-function relationships of sun and shade leaves. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:394-401. [PMID: 32480791 DOI: 10.1071/fp12020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 03/15/2012] [Indexed: 06/11/2023]
Abstract
Hydraulic conductance (Kleaf) and morpho-anatomical parameters were measured in sun and shade Quercus ilex L. (holm oak) leaves. Sun leaves had lower surface area (Aleaf) and volume (Vleaf) and higher specific mass (leaf mass per area, LMA) than shade leaves. Transpiration rate and Kleaf scaled by Aleaf (Kleaf_area) were 2-fold higher in sun than in shade leaves. Kleaf_area was not correlated with vein density or stomatal density, which were found to be similar in the two leaf types. Values of Kleaf scaled by Vleaf or leaf dry weight (Kleaf_dw) were only 40% higher in sun than in shade leaves, suggesting that structural changes of Holm oak leaves acclimating to different light intensities enhance water transport to the unit evaporating leaf surface area, while maintaining more constant hydraulic supply to mesophyll cells and carbon costs of the water transport system. Sun leaves had higher Kleaf_dw and LMA than shade ones, indicating that high LMA resulted from resource allocation involved in both water transport and structural rigidity. Future studies of the intra- and inter-specific variability of mass-based hydraulic efficiency might provide important insights into leaf hydraulics and carbon economy. Kleaf_dw might prove to be an important driver of plant acclimation and adaptation to the environment.
Collapse
Affiliation(s)
- Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italia
| | - Giulia Ped
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italia
| | - Sebastiano Salleo
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italia
| |
Collapse
|
31
|
Guyot G, Scoffoni C, Sack L. Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control. PLANT, CELL & ENVIRONMENT 2012; 35:857-71. [PMID: 22070647 DOI: 10.1111/j.1365-3040.2011.02458.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The leaf is a hydraulic bottleneck, accounting for a large part of plant resistance. Thus, the leaf hydraulic conductance (K(leaf) ) is of key importance in determining stomatal conductance (g(s) ) and rates of gas exchange. Previous studies showed that K(leaf) is dynamic with leaf water status and irradiance. For four species, we tested the combined impacts of these factors on K(leaf) and on g(s) . We determined responses of K(leaf) and g(s) to declining leaf water potential (Ψ(leaf) ) under low and high irradiance (<6 and >900 µmol photons m(-2) s(-1) photosynthetically active radiation, respectively). We hypothesized greater K(leaf) vulnerability under high irradiance. We also hypothesized that K(leaf) and g(s) would be similar in their responses to either light or dehydration: similar light-responses of K(leaf) and g(s) would stabilize Ψ(leaf) across irradiances for leaves transpiring at a given vapour pressure deficit, and similar dehydration responses would arise from the control of stomata by Ψ(leaf) or a correlated signal. For all four species, the K(leaf) light response declined from full hydration to turgor loss point. The K(leaf) and g(s) differed strongly in their light- and dehydration responses, supporting optimization of hydraulic transport across irradiances, and semi-independent, flexible regulation of liquid and vapour phase water transport with leaf water status.
Collapse
Affiliation(s)
- Gaëlle Guyot
- Université Bordeaux 1, Bâtiment B2 Avenue des Facultés, 33405 Talence, France Department of Ecology and Evolution, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
32
|
Baaziz KB, Lopez D, Rabot A, Combes D, Gousset A, Bouzid S, Cochard H, Sakr S, Venisse JS. Light-mediated K(leaf) induction and contribution of both the PIP1s and PIP2s aquaporins in five tree species: walnut (Juglans regia) case study. TREE PHYSIOLOGY 2012; 32:423-434. [PMID: 22544048 DOI: 10.1093/treephys/tps022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Understanding the response of leaf hydraulic conductance (K(leaf)) to light is a challenge in elucidating plant-water relationships. Recent data have shown that the effect of light on K(leaf) is not systematically related to aquaporin regulation, leading to conflicting conclusions. Here we investigated the relationship between light, K(leaf), and aquaporin transcript levels in five tree species (Juglans regia L., Fagus sylvatica L., Quercus robur L., Salix alba L. and Populus tremula L.) grown in the same environmental conditions, but differing in their K(leaf) responses to light. Moreover, the K(leaf) was measured by two independent methods (high-pressure flow metre (HPFM) and evaporative flux method (EFM)) in the most (J. regia) and least (S. alba) responsive species and the transcript levels of aquaporins were analyzed in perfused and unperfused leaves. Here, we found that the light-induced K(leaf) value was closely related to stronger expression of both the PIP1 and PIP2 aquaporin genes in walnut (J. regia), but to stimulation of PIP1 aquaporins alone in F. sylvatica and Q. robur. In walnut, all newly identified aquaporins were found to be upregulated in the light and downregulated in the dark, further supporting the relationship between the light-mediated induction of K(leaf) and aquaporin expression in walnut. We also demonstrated that the K(leaf) response to light was quality-dependent, K(leaf) being 60% lower in the absence of blue light. This decrease in K(leaf) was correlated with strong downregulation of three PIP2 aquaporins and of all the PIP1 aquaporins tested. These data support a relationship between light-mediated K(leaf) regulation and the abundance of aquaporin transcripts in the walnut tree.
Collapse
Affiliation(s)
- Khaoula Ben Baaziz
- Clermont Université, Université Blaise Pascal, UMR547 PIAF, BP 10448, F-63000 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hachez C, Veselov D, Ye Q, Reinhardt H, Knipfer T, Fricke W, Chaumont F. Short-term control of maize cell and root water permeability through plasma membrane aquaporin isoforms. PLANT, CELL & ENVIRONMENT 2012; 35:185-98. [PMID: 21950760 DOI: 10.1111/j.1365-3040.2011.02429.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although it is widely accepted that aquaporins are involved in the regulation of root water uptake, the role of specific isoforms in this process is poorly understood. The mRNA expression and protein level of specific plasma membrane intrinsic proteins (PIPs) were analysed in Zea mays in relation to cell and root hydraulic conductivity. Plants were analysed during the day/night period, under different growth conditions (aeroponics/hydroponics) and in response to short-term osmotic stress applied through polyethylene glycol (PEG). Higher protein levels of ZmPIP1;2, ZmPIP2;1/2;2, ZmPIP2;5 and ZmPIP2;6 during the day coincided with a higher water permeability of root cortex cells during the day compared with night period. Similarly, plants which were grown under aeroponic conditions and which developed a hypodermis ('exodermis') with Casparian bands, effectively forcing more water along a membranous uptake path across roots, showed increased levels of ZmPIP2;5 and ZmPIP1;2 in the rhizodermis and exodermis. When PEG was added to the root medium (2-8 h), expression of PIPs and cell water permeability in roots increased. These data support a role of specific PIP isoforms, in particular ZmPIP1;2 and ZmPIP2;5, in regulating root water uptake and cortex cell hydraulic conductivity in maize.
Collapse
Affiliation(s)
- Charles Hachez
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | |
Collapse
|
34
|
Scoffoni C, McKown AD, Rawls M, Sack L. Dynamics of leaf hydraulic conductance with water status: quantification and analysis of species differences under steady state. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:643-58. [PMID: 22016424 PMCID: PMC3254676 DOI: 10.1093/jxb/err270] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/20/2011] [Accepted: 07/25/2011] [Indexed: 05/02/2023]
Abstract
Leaf hydraulic conductance (K(leaf)) is a major determinant of photosynthetic rate in well-watered and drought-stressed plants. Previous work assessed the decline of K(leaf) with decreasing leaf water potential (Ψ(leaf)), most typically using rehydration kinetics methods, and found that species varied in the shape of their vulnerability curve, and that hydraulic vulnerability correlated with other leaf functional traits and with drought sensitivity. These findings were tested and extended, using a new steady-state evaporative flux method under high irradiance, and the function for the vulnerability curve of each species was determined individually using maximum likelihood for 10 species varying strongly in drought tolerance. Additionally, the ability of excised leaves to recover in K(leaf) with rehydration was assessed, and a new theoretical framework was developed to estimate how rehydration of measured leaves may affect estimation of hydraulic parameters. As hypothesized, species differed in their vulnerability function. Drought-tolerant species showed shallow linear declines and more negative Ψ(leaf) at 80% loss of K(leaf) (P(80)), whereas drought-sensitive species showed steeper, non-linear declines, and less negative P(80). Across species, the maximum K(leaf) was independent of hydraulic vulnerability. Recovery of K(leaf) after 1 h rehydration of leaves dehydrated below their turgor loss point occurred only for four of 10 species. Across species without recovery, a more negative P(80) correlated with the ability to maintain K(leaf) through both dehydration and rehydration. These findings indicate that resistance to K(leaf) decline is important not only in maintaining open stomata during the onset of drought, but also in enabling sustained function during drought recovery.
Collapse
Affiliation(s)
- Christine Scoffoni
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095-1606, USA.
| | | | | | | |
Collapse
|
35
|
Charra-Vaskou K, Mayr S. The hydraulic conductivity of the xylem in conifer needles (Picea abies and Pinus mugo). JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4383-4390. [PMID: 21593348 DOI: 10.1093/jxb/err157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Main resistances of the plant water transport system are situated in leaves. In contrast to angiosperm leaves, knowledge of conifer needle hydraulics and of the partitioning of resistances within needles is poor. A new technique was developed which enabled flow-meter measurements through needles embedded in paraffin and thus quantification of the specific hydraulic conductivity (K(s)) of the needle xylem. In Picea abies, xylem K(s) of needle and axes as well as in needles of different age were compared. In Pinus mugo, resistance partitioning within needles was estimated by measurements of xylem K(s) and leaf conductance (K(leaf), measured via 'rehydration kinetics'). Mean K(s) in P. abies needles was 3.5×10(-4) m(2) s(-1) MPa(-1) with a decrease in older needles, and over all similar to K(s) of corresponding axes xylem. In needles of P. mugo, K(s) was 0.9×10(-4) m(2) s(-1) MPa(-1), and 24% of total needle resistance was situated in the xylem. The results indicate species-specific differences in the hydraulic efficiency of conifer needle xylem. The vascular section of the water transport system is a minor but relevant resistance in needles.
Collapse
Affiliation(s)
- Katline Charra-Vaskou
- Department of Botany, University of Innsbruck, Sternwartestr. 15, A-6020 Innsbruck, Austria
| | | |
Collapse
|
36
|
Taneda H, Tateno M. Leaf-lamina conductance contributes to an equal distribution of water delivery in current-year shoots of kudzu-vine shoot, Pueraria lobata. TREE PHYSIOLOGY 2011; 31:782-794. [PMID: 21813514 DOI: 10.1093/treephys/tpr072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Leaf-lamina resistance, R(L), accounts for a large fraction of branch resistance across a wide range of plant species. This work hypothesized that large R(L) is essential for distributing water equally to leaves on the shoot, and tested this hypothesis through theoretical analyses and measurements using over 10-m-long current-year shoots of kudzu vine, Pueraria lobata [Willd.] Ohwi. First, the hydraulic architecture and the distribution of the motive force achieving equal distribution of water delivery were theoretically obtained by simulating water flow through a hypothetical shoot comprising an axial pathway and several lateral pathways as a stem and leaves, respectively, in a kudzu-vine shoot. The model predicts that large resistance of the lateral pathway relative to that of the axial pathway is associated strongly with small variation in the hydraulic conductance of a pathway from the base of the axial pathways to the lateral pathway among the nodes, rendering water delivery to each lateral pathway equal under small variation in motive force for water flow. For the kudzu-vine shoot, the measured ratio of the lateral (a petiole) to the axial (a stem) resistance was 115. When R(L) was added to the lateral pathway, the ratio increased to 1136. According to the model prediction, these values imply that the hydraulic conductance of a pathway comprising a stem and a petiole, K(BP), is favored strongly at the basal nodes, while the hydraulic conductance of a pathway including a stem, a petiole and a lamina, K(SL), is slightly different across the nodes. For the shoots with leaf lamina, the diurnal change in transpiration rate was not different between the leaves on the three nodes dividing the shoot into four parts. K(SL) was not related significantly to node number. Conversely, K(BP) at the distal node was ~0.06-fold that at the basal node. Furthermore, the motive force for water flow should vary by 6.64-fold among nodes to compensate for the favored distribution of K(BP), which is an unrealistic value. These results indicate that R(L) contributes largely to an equal distribution of water delivery in a shoot, supporting our hypothesis.
Collapse
Affiliation(s)
- Haruhiko Taneda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
37
|
Sellin A, Sack L, Õunapuu E, Karusion A. Impact of light quality on leaf and shoot hydraulic properties: a case study in silver birch (Betula pendula). PLANT, CELL & ENVIRONMENT 2011; 34:1079-87. [PMID: 21414012 DOI: 10.1111/j.1365-3040.2011.02306.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Responses of leaf and shoot hydraulic conductance to light quality were examined on shoots of silver birch (Betula pendula), cut from lower ('shade position') and upper thirds of the crowns ('sun position') of trees growing in a natural temperate forest stand. Hydraulic conductances of leaf blades (K(lb) ), petioles (K(P) ) and branches (i.e. leafless stem; K(B) ) were determined using a high pressure flow meter in steady state mode. The shoots were exposed to photosynthetic photon flux density of 200-250 µmol m⁻² s⁻¹ using white, blue or red light. K(lb) depended significantly on both light quality and canopy position (P<0.001), K(B) on canopy position (P<0.001) and exposure time (P=0.014), and none of the three factors had effect on K(P) . The highest values of K(lb) were recorded under the blue light (3.63 and 3.13×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹ for the sun and shade leaves, respectively), intermediate values under white light (3.37 and 2.46×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹ , respectively) and lowest values under red light (2.83 and 2.02×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹, respectively). Light quality has an important impact on leaf hydraulic properties, independently of light intensity or of total light energy, and the specific light receptors involved in this response require identification. Given that natural canopy shade depletes blue and red light, K(lb) may be decreased both by reduced fluence and shifts in light spectra, indicating the need for studies of the natural heterogeneity of K(lb) within and under canopies, and its impacts on gas exchange.
Collapse
Affiliation(s)
- Arne Sellin
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | | | | | | |
Collapse
|
38
|
Rockwell FE, Holbrook NM, Zwieniecki MA. Hydraulic conductivity of red oak (Quercus rubra L.) leaf tissue does not respond to light. PLANT, CELL & ENVIRONMENT 2011; 34:565-79. [PMID: 21309791 DOI: 10.1111/j.1365-3040.2011.02263.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The permeability of leaf tissue to water has been reported to increase under illumination, a response reputed to involve aquaporins. We studied this 'light response' in red oak (Quercus rubra L.), the species in which the phenomenon was first detected during measurements of leaf hydraulic conductance with the high-pressure flow meter (HPFM). In our HPFM measurements, we found that pre-conditioning leaves in darkness was not sufficient to bring them to their minimum conductance, which was attained only after an hour of submersion and pressurization. However, pre-conditioning leaves under anoxic conditions resulted in an immediate reduction in conductance. Leaves light- and dark-acclimated while on the tree showed no differences in the time course of HPFM measurement under illumination. We also studied the effect of light level and anoxia on rehydration kinetics, finding that anoxia slowed rehydration, but light had no effect either in the lab (rehydration under low light, high humidity) or on the tree (acclimation under high light, 10 min of dark prior to rehydration). We conclude that the declines in conductance observed in the HPFM must involve a resistance downstream of the extracellular air space, and that in red oak the hydraulic conductivity of leaf tissue is insensitive to light.
Collapse
Affiliation(s)
- F E Rockwell
- Department of Organismic and Evolutionary Biology Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
39
|
Fichot R, Chamaillard S, Depardieu C, Le Thiec D, Cochard H, Barigah TS, Brignolas F. Hydraulic efficiency and coordination with xylem resistance to cavitation, leaf function, and growth performance among eight unrelated Populus deltoidesxPopulus nigra hybrids. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2093-106. [PMID: 21193576 DOI: 10.1093/jxb/erq415] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tests were carried out to determine whether variations in the hydraulic architecture of eight Populus deltoides×Populus nigra genotypes could be related to variations in leaf function and growth performance. Measurements were performed in a coppice plantation on 1-year-old shoots under optimal irrigation. Hydraulic architecture was characterized through estimates of hydraulic efficiency (the ratio of conducting sapwood area to leaf area, A(X):A(L); leaf- and xylem-specific hydraulic conductance of defoliated shoots, k(SL) and k(SS), respectively; apparent whole-plant leaf-specific hydraulic conductance, k(plant)) and xylem safety (water potential inducing 50% loss in hydraulic conductance). The eight genotypes spanned a significant range of k(SL) from 2.63 kg s(-1) m(-2) MPa(-1) to 4.18 kg s(-1) m(-2) MPa(-1), variations being mostly driven by k(SS) rather than A(X):A(L). There was a strong trade-off between hydraulic efficiency and xylem safety. Values of k(SL) correlated positively with k(plant), indicating that high-pressure flowmeter (HPFM) measurements of stem hydraulic efficiency accurately reflected whole-plant water transport efficiency of field-grown plants at maximum transpiration rate. No clear relationship could be found between hydraulic efficiency and either net CO(2) assimilation rates, water-use efficiency estimates (intrinsic water-use efficiency and carbon isotope discrimination against (13)C), or stomatal characteristics (stomatal density and stomatal pore area index). Estimates of hydraulic efficiency were negatively associated with relative growth rate. This unusual pattern, combined with the trade-off observed between hydraulic efficiency and xylem safety, provides the rationale for the positive link already reported between relative growth rate and xylem safety among the same eight P. deltoides×P. nigra genotypes.
Collapse
Affiliation(s)
- Régis Fichot
- Université d'Orléans, UFR-Faculté des Sciences, UPRES EA 1207 Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), BP 6759, F-45067, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Sellin A, Õunapuu E, Karusion A. Experimental evidence supporting the concept of light-mediated modulation of stem hydraulic conductance. TREE PHYSIOLOGY 2010; 30:1528-35. [PMID: 21071503 DOI: 10.1093/treephys/tpq091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
It is a well-described phenomenon that plant leaves respond to changes in light intensity and duration by adjusting leaf hydraulic efficiency, and there is current consensus that up- or down-regulation of water channels (aquaporins) in the plasma membrane of the bundle sheath and mesophyll cells play a central role in the underlying mechanisms. Recently, experimental evidence has been provided also for light-mediated changes of stem hydraulic conductance (K(stem)) in field-grown laurel plants. This effect was attributed to differences in potassium ion concentration of xylem sap as a function of light conditions. In the present article, we report evidence obtained in silver birch (Betula pendula Roth), supporting the concept of light-mediated modulation of K(stem). Both canopy position (long-term effect) and current photosynthetic photon flux density (PPFD; short-term effect) had a significant impact (P < 0.001) on K(stem) measured in shoots taken from the lower (shade shoots) and upper (sun shoots) third of the crowns of ∼25-year-old trees growing in a natural forest stand. The shade shoots responded more sensitively to light manipulation: K(stem) increased by 51% in shade shoots and 26% in sun shoots when PPFD increased from 70 to 330 μmol m⁻² s⁻¹. In 4-year-old trees growing in a dense experimental plantation, K(stem), specific conductivity of branch-wood (k(bw)) and potassium ion concentration ([K(+)]) in xylem sap varied in accordance with canopy position (P < 0.001). Both K(stem) and k(bw) increased considerably with light availability, increasing within the tree crowns from bottom to top; there was a strong relationship between mean values of K(stem) and [K(+)] in hydraulically sampled branches.
Collapse
Affiliation(s)
- Arne Sellin
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia.
| | | | | |
Collapse
|
41
|
Trifilò P, Raimondo F, Lo Gullo MA, Nardini A, Salleo S. Hydraulic connections of leaves and fruit to the parent plant in Capsicum frutescens (hot pepper) during fruit ripening. ANNALS OF BOTANY 2010; 106:333-41. [PMID: 20525746 PMCID: PMC2908167 DOI: 10.1093/aob/mcq113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/29/2010] [Accepted: 04/26/2010] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS The hydraulic architecture and water relations of fruits and leaves of Capsicum frutescens were measured before and during the fruiting phase in order to estimate the eventual impact of xylem cavitation and embolism on the hydraulic isolation of fruits and leaves before maturation/abscission. METHODS Measurements were performed at three different growth stages: (1) actively growing plants with some flowers before anthesis (GS1), (2) plants with about 50 % fully expanded leaves and immature fruits (GS2) and (3) plants with mature fruits and senescing basal leaves (GS3). Leaf conductance to water vapour as well as leaf and fruit water potential were measured. Hydraulic measurements were made using both the high-pressure flow meter (HPFM) and the vacuum chamber (VC) technique. KEY RESULTS The hydraulic architecture of hot pepper plants during the fruiting phase was clearly addressed to favour water supply to growing fruits. Hydraulic measurements revealed that leaves of GS1 plants as well as leaves and fruit peduncles of GS2 plants were free from significant xylem embolism. Substantial increases in leaf petiole and fruit peduncle resistivity were recorded in GS3 plants irrespective of the hydraulic technique used. The higher fraction of resistivity measured using the VC technique compared with the HPFM technique was apparently due to conduit embolism. CONCLUSIONS The present study is the first to look at the hydraulics of leaves and fruits during growth and maturation through direct, simultaneous measurements of water status and xylem efficiency of both plant regions at different hours of the day.
Collapse
Affiliation(s)
- Patrizia Trifilò
- Dipartimento di Scienze della Vita "M. Malpighi", Università di Messina, Italy.
| | | | | | | | | |
Collapse
|
42
|
Sadok W, Sinclair TR. Transpiration response of 'slow-wilting' and commercial soybean (Glycine max (L.) Merr.) genotypes to three aquaporin inhibitors. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:821-9. [PMID: 19969533 PMCID: PMC2814113 DOI: 10.1093/jxb/erp350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 10/16/2009] [Accepted: 11/06/2009] [Indexed: 05/05/2023]
Abstract
The slow-wilting soybean [Glycine max (L.) Merr.] genotype, PI 416937, exhibits a limiting leaf hydraulic conductance for transpiration rate (TR) under high vapour pressure deficit (VPD). This genotype has a constant TR at VPD greater than 2 kPa, which may be responsible for its drought tolerance as a result of soil water conservation. However, the exact source of the hydraulic limitation between symplastic and apoplastic water flow in the leaf under high VPD conditions are not known for PI 416937. A comparison was made in the TR response to aquaporin (AQP) inhibitors between PI 416937 and N01-11136, a commercial genotype that has a linear TR response to VPD in the 1-3.5 kPa range. Three AQP inhibitors were tested: cycloheximide (CHX, a de novo synthesis inhibitor), HgCl(2), and AgNO(3). Dose-response curves for the decrease in TR following exposure to each inhibitor were developed. Decreases in TR of N01-11136 following treatment with inhibitors were up to 60% for CHX, 82% for HgCl(2), and 42% for AgNO(3). These results indicate that the symplastic pathway terminating in the guard cells of these soybean leaves may be at least as important as the apoplastic pathway for water flow in the leaf under high VPD. While the decrease in TR for PI 416937 was similar to that of N01-11136 following exposure to CHX and HgCl(2), TR of PI 416937 was insensitive to AgNO(3) exposure. These results indicate the possibility of a lack of a Ag-sensitive leaf AQP population in the slow-wilting line, PI 416937, and the presence of such a population in the commercial line, N01-11136.
Collapse
Affiliation(s)
| | - Thomas R. Sinclair
- Agronomy Physiology Laboratory, PO Box 110965, University of Florida, Gainesville, FL 32611-0965, USA
| |
Collapse
|
43
|
Postaire O, Tournaire-Roux C, Grondin A, Boursiac Y, Morillon R, Schäffner AR, Maurel C. A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis. PLANT PHYSIOLOGY 2010; 152:1418-30. [PMID: 20034965 PMCID: PMC2832249 DOI: 10.1104/pp.109.145326] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 12/21/2009] [Indexed: 05/18/2023]
Abstract
Aquaporins are channel proteins that facilitate the transport of water across plant cell membranes. In this work, we used a combination of pharmacological and reverse genetic approaches to investigate the overall significance of aquaporins for tissue water conductivity in Arabidopsis (Arabidopsis thaliana). We addressed the function in roots and leaves of AtPIP1;2, one of the most abundantly expressed isoforms of the plasma membrane intrinsic protein family. At variance with the water transport phenotype previously described in AtPIP2;2 knockout mutants, disruption of AtPIP1;2 reduced by 20% to 30% the root hydrostatic hydraulic conductivity but did not modify osmotic root water transport. These results document qualitatively distinct functions of different PIP isoforms in root water uptake. The hydraulic conductivity of excised rosettes (K(ros)) was measured by a novel pressure chamber technique. Exposure of Arabidopsis plants to darkness increased K(ros) by up to 90%. Mercury and azide, two aquaporin inhibitors with distinct modes of action, were able to induce similar inhibition of K(ros) by approximately 13% and approximately 25% in rosettes from plants grown in the light or under prolonged (11-18 h) darkness, respectively. Prolonged darkness enhanced the transcript abundance of several PIP genes, including AtPIP1;2. Mutant analysis showed that, under prolonged darkness conditions, AtPIP1;2 can contribute to up to approximately 20% of K(ros) and to the osmotic water permeability of isolated mesophyll protoplasts. Therefore, AtPIP1;2 can account for a significant portion of aquaporin-mediated leaf water transport. The overall work shows that AtPIP1;2 represents a key component of whole-plant hydraulics.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F–34060 Montpellier cedex 1, France (O.P., C.T.-R., A.G., Y.B., C.M.); Amélioration Génétique des Espèces à Multiplication Végétative, Unité Propre de Recherche CIRAD, Instituto Valenciano de Investigaciones Agrarias, 46113 Moncada, Valencia, Spain (R.M.); and Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany (A.R.S.)
| |
Collapse
|
44
|
Voicu MC, Zwiazek JJ. Inhibitor studies of leaf lamina hydraulic conductance in trembling aspen (Populus tremuloides Michx.) leaves. TREE PHYSIOLOGY 2010; 30:193-204. [PMID: 20022867 DOI: 10.1093/treephys/tpp112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The present study investigated leaf water transport properties in trembling aspen (Populus tremuloides) leaves. Leaf lamina hydraulic conductance (K(lam)) and stomatal conductance (g(s)) were drastically suppressed by NaF (a general metabolic inhibitor). In leaves treated with 0.2 mM HgCl(2) (an aquaporin blocker), K(lam) declined by 22% when the leaves were sampled in June but the decline was not significant when the leaves were sampled in August. The leaves sampled in June that transpired 30 mM beta-mercaptoethanol following mercury application showed similar K(lam) as those in control leaves transpiring distilled water. When leaves were pressure-infiltrated with 0.1 mM HgCl(2), K(lam) significantly declined by 25%. Atrazine (a photosystem II inhibitor) drastically reduced leaf net CO(2) uptake by the leaves from seedlings and mature trees but did not have any effect on K(lam) regardless of the irradiance at the leaf level during the K(lam) measurements. When PTS(3) (trisodium 3-hydroxy-5,8,10-pyrenetrisulphonate) apoplastic tracer was pressure-infiltrated inside the leaves, its concentration in the leaf exudates did not change from ambient light to high irradiance treatment and declined in the presence of HgCl(2) in the treatment solution. Trembling aspen K(lam) appears to be linked to leaf metabolism and is uncoupled from the short-term variations in photosynthesis. Aquaporin-mediated water transport does not appear to constitute the dominant pathway for the pressure-driven water flow in the leaves of trembling aspen trees.
Collapse
Affiliation(s)
- Mihaela C Voicu
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
45
|
Caquet B, Barigah TS, Cochard H, Montpied P, Collet C, Dreyer E, Epron D. Hydraulic properties of naturally regenerated beech saplings respond to canopy opening. TREE PHYSIOLOGY 2009; 29:1395-1405. [PMID: 19744973 DOI: 10.1093/treephys/tpp067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Enhanced sapling growth in advance regeneration requires gaps in the canopy, but is often delayed after canopy opening, because acclimation of saplings to the new environment is gradual and may last for several years. Canopy opening is expected to result in an increased transpiration because of a larger climatic demand and a higher stomatal conductance linked to the higher rates of photosynthesis. Therefore, we focused on the changes in water relations and the hydraulic properties of beech (Fagus sylvatica L.) saplings during 2 years after canopy opening. We tested the hypothesis that an increase in leaf-specific hydraulic conductance and a decrease in vulnerability to cavitation occur to sustain an enhanced transpiration. Hydraulic conductance of defoliated shoots, vulnerability to cavitation, size and density of xylem vessels as well as stomatal conductance were recorded on saplings growing in shade (S saplings) or in gaps created by opening the canopy (shade-to-light, SL saplings). Hydraulic conductance per unit cross-sectional area (K(AS)) did not differ in the shoots of S and SL saplings. But a higher ratio stem cross-sectional area/leaf area resulted in a higher leaf-specific hydraulic conductance of the shoots (K(AL)) of SL saplings. Contrary to expectations, vulnerability to cavitation increased transitorily in stems during the first year after canopy opening and no difference was observed between the two treatments in light-saturated stomatal conductance. During the second year, vulnerability to cavitation was similar in the S and SL saplings and light-saturated stomatal conductance increased in SL saplings. These results demonstrate a release of the hydraulic constraints after canopy opening with an adjustment of the ratio stem cross-sectional area/leaf area. But the larger vulnerability to cavitation during the first year could limit stomatal opening and therefore the ability of beech saplings to use the available light for photosynthesis and could therefore partly explain why the growth increase was delayed to the second growing season after canopy opening.
Collapse
Affiliation(s)
- Blandine Caquet
- INRA, UMR 1137 Ecologie et Ecophysiologie Forestières, F-54280 Champenoux, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Domec JC, Palmroth S, Ward E, Maier CA, Thérézien M, Oren R. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO(2) (free-air CO(2) enrichment) and N-fertilization. PLANT, CELL & ENVIRONMENT 2009; 32:1500-12. [PMID: 19558405 DOI: 10.1111/j.1365-3040.2009.02014.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We investigated how leaf hydraulic conductance (K(leaf)) of loblolly pine trees is influenced by soil nitrogen amendment (N) in stands subjected to ambient or elevated CO(2) concentrations (CO(2)(a) and CO(2)(e), respectively). We also examined how K(leaf) varies with changes in reference leaf water potential (Psi(leaf-ref)) and stomatal conductance (g(s-ref)) calculated at vapour pressure deficit, D of 1 kPa. We detected significant reductions in K(leaf) caused by N and CO(2)(e), but neither treatment affected pre-dawn or midday Psi(leaf). We also detected a significant CO(2)(e)-induced reduction in g(s-ref) and Psi(leaf-ref). Among treatments, the sensitivity of K(leaf) to Psi(leaf) was directly related to a reference K(leaf) (K(leaf-ref) computed at Psi(leaf-ref)). This liquid-phase response was reflected in a similar gas-phase response, with g(s) sensitivity to D proportional to g(s-ref). Because leaves represented a substantial component of the whole-tree conductance, reduction in K(leaf) under CO(2)(e) affected whole-tree water use by inducing a decline in g(s-ref). The consequences of the acclimation of leaves to the treatments were: (1) trees growing under CO(2)(e) controlled morning leaf water status less than CO(2)(a) trees resulting in a higher diurnal loss of K(leaf); (2) the effect of CO(2)(e) on g(s-ref) was manifested only during times of high soil moisture.
Collapse
Affiliation(s)
- Jean-Christophe Domec
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Voicu MC, Cooke JEK, Zwiazek JJ. Aquaporin gene expression and apoplastic water flow in bur oak (Quercus macrocarpa) leaves in relation to the light response of leaf hydraulic conductance. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:4063-75. [PMID: 19651684 PMCID: PMC2755026 DOI: 10.1093/jxb/erp239] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 07/09/2009] [Accepted: 07/13/2009] [Indexed: 05/18/2023]
Abstract
It has previously been shown that hydraulic conductance in bur oak leaves (Quercus macrocarpa Michx.), measured with the high pressure flow meter technique (HPFM), can significantly increase within 30 min following exposure to high irradiance. The present study investigated whether this increase could be explained by an increase in the cell-to-cell pathway and whether the response is linked to changes in the transcript level corresponding to aquaporin genes. Four cDNA sequences showing high similarity to members of the aquaporin gene family from other plant species were characterized from bur oak leaves and the expression levels of these cDNA sequences were examined in leaves by quantitative real-time PCR (QRT-PCR). No change was found in the relative transcript abundance corresponding to these four putative aquaporin genes in leaves with light-induced high hydraulic conductance (exposed to high irradiance) compared to leaves with low hydraulic conductance (exposed to low irradiance). However, in sun leaves that were exposed to different light levels prior to leaf collection (full sunlight, shade, and covered with aluminium foil for 16 h), the relative transcript levels of two of the putative aquaporin genes increased several-fold in shaded leaves compared to the sun-exposed or covered leaves. When the leaves were pressure-infiltrated with the apoplastic tracer dye trisodium 3-hydroxy-5,8,10-pyrenetrisulphonate (PTS(3), 0.02%), there was no change in the PTS(3) concentration of leaf exudates collected in ambient light or in high irradiance, but there was a small apoplastic acidification. There was also no change in PTS(3) concentration between the leaves infiltrated under high irradiance with 0.02% PTS(3) or with 0.1 mM HgCl(2) in 0.02% PTS(3). The results suggest that the putative aquaporin genes that were identified in the present study probably do not play a role in the light responses of hydraulic conductance at the transcript level, but they may function in regulating water homeostasis in leaves adapted to different light conditions. In addition, it is shown that high irradiance induced changes in the pH of the apoplast and that there does not appear to be a significant shift to the cell-to-cell mediated water transport in bur oak leaves exposed to high irradiance as measured by the apoplastic tracer dye.
Collapse
Affiliation(s)
- Mihaela C. Voicu
- Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Bldg., Edmonton, Alberta, Canada T6G 2E3
| | - Janice E. K. Cooke
- Department of Biological Science, University of Alberta, CW 460 Biological Sciences Bldg., Edmonton, Alberta, Canada T6G 2E9
| | - Janusz J. Zwiazek
- Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Bldg., Edmonton, Alberta, Canada T6G 2E3
| |
Collapse
|
48
|
Johnson DM, Woodruff DR, McCulloh KA, Meinzer FC. Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species. TREE PHYSIOLOGY 2009; 29:879-87. [PMID: 19429900 DOI: 10.1093/treephys/tpp031] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Adequate leaf hydraulic conductance (Kleaf) is critical for preventing transpiration-induced desiccation and subsequent stomatal closure that would restrict carbon gain. A few studies have reported midday depression of Kleaf (or petiole conductivity) and its subsequent recovery in situ, but the extent to which this phenomenon is universal is not known. The objectives of this study were to measure Kleaf, using a rehydration kinetics method, (1) in the laboratory (under controlled conditions) across a range of water potentials to construct vulnerability curves (VC) and (2) over the course of the day in the field along with leaf water potential and stomatal conductance (gs). Two broadleaf (one evergreen, Arbutus menziesii Pursh., and one deciduous, Quercus garryana Dougl.) and two coniferous species (Pinus ponderosa Dougl. and Pseudotsuga menziesii [Mirbel]) were chosen as representative of different plant types. In addition, Kleaf in the laboratory and leaf water potential in the field were measured for three tropical evergreen species (Protium panamense (Rose), Tachigalia versicolor Standley and L.O. Williams and Vochysia ferruginea Mart) to predict their daily changes in field Kleaf in situ. It was hypothesized that in the field, leaves would close their stomata at water potential thresholds at which Kleaf begins to decline sharply in laboratory-generated VC, thus preventing substantial losses of Kleaf. The temperate species showed a 15-66% decline in Kleaf by midday, before stomatal closure. Although there were substantial midday declines in Kleaf, recovery was nearly complete by late afternoon. Stomatal conductance began to decrease in Pseudotsuga, Pinus and Quercus once Kleaf began to decline; however, there was no detectable reduction in gs in Arbutus. Predicted Kleaf in the tropical species, based on laboratory-generated VC, decreased by 74% of maximum Kleaf in Tachigalia, but only 22-32% in Vochysia and Protium. The results presented here, from the previous work of the authors and from other published studies, were consistent with two different strategies regarding daily maintenance of Kleaf: (1) substantial loss and subsequent recovery or (2) a more conservative strategy of loss avoidance.
Collapse
Affiliation(s)
- D M Johnson
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA.
| | | | | | | |
Collapse
|
49
|
Gortan E, Nardini A, Gascó A, Salleo S. The hydraulic conductance of Fraxinus ornus leaves is constrained by soil water availability and coordinated with gas exchange rates. TREE PHYSIOLOGY 2009; 29:529-539. [PMID: 19203976 DOI: 10.1093/treephys/tpn053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Leaf hydraulic conductance (Kleaf) is known to be an important determinant of plant gas exchange and photosynthesis. Little is known about the long-term impact of different environmental factors on the hydraulic construction of leaves and its eventual consequences on leaf gas exchange. In this study, we investigate the impact of soil water availability on Kleaf of Fraxinus ornus L. as well as the influence of Kleaf on gas exchange rates and plant water status. With this aim, Kleaf, leaf conductance to water vapour (gL), leaf water potential (Psileaf) and leaf mass per area (LMA) were measured in F. ornus trees, growing in 21 different sites with contrasting water availability. Plants growing in arid sites had lower Kleaf, gL and Psileaf than those growing in sites with higher water availability. On the contrary, LMA was similar in the two groups. The Kleaf values recorded in sites with two different levels of soil water availability were constantly different from each other regardless of the amount of precipitation recorded over 20 days before measurements. Moreover, Kleaf was correlated with gL values. Our data suggest that down-regulation of Kleaf is a component of adaptation of plants to drought-prone habitats. Low Kleaf implies reduced gas exchange which may, in turn, influence the climatic conditions on a local/regional scale. It is concluded that leaf hydraulics and its changes in response to resource availability should receive greater attention in studies aimed at modelling biosphere-atmosphere interactions.
Collapse
Affiliation(s)
- Emmanuelle Gortan
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | | | | | | |
Collapse
|
50
|
Heinen RB, Ye Q, Chaumont F. Role of aquaporins in leaf physiology. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2971-85. [PMID: 19542196 DOI: 10.1093/jxb/erp171] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Playing a key role in plant growth and development, leaves need to be continuously supplied with water and carbon dioxide to fulfil their photosynthetic function. On its way through the leaf from the xylem to the stomata, water can either move through cell walls or pass from cell to cell to cross the different tissues. Although both pathways are probably used to some degree, evidence is accumulating that living cells contribute substantially to the overall leaf hydraulic conductance (K(leaf)). Transcellular water flow is facilitated and regulated by water channels in the membranes, named aquaporins (AQPs). This review addresses how AQP expression and activity effectively regulate the leaf water balance in normal conditions and modify the cell membrane water permeability in response to different environmental factors, such as irradiance, temperature, and water supply. The role of AQPs in leaf growth and movement, and in CO(2) transport is also discussed.
Collapse
Affiliation(s)
- Robert B Heinen
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 5-15, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|