1
|
Franzoni G, Spadafora ND, Sirangelo TM, Ferrante A, Rogers HJ. Biochemical and molecular changes in peach fruit exposed to cold stress conditions. MOLECULAR HORTICULTURE 2023; 3:24. [PMID: 37953307 PMCID: PMC10641970 DOI: 10.1186/s43897-023-00073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
Storage or transportation temperature is very important for preserving the quality of fruit. However, low temperature in sensitive fruit such as peach can induce loss of quality. Fruit exposed to a specific range of temperatures and for a longer period can show chilling injury (CI) symptoms. The susceptibility to CI at low temperature varies among cultivars and genetic backgrounds. Along with agronomic management, appropriate postharvest management can limit quality losses. The importance of correct temperature management during postharvest handling has been widely demonstrated. Nowadays, due to long-distance markets and complex logistics that require multiple actors, the management of storage/transportation conditions is crucial for the quality of products reaching the consumer.Peach fruit exposed to low temperatures activate a suite of physiological, metabolomic, and molecular changes that attempt to counteract the negative effects of chilling stress. In this review an overview of the factors involved, and plant responses is presented and critically discussed. Physiological disorders associated with CI generally only appear after the storage/transportation, hence early detection methods are needed to monitor quality and detect internal changes which will lead to CI development. CI detection tools are assessed: they need to be easy to use, and preferably non-destructive to avoid loss of products.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Natasha Damiana Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy.
| | - Tiziana Maria Sirangelo
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Division Biotechnologies and Agroindustry, 00123, Rome, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Hilary J Rogers
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| |
Collapse
|
2
|
Identifying the “Dangshan” Physiological Disease of Pear Woolliness Response via Feature-Level Fusion of Near-Infrared Spectroscopy and Visual RGB Image. Foods 2023; 12:foods12061178. [PMID: 36981105 PMCID: PMC10048714 DOI: 10.3390/foods12061178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
The “Dangshan” pear woolliness response is a physiological disease that causes large losses for fruit farmers and nutrient inadequacies.The cause of this disease is predominantly a shortage of boron and calcium in the pear and water loss from the pear. This paper used the fusion of near-infrared Spectroscopy (NIRS) and Computer Vision Technology (CVS) to detect the woolliness response disease of “Dangshan” pears. This paper employs the merging of NIRS features and image features for the detection of “Dangshan” pear woolliness response disease. Near-infrared Spectroscopy (NIRS) reflects information on organic matter containing hydrogen groups and other components in various biochemical structures in the sample under test, and Computer Vision Technology (CVS) captures image information on the disease. This study compares the results of different fusion models. Compared with other strategies, the fusion model combining spectral features and image features had better performance. These fusion models have better model effects than single-feature models, and the effects of these models may vary according to different image depth features selected for fusion modeling. Therefore, the model results of fusion modeling using different image depth features are further compared. The results show that the deeper the depth model in this study, the better the fusion modeling effect of the extracted image features and spectral features. The combination of the MLP classification model and the Xception convolutional neural classification network fused with the NIR spectral features and image features extracted, respectively, was the best combination, with accuracy (0.972), precision (0.974), recall (0.972), and F1 (0.972) of this model being the highest compared to the other models. This article illustrates that the accuracy of the “Dangshan” pear woolliness response disease may be considerably enhanced using the fusion of near-infrared spectra and image-based neural network features. It also provides a theoretical basis for the nondestructive detection of several techniques of spectra and pictures.
Collapse
|
3
|
Muto A, Bruno L, Madeo ML, Ludlow R, Ferrari M, Stimpson L, LoGiudice C, Picardi E, Ferrante A, Pasti L, Müller CT, Chiappetta AAC, Rogers HJ, Bitonti MB, Spadafora ND. Comparative transcriptomic profiling of peach and nectarine cultivars reveals cultivar-specific responses to chilled postharvest storage. FRONTIERS IN PLANT SCIENCE 2022; 13:1062194. [PMID: 36507427 PMCID: PMC9733835 DOI: 10.3389/fpls.2022.1062194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/07/2022] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Peach (Prunus persica (L.) Batsch,) and nectarine fruits (Prunus persica (L.) Batsch, var nectarine), are characterized by a rapid deterioration at room temperature. Therefore, cold storage is widely used to delay fruit post-harvest ripening and extend fruit commercial life. Physiological disorders, collectively known as chilling injury, can develop typically after 3 weeks of low-temperature storage and affect fruit quality. METHODS A comparative transcriptomic analysis was performed to identify regulatory pathways that develop before chilling injury symptoms are detectable using next generation sequencing on the fruits of two contrasting cultivars, one peach (Sagittaria) and one nectarine, (Big Top), over 14 days of postharvest cold storage. RESULTS There was a progressive increase in the number of differentially expressed genes between time points (DEGs) in both cultivars. More (1264) time point DEGs were identified in 'Big Top' compared to 'Sagittaria' (746 DEGs). Both cultivars showed a downregulation of pathways related to photosynthesis, and an upregulation of pathways related to amino sugars, nucleotide sugar metabolism and plant hormone signal transduction with ethylene pathways being most affected. Expression patterns of ethylene related genes (including biosynthesis, signaling and ERF transcription factors) correlated with genes involved in cell wall modification, membrane composition, pathogen and stress response, which are all involved later during storage in development of chilling injury. DISCUSSION Overall, the results show that common pathways are activated in the fruit of 'Big Top' nectarine and 'Sagittaria' peach in response to cold storage but include also differences that are cultivar-specific responses.
Collapse
Affiliation(s)
- Antonella Muto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Maria Letizia Madeo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Richard Ludlow
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Michele Ferrari
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Louise Stimpson
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Claudio LoGiudice
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Science, Università degli Studi di Milano, Milan, Italy
| | - Luisa Pasti
- Department of Environment and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | | | | | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Maria Beatrice Bitonti
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Natasha Damiana Spadafora
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Shi Y, Li BJ, Su G, Zhang M, Grierson D, Chen KS. Transcriptional regulation of fleshy fruit texture. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1649-1672. [PMID: 35731033 DOI: 10.1111/jipb.13316] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/22/2022] [Indexed: 05/24/2023]
Abstract
Fleshy fruit texture is a critically important quality characteristic of ripe fruit. Softening is an irreversible process which operates in most fleshy fruits during ripening which, together with changes in color and taste, contributes to improvements in mouthfeel and general attractiveness. Softening results mainly from the expression of genes encoding enzymes responsible for cell wall modifications but starch degradation and high levels of flavonoids can also contribute to texture change. Some fleshy fruit undergo lignification during development and post-harvest, which negatively affects eating quality. Excessive softening can also lead to physical damage and infection, particularly during transport and storage which causes severe supply chain losses. Many transcription factors (TFs) that regulate fruit texture by controlling the expression of genes involved in cell wall and starch metabolism have been characterized. Some TFs directly regulate cell wall targets, while others act as part of a broader regulatory program governing several aspects of the ripening process. In this review, we focus on advances in our understanding of the transcriptional regulatory mechanisms governing fruit textural change during fruit development, ripening and post-harvest. Potential targets for breeding and future research directions for the control of texture and quality improvement are discussed.
Collapse
Affiliation(s)
- Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Bai-Jun Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Guanqing Su
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Mengxue Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Donald Grierson
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Kun-Song Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
5
|
Huang Y, Zhang P, Liu W, Zhang Q, Li G, Shan Y, Zhu X. Understanding the volatile organic compounds of 1‐methylcyclopropylene fumigation and packaging on yellow‐fleshed peach via headspace‐gas chromatography‐ion mobility spectrometry and chemometric analyses. J Food Sci 2022; 87:4009-4026. [DOI: 10.1111/1750-3841.16277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Yunian Huang
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| | - Pei Zhang
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| | - Wei Liu
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| | - Qun Zhang
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| | - Gaoyang Li
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| | - Yang Shan
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| | - Xiangrong Zhu
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| |
Collapse
|
6
|
Abstract
The peach industry faces serious economic losses because of the short “green” life of the fruit at postharvest. In the present study, we investigated the effects of putrescine (PUT) application on the quality characteristics, pattern of ripening, storage behaviour and shelf life of peach fruit during low-temperature storage. The aqueous solution of PUT (0, 1, 2 and 3 mM) was applied to the peach trees at three distinctive stages of fruit growth and development. The fruits, harvested at the commercial stage of maturity, were stored at 1 ± 1 °C and 90 ± 2% relative humidity for 6 weeks. The data for fruit firmness, total soluble solids (SSC), titratable acidity (TA), ascorbic acid (AsA) content, rate of ethylene production, chilling injury (CI) index and colour perception were collected at harvest and then on a weekly basis throughout the storage period. The results showed that spray application of PUT significantly reduced the incidence of CI and reduced the rates of fruit softening, loss in fruit weight, SSC, TA, AsA content and fading of skin colour during storage, regardless of the doses of PUT applied, or the time of application. However, the positive effects on the quality characteristics of peach fruit, including CI, were more pronounced with the higher doses of PUT, specifically when applied at 2 mM. In conclusion, CI in peach fruit may be substantially alleviated by the spray application of 1–3 mM PUT during fruit growth without compromising the quality of the fruit for up to 6 weeks in low-temperature storage.
Collapse
|
7
|
Del Pozo T, Miranda S, Latorre M, Olivares F, Pavez L, Gutiérrez R, Maldonado J, Hinrichsen P, Defilippi BG, Orellana A, González M. Comparative Transcriptome Profiling in a Segregating Peach Population with Contrasting Juiciness Phenotypes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1598-1607. [PMID: 30632375 DOI: 10.1021/acs.jafc.8b05177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cold storage of fruit is one of the methods most commonly employed to extend the postharvest lifespan of peaches ( Prunus persica (L.) Batsch). However, fruit quality in this species is affected negatively by mealiness, a physiological disorder triggered by chilling injury after long periods of exposure to low temperatures during storage and manifested mainly as a lack of juiciness, which ultimately modifies the organoleptic properties of peach fruit. The aim of this study was to identify molecular components and metabolic processes underlying mealiness in susceptible and nonsusceptible segregants. Transcriptome and qRT-PCR profiling were applied to individuals with contrasting juiciness phenotypes in a segregating F2 population. Our results suggest that mealiness is a multiscale phenomenon, because juicy and mealy fruit display distinctive reprogramming processes affecting translational machinery and lipid, sugar, and oxidative metabolism. The candidate genes identified may be useful tools for further crop improvement.
Collapse
Affiliation(s)
- Talía Del Pozo
- Centro Tecnológico de Recursos Vegetales, Faculty of Sciences , Universidad Mayor , Santiago, Chile, Camino La Pirámide 5750 , Huechuraba , Santiago , Chile
- Laboratorio de Bioinformática y Expresión Génica , Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile , Av. El Líbano 5524 , Santiago , Chile
| | - Simón Miranda
- Centro Tecnológico de Recursos Vegetales, Faculty of Sciences , Universidad Mayor , Santiago, Chile, Camino La Pirámide 5750 , Huechuraba , Santiago , Chile
- Laboratorio de Genética Molecular Vegetal , INTA, Universidad de Chile , Av. El Líbano 5524 , Macul , Santiago , Chile
| | - Mauricio Latorre
- Laboratorio de Bioinformática y Expresión Génica , Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile , Av. El Líbano 5524 , Santiago , Chile
- FONDAP Center for Genome Regulation, Av. Blanco Encalada 2085 , Santiago , Chile
- Instituto de Ingeniería , Universidad de O'Higgins , Av. Libertador Bernardo O'Higgins 611 , Rancagua , Chile
- Mathomics, Center for Mathematical Modeling , Universidad de Chile , Av. Almirante Beauchef 851, Seventh Floor , Santiago , Chile
| | - Felipe Olivares
- Laboratorio de Bioinformática y Expresión Génica , Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile , Av. El Líbano 5524 , Santiago , Chile
| | - Leonardo Pavez
- Instituto de Ciencias Naturales , Universidad de Las Américas , Av. Manuel Montt 948 , Santiago , Chile
- Departamento de Ciencias Químicas y Biológicas , Universidad Bernardo O'Higgins , General Gana 1702 , Santiago , Chile
| | - Ricardo Gutiérrez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD) , University of Cologne , Cologne , Germany
| | - Jonathan Maldonado
- Laboratorio de Bioinformática y Expresión Génica , Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile , Av. El Líbano 5524 , Santiago , Chile
| | - Patricio Hinrichsen
- Laboratorio de Biotecnología , Instituto de Investigaciones Agropecuarias , INIA La Platina, Santa Rosa 11610 , Santiago , Chile
| | - Bruno G Defilippi
- Unidad de Poscosecha , Instituto de Investigaciones Agropecuarias , INIA La Platina, Santa Rosa 11610 , Santiago , Chile
| | - Ariel Orellana
- FONDAP Center for Genome Regulation, Av. Blanco Encalada 2085 , Santiago , Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida , Universidad Andrés Bello , Santiago , Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica , Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile , Av. El Líbano 5524 , Santiago , Chile
- FONDAP Center for Genome Regulation, Av. Blanco Encalada 2085 , Santiago , Chile
| |
Collapse
|
8
|
Genome re-sequencing reveals the evolutionary history of peach fruit edibility. Nat Commun 2018; 9:5404. [PMID: 30573726 PMCID: PMC6302090 DOI: 10.1038/s41467-018-07744-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 11/20/2018] [Indexed: 11/24/2022] Open
Abstract
Peach (Prunus persica) is an economically important fruit crop and a well-characterized model for studying Prunus species. Here we explore the evolutionary history of peach using a large-scale SNP data set generated from 58 high-coverage genomes of cultivated peach and closely related relatives, including 44 newly re-sequenced accessions and 14 accessions from a previous study. Our analyses suggest that peach originated about 2.47 Mya in southwest China in glacial refugia generated by the uplift of the Tibetan plateau. Our exploration of genomic selection signatures and demographic history supports the hypothesis that frugivore-mediated selection occurred several million years before the eventual human-mediated domestication of peach. We also identify a large set of SNPs and/or CNVs, and candidate genes associated with fruit texture, taste, size, and skin color, with implications for genomic-selection breeding in peach. Collectively, this study provides valuable information for understanding the evolution and domestication of perennial fruit tree crops. Peach is an economically important fruit crop. Here, the authors carry out a large-scale population genomics analysis of peach, describing its demographic history as well as genes associated with domestication and edibility traits.
Collapse
|
9
|
Bustamante CA, Brotman Y, Monti LL, Gabilondo J, Budde CO, Lara MV, Fernie AR, Drincovich MF. Differential lipidome remodeling during postharvest of peach varieties with different susceptibility to chilling injury. PHYSIOLOGIA PLANTARUM 2018; 163:2-17. [PMID: 29094760 DOI: 10.1111/ppl.12665] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/11/2017] [Accepted: 10/25/2017] [Indexed: 05/23/2023]
Abstract
Peaches ripen and deteriorate rapidly at room temperature. Therefore, refrigeration is used to slow these processes and to extend fruit market life; however, many fruits develop chilling injury (CI) during storage at low temperature. Given that cell membranes are likely sites of the primary effects of chilling, the lipidome of six peach varieties with different susceptibility to CI was analyzed under different postharvest conditions. By using liquid chromatography coupled to mass spectrometry (LC-MS), 59 lipid species were detected, including diacyl- and triacylglycerides. The decreases in fruit firmness during postharvest ripening were accompanied by changes in the relative amount of several plastidic glycerolipid and triacylglyceride species, which may indicate their use as fuels prior to fruit senescence. In addition, levels of galactolipids were also modified in fruits stored at 0°C for short and long periods, reflecting the stabilization of plastidic membranes at low temperature. When comparing susceptible and resistant varieties, the relative abundance of certain species of the lipid classes phosphatidylethanolamine, phosphatidylcholine and digalactosyldiacylglycerol correlated with the tolerance to CI, reflecting the importance of the plasma membrane in the development of CI symptoms and allowing the identification of possible lipid markers for chilling resistance. Finally, transcriptional analysis of genes involved in galactolipid metabolism revealed candidate genes responsible for the observed changes after cold exposure. When taken together, our results highlight the importance of plastids in the postharvest physiology of fruits and provide evidence that lipid composition and metabolism have a profound influence on the cold response.
Collapse
Affiliation(s)
- Claudia A Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, PO Box 653, Beersheva, 8410501, Israel
| | - Laura L Monti
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | - Julieta Gabilondo
- Estación Experimental San Pedro, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional n° 9 Km 170, San Pedro, Argentina
| | - Claudio O Budde
- Estación Experimental San Pedro, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional n° 9 Km 170, San Pedro, Argentina
| | - María V Lara
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Germany
| | - María F Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| |
Collapse
|
10
|
Tanou G, Minas IS, Scossa F, Belghazi M, Xanthopoulou A, Ganopoulos I, Madesis P, Fernie A, Molassiotis A. Exploring priming responses involved in peach fruit acclimation to cold stress. Sci Rep 2017; 7:11358. [PMID: 28900303 PMCID: PMC5595836 DOI: 10.1038/s41598-017-11933-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/01/2017] [Indexed: 01/11/2023] Open
Abstract
Cold storage of fruit may induce the physiological disorder chilling injury (CI); however, the molecular basis of CI development remains largely unexplored. Simulated conditions of CI priming and suppression provided an interesting experimental system to study cold response in fruit. Peaches (cv. June Gold) at the commercial harvest (CH) or tree-ripe (TR) stages were immediately exposed to cold treatment (40 d, 0 °C) and an additional group of CH fruits were pre-conditioned 48 h at 20 °C prior to low-temperature exposure (pre-conditioning, PC). Following cold treatment, the ripening behaviour of the three groups of fruits was analysed (3 d, 20 °C). Parallel proteomic, metabolomic and targeted transcription comparisons were employed to characterize the response of fruit to CI expression. Physiological data indicated that PC suppressed CI symptoms and induced more ethylene biosynthesis than the other treatments. Differences in the protein and metabolic profiles were identified, both among treatments and before and after cold exposure. Transcriptional expression patterns of several genes were consistent with their protein abundance models. Interestingly, metabolomic and gene expression results revealed a possible role for valine and/or isoleucine in CI tolerance. Overall, this study provides new insights into molecular changes during fruit acclimation to cold environment.
Collapse
Affiliation(s)
- Georgia Tanou
- Department of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Ioannis S Minas
- Department of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
- Western Colorado Research Center at Orchard Mesa, Colorado State University, Grand Junction, CO, USA
| | - Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per la Frutticoltura (CREA-FRU), Roma, Italy
| | - Maya Belghazi
- Proteomics Analysis Center (CAPM), Faculty of Medicine, 13916, Marseilles, France
| | | | | | | | - Alisdair Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
| | - Athanassios Molassiotis
- Department of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
11
|
Wang K, Yin XR, Zhang B, Grierson D, Xu CJ, Chen KS. Transcriptomic and metabolic analyses provide new insights into chilling injury in peach fruit. PLANT, CELL & ENVIRONMENT 2017; 40:1531-1551. [PMID: 28337785 DOI: 10.1111/pce.12951] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 02/21/2017] [Accepted: 02/26/2017] [Indexed: 05/18/2023]
Abstract
Low temperature conditioning (LTC) alleviates peach fruit chilling injury but the underlying molecular basis is poorly understood. Here, changes in transcriptome, ethylene production, flesh softening, internal browning and membrane lipids were compared in fruit maintained in constant 0 °C and LTC (pre-storage at 8 °C for 5 d before storage at 0 °C). Low temperature conditioning resulted in a higher rate of ethylene production and a more rapid flesh softening as a result of higher expression of ethylene biosynthetic genes and a series of cell wall hydrolases. Reduced internal browning of fruit was observed in LTC, with lower transcript levels of polyphenol oxidase and peroxidase, but higher lipoxygenase. Low temperature conditioning fruit also showed enhanced fatty acid content, increased desaturation, higher levels of phospholipids and a preferential biosynthesis of glucosylceramide. Genes encoding cell wall hydrolases and lipid metabolism enzymes were coexpressed with differentially expressed ethylene response factors (ERFs) and contained ERF binding elements in their promoters. In conclusion, LTC is a special case of cold acclimation which increases ethylene production and, operating through ERFs, promotes both softening and changes in lipid composition and desaturation, which may modulate membrane stability, reducing browning and contributing to alleviation of peach fruit chilling injury.
Collapse
Affiliation(s)
- Ke Wang
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xue-Ren Yin
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Bo Zhang
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Don Grierson
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Chang-Jie Xu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kun-Song Chen
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
12
|
Contreras C, Schwab W, Mayershofer M, González-Agüero M, Defilippi BG. Volatile Compound and Gene Expression Analyses Reveal Temporal and Spatial Production of LOX-Derived Volatiles in Pepino (Solanum muricatum Aiton) Fruit and LOX Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6049-6057. [PMID: 28669186 DOI: 10.1021/acs.jafc.7b01569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lipoxygenase (LOX) is an important contributor to aroma compounds in most fresh produce; however, little is known about the LOX pathway in pepino (Solanum muricatum Aiton) fruit. We explored the LOX aroma compounds produced by the flesh and the peel and identified eight putative LOX genes expressed in both tissues during fruit growth and development during two consecutive seasons. This study shows that pepino produces C5, C6, and C9 LOX-derived compounds. Odorant C9 volatiles were produced during immature stages with a concomitant decrease when the fruit ripens, whereas C5 and C6 compounds were formed throughout ripening. trans-2-Hexenal and its alcohol were produced in the peel, but not detected in the flesh. The expression of three genes, SmLOXD (putative 13-LOX), SmLOXB, and SmLOX5-like1 (putative 9-LOXs), increased during fruit ripening. These genes may account for aroma volatiles in pepino. Here, we discuss the possible roles of individual LOX genes in pepino.
Collapse
Affiliation(s)
- Carolina Contreras
- Institute for Agricultural Research, INIA-La Platina , Postharvest Unit, Santa Rosa, 11610 Santiago, Chile
| | - Wilfried Schwab
- Center of Life and Food Science Weihenstephan, Biotechnology of Natural Products, Technical University of Munich , Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Mechthild Mayershofer
- Center of Life and Food Science Weihenstephan, Biotechnology of Natural Products, Technical University of Munich , Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Mauricio González-Agüero
- Institute for Agricultural Research, INIA-La Platina , Postharvest Unit, Santa Rosa, 11610 Santiago, Chile
| | - Bruno G Defilippi
- Institute for Agricultural Research, INIA-La Platina , Postharvest Unit, Santa Rosa, 11610 Santiago, Chile
| |
Collapse
|
13
|
Olivares D, Contreras C, Muñoz V, Rivera S, González-Agüero M, Retamales J, Defilippi BG. Relationship among color development, anthocyanin and pigment-related gene expression in 'Crimson Seedless' grapes treated with abscisic acid and sucrose. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:286-297. [PMID: 28412633 DOI: 10.1016/j.plaphy.2017.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/17/2017] [Accepted: 04/05/2017] [Indexed: 05/09/2023]
Abstract
'Crimson Seedless' is one of the most important table grape varieties in Chile, but under certain environmental conditions, the fruit exhibits inadequate red color development, causing economic losses due to lower product quality. The use of plant growth regulators, such as abscisic acid (ABA) and ethylene, during development increases the anthocyanin content of the skin, improving the color of the berry. Recently, sucrose has been identified as a signaling molecule capable of regulating the expression of genes of the anthocyanin biosynthesis pathway. The aim of this study was to analyze the effect of application of ABA and/or sucrose on color development and their relationship with anthocyanin metabolism. Applications of ABA (400 ppm or 200 ppm) and/or sucrose (90 mM) were performed close to the véraison stage. During development and at harvest, quality attributes such as berry firmness, total soluble solids and titratable acidity were not affected by these treatments. Increased red color development was observed in fruits treated with ABA and/or sucrose, due to accumulation of anthocyanins. Fruits subjected to sucrose treatment showed higher levels of anthocyanins than untreated fruits but lower levels than fruits treated with ABA. Increased expression of genes involved in anthocyanin biosynthesis was observed in ABA- and sucrose-treated fruits compared to untreated fruits. Based on these findings, we demonstrated that sucrose improved fruit color development by increasing synthesis and accumulation of anthocyanins, thus allowing earlier harvests and improving table grape quality.
Collapse
Affiliation(s)
- Daniela Olivares
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago, Chile
| | - Carolina Contreras
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago, Chile
| | - Victoria Muñoz
- Universidad Santo Tomás, Facultad de Ciencias, Ejército 217, Santiago, Chile
| | - Sebastián Rivera
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago, Chile
| | | | | | - Bruno G Defilippi
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago, Chile.
| |
Collapse
|
14
|
Pons C, Martí C, Forment J, Crisosto CH, Dandekar AM, Granell A. A genetic genomics-expression approach reveals components of the molecular mechanisms beyond the cell wall that underlie peach fruit woolliness due to cold storage. PLANT MOLECULAR BIOLOGY 2016; 92:483-503. [PMID: 27714490 DOI: 10.1007/s11103-016-0526-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 08/06/2016] [Indexed: 05/14/2023]
Abstract
Peach fruits subjected to prolonged cold storage (CS) to delay decay and over-ripening often develop a form of chilling injury (CI) called mealiness/woolliness (WLT), a flesh textural disorder characterized by lack of juiciness. Transcript profiles were analyzed after different lengths of CS and subsequent shelf life ripening (SLR) in pools of fruits from siblings of the Pop-DG population with contrasting sensitivity to develop WLT. This was followed by quantitative PCR on pools and individual lines of the Pop-DG population to validate and extend the microarray results. Relative tolerance to WLT development during SLR was related to the fruit's ability to recover from cold and the reactivation of normal ripening, processes that are probably regulated by transcription factors involved in stress protection, stress recovery and induction of ripening. Furthermore, our results showed that altered ripening in WLT fruits during shelf life is probably due, in part, to cold-induced desynchronization of the ripening program involving ethylene and auxin hormonal regulation of metabolism and cell wall. In addition, we found strong correlation between expression of RNA translation and protein assembly genes and the visual injury symptoms.
Collapse
Affiliation(s)
- Clara Pons
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain.
| | - Cristina Martí
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain
| | - Carlos H Crisosto
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain
| |
Collapse
|
15
|
Genero M, Gismondi M, Monti LL, Gabilondo J, Budde CO, Andreo CS, Lara MV, Drincovich MF, Bustamante CA. Cell wall-related genes studies on peach cultivars with differential susceptibility to woolliness: looking for candidates as indicators of chilling tolerance. PLANT CELL REPORTS 2016; 35:1235-46. [PMID: 26905727 DOI: 10.1007/s00299-016-1956-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/15/2016] [Indexed: 05/07/2023]
Abstract
The results obtained indicate that a β-xylosidase gene may act as good indicator of chilling tolerance and provide new insights into the complex issue of peach fruit woolliness. The storage of peaches at low temperatures for prolonged periods can induce a form of chilling injury (CI) called woolliness, characterized by a lack of juiciness and a mealy texture. As this disorder has been associated with abnormal cell wall dismantling, the levels of 12 transcripts encoding proteins involved in cell wall metabolism were analysed in cultivars with contrasting susceptibility to this disorder selected from five melting flesh peach cultivars. The resistant ('Springlady') and susceptible ('Flordaking') cultivars displayed differences in the level of expression of some of the selected genes during fruit softening and in woolly versus non-woolly fruits. From these genes, the level of expression of PpXyl, which encodes for a putative β-xylosidase, was the one that presented the highest correlation (negative) with the susceptibility to woolliness. PpXyl expression was also analysed in a cultivar ('Rojo 2') with intermediate susceptibility to woolliness, reinforcing the conclusion about the correlation of PpXyl expression to the presence of woolliness symptom. Moreover, the level of expression of PpXyl correlated to protein level detected by Western blot. Analyses of the promoter region of the PpXyl gene (1637 bp) isolated from the three cultivars showed no differences suggesting that cis-elements from other regions of the genome and/or trans elements could be responsible of the differential PpXyl expression patterns. Overall, the results obtained indicate that PpXyl may act as a good indicator of woolliness tolerance and that the regulation of expression of this gene in different cultivars does not depend on sequences upstream the coding sequence.
Collapse
Affiliation(s)
- Melisa Genero
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Mauro Gismondi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Laura L Monti
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Julieta Gabilondo
- Estación Experimental Agropecuaria San Pedro, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional nº 9 km 170, San Pedro, Argentina
| | - Claudio O Budde
- Estación Experimental Agropecuaria San Pedro, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional nº 9 km 170, San Pedro, Argentina
| | - Carlos S Andreo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María V Lara
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María F Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Claudia A Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
16
|
Scattino C, Negrini N, Morgutti S, Cocucci M, Crisosto CH, Tonutti P, Castagna A, Ranieri A. Cell wall metabolism of peaches and nectarines treated with UV-B radiation: a biochemical and molecular approach. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:939-947. [PMID: 25766750 DOI: 10.1002/jsfa.7168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Ultra-violet B (UV-B) radiation has been shown to improve, at least in selected genotypes, both the health-promoting potential and the aesthetic properties of tomato and peach fruits during their post-harvest period. The effects of post-harvest UV-B treatment on the cell-wall metabolism of peaches and nectarines (Prunus persica L. Batsch) were assessed in this study. Three cultivars, Suncrest (melting flesh, MF) and Babygold 7 (non-melting flesh, NMF) peaches and Big Top (slow melting, SM) nectarine, differing in the characteristics of textural changes and softening during ripening, were analysed. RESULTS The effects of UV-B differ in relation to the cultivar considered. In MF 'Suncrest' fruit, UV-B treatment significantly reduced the loss of flesh firmness despite the slight increase in the presence and activity of endo-polygalacturonase. The activity of exo-polygalacturonase increased as well, while endo-1,4-β-D-glucanase/β-D-glucosidase, β-galactosidase and pectin methylesterase were substantially unaffected by the treatment. The UV-B-induced reduction of flesh softening was paralleled by the inhibition of PpExp gene transcription and expansin protein accumulation. The UV-B treatment did not induce differences in flesh firmness between control and UV-B-treated NMF 'Babygold 7' and SM 'Big Top' fruit. CONCLUSION Based on these results, post-harvest UV-B treatment may be considered a promising tool to improve shelf-life and quality of peach fruit.
Collapse
Affiliation(s)
- Claudia Scattino
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Noemi Negrini
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, Milan, Italy
| | - Silvia Morgutti
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, Milan, Italy
| | - Maurizio Cocucci
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, Milan, Italy
| | - Carlos H Crisosto
- Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Pietro Tonutti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
17
|
Bustamante CA, Monti LL, Gabilondo J, Scossa F, Valentini G, Budde CO, Lara MV, Fernie AR, Drincovich MF. Differential Metabolic Rearrangements after Cold Storage Are Correlated with Chilling Injury Resistance of Peach Fruits. FRONTIERS IN PLANT SCIENCE 2016; 7:1478. [PMID: 27746802 PMCID: PMC5044465 DOI: 10.3389/fpls.2016.01478] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/16/2016] [Indexed: 05/18/2023]
Abstract
Reconfiguration of the metabolome is a key component involved in the acclimation to cold in plants; however, few studies have been devoted to the analysis of the overall metabolite changes after cold storage of fruits prior to consumption. Here, metabolite profiling of six peach varieties with differential susceptibility to develop mealiness, a chilling-injury (CI) symptom, was performed. According to metabolic content at harvest; after cold treatment; and after ripening, either following cold treatment or not; peach fruits clustered in distinct groups, depending on harvest-time, cold treatment, and ripening state. Both common and distinct metabolic responses among the six varieties were found; common changes including dramatic galactinol and raffinose rise; GABA, Asp, and Phe increase; and 2-oxo-glutarate and succinate decrease. Raffinose content after long cold treatment quantitatively correlated to the degree of mealiness resistance of the different peach varieties; and thus, raffinose emerges as a candidate biomarker of this CI disorder. Xylose increase after cold treatment was found only in the susceptible genotypes, indicating a particular cell wall reconfiguration of these varieties while being cold-stored. Overall, results indicate that peach fruit differential metabolic rearrangements due to cold treatment, rather than differential metabolic priming before cold, are better related with CI resistance. The plasticity of peach fruit metabolism renders it possible to induce a diverse metabolite array after cold, which is successful, in some genotypes, to avoid CI.
Collapse
Affiliation(s)
- Claudia A. Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Laura L. Monti
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Julieta Gabilondo
- Estación Experimental San Pedro, Instituto Nacional de Tecnología AgropecuariaSan Pedro, Argentina
| | - Federico Scossa
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la FrutticolturaRome, Italy
| | - Gabriel Valentini
- Estación Experimental San Pedro, Instituto Nacional de Tecnología AgropecuariaSan Pedro, Argentina
| | - Claudio O. Budde
- Estación Experimental San Pedro, Instituto Nacional de Tecnología AgropecuariaSan Pedro, Argentina
| | - María V. Lara
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - María F. Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
- *Correspondence: María F. Drincovich
| |
Collapse
|
18
|
Pegoraro C, Tadiello A, Girardi CL, Chaves FC, Quecini V, de Oliveira AC, Trainotti L, Rombaldi CV. Transcriptional regulatory networks controlling woolliness in peach in response to preharvest gibberellin application and cold storage. BMC PLANT BIOLOGY 2015; 15:279. [PMID: 26582034 PMCID: PMC4652400 DOI: 10.1186/s12870-015-0659-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/03/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Postharvest fruit conservation relies on low temperatures and manipulations of hormone metabolism to maintain sensory properties. Peaches are susceptible to chilling injuries, such as 'woolliness' that is caused by juice loss leading to a 'wooly' fruit texture. Application of gibberellic acid at the initial stages of pit hardening impairs woolliness incidence, however the mechanisms controlling the response remain unknown. We have employed genome wide transcriptional profiling to investigate the effects of gibberellic acid application and cold storage on harvested peaches. RESULTS Approximately half of the investigated genes exhibited significant differential expression in response to the treatments. Cellular and developmental process gene ontologies were overrepresented among the differentially regulated genes, whereas sequences in cell death and immune response categories were underrepresented. Gene set enrichment demonstrated a predominant role of cold storage in repressing the transcription of genes associated to cell wall metabolism. In contrast, genes involved in hormone responses exhibited a more complex transcriptional response, indicating an extensive network of crosstalk between hormone signaling and low temperatures. Time course transcriptional analyses demonstrate the large contribution of gene expression regulation on the biochemical changes leading to woolliness in peach. CONCLUSION Overall, our results provide insights on the mechanisms controlling the complex phenotypes associated to postharvest textural changes in peach and suggest that hormone mediated reprogramming previous to pit hardening affects the onset of chilling injuries.
Collapse
Affiliation(s)
- Camila Pegoraro
- Plant Genomics and Breeding Center, Universidade Federal de Pelotas, Campus UFPel Capão do Leão, Pelotas, RS, 96010-900, Brazil.
- Current Address: Embrapa Uva e Vinho, Rua Livramento 515, Bento Gonçalves, RS, 95700-000, Brazil.
| | - Alice Tadiello
- Department of Biology, University of Padova, Viale G. Colombo, Padova, 3, 35121, Italy.
- Current Address: Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, San Michele all'Adige, Trento, 38010, Italy.
| | - César L Girardi
- Embrapa Uva e Vinho, Rua Livramento 515, Bento Gonçalves, RS, 95700-000, Brazil.
| | - Fábio C Chaves
- Departament of Food Science and Technology, Universidade Federal de Pelotas, Campus UFPel Capão do Leão, Pelotas, RS, 96010-900, Brazil.
| | - Vera Quecini
- Embrapa Uva e Vinho, Rua Livramento 515, Bento Gonçalves, RS, 95700-000, Brazil.
| | - Antonio Costa de Oliveira
- Plant Genomics and Breeding Center, Universidade Federal de Pelotas, Campus UFPel Capão do Leão, Pelotas, RS, 96010-900, Brazil.
| | - Livio Trainotti
- Department of Biology, University of Padova, Viale G. Colombo, Padova, 3, 35121, Italy.
| | - Cesar Valmor Rombaldi
- Departament of Food Science and Technology, Universidade Federal de Pelotas, Campus UFPel Capão do Leão, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
19
|
Pons Puig C, Dagar A, Marti Ibanez C, Singh V, Crisosto CH, Friedman H, Lurie S, Granell A. Pre-symptomatic transcriptome changes during cold storage of chilling sensitive and resistant peach cultivars to elucidate chilling injury mechanisms. BMC Genomics 2015; 16:245. [PMID: 25887353 PMCID: PMC4391166 DOI: 10.1186/s12864-015-1395-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 02/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cold storage induces chilling injury (CI) disorders in peach fruit (woolliness/mealiness, flesh browning and reddening/bleeding) manifested when ripened at shelf life. To gain insight into the mechanisms underlying CI, we analyzed the transcriptome of 'Oded' (high tolerant) and 'Hermoza' (relatively tolerant to woolliness, but sensitive to browning and bleeding) peach cultivars at pre-symptomatic stages. The expression profiles were compared and validated with two previously analyzed pools (high and low sensitive to woolliness) from the Pop-DG population. The four fruit types cover a wide range of sensitivity to CI. The four fruit types were also investigated with the ROSMETER that provides information on the specificity of the transcriptomic response to oxidative stress. RESULTS We identified quantitative differences in a subset of core cold responsive genes that correlated with sensitivity or tolerance to CI at harvest and during cold storage, and also subsets of genes correlating specifically with high sensitivity to woolliness and browning. Functional analysis indicated that elevated levels, at harvest and during cold storage, of genes related to antioxidant systems and the biosynthesis of metabolites with antioxidant activity correlates with tolerance. Consistent with these results, ROSMETER analysis revealed oxidative stress in 'Hermoza' and the progeny pools, but not in the cold resistant 'Oded'. By contrast, cold storage induced, in sensitivity to woolliness dependant manner, a gene expression program involving the biosynthesis of secondary cell wall and pectins. Furthermore, our results indicated that while ethylene is related to CI tolerance, differential auxin subcellular accumulation and signaling may play a role in determining chilling sensitivity/tolerance. In addition, sugar partitioning and demand during cold storage may also play a role in the tolerance/sensitive mechanism. The analysis also indicates that vesicle trafficking, membrane dynamics and cytoskeleton organization could have a role in the tolerance/sensitive mechanism. In the case of browning, our results suggest that elevated acetaldehyde related genes together with the core cold responses may increase sensitivity to browning in shelf life. CONCLUSIONS Our data suggest that in sensitive fruit a cold response program is activated and regulated by auxin distribution and ethylene and these hormones have a role in sensitivity to CI even before fruit are cold stored.
Collapse
Affiliation(s)
- Clara Pons Puig
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politecnica de Valencia, E-48022, Valencia, Spain.
| | - Anurag Dagar
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel.
| | - Cristina Marti Ibanez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politecnica de Valencia, E-48022, Valencia, Spain.
| | - Vikram Singh
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel.
| | - Carlos H Crisosto
- Plant Sciences Department, University of California Davis, 1 Shields Ave, Davis, CA, 95616, USA.
| | - Haya Friedman
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel.
| | - Susan Lurie
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel.
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politecnica de Valencia, E-48022, Valencia, Spain.
| |
Collapse
|
20
|
Cross-talk between signaling pathways: the link between plant secondary metabolite production and wounding stress response. Sci Rep 2015; 5:8608. [PMID: 25712739 PMCID: PMC5390084 DOI: 10.1038/srep08608] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
Plants subjected to wounding stress produce secondary metabolites. Several of these metabolites prevent chronic diseases and can be used as colorants, flavors, and as antimicrobials. This wound-induced production of plant secondary metabolites is mediated by signaling-molecules such as reactive oxygen species (ROS), ethylene (ET) and jasmonic acid (JA). However, their specific role and interactions that modulate the wound-respond in plants is not fully understood. In the present study, a subtractive cDNA library was generated, to better understand the global response of plants to wounding stress. Carrot (Daucus carota) was used as a model system for this study. A total of 335 unique expressed sequence tags (ESTs) sequences were obtained. ESTs sequences with a putative identity showed involvement in stress-signaling pathways as well as on the primary and secondary metabolism. Inhibitors of ROS biosynthesis, ET action, and JA biosynthesis alone and in combination were applied to wounded-carrots in order to determine, based on relative gene expression data, the regulatory role of ET, JA, and ROS on the wound-response in plants. Our results demonstrate that ROS play a key role as signaling-molecules for the wound-induced activation of the primary and secondary metabolism whereas ET and JA are essential to modulate ROS levels.
Collapse
|
21
|
Sanhueza D, Vizoso P, Balic I, Campos-Vargas R, Meneses C. Transcriptomic analysis of fruit stored under cold conditions using controlled atmosphere in Prunus persica cv. "Red Pearl". FRONTIERS IN PLANT SCIENCE 2015; 6:788. [PMID: 26483806 PMCID: PMC4586424 DOI: 10.3389/fpls.2015.00788] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/11/2015] [Indexed: 05/20/2023]
Abstract
Cold storage (CS) can induce a physiological disorder known as chilling injury (CI) in nectarine fruits. The main symptom is mealiness that is perceived as non-juicy fruit by consumers. Postharvest treatments such as controlled atmosphere (CA; a high CO2 concentration and low O2) have been used under cold conditions to avoid this disorder. With the objective of exploring the mechanisms involved in the CA effect on mealiness prevention, we analyzed transcriptomic changes under six conditions of "Red Pearl" nectarines by RNA-Seq. Our analysis included just harvested nectarines, juicy non-stored fruits, fruits affected for CI after CS and fruits stored in a combination of CA plus CS without CI phenotype. Nectarines stored in cold conditions combined with CA treatment resulted in less mealiness; we obtained 21.6% of juice content compared with just CS fruits (7.7%; mealy flesh). RNA-Seq data analyses were carried out to study the gene expression for different conditions assayed. During ripening, we detected that nectarines exposed to CA treatment expressed a similar number of genes compared with fruits that were not exposed to cold conditions. Firm fruits have more differentially expressed genes than soft fruits, which suggest that most important changes occur during CS. On the other hand, gene ontology analysis revealed enrichment mainly in metabolic and cellular processes. Differentially expressed genes analysis showed that low O2 concentrations combined with cold conditions slows the metabolic processes more than just the cold storage, resulting mainly in the suppression of primary metabolism and cold stress response. This is a significant step toward unraveling the molecular mechanism that explains the effectiveness of CA as a tool to prevent CI development on fruits.
Collapse
Affiliation(s)
- Dayan Sanhueza
- Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Universidad Andres BelloSantiago, Chile
- FONDAP Center for Genome RegulationSantiago, Chile
| | - Paula Vizoso
- Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Universidad Andres BelloSantiago, Chile
- FONDAP Center for Genome RegulationSantiago, Chile
| | - Iván Balic
- Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Universidad Andres BelloSantiago, Chile
| | - Reinaldo Campos-Vargas
- Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Universidad Andres BelloSantiago, Chile
| | - Claudio Meneses
- Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Universidad Andres BelloSantiago, Chile
- *Correspondence: Claudio Meneses, Centro de Biotecnología Vegetal, Universidad Andrés Bello, República 217, 8370146 Santiago, Chile
| |
Collapse
|
22
|
Pons C, Martí C, Forment J, Crisosto CH, Dandekar AM, Granell A. A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response. PLoS One 2014; 9:e90706. [PMID: 24598973 PMCID: PMC3944608 DOI: 10.1371/journal.pone.0090706] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/04/2014] [Indexed: 11/29/2022] Open
Abstract
Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better cope with chilling injury.
Collapse
Affiliation(s)
- Clara Pons
- Plant Genomics and Biotechnology lab, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Cristina Martí
- Plant Genomics and Biotechnology lab, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Javier Forment
- Plant Genomics and Biotechnology lab, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Carlos H. Crisosto
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Antonio Granell
- Plant Genomics and Biotechnology lab, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
23
|
Lauxmann MA, Borsani J, Osorio S, Lombardo VA, Budde CO, Bustamante CA, Monti LL, Andreo CS, Fernie AR, Drincovich MF, Lara MV. Deciphering the metabolic pathways influencing heat and cold responses during post-harvest physiology of peach fruit. PLANT, CELL & ENVIRONMENT 2014; 37:601-16. [PMID: 23937123 DOI: 10.1111/pce.12181] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/30/2013] [Accepted: 08/03/2013] [Indexed: 05/23/2023]
Abstract
Peaches are highly perishable and deteriorate quickly at ambient temperature. Cold storage is commonly used to prevent fruit decay; however, it affects fruit quality causing physiological disorders collectively termed 'chilling injury' (CI). To prevent or ameliorate CI, heat treatment is often applied prior to cold storage. In the present work, metabolic profiling was performed to determine the metabolic dynamics associated with the induction of acquired CI tolerance in response to heat shock. 'Dixiland' peach fruits exposed to 39 °C, cold stored, or after a combined treatment of heat and cold, were compared with fruits ripening at 20 °C. Dramatic changes in the levels of compatible solutes such as galactinol and raffinose were observed, while amino acid precursors of the phenylpropanoid pathway were also modified due to the stress treatments, as was the polyamine putrescine. The observed responses towards temperature stress in peaches are composed of both common and specific response mechanisms to heat and cold, but also of more general adaptive responses that confer strategic advantages in adverse conditions such as biotic stresses. The identification of such key metabolites, which prime the fruit to cope with different stress situations, will likely greatly accelerate the design and the improvement of plant breeding programs.
Collapse
Affiliation(s)
- Martin A Lauxmann
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lauxmann MA, Brun B, Borsani J, Bustamante CA, Budde CO, Lara MV, Drincovich MF. Transcriptomic profiling during the post-harvest of heat-treated Dixiland Prunus persica fruits: common and distinct response to heat and cold. PLoS One 2012; 7:e51052. [PMID: 23236430 PMCID: PMC3516522 DOI: 10.1371/journal.pone.0051052] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
Cold storage is extensively used to slow the rapid deterioration of peach (Prunus persica L. Batsch) fruit after harvest. However, peach fruit subjected to long periods of cold storage develop chilling injury (CI) symptoms. Post-harvest heat treatment (HT) of peach fruit prior to cold storage is effective in reducing some CI symptoms, maintaining fruit quality, preventing softening and controlling post-harvest diseases. To identify the molecular changes induced by HT, which may be associated to CI protection, the differential transcriptome of peach fruit subjected to HT was characterized by the differential display technique. A total of 127 differentially expressed unigenes (DEUs), with a presence-absence pattern, were identified comparing peach fruit ripening at 20°C with those exposed to a 39°C-HT for 3 days. The 127 DEUs were divided into four expression profile clusters, among which the heat-induced (47%) and heat-repressed (36%) groups resulted the most represented, including genes with unknown function, or involved in protein modification, transcription or RNA metabolism. Considering the CI-protection induced by HT, 23-heat-responsive genes were selected and analyzed during and after short-term cold storage of peach fruit. More than 90% of the genes selected resulted modified by cold, from which nearly 60% followed the same and nearly 40% opposite response to heat and cold. Moreover, by using available Arabidopsis microarray data, it was found that nearly 70% of the peach-heat responsive genes also respond to cold in Arabidopsis, either following the same trend or showing an opposite response. Overall, the high number of common responsive genes to heat and cold identified in the present work indicates that HT of peach fruit after harvest induces a cold response involving complex cellular processes; identifying genes that are involved in the better preparation of peach fruit for cold-storage and unraveling the basis for the CI protection induced by HT.
Collapse
Affiliation(s)
- Martin A. Lauxmann
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | - Bianca Brun
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | - Julia Borsani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudia A. Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudio O. Budde
- Estación Experimental San Pedro, Instituto Nacional de Tecnología Agropecuaria (INTA), San Pedro, Argentina
| | - María V. Lara
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | - María F. Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
25
|
Torrigiani P, Bressanin D, Ruiz KB, Tadiello A, Trainotti L, Bonghi C, Ziosi V, Costa G. Spermidine application to young developing peach fruits leads to a slowing down of ripening by impairing ripening-related ethylene and auxin metabolism and signaling. PHYSIOLOGIA PLANTARUM 2012; 146:86-98. [PMID: 22409726 DOI: 10.1111/j.1399-3054.2012.01612.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Peach (Prunus persica var. laevis Gray) was chosen to unravel the molecular basis underlying the ability of spermidine (Sd) to influence fruit development and ripening. Field applications of 1 mM Sd on peach fruit at an early developmental stage, 41 days after full bloom (dAFB), i.e. at late stage S1, led to a slowing down of fruit ripening. At commercial harvest (125 dAFB, S4II) Sd-treated fruits showed a reduced ethylene production and flesh softening. The endogenous concentration of free and insoluble conjugated polyamines (PAs) increased (0.3-2.6-fold) 1 day after treatment (short-term response) butsoon it declined to control levels; starting from S3/S4, when soluble conjugated forms increased (up to five-fold relative to controls at ripening), PA levels became more abundant in treated fruits, (long-term response). Real-time reverse transcription-polymerase chain reaction analyses revealed that peaks in transcript levels of fruit developmental marker genes were shifted ahead in accord with a developmental slowing down. At ripening (S4I-S4II) the upregulation of the ethylene biosynthetic genes ACO1 and ACS1 was dramatically counteracted by Sd and this led to a strong downregulation of genes responsible for fruit softening, such as PG and PMEI. Auxin-related gene expression was also altered both in the short term (TRPB) and in the long term (GH3, TIR1 and PIN1), indicating that auxin plays different roles during development and ripening processes. Messenger RNA amounts of other hormone-related ripening-regulated genes, such as NCED and GA2-OX, were strongly downregulated at maturity. Results suggest that Sd interferes with fruit development/ripening by interacting with multiple hormonal pathways.
Collapse
Affiliation(s)
- Patrizia Torrigiani
- Department of Fruit Tree and Woody Plant Sciences, University of Bologna, Via Fanin 46, 40127 Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
González-Agüero M, Cifuentes-Esquivel N, Ibañez-Carrasco F, Gudenschwager O, Campos-Vargas R, Defilippi BG. Identification and characterization of genes differentially expressed in cherimoya (Annona cherimola Mill) after exposure to chilling injury conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:13295-9. [PMID: 22087802 DOI: 10.1021/jf203583t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Cherimoyas (Annona cherimola), like other subtropical/tropical fruits, are susceptible to damage from exposure to temperatures between 0 and 5 °C (chilling injury, CI), which may affect fruit quality. To increase our understanding of the molecular mechanisms involved in the CI response, a forward suppression subtractive hybridization (SSH) cDNA library was constructed. In this work, we obtained 75 genes that could potentially be involved in the CI response. The CI induced activation of genes that are involved in a range of metabolic pathways, such as primary metabolism, transport, and endomembrane traffic, among others. We also characterized the expression of 12 selected genes in different A. cherimola tissues by polymerase chain reaction (PCR), and we confirmed the differential expression of a subset in CI fruits by real-time quantitative PCR (qPCR). The expression of six A. cherimola genes: annexin (AcAnex), UDP-glucose pyrophosphorylase (AcUGP), syntaxin of plants 71 (AcSyp71), 1-aminocyclopropane-1-carboxylic-acid synthase (AcACS), ubiquitin carrier-like protein (AcUCP), and enolase (AcEnol), was up-regulated after cold storage for 12 days at 0 °C. These results imply that selected genes could be related to the development of internal browning observed in cherimoyas after exposure to CI conditions. The information generated in this study provides new clues that may aid in understanding the cherimoya ripening process.
Collapse
Affiliation(s)
- Mauricio González-Agüero
- Laboratorio de Postcosecha, Instituto de Investigaciones Agropecuarias-La Platina, Casilla 439/3, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
27
|
New approaches to Prunus transcriptome analysis. Genetica 2011; 139:755-69. [PMID: 21584650 DOI: 10.1007/s10709-011-9580-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 04/26/2011] [Indexed: 12/11/2022]
Abstract
The recent sequencing of the complete genome of the peach offers new opportunities for further transcriptomic studies in Prunus species in the called post-genomics era. First works on transcriptome analysis in Prunus species started in the early 2000s with the development of ESTs (expressed sequence tags) and the analysis of several candidate genes. Later, new strategies of massive analysis (high throughput) of transcriptomes have been applied, producing larger amounts of data in terms of expression of a large number of genes in a single experiment. One of these systems is massive transcriptome analysis using cDNA biochips (microarrays) to analyze thousands of genes by hybridization of mRNA labelled with fluorescence. However, the recent emergence of a massive sequencing methodology ("deep-sequencing") of the transcriptome (RNA-Seq), based on lowering the costs of DNA (in this cases complementary, cDNA) sequencing, could be more suitable than the application of microarrays. Recent papers have described the tremendous power of this technology, both in terms of profiling coverage and quantitative accuracy in transcriptomic studies. Now this technology is being applied to plant species, including Prunus. In this work, we analyze the potential in using this RNA-Seq technology in the study of Prunus transcriptomes and the development of genomic tools. In addition, the strengths and limitations of RNA-Seq relative to microarray profiling have been discussed.
Collapse
|
28
|
Zhang L, Yu Z, Jiang L, Jiang J, Luo H, Fu L. Effect of post-harvest heat treatment on proteome change of peach fruit during ripening. J Proteomics 2011; 74:1135-49. [PMID: 21550427 DOI: 10.1016/j.jprot.2011.04.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/30/2011] [Accepted: 04/14/2011] [Indexed: 12/28/2022]
Abstract
The extracted proteins from the heat-treated peach fruit (dipped in hot water at 48°C for 10min and then stored at room temperature (20°C-25°C) for up to 6 days) were used for proteomic analysis in order to understand the response of post-harvest peach fruit to heat treatment during ripening stage at proteomic level. After two dimensional gels electrophoresis (2-DE) was conducted, more than 600 protein spots were detected. Among them, 35 differently expressed spots (P<0.05) were selected to be excised and analyzed using MALDI-TOF/TOF, and finally 30 protein spots were confidently identified according to NCBI database. The results demonstrated that among the thirty protein spots expressed particularly induced by heat treatment, 43% were related to stress response, 17% to cell structure, 13% to protein fate, 7% to glycolytic pathway, 3% to ripening and senescence and 17% to unclassified. All of them are involved in the regulation of peach fruit development and ripening. All these indicated that the self-defense capability of peach fruit was improved by heat treatment. The study will enable future detailed investigation of gene expression and function linked with peach fruit ripening.
Collapse
Affiliation(s)
- Li Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Falara V, Manganaris GA, Ziliotto F, Manganaris A, Bonghi C, Ramina A, Kanellis AK. A ß-D: -xylosidase and a PR-4B precursor identified as genes accounting for differences in peach cold storage tolerance. Funct Integr Genomics 2011; 11:357-68. [PMID: 21221699 DOI: 10.1007/s10142-010-0204-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/19/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
Abstract
A transcriptome analysis was applied on two peach (Prunus persica L.) cultivars with different sensitivity to low temperature regimes to identify genes that might be involved in tolerance to extended low temperature storage. Peach fruit from 'Morettini No2' to 'Royal Glory', cultivars sensitive and tolerant to chilling injury (CI), respectively, were harvested at commercial maturity stage and allowed to ripen at room temperature (shelf-life, 25°C) or subjected to 4 and 6 weeks of cold storage (0°C, 95% R.H.) followed by ripening at room temperature. The use of μPEACH 1.0 microarray platform identified a number of genes that were differentially expressed in 'Morettini No2' and 'Royal Glory' fruit after the extended storage period. Based on their possible involvement in physiological processes related to cold storage and on their differential expression pattern, two heat shock proteins, a β-D-xylosidase, an expansin, a dehydrin and a pathogenesis-related (PR) protein were further selected for detailed analysis via RNA blot analysis. It is suggested that β-D: -xylosidase and PR-4B precursor genes could be related to the different tolerance to CI observed in the two peach cultivars since generally higher expression levels were observed in cv. 'Royal Glory', the tolerant one. These two genes could play a role in peach tolerance to chilling injury.
Collapse
|
30
|
Nilo R, Saffie C, Lilley K, Baeza-Yates R, Cambiazo V, Campos-Vargas R, González M, Meisel LA, Retamales J, Silva H, Orellana A. Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE). BMC Genomics 2010; 11:43. [PMID: 20082721 PMCID: PMC2822761 DOI: 10.1186/1471-2164-11-43] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 01/18/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Peach fruit undergoes a rapid softening process that involves a number of metabolic changes. Storing fruit at low temperatures has been widely used to extend its postharvest life. However, this leads to undesired changes, such as mealiness and browning, which affect the quality of the fruit. In this study, a 2-D DIGE approach was designed to screen for differentially accumulated proteins in peach fruit during normal softening as well as under conditions that led to fruit chilling injury. RESULTS The analysis allowed us to identify 43 spots -representing about 18% of the total number analyzed- that show statistically significant changes. Thirty-nine of the proteins could be identified by mass spectrometry. Some of the proteins that changed during postharvest had been related to peach fruit ripening and cold stress in the past. However, we identified other proteins that had not been linked to these processes. A graphical display of the relationship between the differentially accumulated proteins was obtained using pairwise average-linkage cluster analysis and principal component analysis. Proteins such as endopolygalacturonase, catalase, NADP-dependent isocitrate dehydrogenase, pectin methylesterase and dehydrins were found to be very important for distinguishing between healthy and chill injured fruit. A categorization of the differentially accumulated proteins was performed using Gene Ontology annotation. The results showed that the 'response to stress', 'cellular homeostasis', 'metabolism of carbohydrates' and 'amino acid metabolism' biological processes were affected the most during the postharvest. CONCLUSIONS Using a comparative proteomic approach with 2-D DIGE allowed us to identify proteins that showed stage-specific changes in their accumulation pattern. Several proteins that are related to response to stress, cellular homeostasis, cellular component organization and carbohydrate metabolism were detected as being differentially accumulated. Finally, a significant proportion of the proteins identified had not been associated with softening, cold storage or chilling injury-altered fruit before; thus, comparative proteomics has proven to be a valuable tool for understanding fruit softening and postharvest.
Collapse
Affiliation(s)
- Ricardo Nilo
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
- Millennium Nucleus in Plant Cell Biotechnology (MN-PCB), Santiago, Chile
| | - Carlos Saffie
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
- Millennium Nucleus in Plant Cell Biotechnology (MN-PCB), Santiago, Chile
| | - Kathryn Lilley
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | | | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile, Santiago, Chile
- Millennium Nucleus Center for Genomics of the Cell (CGC), Santiago, Chile
| | - Reinaldo Campos-Vargas
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
- Millennium Nucleus in Plant Cell Biotechnology (MN-PCB), Santiago, Chile
- Institute of Agricultural Research (INIA-La Platina), Santiago, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile, Santiago, Chile
| | - Lee A Meisel
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
- Millennium Nucleus in Plant Cell Biotechnology (MN-PCB), Santiago, Chile
| | - Julio Retamales
- Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Herman Silva
- Millennium Nucleus in Plant Cell Biotechnology (MN-PCB), Santiago, Chile
- Plant Functional Genomics & Bioinformatics Lab, Universidad Andrés Bello, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
- Millennium Nucleus in Plant Cell Biotechnology (MN-PCB), Santiago, Chile
| |
Collapse
|
31
|
Tittarelli A, Santiago M, Morales A, Meisel LA, Silva H. Isolation and functional characterization of cold-regulated promoters, by digitally identifying peach fruit cold-induced genes from a large EST dataset. BMC PLANT BIOLOGY 2009; 9:121. [PMID: 19772651 PMCID: PMC2754992 DOI: 10.1186/1471-2229-9-121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 09/22/2009] [Indexed: 05/21/2023]
Abstract
BACKGROUND Cold acclimation is the process by which plants adapt to the low, non freezing temperatures that naturally occur during late autumn or early winter. This process enables the plants to resist the freezing temperatures of winter. Temperatures similar to those associated with cold acclimation are also used by the fruit industry to delay fruit ripening in peaches. However, peaches that are subjected to long periods of cold storage may develop chilling injury symptoms (woolliness and internal breakdown). In order to better understand the relationship between cold acclimation and chilling injury in peaches, we isolated and functionally characterized cold-regulated promoters from cold-inducible genes identified by digitally analyzing a large EST dataset. RESULTS Digital expression analyses of EST datasets, revealed 164 cold-induced peach genes, several of which show similarities to genes associated with cold acclimation and cold stress responses. The promoters of three of these cold-inducible genes (Ppbec1, Ppxero2 and Pptha1) were fused to the GUS reporter gene and characterized for cold-inducibility using both transient transformation assays in peach fruits (in fruta) and stable transformation in Arabidopsis thaliana. These assays demonstrate that the promoter Pptha1 is not cold-inducible, whereas the Ppbec1 and Ppxero2 promoter constructs are cold-inducible. CONCLUSION This work demonstrates that during cold storage, peach fruits differentially express genes that are associated with cold acclimation. Functional characterization of these promoters in transient transformation assays in fruta as well as stable transformation in Arabidopsis, demonstrate that the isolated Ppbec1 and Ppxero2 promoters are cold-inducible promoters, whereas the isolated Pptha1 promoter is not cold-inducible. Additionally, the cold-inducible activity of the Ppbec1 and Ppxero2 promoters suggest that there is a conserved heterologous cold-inducible regulation of these promoters in peach and Arabidopsis. These results reveal that digital expression analyses may be used in non-model species to identify candidate genes whose promoters are differentially expressed in response to exogenous stimuli.
Collapse
Affiliation(s)
- Andrés Tittarelli
- Millennium Nucleus in Plant Cell Biotechnology (MN-PCB), Santiago, Chile
- Plant Functional Genomics & Bioinformatics Lab, Universidad Andrés Bello, Santiago, Chile
| | - Margarita Santiago
- Millennium Nucleus in Plant Cell Biotechnology (MN-PCB), Santiago, Chile
- Plant Functional Genomics & Bioinformatics Lab, Universidad Andrés Bello, Santiago, Chile
| | - Andrea Morales
- Millennium Nucleus in Plant Cell Biotechnology (MN-PCB), Santiago, Chile
- Plant Functional Genomics & Bioinformatics Lab, Universidad Andrés Bello, Santiago, Chile
| | - Lee A Meisel
- Millennium Nucleus in Plant Cell Biotechnology (MN-PCB), Santiago, Chile
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
| | - Herman Silva
- Millennium Nucleus in Plant Cell Biotechnology (MN-PCB), Santiago, Chile
- Plant Functional Genomics & Bioinformatics Lab, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
32
|
Zúñiga A, Hödar C, Hanna P, Ibáñez F, Moreno P, Pulgar R, Pastenes L, González M, Cambiazo V. Genes encoding novel secreted and transmembrane proteins are temporally and spatially regulated during Drosophila melanogaster embryogenesis. BMC Biol 2009; 7:61. [PMID: 19772636 PMCID: PMC2761875 DOI: 10.1186/1741-7007-7-61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/22/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Morphogenetic events that shape the Drosophila melanogaster embryo are tightly controlled by a genetic program in which specific sets of genes are up-regulated. We used a suppressive subtractive hybridization procedure to identify a group of developmentally regulated genes during early stages of D. melanogaster embryogenesis. We studied the spatiotemporal activity of these genes in five different intervals covering 12 stages of embryogenesis. RESULTS Microarrays were constructed to confirm induction of expression and to determine the temporal profile of isolated subtracted cDNAs during embryo development. We identified a set of 118 genes whose expression levels increased significantly in at least one developmental interval compared with a reference interval. Of these genes, 53% had a phenotype and/or molecular function reported in the literature, whereas 47% were essentially uncharacterized. Clustering analysis revealed demarcated transcript groups with maximum gene activity at distinct developmental intervals. In situ hybridization assays were carried out on 23 uncharacterized genes, 15 of which proved to have spatiotemporally restricted expression patterns. Among these 15 uncharacterized genes, 13 were found to encode putative secreted and transmembrane proteins. For three of them we validated our protein sequence predictions by expressing their cDNAs in Drosophila S2R+ cells and analyzed the subcellular distribution of recombinant proteins. We then focused on the functional characterization of the gene CG6234. Inhibition of CG6234 by RNA interference resulted in morphological defects in embryos, suggesting the involvement of this gene in germ band retraction. CONCLUSION Our data have yielded a list of developmentally regulated D. melanogaster genes and their expression profiles during embryogenesis and provide new information on the spatiotemporal expression patterns of several uncharacterized genes. In particular, we recovered a substantial number of unknown genes encoding putative secreted and transmembrane proteins, suggesting new components of signaling pathways that might be incorporated within the existing regulatory networks controlling D. melanogaster embryogenesis. These genes are also good candidates for additional targeted functional analyses similar to those we conducted for CG6234.See related minireview by Vichas and Zallen: http://www.jbiol.com/content/8/8/76.
Collapse
Affiliation(s)
- Alejandro Zúñiga
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile, Millennium Nucleus Center for Genomics of the Cell (CGC), Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Vizoso P, Meisel LA, Tittarelli A, Latorre M, Saba J, Caroca R, Maldonado J, Cambiazo V, Campos-Vargas R, Gonzalez M, Orellana A, Silva H. Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. BMC Genomics 2009. [PMID: 19744325 DOI: 10.1186/1471‐2164‐10‐423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cold storage is used to inhibit peach fruit ripening during shipment to distant markets. However, this cold storage can negatively affect the quality of the fruit when it is ripened, resulting in disorders such as wooliness, browning or leathering. In order to understand the individual and combined biological effects that factors such as cold storage and ripening have on the fruit and fruit quality, we have taken a comparative EST transcript profiling approach to identify genes that are differentially expressed in response to these factors. RESULTS We sequenced 50,625 Expressed Sequence Tags (ESTs) from peach mesocarp (Prunus persica O'Henry variety) stored at four different postharvest conditions. A total of 10,830 Unigenes (4,169 contigs and 6,661 singletons) were formed by assembling these ESTs. Additionally, a collection of 614 full-length and 1,109 putative full-length cDNA clones within flanking loxP recombination sites was created. Statistically analyzing the EST population, we have identified genes that are differentially expressed during ripening, in response to cold storage or the combined effects of cold storage and ripening. Pair-wise comparisons revealed 197 contigs with at least one significant difference in transcript abundance between at least two conditions. Gene expression profile analyses revealed that the contigs may be classified into 13 different clusters of gene expression patterns. These clusters include groups of contigs that increase or decrease transcript abundance during ripening, in response to cold or ripening plus cold. CONCLUSION These analyses have enabled us to statistically identify novel genes and gene clusters that are differentially expressed in response to post-harvest factors such as long-term cold storage, ripening or a combination of these two factors. These differentially expressed genes reveal the complex biological processes that are associated with these factors, as well as a large number of putative gene families that may participate differentially in these processes. In particular, these analyzes suggest that woolly fruits lack the increased boost of metabolic processes necessary for ripening. Additionally, these results suggest that the mitochondria and plastids play a major role in these processes. The EST sequences and full-length cDNA clones developed in this work, combined with the large population of differentially expressed genes may serve as useful tools and markers that will enable the scientific community to better define the molecular processes that affect fruit quality in response to post-harvest conditions and the organelles that participate in these processes.
Collapse
Affiliation(s)
- Paula Vizoso
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vizoso P, Meisel LA, Tittarelli A, Latorre M, Saba J, Caroca R, Maldonado J, Cambiazo V, Campos-Vargas R, Gonzalez M, Orellana A, Silva H. Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. BMC Genomics 2009; 10:423. [PMID: 19744325 PMCID: PMC2748099 DOI: 10.1186/1471-2164-10-423] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 09/10/2009] [Indexed: 12/02/2022] Open
Abstract
Background Cold storage is used to inhibit peach fruit ripening during shipment to distant markets. However, this cold storage can negatively affect the quality of the fruit when it is ripened, resulting in disorders such as wooliness, browning or leathering. In order to understand the individual and combined biological effects that factors such as cold storage and ripening have on the fruit and fruit quality, we have taken a comparative EST transcript profiling approach to identify genes that are differentially expressed in response to these factors. Results We sequenced 50,625 Expressed Sequence Tags (ESTs) from peach mesocarp (Prunus persica O'Henry variety) stored at four different postharvest conditions. A total of 10,830 Unigenes (4,169 contigs and 6,661 singletons) were formed by assembling these ESTs. Additionally, a collection of 614 full-length and 1,109 putative full-length cDNA clones within flanking loxP recombination sites was created. Statistically analyzing the EST population, we have identified genes that are differentially expressed during ripening, in response to cold storage or the combined effects of cold storage and ripening. Pair-wise comparisons revealed 197 contigs with at least one significant difference in transcript abundance between at least two conditions. Gene expression profile analyses revealed that the contigs may be classified into 13 different clusters of gene expression patterns. These clusters include groups of contigs that increase or decrease transcript abundance during ripening, in response to cold or ripening plus cold. Conclusion These analyses have enabled us to statistically identify novel genes and gene clusters that are differentially expressed in response to post-harvest factors such as long-term cold storage, ripening or a combination of these two factors. These differentially expressed genes reveal the complex biological processes that are associated with these factors, as well as a large number of putative gene families that may participate differentially in these processes. In particular, these analyzes suggest that woolly fruits lack the increased boost of metabolic processes necessary for ripening. Additionally, these results suggest that the mitochondria and plastids play a major role in these processes. The EST sequences and full-length cDNA clones developed in this work, combined with the large population of differentially expressed genes may serve as useful tools and markers that will enable the scientific community to better define the molecular processes that affect fruit quality in response to post-harvest conditions and the organelles that participate in these processes.
Collapse
Affiliation(s)
- Paula Vizoso
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
González-Agüero M, Troncoso S, Gudenschwager O, Campos-Vargas R, Moya-León MA, Defilippi BG. Differential expression levels of aroma-related genes during ripening of apricot (Prunus armeniaca L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:435-40. [PMID: 19233665 DOI: 10.1016/j.plaphy.2009.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 12/23/2008] [Accepted: 01/17/2009] [Indexed: 05/02/2023]
Abstract
Fruit aroma is a complex trait, particularly in terms of the number of different biosynthetic pathways involved, the complexity of the final metabolites, and their regulation. In order to understand the underlying biochemical processes involved in apricot aroma, four cDNAs (Pa-aat, EU784138; Pa-adhEU395433; Pa-pdcEU395434; and Pa-loxEU439430) encoding an alcohol acyl transferase (AAT), alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC), and lipoxygenase (LOX), respectively, were isolated and characterized at four stages of maturity in Prunus armeniaca L. cv. Modesto. We observed a reduction in aldehyde and alcohol production between early-harvested fruit and late-harvest fruit, concomitant with an increase in ester production. qPCR analyses showed that the expression levels of the adh gene and the lox gene stayed constant at all stages. Interestingly, aat levels showed a sharp increase in the late-harvest stages concurrent with the changes observed in ester levels. The significance of these changes in relation to aroma production in apricot is discussed.
Collapse
|
36
|
Borsani J, Budde CO, Porrini L, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, Drincovich MF, Lara MV. Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1823-37. [PMID: 19264753 DOI: 10.1093/jxb/erp055] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Peach (Prunus persica L. Batsch) is a climacteric fruit that ripens after harvest, prior to human consumption. Organic acids and soluble sugars contribute to the overall organoleptic quality of fresh peach; thus, the integrated study of the metabolic pathways controlling the levels of these compounds is of great relevance. Therefore, in this work, several metabolites and enzymes involved in carbon metabolism were analysed during the post-harvest ripening of peach fruit cv 'Dixiland'. Depending on the enzyme studied, activity, protein level by western blot, or transcript level by quantitative real time-PCR were analysed. Even though sorbitol did not accumulate at a high level in relation to sucrose at harvest, it was rapidly consumed once the fruit was separated from the tree. During the ripening process, sucrose degradation was accompanied by an increase of glucose and fructose. Specific transcripts encoding neutral invertases (NIs) were up-regulated or down-regulated, indicating differential functions for each putative NI isoform. Phosphoenolpyruvate carboxylase was markedly induced, and may participate as a glycolytic shunt, since the malate level did not increase during post-harvest ripening. The fermentative pathway was highly induced, with increases in both the acetaldehyde level and the enzymes involved in this process. In addition, proteins differentially expressed during the post-harvest ripening process were also analysed. Overall, the present study identified enzymes and pathways operating during the post-harvest ripening of peach fruit, which may contribute to further identification of varieties with altered levels of enzymes/metabolites or in the evaluation of post-harvest treatments to produce fruit of better organoleptic attributes.
Collapse
Affiliation(s)
- Julia Borsani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lara MV, Borsani J, Budde CO, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, Drincovich MF. Biochemical and proteomic analysis of 'Dixiland' peach fruit (Prunus persica) upon heat treatment. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:4315-33. [PMID: 19734260 DOI: 10.1093/jxb/erp267] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Shipping of peaches to distant markets and storage require low temperature; however, cold storage affects fruit quality causing physiological disorders collectively termed 'chilling injury' (CI). In order to ameliorate CI, different strategies have been applied before cold storage; among them heat treatment (HT) has been widely used. In this work, the effect of HT on peach fruit quality as well as on carbon metabolism was evaluated. When fruit were exposed to 39 degrees C for 3 d, ripening was delayed, with softening inhibition and slowing down of ethylene production. Several differences were observed between fruit ripening at ambient temperature versus fruit that had been heat treated. However, the major effects of HT on carbon metabolism and organoleptic characteristics were reversible, since normal fruit ripening was restored after transferring heated peaches to ambient temperature. Positive quality features such as an increment in the fructose content, largely responsible for the sweetness, and reddish coloration were observed. Nevertheless, high amounts of acetaldehyde and low organic acid content were also detected. The differential proteome of heated fruit was characterized, revealing that heat-induced CI tolerance may be acquired by the activation of different molecular mechanisms. Induction of related stress proteins in the heat-exposed fruits such as heat shock proteins, cysteine proteases, and dehydrin, and repression of a polyphenol oxidase provide molecular evidence of candidate proteins that may prevent some of the CI symptoms. This study contributes to a deeper understanding of the cellular events in peach under HT in view of a possible technological use aimed to improve organoleptic and shelf-life features.
Collapse
Affiliation(s)
- María V Lara
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|