1
|
Elouadi F, Amri A, El-Baouchi A, Kehel Z, Jilal A, Ibriz M. Genotypic and environmental effects on quality and nutritional attributes of Moroccan barley cultivars and elite breeding lines. Front Nutr 2023; 10:1204572. [PMID: 37899827 PMCID: PMC10602734 DOI: 10.3389/fnut.2023.1204572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
Although barley is mainly used for livestock feed and beverages, its use as human feed can enrich human diets with some health benefits. The development of new hulless varieties rich in β-glucans and micronutrients can enhance the use of barley as food, but little is known about the effects of the environment on these nutritional traits. In this study, we evaluated five Moroccan varieties and two elite breeding lines of barley at four locations in Morocco during the 2016-2017 and 2017-2018 cropping seasons. The results showed highly significant differences between genotypes for β-glucan, protein, iron, and selenium contents, as well as 1000 kernel weight, but not zinc content; significant to highly significant differences between environments for all traits except β-glucan content; and significant to highly significant interactions for all traits. The highest level of β-glucan content has reached 11.57% observed at the Sidi El Aydi site during the growing season 2017-2018 for the hulless variety Chifaa. This variety has shown the highest content of β-glucan (6.2-11.57%) over all environments except at Tassaout during the 2016-2017 seasons. The breeding line M9V5 has achieved significantly higher protein content at all the locations during the two growing seasons, ranging from 12.38 to 20.14%. Most hulless lines had significantly higher β-glucan and protein contents, but lower 1000 kernel weight. For micronutrients, the content ranges were 28.94 to 38.23 ppm for Fe, 28.78 to 36.49 ppm for Zn, and 0.14 to 0.18 ppm for Se, with the highest content for Fe and Zn shown by the breeding line M9V5 and Chifaa showing average contents of 33.39 ppm, 35.34 ppm, and 0.18 ppm for Fe, Zn, and Se, respectively. The GGE biplot confirmed the high and relatively stable content of β-glucan and acceptable micronutrient contents of the Chifaa variety and identified Marchouch as the most discriminant site to breed for biofortified barley varieties.
Collapse
Affiliation(s)
- Fadwa Elouadi
- Plant Animal Productions and Agro-Industry Laboratory, Ibn Tofail University, Kenitra, Morocco
| | - Ahmed Amri
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Adil El-Baouchi
- AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Zakaria Kehel
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Abderrazek Jilal
- National Institute for Agricultural Research, Regional Center of Rabat, Rabat Institutes, Rabat, Morocco
| | - Mohammed Ibriz
- Plant Animal Productions and Agro-Industry Laboratory, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
2
|
Nagesh Kumar MV, Ramya V, Maheshwaramma S, Ganapathy KN, Govindaraj M, Kavitha K, Vanisree K. Exploiting Indian landraces to develop biofortified grain sorghum with high protein and minerals. Front Nutr 2023; 10:1228422. [PMID: 37876619 PMCID: PMC10591322 DOI: 10.3389/fnut.2023.1228422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Sorghum (Sorghum bicolor L. Moench) is the staple cereal and is the primary source of protein for millions of people in Asia and sub-Saharan Africa. Sorghum grain value has been increasing in tropical countries including India owing to its gluten-free nature, anti-oxidant properties and low glycemic index. However, the nutrient composition of modern cultivars is declining thus necessitating genetic biofortification of sorghum to combat malnutrition and improve nutritional balance in the human diet. Keeping this in view, efforts were made to utilize valuable alleles, associated with nutrient composition, that might have been left behind in the varietal development in sorghum. The study aimed to determine the genetic improvement for nine nutritional and quality parameters (crude protein, in vitro protein digestibility (IVPD), total iron (Fe), total zinc (Zn), bioavailable Fe (%), bioavailable Zn (%), total phenolics, tannins and antioxidant activity) in the grains of 19 sorghum genotypes (high yield, drought and grain mold tolerant) developed from 11 superior India's landraces. After selection and advancement made from 2017 to 2022 through single seed descent method, the improvement in the nine nutritional and quality parameters was assessed. Significant variation was observed for all the nine parameters among the landraces and the genotypes. Sorghum genotypes PYPS 2 and PYPS 13 recorded the highest crude protein (13.21 and 12.80% respectively) and IVPD (18.68 and 19.56% respectively). Majority of the sorghum genotypes recorded high Fe (14.21-28.41 mg/100 g) and Zn (4.81-8.16 mg/100 g). High phenolics and antioxidant activity were recorded in sorghum genotypes PYPS 18 (85.65 mg/g gallic acid equivalents) and PYPS 19 (89.78%) respectively. Selections through SSD method revealed highest improvement in genotype PYPS 10 for crude protein (32.25%), total phenolics (18.48%) and antioxidant activity (15.43%). High improvements in genotypes PYPS 12 (23.50%), PYPS 3 (26.79%), PYPS 15 (21.18%) were recorded for total Fe, available Fe and high tannins, respectively. The study demonstrated that landraces could be effectively utilized as a potential, low-cost and eco-friendly approach in sorghum genetic biofortification to improved sorghum productivity and nutritional supply in semi-arid tropics.
Collapse
Affiliation(s)
| | - Vittal Ramya
- Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| | | | | | - Mahalingam Govindaraj
- HarvestPlus Program, The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Kosnam Kavitha
- Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| | - Kalisetti Vanisree
- Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| |
Collapse
|
3
|
Kang M, Wang X, Chen J, Fang Q, Liu J, Tang L, Liu L, Cao W, Zhu Y, Liu B. Extreme low-temperature events can alleviate micronutrient deficiencies while increasing potential health risks from heavy metals in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122165. [PMID: 37429493 DOI: 10.1016/j.envpol.2023.122165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Despite global warming, extreme low-temperature stress (LTS) events pose a significant threat to rice production (especially in East Asia) that can significantly impact micronutrient and heavy metal elements in rice. With two billion people worldwide facing micronutrient deficiencies (MNDs) and widespread heavy metal pollution in rice, understanding these impacts is crucial. We conducted detailed extreme LTS experiments with two rice (Oryza sativa L.) cultivars (Huaidao 5 and Nanjing 46) grown under four temperature levels (from 21/27 °C to 6/12 °C) and three LTS durations (three, six, and nine days). We observed significant interaction effects for LTS at different growth stages, durations and temperature levels on the contents and accumulation of mineral elements. The contents of most mineral elements (such Fe, Zn, As, Cu, and Cd) increased significantly under severe LTS at flowering, but decreased under LTS at the grain-filling stage. The accumulations of all mineral elements decreased at the three growth stages under LTS due to decreased grain weight. The contents and accumulation of mineral elements were more sensitive to LTS at the peak flowering stage than at the other two stages. Furthermore, the contents of most mineral elements in Nanjing 46 show larger variation under LTS compared to Huaidao 5. Accumulated cold degree days (ACDD, °C·d) were found to be suitable for quantifying the effects of LTS on the relative contents and accumulations of mineral elements. LTS at the flowering stage will help alleviate MNDs, but may also increase potential health risks from heavy metals. These results provide valuable insights for evaluating future climate change impacts on rice grain quality and potential health risks from heavy metals.
Collapse
Affiliation(s)
- Min Kang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Xue Wang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Jiankun Chen
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Qizhao Fang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Jiaming Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Liang Tang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Leilei Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Weixing Cao
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Yan Zhu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Bing Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
4
|
Wang W, Xie Y, Liu L, King GJ, White P, Ding G, Wang S, Cai H, Wang C, Xu F, Shi L. Genetic Control of Seed Phytate Accumulation and the Development of Low-Phytate Crops: A Review and Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3375-3390. [PMID: 35275483 DOI: 10.1021/acs.jafc.1c06831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Breeding low phytic acid (lpa) crops is a strategy that has potential to both improve the nutritional quality of food and feed and contribute to the sustainability of agriculture. Here, we review the lipid-independent and -dependent pathways of phytate synthesis and their regulatory mechanisms in plants. We compare the genetic variation of the phytate concentration and distribution in seeds between dicot and monocot species as well as the associated temporal and spatial expression patterns of the genes involved in phytate synthesis and transport. Quantitative trait loci or significant single nucleotide polymorphisms for the seed phytate concentration have been identified in different plant species by linkage and association mapping, and some genes have been cloned from lpa mutants. We summarize the effects of various lpa mutations on important agronomic traits in crop plants and propose SULTR3;3 and SULTR3;4 as optimal target genes for lpa crop breeding.
Collapse
Affiliation(s)
- Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yiwen Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Lismore New South Wales 2480, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore New South Wales 2480, Australia
| | - Philip White
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Hongmei Cai
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Chuang Wang
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
5
|
Shariatipour N, Heidari B, Ravi S, Stevanato P. Genomic analysis of ionome-related QTLs in Arabidopsis thaliana. Sci Rep 2021; 11:19194. [PMID: 34584138 PMCID: PMC8479127 DOI: 10.1038/s41598-021-98592-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Ionome contributes to maintain cell integrity and acts as cofactors for catalyzing regulatory pathways. Identifying ionome contributing genomic regions provides a practical framework to dissect the genetic architecture of ionomic traits for use in biofortification. Meta-QTL (MQTL) analysis is a robust method to discover stable genomic regions for traits regardless of the genetic background. This study used information of 483 QTLs for ionomic traits identified from 12 populations for MQTL analysis in Arabidopsis thaliana. The selected QTLs were projected onto the newly constructed genetic consensus map and 33 MQTLs distributed on A. thaliana chromosomes were identified. The average confidence interval (CI) of the drafted MQTLs was 1.30 cM, reduced eight folds from a mean CI of 10.88 cM for the original QTLs. Four MQTLs were considered as stable MQTLs over different genetic backgrounds and environments. In parallel to the gene density over the A. thaliana genome, the genomic distribution of MQTLs over the genetic and physical maps indicated the highest density at non- and sub-telomeric chromosomal regions, respectively. Several candidate genes identified in the MQTLs intervals were associated with ion transportation, tolerance, and homeostasis. The genomic context of the identified MQTLs suggested nine chromosomal regions for Zn, Mn, and Fe control. The QTLs for potassium (K) and phosphorus (P) were the most frequently co-located with Zn (78.3%), Mn (76.2%), and Fe (88.2% and 70.6%) QTLs. The current MQTL analysis demonstrates that meta-QTL analysis is cheaper than, and as informative as genome-wide association study (GWAS) in refining the known QTLs.
Collapse
Affiliation(s)
- Nikwan Shariatipour
- grid.412573.60000 0001 0745 1259Department of Plant Production and Genetics, School of Agriculture, Shiraz University, 7144165186 Shiraz, Iran
| | - Bahram Heidari
- grid.412573.60000 0001 0745 1259Department of Plant Production and Genetics, School of Agriculture, Shiraz University, 7144165186 Shiraz, Iran
| | - Samathmika Ravi
- grid.5608.b0000 0004 1757 3470Department of Agronomy, Animals, Natural Resources and Environment‐ DAFNAE, University of Padova, Legnaro, Padova Italy
| | - Piergiorgio Stevanato
- grid.5608.b0000 0004 1757 3470Department of Agronomy, Animals, Natural Resources and Environment‐ DAFNAE, University of Padova, Legnaro, Padova Italy
| |
Collapse
|
6
|
Cobb JN, Chen C, Shi Y, Maron LG, Liu D, Rutzke M, Greenberg A, Craft E, Shaff J, Paul E, Akther K, Wang S, Kochian LV, Zhang D, Zhang M, McCouch SR. Genetic architecture of root and shoot ionomes in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2613-2637. [PMID: 34018019 PMCID: PMC8277617 DOI: 10.1007/s00122-021-03848-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/29/2021] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE Association analysis for ionomic concentrations of 20 elements identified independent genetic factors underlying the root and shoot ionomes of rice, providing a platform for selecting and dissecting causal genetic variants. Understanding the genetic basis of mineral nutrient acquisition is key to fully describing how terrestrial organisms interact with the non-living environment. Rice (Oryza sativa L.) serves both as a model organism for genetic studies and as an important component of the global food system. Studies in rice ionomics have primarily focused on above ground tissues evaluated from field-grown plants. Here, we describe a comprehensive study of the genetic basis of the rice ionome in both roots and shoots of 6-week-old rice plants for 20 elements using a controlled hydroponics growth system. Building on the wealth of publicly available rice genomic resources, including a panel of 373 diverse rice lines, 4.8 M genome-wide single-nucleotide polymorphisms, single- and multi-marker analysis pipelines, an extensive tome of 321 candidate genes and legacy QTLs from across 15 years of rice genetics literature, we used genome-wide association analysis and biparental QTL analysis to identify 114 genomic regions associated with ionomic variation. The genetic basis for root and shoot ionomes was highly distinct; 78 loci were associated with roots and 36 loci with shoots, with no overlapping genomic regions for the same element across tissues. We further describe the distribution of phenotypic variation across haplotypes and identify candidate genes within highly significant regions associated with sulfur, manganese, cadmium, and molybdenum. Our analysis provides critical insight into the genetic basis of natural phenotypic variation for both root and shoot ionomes in rice and provides a comprehensive resource for dissecting and testing causal genetic variants.
Collapse
Affiliation(s)
- Joshua N Cobb
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
- RiceTec Inc, Alvin, TX, 77511, USA
| | - Chen Chen
- Department of Statistics, Purdue University, West Lafayette, IN, 47907-2054, USA
- Ausy Consulting, Esperantolaan 8, 3001, Heverlee, Belgium
| | - Yuxin Shi
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
| | - Lyza G Maron
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
| | - Danni Liu
- Department of Statistics, Purdue University, West Lafayette, IN, 47907-2054, USA
| | - Mike Rutzke
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
| | - Anthony Greenberg
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
- Bayesic Research, LLC, 452 Sheffield Rd, Ithaca, NY, 14850, USA
| | - Eric Craft
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
| | - Jon Shaff
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, 14853-1901, USA
| | - Edyth Paul
- GeneFlow, Inc, Centreville, VA, 20120, USA
| | - Kazi Akther
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
| | - Shaokui Wang
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
- Department of Plant Breeding, South China Agriculture University, Guangdong, 510642, China
| | - Leon V Kochian
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, 14853-1901, USA
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Dabao Zhang
- Department of Statistics, Purdue University, West Lafayette, IN, 47907-2054, USA
| | - Min Zhang
- Department of Statistics, Purdue University, West Lafayette, IN, 47907-2054, USA.
| | - Susan R McCouch
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA.
| |
Collapse
|
7
|
Wang W, Zou J, White PJ, Ding G, Li Y, Xu F, Shi L. Identification of QTLs associated with potassium use efficiency and underlying candidate genes by whole-genome resequencing of two parental lines in Brassica napus. Genomics 2021; 113:755-768. [PMID: 33516850 DOI: 10.1016/j.ygeno.2021.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/20/2020] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Breeding crops that acquire and/or utilize potassium (K) more effectively could reduce the use of K fertilizers. Sixteen traits affecting K use efficiency (KUE) at the seedling stage were investigated in a B. napus double haploid population grown at an optimal K supply (OK) and a low K supply (LK) in a hydroponic culture system. In total, 50 and 62 QTLs associated with these traits were identified at OK and LK, respectively. A total of 25 orthologues of 23 Arabidopsis genes regulating K transport were identified in the confidence intervals of nine QTLs impacting shoot dry weight at LK, and 22 of these showed variations in coding sequences and/or exhibited significant differences in mRNA abundances in roots at LK between the two parental lines. This study provided insights to the genetic basis of KUE in B. napus, which will accelerate the breeding of K-efficient rapeseed cultivars by marker-assisted selection.
Collapse
Affiliation(s)
- Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Philip J White
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; Distinguished Scientist Fellowship Program, King Saud University, Riyadh 11451, Saudi Arabia
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yalin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Karaca N, Ates D, Nemli S, Ozkuru E, Yilmaz H, Yagmur B, Kartal C, Tosun M, Ozdestan O, Otles S, Kahriman A, Chang P, Tanyolac MB. Identification of SNP Markers Associated with Iron and Zinc Concentrations in Cicer Seeds. Curr Genomics 2020; 21:212-223. [PMID: 33071615 PMCID: PMC7521033 DOI: 10.2174/1389202921666200413150951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022] Open
Abstract
Background Cicer reticulatum L. is the wild progenitor of chickpea Cicer arietinum L., the fourth most important pulse crop in the world. Iron (Fe) and zinc (Zn) are vital micronutrients that play crucial roles in sustaining life by acting as co-factors for various proteins. Aims and Objectives
In order to improve micronutrient-dense chickpea lines, this study aimed to investigate variability and detect DNA markers associated with Fe and Zn concentrations in the seeds of 73 cultivated (C. arietinum L.) and 107 C. reticulatum genotypes. Methods
A set of 180 accessions was genotyped using 20,868 single nucleotide polymorphism (SNP) markers obtained from genotyping by sequencing analysis. Results
The results revealed substantial variation in the seed Fe and Zn concentration of the surveyed population. Using STRUCTURE software, the population structure was divided into two groups according to the principal component analysis and neighbor-joining tree analysis. A total of 23 and 16 associated SNP markers related to Fe and Zn concentrations, respectively were identified in TASSEL software by the mixed linear model method. Significant SNP markers found in more than two environments were accepted as more reliable than those that only existed in a single environment. Conclusion
The identified markers can be used in marker-assisted selection in chickpea breeding programs for the improvement of seed Fe and Zn concentrations in the chickpea.
Collapse
Affiliation(s)
- Nur Karaca
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Duygu Ates
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Seda Nemli
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Esin Ozkuru
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Hasan Yilmaz
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Bulent Yagmur
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Canan Kartal
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Muzaffer Tosun
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Ozgul Ozdestan
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Semih Otles
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Abdullah Kahriman
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Peter Chang
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Muhammed Bahattin Tanyolac
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| |
Collapse
|
9
|
Wang W, Ding G, White PJ, Wang M, Zou J, Xu F, Hammond JP, Shi L. Genetic dissection of the shoot and root ionomes of Brassica napus grown with contrasting phosphate supplies. ANNALS OF BOTANY 2020; 126:119-140. [PMID: 32221530 PMCID: PMC7304470 DOI: 10.1093/aob/mcaa055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/26/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Mineral elements have many essential and beneficial functions in plants. Phosphorus (P) deficiency can result in changes in the ionomes of plant organs. The aims of this study were to characterize the effects of P supply on the ionomes of shoots and roots, and to identify chromosomal quantitative trait loci (QTLs) for shoot and root ionomic traits, as well as those affecting the partitioning of mineral elements between shoot and root in Brassica napus grown with contrasting P supplies. METHODS Shoot and root concentrations of 11 mineral elements (B, Ca, Cu, Fe, K, Mg, Mn, Na, P, S and Zn) were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES) in a Brassica napus double haploid population grown at an optimal (OP) and a low phosphorus supply (LP) in an agar system. Shoot, root and plant contents, and the partitioning of mineral elements between shoot and root were calculated. KEY RESULTS The tissue concentrations of B, Ca, Cu, K, Mg, Mn, Na, P and Zn were reduced by P starvation, while the concentration of Fe was increased by P starvation in the BnaTNDH population. A total of 133 and 123 QTLs for shoot and root ionomic traits were identified at OP and LP, respectively. A major QTL cluster on chromosome C07 had a significant effect on shoot Mg and S concentrations at LP and was narrowed down to a 2.1 Mb region using an advanced backcross population. CONCLUSIONS The tissue concentration and partitioning of each mineral element was affected differently by P starvation. There was a significant difference in mineral element composition between shoots and roots. Identification of the genes underlying these QTLs will enhance our understanding of processes affecting the uptake and partitioning of mineral elements in Brassica napus.
Collapse
Affiliation(s)
- Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Philip J White
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- The James Hutton Institute, Invergowrie, Dundee, UK
| | - Meng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - John P Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
- Southern Cross Plant Science, Southern Cross University, Lismore, Australia
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Wang C, Tang Z, Zhuang JY, Tang Z, Huang XY, Zhao FJ. Genetic mapping of ionomic quantitative trait loci in rice grain and straw reveals OsMOT1;1 as the putative causal gene for a molybdenum QTL qMo8. Mol Genet Genomics 2019; 295:391-407. [PMID: 31797032 DOI: 10.1007/s00438-019-01632-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
Abstract
Rice is a major dietary source of essential mineral nutrients and toxic elements (aka ionome) for humans. However, the genetic basis underlying the variation in ionome is still largely unknown. Here, we mapped 51 and 61 quantitative trait loci (QTLs) controlling the concentrations of 13 and 15 elements in rice (Oryza sativa L.) grain and straw, respectively, using a recombinant inbred lines (RILs) that were grown at three different field sites in 3 years. Several QTLs were repeatedly detected in both grain and straw or in multiple years; the resulting 87 unique QTLs with 17 of them (20%) were co-localized with previously reported corresponding QTLs and 70 were novel ionomic QTLs. At least, 14 genomic clusters that controlled the concentrations of multiple elements were identified. Furthermore, we identified a molybdate transporter gene OsMOT1;1 as the putative causal gene for a QTL controlling molybdenum concentration in both straw and grain. QTL analyses based on the concentrations of multiple elements in both grain and straw of RIL population grown in three field sites in 3 years allow us to identify tissue common QTLs and reproducible QTLs that were validated in multiple years. The identification of ionomic QTLs will be useful in revealing the molecular mechanisms underlying the accumulation of elements in rice and providing the opportunity to reduce the accumulation of toxic elements and enrich the accumulation of beneficial elements in rice grain.
Collapse
Affiliation(s)
- Chengcheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhong Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie-Yun Zhuang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, National Rice Research Institute China, Hangzhou, 310006, China
| | - Zhu Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
11
|
Karaca N, Ates D, Nemli S, Ozkuru E, Yilmaz H, Yagmur B, Kartal C, Tosun M, Ocak OO, Otles S, Kahriman A, Tanyolac MB. Association mapping of magnesium and manganese concentrations in the seeds of C. arietinum and C. reticulatum. Genomics 2019; 112:1633-1642. [PMID: 31669504 DOI: 10.1016/j.ygeno.2019.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022]
Abstract
Chickpea (Cicer arietinum L.) is one of the oldest and most important pulse crops grown and consumed all over the world, especially in developing countries. Magnesium (Mg) and manganese (Mn) are essential plant nutrients in terms of human health and many health problems arise in their deficiencies. The objectives of this study were to characterize genetic variability in the seed Mg and Mn concentrations and identify single nucleotide polymorphism (SNP) markers associated with these traits in 107 Cicer reticulatum and 73C. arietinum genotypes, using a genome wide association study. The genotypes were grown in four environments, characterized for Mg and Mn concentrations, and genotyped with 121,841 SNP markers. The population showed three-fold and two-fold variation for the Mg and Mn concentrations, respectively. The population structure was identified using STRUCTURE software, which divided 180 genotypes into two (K = 2) groups. Principal component analysis and neighbor joining tree analysis confirmed the results of STRUCTURE. A total of 4 and 16 consistent SNPs were detected for the Mg and Mn concentrations, respectively. The identified markers can be utilized in breeding of chickpea to increase Mg and Mn levels in order to improve human and livestock nutrition.
Collapse
Affiliation(s)
- Nur Karaca
- Ege University, Department of Bioengineering, 35040, Bornova, Izmir, Turkey
| | - Duygu Ates
- Ege University, Department of Bioengineering, 35040, Bornova, Izmir, Turkey
| | - Seda Nemli
- Ege University, Department of Bioengineering, 35040, Bornova, Izmir, Turkey
| | - Esin Ozkuru
- Ege University, Department of Bioengineering, 35040, Bornova, Izmir, Turkey
| | - Hasan Yilmaz
- Ege University, Department of Bioengineering, 35040, Bornova, Izmir, Turkey
| | - Bulent Yagmur
- Ege University, Department of Soil Sciences, 35040, Bornova, Izmir, Turkey
| | - Canan Kartal
- Ege University, Department of Food Engineering, 35040, Bornova, Izmir, Turkey
| | - Muzaffer Tosun
- Ege University, Department of Field Crops, 35040, Bornova, Izmir, Turkey
| | - Ozgul Ozdestan Ocak
- Ege University, Department of Food Engineering, 35040, Bornova, Izmir, Turkey
| | - Semih Otles
- Ege University, Department of Food Engineering, 35040, Bornova, Izmir, Turkey
| | - Abdullah Kahriman
- Harran University, Department of Field Crops, 64000 Sanli Urfa, Turkey
| | | |
Collapse
|
12
|
Ferguson J, Meyer R, Edwards K, Humphry M, Brendel O, Bechtold U. Accelerated flowering time reduces lifetime water use without penalizing reproductive performance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2019; 42:1847-1867. [PMID: 30707443 PMCID: PMC6563486 DOI: 10.1111/pce.13527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/14/2019] [Indexed: 05/30/2023]
Abstract
Natural selection driven by water availability has resulted in considerable variation for traits associated with drought tolerance and leaf-level water-use efficiency (WUE). In Arabidopsis, little is known about the variation of whole-plant water use (PWU) and whole-plant WUE (transpiration efficiency). To investigate the genetic basis of PWU, we developed a novel proxy trait by combining flowering time and rosette water use to estimate lifetime PWU. We validated its usefulness for large-scale screening of mapping populations in a subset of ecotypes. This parameter subsequently facilitated the screening of water use and drought tolerance traits in a recombinant inbred line population derived from two Arabidopsis accessions with distinct water-use strategies, namely, C24 (low PWU) and Col-0 (high PWU). Subsequent quantitative trait loci mapping and validation through near-isogenic lines identified two causal quantitative trait loci, which showed that a combination of weak and nonfunctional alleles of the FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) genes substantially reduced plant water use due to their control of flowering time. Crucially, we observed that reducing flowering time and consequently water use did not penalize reproductive performance, as such water productivity (seed produced per unit of water transpired) improved. Natural polymorphisms of FRI and FLC have previously been elucidated as key determinants of natural variation in intrinsic WUE (δ13 C). However, in the genetic backgrounds tested here, drought tolerance traits, stomatal conductance, δ13 C. and rosette water use were independent of allelic variation at FRI and FLC, suggesting that flowering is critical in determining lifetime PWU but not always leaf-level traits.
Collapse
Affiliation(s)
- John N. Ferguson
- School of Biological SciencesUniversity of EssexColchesterUK
- Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Rhonda C. Meyer
- Department of Molecular GeneticsLeibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandGermany
| | - Kieron D. Edwards
- Sibelius Natural Products Health Wellness and FitnessOxfordUK
- Advanced Technologies CambridgeCambridgeUK
| | - Matt Humphry
- Advanced Technologies CambridgeCambridgeUK
- Quantitative GeneticsBritish American TobaccoCambridgeUK
| | - Oliver Brendel
- Université de LorraineAgroParisTech, INRA, SilvaNancyFrance
| | - Ulrike Bechtold
- School of Biological SciencesUniversity of EssexColchesterUK
| |
Collapse
|
13
|
Campos ACAL, Kruijer W, Alexander R, Akkers RC, Danku J, Salt DE, Aarts MGM. Natural variation in Arabidopsis thaliana reveals shoot ionome, biomass, and gene expression changes as biomarkers for zinc deficiency tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3643-3656. [PMID: 28859376 DOI: 10.1093/jxb/erx191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/20/2017] [Indexed: 05/12/2023]
Abstract
Zinc (Zn) is an essential nutrient for plants, with a crucial role as a cofactor for many enzymes. Approximately one-third of the global arable land area is Zn deficient, leading to reduced crop yield and quality. To improve crop tolerance to Zn deficiency, it is important to understand the mechanisms plants have adopted to tolerate suboptimal Zn supply. In this study, physiological and molecular aspects of traits related to Zn deficiency tolerance were examined in a panel of 19 Arabidopsis thaliana accessions. Accessions showed a larger variation for shoot biomass than for Zn concentration, indicating that they have different requirements for their minimal Zn concentration required for growth. Accessions with a higher tolerance to Zn deficiency showed an increased expression of the Zn deficiency-responsive genes ZIP4 and IRT3 in comparison with Zn deficiency-sensitive accessions. Changes in the shoot ionome, as a result of the Zn treatment of the plants, were used to build a multinomial logistic regression model able to distinguish plants regarding their Zn nutritional status. This set of biomarkers, reflecting the A. thaliana response to Zn deficiency and Zn deficiency tolerance, can be useful for future studies aiming to improve the performance and Zn status of crop plants grown under suboptimal Zn concentrations.
Collapse
Affiliation(s)
- Ana Carolina A L Campos
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen AB24 3UU, UK
| | - Willem Kruijer
- Biometris, Wageningen University and Research, PO Box 100, 6700AC Wageningen, The Netherlands
| | - Ross Alexander
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- School of Life Sciences, John Muir Building, Heriot Watt University, Edinburgh EH14 4AS, UK
| | - Robert C Akkers
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - John Danku
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen AB24 3UU, UK
| | - David E Salt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen AB24 3UU, UK
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
14
|
Phuke RM, Anuradha K, Radhika K, Jabeen F, Anuradha G, Ramesh T, Hariprasanna K, Mehtre SP, Deshpande SP, Anil G, Das RR, Rathore A, Hash T, Reddy BVS, Kumar AA. Genetic Variability, Genotype × Environment Interaction, Correlation, and GGE Biplot Analysis for Grain Iron and Zinc Concentration and Other Agronomic Traits in RIL Population of Sorghum ( Sorghum bicolor L. Moench). FRONTIERS IN PLANT SCIENCE 2017; 8:712. [PMID: 28529518 PMCID: PMC5418227 DOI: 10.3389/fpls.2017.00712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/18/2017] [Indexed: 05/24/2023]
Abstract
The low grain iron and zinc densities are well documented problems in food crops, affecting crop nutritional quality especially in cereals. Sorghum is a major source of energy and micronutrients for majority of population in Africa and central India. Understanding genetic variation, genotype × environment interaction and association between these traits is critical for development of improved cultivars with high iron and zinc. A total of 336 sorghum RILs (Recombinant Inbred Lines) were evaluated for grain iron and zinc concentration along with other agronomic traits for 2 years at three locations. The results showed that large variability exists in RIL population for both micronutrients (Iron = 10.8 to 76.4 mg kg-1 and Zinc = 10.2 to 58.7 mg kg-1, across environments) and agronomic traits. Genotype × environment interaction for both micronutrients (iron and zinc) was highly significant. GGE biplots comparison for grain iron and zinc showed greater variation across environments. The results also showed that G × E was substantial for grain iron and zinc, hence wider testing needed for taking care of G × E interaction to breed micronutrient rich sorghum lines. Iron and zinc concentration showed high significant positive correlation (across environment = 0.79; p < 0.01) indicating possibility of simultaneous effective selection for both the traits. The RIL population showed good variability and high heritabilities (>0.60, in individual environments) for Fe and Zn and other traits studied indicating its suitability to map QTL for iron and zinc.
Collapse
Affiliation(s)
- Rahul M. Phuke
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
- Professor Jayashankar Telangana State Agricultural UniversityHyderbad, India
| | - Kotla Anuradha
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Kommineni Radhika
- Professor Jayashankar Telangana State Agricultural UniversityHyderbad, India
| | - Farzana Jabeen
- Professor Jayashankar Telangana State Agricultural UniversityHyderbad, India
| | - Ghanta Anuradha
- Professor Jayashankar Telangana State Agricultural UniversityHyderbad, India
| | - Thatikunta Ramesh
- Professor Jayashankar Telangana State Agricultural UniversityHyderbad, India
| | | | | | - Santosh P. Deshpande
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Gaddameedi Anil
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Roma R. Das
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Tom Hash
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Belum V. S. Reddy
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Are Ashok Kumar
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| |
Collapse
|
15
|
Qu Y, Liu S, Bao W, Xue X, Ma Z, Yokawa K, Baluška F, Wan Y. Expression of Root Genes in Arabidopsis Seedlings Grown by Standard and Improved Growing Methods. Int J Mol Sci 2017; 18:ijms18050951. [PMID: 28467358 PMCID: PMC5454864 DOI: 10.3390/ijms18050951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022] Open
Abstract
Roots of Arabidopsis thaliana seedlings grown in the laboratory using the traditional plant-growing culture system (TPG) were covered to maintain them in darkness. This new method is based on a dark chamber and is named the improved plant-growing method (IPG). We measured the light conditions in dark chambers, and found that the highest light intensity was dramatically reduced deeper in the dark chamber. In the bottom and side parts of dark chambers, roots were almost completely shaded. Using the high-throughput RNA sequencing method on the whole RNA extraction from roots, we compared the global gene expression levels in roots of seedlings from these two conditions and identified 141 differently expressed genes (DEGs) between them. According to the KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment, the flavone and flavonol biosynthesis and flavonoid biosynthesis pathways were most affected among all annotated pathways. Surprisingly, no genes of known plant photoreceptors were identified as DEGs by this method. Considering that the light intensity was decreased in the IPG system, we collected four sections (1.5 cm for each) of Arabidopsis roots grown in TPG and IPG conditions, and the spatial-related differential gene expression levels of plant photoreceptors and polar auxin transporters, including CRY1, CRY2, PHYA, PHYB, PHOT1, PHOT2, and UVR8 were analyzed by qRT-PCR. Using these results, we generated a map of the spatial-related expression patterns of these genes under IPG and TPG conditions. The expression levels of light-related genes in roots is highly sensitive to illumination and it provides a background reference for selecting an improved culture method for laboratory-maintained Arabidopsis seedlings.
Collapse
Affiliation(s)
- Yanli Qu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Shuai Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Wenlong Bao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Xian Xue
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
- College of Agriculture, Henan University of Science and Technology, Luoyang 471003, China.
| | - Zhengwen Ma
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Ken Yokawa
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan.
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany.
| | - Yinglang Wan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
16
|
Kumar S, Hash CT, Thirunavukkarasu N, Singh G, Rajaram V, Rathore A, Senapathy S, Mahendrakar MD, Yadav RS, Srivastava RK. Mapping Quantitative Trait Loci Controlling High Iron and Zinc Content in Self and Open Pollinated Grains of Pearl Millet [ Pennisetum glaucum (L.) R. Br.]. FRONTIERS IN PLANT SCIENCE 2016; 7:1636. [PMID: 27933068 PMCID: PMC5120122 DOI: 10.3389/fpls.2016.01636] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/17/2016] [Indexed: 05/05/2023]
Abstract
Pearl millet is a multipurpose grain/fodder crop of the semi-arid tropics, feeding many of the world's poorest and most undernourished people. Genetic variation among adapted pearl millet inbreds and hybrids suggests it will be possible to improve grain micronutrient concentrations by selective breeding. Using 305 loci, a linkage map was constructed to map QTLs for grain iron [Fe] and zinc [Zn] using replicated samples of 106 pearl millet RILs (F6) derived from ICMB 841-P3 × 863B-P2. The grains of the RIL population were evaluated for Fe and Zn content using atomic absorption spectrophotometer. Grain mineral concentrations ranged from 28.4 to 124.0 ppm for Fe and 28.7 to 119.8 ppm for Zn. Similarly, grain Fe and Zn in open pollinated seeds ranged between 22.4-77.4 and 21.9-73.7 ppm, respectively. Mapping with 305 (96 SSRs; 208 DArT) markers detected seven linkage groups covering 1749 cM (Haldane) with an average intermarker distance of 5.73 cM. On the basis of two environment phenotypic data, two co-localized QTLs for Fe and Zn content on linkage group (LG) 3 were identified by composite interval mapping (CIM). Fe QTL explained 19% phenotypic variation, whereas the Zn QTL explained 36% phenotypic variation. Likewise for open pollinated seeds, the QTL analysis led to the identification of two QTLs for grain Fe content on LG3 and 5, and two QTLs for grain Zn content on LG3 and 7. The total phenotypic variance for Fe and Zn QTLs in open pollinated seeds was 16 and 42%, respectively. Analysis of QTL × QTL and QTL × QTL × environment interactions indicated no major epistasis.
Collapse
Affiliation(s)
- Sushil Kumar
- Plant Biotechnology Centre, Swami Keshwanand Rajasthan Agricultural UniversityBikaner, India; International Crops Research Institute for the Semi-Arid TropicsPatancheru, India; Centre of Excellence in Agricultural Biotechnology, Anand Agricultural UniversityAnand, India
| | - Charles T Hash
- International Crops Research Institute for the Semi-Arid Tropics Niamey, Niger
| | | | - Govind Singh
- Plant Biotechnology Centre, Swami Keshwanand Rajasthan Agricultural University Bikaner, India
| | - Vengaldas Rajaram
- International Crops Research Institute for the Semi-Arid Tropics Patancheru, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics Patancheru, India
| | | | - Mahesh D Mahendrakar
- International Crops Research Institute for the Semi-Arid Tropics Patancheru, India
| | - Rattan S Yadav
- Crop Genetics, Genomics and Breeding Division, Aberystwyth University Aberystwyth, UK
| | - Rakesh K Srivastava
- International Crops Research Institute for the Semi-Arid Tropics Patancheru, India
| |
Collapse
|
17
|
Wang F, Rose T, Jeong K, Kretzschmar T, Wissuwa M. The knowns and unknowns of phosphorus loading into grains, and implications for phosphorus efficiency in cropping systems. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1221-9. [PMID: 26662950 DOI: 10.1093/jxb/erv517] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Inefficient use of phosphorus (P) in agriculture adds to production costs, increases the risk of eutrophication of waterways, and contributes to the rapid depletion of the world's non-renewable rock phosphate supplies. The removal of large quantities of P from fields in harvested grains is a major driver in the global P cycle, but opportunities exist to reduce the amount of P in harvested grains through plant breeding. Using rice (Oryza sativa L.) as a model crop, we examine our current understanding of the process of P loading into grain and its regulation by genetic and environmental factors. We expose a dearth of knowledge on the physiological processes involved in loading P into grains, poor resolution of the genes and networks involved in P mobilization from vegetative tissues to grains, and limited understanding of genetic versus environmental contributions to variation in grain P concentrations observed among genotypes. We discuss potential breeding strategies and highlight key research gaps that should be addressed to facilitate these breeding approaches. Given the strong economic and environmental incentives for a low grain P trait, we suggest that some of the investment and resources currently directed to determining the molecular regulation of P starvation responses in model plant species should be diverted to resolving the physiology, genetics, and molecular regulation of P loading into cereal grains.
Collapse
Affiliation(s)
- Fanmiao Wang
- Crop Production and Environment Division, Japan International Research Centre for Agricultural Science, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Terry Rose
- Southern Cross Plant Science, Southern Cross University, PO Box 57, Lismore, NSW 2480, Australia Southern Cross GeoScience, Southern Cross University, PO Box 57, Lismore, NSW 2480, Australia
| | - Kwanho Jeong
- Southern Cross Plant Science, Southern Cross University, PO Box 57, Lismore, NSW 2480, Australia Southern Cross GeoScience, Southern Cross University, PO Box 57, Lismore, NSW 2480, Australia
| | - Tobias Kretzschmar
- International Rice Research Institute (IRRI), DAPO BOX 7777, Metro Manila, Philippines
| | - Matthias Wissuwa
- Crop Production and Environment Division, Japan International Research Centre for Agricultural Science, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| |
Collapse
|
18
|
Chen X, Yuan L, Ludewig U. Natural Genetic Variation of Seed Micronutrients of Arabidopsis thaliana Grown in Zinc-Deficient and Zinc-Amended Soil. FRONTIERS IN PLANT SCIENCE 2016; 7:1070. [PMID: 27507976 PMCID: PMC4960235 DOI: 10.3389/fpls.2016.01070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/07/2016] [Indexed: 05/03/2023]
Abstract
The quality of edible seeds for human and animal nutrition is crucially dependent on high zinc (Zn) and iron (Fe) seed concentrations. The micronutrient bioavailability is strongly reduced by seed phytate that forms complexes with seed cations. Superior genotypes with increased seed Zn concentrations had been identified, but low micronutrient seed levels often prevail when the plants are grown in Zn-deficient soils, which are globally widespread and correlate with human Zn-deficiency. Here, seed Zn concentrations of Arabidopsis accessions grown in Zn-deficient and Zn-amended conditions were measured together with seed Fe and manganese (Mn), in a panel of 108 accessions. By applying genome-wide association, de novo candidate genes potentially involved in the seed micronutrient accumulation were identified. However, a candidate inositol 1,3,4-trisphosphate 5/6-kinase 3 gene (ITPK3), located close to a significant nucleotide polymorphism associated with relative Zn seed concentrations, was dispensable for seed micronutrients accumulation in Col-0. Loss of this gene in itpk3-1 did neither affect phytate seed levels, nor seed Zn, Fe, and Mn. It is concluded that large natural variance of micronutrient seed levels is identified in the population and several accessions maintain high seed Zn despite growth in Zn-deficient conditions.
Collapse
Affiliation(s)
- Xiaochao Chen
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, StuttgartGermany
| | - Lixing Yuan
- Key Laboratory of Plant-Soil Interaction, Ministry of Education, Center for Resources, Environment and Food Security, College Resources and Environmental Sciences, China Agricultural University, BeijingChina
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, StuttgartGermany
- *Correspondence: Uwe Ludewig,
| |
Collapse
|
19
|
Nawaz Z, Kakar KU, Li XB, Li S, Zhang B, Shou HX, Shu QY. Genome-wide Association Mapping of Quantitative Trait Loci (QTLs) for Contents of Eight Elements in Brown Rice (Oryza sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8008-16. [PMID: 26317332 DOI: 10.1021/acs.jafc.5b01191] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
An association mapping of quantitative trait loci (QTLs) regulating the concentrations of eight elements in brown rice (Oryza sativa L.) was performed using USDA mini-core subset cultivated in two different environments. In addition, correlation between the grain elemental concentrations was also studied. A total of 60 marker loci associated with 8 grain elemental concentrations were identified, and these loci were clustered into 37 genomic regions. Twenty new QTLs were found to be associated with important elements such as Zn, Fe, and P, along with others. Fe concentration was associated with the greatest number of markers in two environments. In addition, several important elemental/metal transporter genes were identified in a few mapped regions. Positive correlation was observed within all grain elemental concentrations. In summary, the results provide insight into the genetic basis of rice grain element accumulation and may help in the identification of genes associated with the accumulation of Zn, Fe, and other essential elements in rice.
Collapse
Affiliation(s)
- Zarqa Nawaz
- State Key Laboratory of Rice Biology, Institute of Crop Science, Zhejiang University , Hangzhou 310029, China
| | - Kaleem U Kakar
- State Key Laboratory of Rice Biology, Institute of Crop Science, Zhejiang University , Hangzhou 310029, China
| | - Xiao-bai Li
- Institute of Horticultural Science, Zhejiang Academy of Agricultural Sciences , Hangzhou 310021, China
| | - Shan Li
- State Key Laboratory of Rice Biology, Institute of Crop Science, Zhejiang University , Hangzhou 310029, China
| | - Bin Zhang
- Zhejiang Zhijiang Seed Company , Yuhang, Hangzhou 311107, China
| | - Hui-xia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou 310058, China
| | - Qing-yao Shu
- State Key Laboratory of Rice Biology, Institute of Crop Science, Zhejiang University , Hangzhou 310029, China
- Hubei Collaborative Innovation Center for Grain Industry , Jingzhou 434025, China
| |
Collapse
|
20
|
Pii Y, Cesco S, Mimmo T. Shoot ionome to predict the synergism and antagonism between nutrients as affected by substrate and physiological status. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 94:48-56. [PMID: 26004913 DOI: 10.1016/j.plaphy.2015.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/02/2015] [Indexed: 05/18/2023]
Abstract
The elemental composition of a tissue or organism is defined as ionome. However, the combined effects on the shoot ionome determined by the taxonomic character, the nutrient status and different substrates have not been investigated. This study tests the hypothesis that phylogenetic variation of monocots and dicots grown in iron deficiency can be distinguished by the shoot ionome. We analyzed 18 elements in barley, cucumber and tomato and in two substrates (hydroponic vs soil) with different nutritional regimes. Multivariate analysis evidenced a clear separation between the species. In hydroponic conditions the main drivers separating the species are non essential-nutrients as Ti, Al, Na and Li, which were positively correlated with macro- (P, K) and micronutrients (Fe, Zn, Mo, B). The separation between species is confirmed when plants are grown on soil, but the distribution is determined especially by macronutrients (S, P, K, Ca, Mg) and micronutrients (B). A number of macro (Mg, Ca, S, P, K) and micronutrients (Fe, Mn, Zn, Cu, Mo, B) contribute to plant growth and several other important physiological and metabolic plant activities. The results reported here confirmed that the synergism and antagonism between them and other non-essential elements (Ti, Al, Si, Na) define the plant taxonomic character. The ionome profile might thus be exploited as a tool for the diagnosis of plants physiological/nutritional status but also in defining biofortification strategies to optimize both mineral enrichment of staple food crops and the nutrient input as fertilizers.
Collapse
Affiliation(s)
- Youry Pii
- Faculty of Science and Technology, Free University of Bolzano, I-39100 Bolzano, Italy.
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, I-39100 Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano, I-39100 Bolzano, Italy
| |
Collapse
|
21
|
Huang Y, Tong C, Xu F, Chen Y, Zhang C, Bao J. Variation in mineral elements in grains of 20 brown rice accessions in two environments. Food Chem 2015; 192:873-8. [PMID: 26304423 DOI: 10.1016/j.foodchem.2015.07.087] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/18/2015] [Accepted: 07/20/2015] [Indexed: 02/06/2023]
Abstract
Twenty rice accessions were planted in Hainan province, China, for 2 years to investigate the effects of genotype, environment, and their interactions on the Ca, Mg, Na, K, Fe, Zn, and Cu contents in brown rice. Analysis of variance showed that the Ca, Na and K were mainly affected by the genotypic variance, whereas the Fe, Zn and Cu were mainly affected by the environment variance. The genotype × environment interaction effects for Mg, Na, Zn, and Cu were highly significant (P < 0.001), though it only accounted for a small proportion of the total variation (0.5-16.3%). The correlation analyses showed that Mg was significantly positively correlated with K, Fe, and Zn. A total of 9 and 8 single nucleotide polymorphism (SNP) loci were identified in 2011 and 2012, respectively, which were strongly associated with for Ca, Cu, K, Na, and Zn.
Collapse
Affiliation(s)
- Yan Huang
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Chuan Tong
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Feifei Xu
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Yaling Chen
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Caiya Zhang
- Department of Statistics, Zhejiang University City College, Hangzhou 310015, China.
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
22
|
Ilk N, Ding J, Ihnatowicz A, Koornneef M, Reymond M. Natural variation for anthocyanin accumulation under high-light and low-temperature stress is attributable to the ENHANCER OF AG-4 2 (HUA2) locus in combination with PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) and PAP2. THE NEW PHYTOLOGIST 2015; 206:422-435. [PMID: 25425527 DOI: 10.1111/nph.13177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/16/2014] [Indexed: 05/12/2023]
Abstract
Growing conditions combining high light intensities and low temperatures lead to anthocyanin accumulation in plants. This response was contrasted between two Arabidopsis thaliana accessions, which were used to decipher the genetic and molecular bases underlying the variation of this response. Quantitative trait loci (QTLs) for flowering time (FT) and anthocyanin accumulation under a high-light and low-temperature scenario versus a control environment were mapped. Major QTLs were confirmed using near-isogenic lines. Candidate genes were examined using mutants and gene expression studies as well as transgenic complementation. Several QTLs were found for FT and for anthocyanin content, of which one QTL co-located at the ENHANCER OF AG-4 2 (HUA2) locus. That HUA2 is a regulator of both pathways was confirmed by the analysis of loss-of-function mutants. For a strong expression of anthocyanin, additional allelic variation was detected for the PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) and PAP2 genes which control the anthocyanin pathway. The genetic control of variation for anthocyanin content was dissected in A. thaliana and shown to be affected by a common regulator of flowering and anthocyanin biosynthesis together with anthocyanin-specific regulators.
Collapse
Affiliation(s)
- Nadine Ilk
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jia Ding
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Anna Ihnatowicz
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology UG & MUG, Gdansk, Poland
| | - Maarten Koornneef
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Laboratory of Genetics, Wageningen University, Wageningen, NL-6708 PE, the Netherlands
| | - Matthieu Reymond
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
| |
Collapse
|
23
|
Baxter I. Should we treat the ionome as a combination of individual elements, or should we be deriving novel combined traits? JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2127-31. [PMID: 25711709 PMCID: PMC4986723 DOI: 10.1093/jxb/erv040] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/12/2014] [Accepted: 01/12/2015] [Indexed: 05/18/2023]
Abstract
It has been more than 10 years since the concept of the ionome, all of the mineral nutrients in a cell tissue or organism, was introduced. In the intervening years, ionomics, high throughput elemental profiling, has been used to analyse over 400,000 samples from at least 10 different organisms. There are now multiple published examples where an ionomics approach has been used to find genes of novel function, find lines or environments that produce foods with altered nutritional profiles, or define gene by environmental effects on elemental accumulation. In almost all of these studies, the ionome has been treated as a collection of independent elements, with the analysis repeated on each measured element. However, many elements share chemical properties, are known to interact with each other, or have been shown to have similar interactions with biological molecules. Accordingly, there is strong evidence from ionomic studies that the elements of the ionome do not behave independently and that combinations of elements should be treated as the phenotypes of interest. In this review, I will consider the evidence that we have for the interdependence of the ionome, some of its causes, methods for incorporating this interdependence into analyses and the benefits, drawbacks, and challenges of taking these approaches.
Collapse
Affiliation(s)
- Ivan Baxter
- United States Department of Agriculture-Agricultural Research Service Plant Genetics Research Unit, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| |
Collapse
|
24
|
Genome-wide association mapping of zinc and iron concentration in barley landraces from Ethiopia and Eritrea. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2014.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MGM. Genotype×environment interaction QTL mapping in plants: lessons from Arabidopsis. TRENDS IN PLANT SCIENCE 2014; 19:390-8. [PMID: 24491827 DOI: 10.1016/j.tplants.2014.01.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 05/23/2023]
Abstract
Plant growth and development are influenced by the genetic composition of the plant (G), the environment (E), and the interaction between them (G×E). To produce suitable genotypes for multiple environments, G×E should be accounted for and assessed in plant-breeding programs. Here, we review the genetic basis of G×E and its consequence for quantitative trait loci (QTL) mapping in biparental and genome-wide association (GWA) mapping populations. We also consider the implications of G×E for understanding plant fitness trade-offs and evolutionary ecology.
Collapse
Affiliation(s)
- Mohamed El-Soda
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Marcos Malosetti
- Biometris - Applied Statistics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
26
|
Shahzad Z, Rouached H, Rakha A. Combating Mineral Malnutrition through Iron and Zinc Biofortification of Cereals. Compr Rev Food Sci Food Saf 2014; 13:329-346. [PMID: 33412655 DOI: 10.1111/1541-4337.12063] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 01/27/2014] [Indexed: 01/26/2023]
Abstract
Iron and zinc are 2 important nutrients in the human diet. Their deficiencies in humans lead to a variety of health-related problems. Iron and zinc biofortification of cereals is considered a cost-effective solution to overcome the malnutrition of these minerals. Biofortification aims at either increasing accumulation of these minerals in edible parts, endosperm, or to increase their bioavailability. Iron and zinc fertilization management positively influence their accumulation in cereal grains. Regarding genetic strategies, quantitative genetic studies show the existence of ample variation for iron and zinc accumulation as well as inhibitors or promoters of their bioavailability in cereal grains. However, the genes underlying this variation have rarely been identified and never used in breeding programs. Genetically modified cereals developed by modulation of genes involved in iron and zinc homeostasis, or genes influencing bioavailability, have shown promising results. However, iron and zinc concentration were quantified in the whole grains during most of the studies, whereas a significant proportion of them is lost during milling. This makes it difficult to realistically assess the effectiveness of the different strategies. Moreover, modifications in the accumulation of toxic elements, like cadmium and arsenic, that are of concern for food safety are rarely determined. Trials in living organisms with iron- and zinc-biofortified cereals also remain to be undertaken. This review focuses on the common challenges and their possible solutions related to agronomic as well as genetic iron and zinc biofortification of cereals.
Collapse
Affiliation(s)
- Zaigham Shahzad
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 Montpellier SupAgro/CNRS/INRA/Univ, Montpellier II, 2 Place Viala, F-34060 Montpellier cedex 1, France
| | - Hatem Rouached
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 Montpellier SupAgro/CNRS/INRA/Univ, Montpellier II, 2 Place Viala, F-34060 Montpellier cedex 1, France
| | - Allah Rakha
- Natl. Inst. of Food Science and Technology, Univ. of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
27
|
McDowell SC, Akmakjian G, Sladek C, Mendoza-Cozatl D, Morrissey JB, Saini N, Mittler R, Baxter I, Salt DE, Ward JM, Schroeder JI, Guerinot ML, Harper JF. Elemental concentrations in the seed of mutants and natural variants of Arabidopsis thaliana grown under varying soil conditions. PLoS One 2013; 8:e63014. [PMID: 23671651 PMCID: PMC3646034 DOI: 10.1371/journal.pone.0063014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/27/2013] [Indexed: 01/11/2023] Open
Abstract
The concentrations of mineral nutrients in seeds are critical to both the life cycle of plants as well as human nutrition. These concentrations are strongly influenced by soil conditions, as shown here by quantifying the concentration of 14 elements in seeds from Arabidopsis thaliana plants grown under four different soil conditions: standard, or modified with NaCl, heavy metals, or alkali. Each of the modified soils resulted in a unique change to the seed ionome (the mineral nutrient content of the seeds). To help identify the genetic networks regulating the seed ionome, changes in elemental concentrations were evaluated using mutants corresponding to 760 genes as well as 10 naturally occurring accessions. The frequency of ionomic phenotypes supports an estimate that as much as 11% of the A. thaliana genome encodes proteins of functional relevance to ion homeostasis in seeds. A subset of mutants were analyzed with two independent alleles, providing five examples of genes important for regulation of the seed ionome: SOS2, ABH1, CCC, At3g14280 and CNGC2. In a comparison of nine different accessions to a Col-0 reference, eight accessions were observed to have reproducible differences in elemental concentrations, seven of which were dependent on specific soil conditions. These results indicate that the A. thaliana seed ionome is distinct from the vegetative ionome, and that elemental analysis is a sensitive approach to identify genes controlling ion homeostasis, including those that regulate gene expression, phospho-regulation, and ion transport.
Collapse
Affiliation(s)
- Stephen C McDowell
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Du J, Zeng D, Wang B, Qian Q, Zheng S, Ling HQ. Environmental effects on mineral accumulation in rice grains and identification of ecological specific QTLs. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2013; 35:161-70. [PMID: 22760687 DOI: 10.1007/s10653-012-9473-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 06/20/2012] [Indexed: 05/07/2023]
Abstract
Optimizing the beneficial mineral elements in rice grains is of interest for rice breeders. To study the environmental effects on mineral accumulation in rice grains, we grew a double-haploid (DH) population derived from the cross between cultivars Chunjiang 06 (CJ06, a japonica rice) and TN1 (an indica rice) under two different ecological environments (Lingshui and Hangzhou, China) and determined the content of Ca, Fe, K, Mg, Mn, P, and Zn in brown rice. These contents show transgressive variation among the DH lines. Subsequently, the quantitative trait loci (QTLs) for mineral accumulation in rice grain were mapped on the chromosomes using CJ06/TN1 population. For the 7 mineral elements investigated, 23 and 9 QTLs were identified for Lingshui and Hangzhou, respectively. Of these, 24 QTLs were reported for the first time in this study and 8 QTLs are consistent with previous reports. Only 2 QTLs for Mg accumulation have been detected in both environments, indicating that mineral accumulation QTLs in rice grains are largely environment dependent. Additionally, co-localizations of QTLs for Mn and Zn, Mg and P, and Mg and Mn accumulation have been observed, implying that these loci might be involved in the accumulation of different elements. Furthermore, the QTLs for the accumulation of Fe, K, Mg, Mn, P, and Zn were mapped to a region close to each other on chromosomes 8 and 9, suggesting that clusters of genes exist on chromosomes 8 and 9. Further characterization of these QTLs will provide a better understanding of the molecular mechanism responsible for mineral accumulation in rice grains.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | | | | | | | | | | |
Collapse
|
29
|
Tanger P, Field JL, Jahn CE, DeFoort MW, Leach JE. Biomass for thermochemical conversion: targets and challenges. FRONTIERS IN PLANT SCIENCE 2013; 4:218. [PMID: 23847629 PMCID: PMC3697057 DOI: 10.3389/fpls.2013.00218] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/05/2013] [Indexed: 05/18/2023]
Abstract
Bioenergy will be one component of a suite of alternatives to fossil fuels. Effective conversion of biomass to energy will require the careful pairing of advanced conversion technologies with biomass feedstocks optimized for the purpose. Lignocellulosic biomass can be converted to useful energy products via two distinct pathways: enzymatic or thermochemical conversion. The thermochemical pathways are reviewed and potential biotechnology or breeding targets to improve feedstocks for pyrolysis, gasification, and combustion are identified. Biomass traits influencing the effectiveness of the thermochemical process (cell wall composition, mineral and moisture content) differ from those important for enzymatic conversion and so properties are discussed in the language of biologists (biochemical analysis) as well as that of engineers (proximate and ultimate analysis). We discuss the genetic control, potential environmental influence, and consequences of modification of these traits. Improving feedstocks for thermochemical conversion can be accomplished by the optimization of lignin levels, and the reduction of ash and moisture content. We suggest that ultimate analysis and associated properties such as H:C, O:C, and heating value might be more amenable than traditional biochemical analysis to the high-throughput necessary for the phenotyping of large plant populations. Expanding our knowledge of these biomass traits will play a critical role in the utilization of biomass for energy production globally, and add to our understanding of how plants tailor their composition with their environment.
Collapse
Affiliation(s)
- Paul Tanger
- Bioagricultural Sciences and Pest Management, Colorado State UniversityFort Collins, CO, USA
| | - John L. Field
- Engines and Energy Conversion Laboratory, Department of Mechanical Engineering, Colorado State UniversityFort Collins, CO, USA
- Natural Resource Ecology Laboratory, Colorado State UniversityFort Collins, CO, USA
| | - Courtney E. Jahn
- Bioagricultural Sciences and Pest Management, Colorado State UniversityFort Collins, CO, USA
| | - Morgan W. DeFoort
- Engines and Energy Conversion Laboratory, Department of Mechanical Engineering, Colorado State UniversityFort Collins, CO, USA
| | - Jan E. Leach
- Bioagricultural Sciences and Pest Management, Colorado State UniversityFort Collins, CO, USA
- *Correspondence: Jan E. Leach, Bioagricultural Sciences and Pest Management, Colorado State University, 1177 Campus Delivery, Fort Collins, CO 80523-1177, USA e-mail:
| |
Collapse
|
30
|
Pineau C, Loubet S, Lefoulon C, Chalies C, Fizames C, Lacombe B, Ferrand M, Loudet O, Berthomieu P, Richard O. Natural variation at the FRD3 MATE transporter locus reveals cross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana. PLoS Genet 2012; 8:e1003120. [PMID: 23236296 PMCID: PMC3516540 DOI: 10.1371/journal.pgen.1003120] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/12/2012] [Indexed: 12/03/2022] Open
Abstract
Zinc (Zn) is essential for the optimal growth of plants but is toxic if present in excess, so Zn homeostasis needs to be finely tuned. Understanding Zn homeostasis mechanisms in plants will help in the development of innovative approaches for the phytoremediation of Zn-contaminated sites. In this study, Zn tolerance quantitative trait loci (QTL) were identified by analyzing differences in the Bay-0 and Shahdara accessions of Arabidopsis thaliana. Fine-scale mapping showed that a variant of the Fe homeostasis-related FERRIC REDUCTASE DEFECTIVE3 (FRD3) gene, which encodes a multidrug and toxin efflux (MATE) transporter, is responsible for reduced Zn tolerance in A. thaliana. Allelic variation in FRD3 revealed which amino acids are necessary for FRD3 function. In addition, the results of allele-specific expression assays in F1 individuals provide evidence for the existence of at least one putative metal-responsive cis-regulatory element. Our results suggest that FRD3 works as a multimer and is involved in loading Zn into xylem. Cross-homeostasis between Fe and Zn therefore appears to be important for Zn tolerance in A. thaliana with FRD3 acting as an essential regulator. Plants are adapted to soils in which the amounts of different nutrients vary widely, like Zn-deficient or Zn-contaminated soils. Exploring the molecular bases of plant adaptation to Zn-contaminated soils is important in determining strategies for phytoremediation. Here, we describe the mapping and characterization of a QTL for Zn tolerance in A. thaliana that underlies the natural variation of the root response to excess Zn. This physiological variation is controlled by different alleles of the AtFRD3 gene, which codes for a citrate transporter that uploads citrate into the xylem sap, hence playing a role in Fe homeostasis. In the Zn-sensitive accession Shahdara, the expression of AtFRD3 is drastically reduced and the protein encoded is unable to efflux citrate in vitro. Less Fe and Zn are found in Shahdara root exudates, and less Fe and Zn are translocated from root to shoot when Zn is in excess. We deduce that a fine-tuned Fe and Zn homeostasis is crucial for Zn tolerance in A. thaliana. Finally, as a range of alleles were identified, some rare, it was possible to define a sequence motif that is a putative metal-responsive cis-element and demonstrate that two amino acids are essential for the function of the FRD3 transporter.
Collapse
Affiliation(s)
- Christophe Pineau
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Stéphanie Loubet
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Cécile Lefoulon
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Claude Chalies
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Cécile Fizames
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Benoit Lacombe
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Marina Ferrand
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
| | - Olivier Loudet
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
| | - Pierre Berthomieu
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Odile Richard
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
- * E-mail:
| |
Collapse
|
31
|
Sha Z, Oka N, Watanabe T, Tampubolon BD, Okazaki K, Osaki M, Shinano T. Ionome of soybean seed affected by previous cropping with mycorrhizal plant and manure application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9543-52. [PMID: 22950648 DOI: 10.1021/jf3024744] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Two field experiments were conducted to investigate the effects of previous cultivation of an arbuscular mycorrhizal (AM) host plant and manure application on the concentration of 19 mineral elements in soybean ( Glycine max L. Merr. cv. Tsurumusume) seeds. Each experiment ran for two years (experiment 1 took place in 2007-2008, and experiment 2 took place in 2008-2009) with a split plot design. Soybeans were cultivated after growing either an AM host plant (maize, Zea mays L. cv. New dental) or a non-AM host plant (buckwheat, Fagopyrum esculentum Moench. cv. Kitawase-soba) in the first year in the main plots, with manure application (0 and 20 t/ha) during the soybean season in split plots from both main plots. On the basis of the two experiments, manure application significantly increased the available potassium (K) and decreased the available iron (Fe) and cesium (Cs) in the soil. However, higher concentrations of cadmium (Cd) and barium (Ba) and lower concentrations of Cs in the seed were induced by the application of manure. Cd levels in the seed were decreased by prior cultivation with the AM host plant. The present study showed that the identity of the prior crop and manure application changed the mineral contents of the soybean seed and suggests a connection between environmental factors and food safety.
Collapse
Affiliation(s)
- Zhimin Sha
- Graduate School of Agriculture, Hokkaido University , Sapporo 062-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Most mineral elements found in plant tissues come exclusively from the soil, necessitating that plants adapt to highly variable soil compositions to survive and thrive. Profiling element concentrations in genetically diverse plant populations is providing insights into the plant-environment interactions that control elemental accumulation, as well as identifying the underlying genes. The resulting molecular understanding of plant adaptation to the environment both demonstrates how soils can shape genetic diversity and provides solutions to important agricultural challenges.
Collapse
Affiliation(s)
- Ivan Baxter
- U.S. Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| | | |
Collapse
|
33
|
Baxter I, Hermans C, Lahner B, Yakubova E, Tikhonova M, Verbruggen N, Chao DY, Salt DE. Biodiversity of mineral nutrient and trace element accumulation in Arabidopsis thaliana. PLoS One 2012; 7:e35121. [PMID: 22558123 PMCID: PMC3338729 DOI: 10.1371/journal.pone.0035121] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/13/2012] [Indexed: 11/19/2022] Open
Abstract
In order to grow on soils that vary widely in chemical composition, plants have evolved mechanisms for regulating the elemental composition of their tissues to balance the mineral nutrient and trace element bioavailability in the soil with the requirements of the plant for growth and development. The biodiversity that exists within a species can be utilized to investigate how regulatory mechanisms of individual elements interact and to identify genes important for these processes. We analyzed the elemental composition (ionome) of a set of 96 wild accessions of the genetic model plant Arabidopsis thaliana grown in hydroponic culture and soil using inductively coupled plasma mass spectrometry (ICP-MS). The concentrations of 17-19 elements were analyzed in roots and leaves from plants grown hydroponically, and leaves and seeds from plants grown in artificial soil. Significant genetic effects were detected for almost every element analyzed. We observed very few correlations between the elemental composition of the leaves and either the roots or seeds. There were many pairs of elements that were significantly correlated with each other within a tissue, but almost none of these pairs were consistently correlated across tissues and growth conditions, a phenomenon observed in several previous studies. These results suggest that the ionome of a plant tissue is variable, yet tightly controlled by genes and gene × environment interactions. The dataset provides a valuable resource for mapping studies to identify genes regulating elemental accumulation. All of the ionomic data is available at www.ionomicshub.org.
Collapse
Affiliation(s)
- Ivan Baxter
- Agricultural Research Service Plant Genetics Research Unit, Donald Danforth Plant Science Center, United States Department of Agriculture, St. Louis, Missouri, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Stein RJ, Waters BM. Use of natural variation reveals core genes in the transcriptome of iron-deficient Arabidopsis thaliana roots. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1039-55. [PMID: 22039296 PMCID: PMC3254695 DOI: 10.1093/jxb/err343] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Iron (Fe) is an essential mineral micronutrient for plants and animals. Plants respond to Fe deficiency by increasing root uptake capacity. Identification of gene networks for Fe uptake and homeostasis could result in improved crop growth and nutritional value. Previous studies have used microarrays to identify a large number of genes regulated by Fe deficiency in roots of three Arabidopsis ecotypes. However, a large proportion of these genes may be involved in secondary or genotype-influenced responses rather than in a universal role in Fe uptake or homeostasis. Here we show that a small percentage of the Fe deficiency transcriptome of two contrasting ecotypes, Kas-1 and Tsu-1, was shared with other ecotypes. Kas-1 and Tsu-1 had different timing and magnitude of ferric reductase activity upon Fe withdrawal, and different categories of overrepresented Fe-regulated genes. To gain insights into universal responses of Arabidopsis to Fe deficiency, the Kas-1 and Tsu-1 transcriptomes were compared with those of Col-0, Ler, and C24. In early Fe deficiency (24-48 h), no Fe-downregulated genes and only 10 upregulated genes were found in all ecotypes, and only 20 Fe-downregulated and 58 upregulated genes were found in at least three of the five ecotypes. Supernode gene networks were constructed to visualize conserved Fe homeostasis responses. Contrasting gene expression highlighted different responses to Fe deficiency between ecotypes. This study demonstrates the use of natural variation to identify central Fe-deficiency-regulated genes in plants, and identified genes with potential new roles in signalling during Fe deficiency.
Collapse
|
35
|
Trontin C, Tisné S, Bach L, Loudet O. What does Arabidopsis natural variation teach us (and does not teach us) about adaptation in plants? CURRENT OPINION IN PLANT BIOLOGY 2011; 14:225-31. [PMID: 21536479 DOI: 10.1016/j.pbi.2011.03.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 05/10/2023]
Abstract
Sessile organisms such as plants have to develop adaptive responses to face environmental change. In Arabidopsis thaliana populations, natural variation for stress responses have been observed at different levels of integration and the genetic bases of those variations have been analysed using two strategies: classical linkage and association (LD) mapping. The strength of Arabidopsis resides in the huge amount of genomic data and molecular tools available leading to the identification of many polymorphisms responsible for phenotypic variation. Remaining limitations to clearly understand how Arabidopsis adapts to its environment, that is the complexity of the genetic architecture and the lack of ecological data, should be partially solved thanks to the development of new methods and the acquisition of new data.
Collapse
Affiliation(s)
- Charlotte Trontin
- Institut Jean-Pierre Bourgin, UMR1318/INRA-AgroParisTech, Versailles, France
| | | | | | | |
Collapse
|
36
|
Uchida N, Igari K, Bogenschutz NL, Torii KU, Tasaka M. Arabidopsis ERECTA-family receptor kinases mediate morphological alterations stimulated by activation of NB-LRR-type UNI proteins. PLANT & CELL PHYSIOLOGY 2011; 52:804-14. [PMID: 21427109 DOI: 10.1093/pcp/pcr032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Shoot apical meristems (SAMs), which maintain stem cells at the tips of stems, and axillary meristems (AMs), which arise at leaf axils for branch formation, play significant roles in the establishment of plant architecture. Previously, we showed that, in Arabidopsis thaliana, activation of NB-LRR (nucleotide-binding site-leucine-rich repeat)-type UNI proteins affects plant morphology through modulation of the regulation of meristems. However, information about genes involved in the processes was still lacking. Here, we report that ERECTA (ER) receptor kinase family members cooperatively mediate the morphological alterations that are stimulated by activation of UNI proteins. uni-1D is a gain-of-function mutation in the UNI gene and uni-1D mutants exhibit early termination of inflorescence stem growth and also formation of extra AMs at leaf axils. The former defect involves modulation of the SAM activity and is suppressed by er mutation. Though the AM phenotype is not affected by a single er mutation, it is suppressed by simultaneous mutations of ER-family members. It was previously shown that trans-zeatin (tZ)-type cytokinins were involved in the morphological phenotypes of uni-1D mutants and that expression of CYP735A2, which is essential for biosynthesis of tZ-type cytokinins, was modulated in uni-1D mutants. We show that this modulation of CYP735A2 expression requires activities of ER-family members. Moreover, the ER activity in UNI-expressing cells contributes to all morphological phenotypes of uni-1D mutants, suggesting that a cross-talk between ER-family-dependent and UNI-triggered signaling pathways plays a significant role in the morphological alterations observed in uni-1D mutants.
Collapse
Affiliation(s)
- Naoyuki Uchida
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | | | | | | | | |
Collapse
|
37
|
Waters BM, Sankaran RP. Moving micronutrients from the soil to the seeds: genes and physiological processes from a biofortification perspective. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:562-74. [PMID: 21421405 DOI: 10.1016/j.plantsci.2010.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/23/2010] [Accepted: 12/03/2010] [Indexed: 05/04/2023]
Abstract
The micronutrients iron (Fe), zinc (Zn), and copper (Cu) are essential for plants and the humans and animals that consume plants. Increasing the micronutrient density of staple crops, or biofortification, will greatly improve human nutrition on a global scale. This review discusses the processes and genes needed to translocate micronutrients through the plant to the developing seeds, and potential strategies for developing biofortified crops.
Collapse
Affiliation(s)
- Brian M Waters
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583-0915, USA.
| | | |
Collapse
|
38
|
Buescher E, Achberger T, Amusan I, Giannini A, Ochsenfeld C, Rus A, Lahner B, Hoekenga O, Yakubova E, Harper JF, Guerinot ML, Zhang M, Salt DE, Baxter IR. Natural genetic variation in selected populations of Arabidopsis thaliana is associated with ionomic differences. PLoS One 2010; 5:e11081. [PMID: 20559418 PMCID: PMC2885407 DOI: 10.1371/journal.pone.0011081] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 05/07/2010] [Indexed: 11/19/2022] Open
Abstract
Controlling elemental composition is critical for plant growth and development as well as the nutrition of humans who utilize plants for food. Uncovering the genetic architecture underlying mineral ion homeostasis in plants is a critical first step towards understanding the biochemical networks that regulate a plant's elemental composition (ionome). Natural accessions of Arabidopsis thaliana provide a rich source of genetic diversity that leads to phenotypic differences. We analyzed the concentrations of 17 different elements in 12 A. thaliana accessions and three recombinant inbred line (RIL) populations grown in several different environments using high-throughput inductively coupled plasma- mass spectroscopy (ICP-MS). Significant differences were detected between the accessions for most elements and we identified over a hundred QTLs for elemental accumulation in the RIL populations. Altering the environment the plants were grown in had a strong effect on the correlations between different elements and the QTLs controlling elemental accumulation. All ionomic data presented is publicly available at www.ionomicshub.org.
Collapse
Affiliation(s)
- Elizabeth Buescher
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
White PJ, Hammond JP, King GJ, Bowen HC, Hayden RM, Meacham MC, Spracklen WP, Broadley MR. Genetic analysis of potassium use efficiency in Brassica oleracea. ANNALS OF BOTANY 2010; 105:1199-210. [PMID: 19815571 PMCID: PMC2887060 DOI: 10.1093/aob/mcp253] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/18/2009] [Accepted: 09/10/2009] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Potassium (K) fertilizers are used in intensive and extensive agricultural systems to maximize production. However, there are both financial and environmental costs to K-fertilization. It is therefore important to optimize the efficiency with which K-fertilizers are used. Cultivating crops that acquire and/or utilize K more effectively can reduce the use of K-fertilizers. The aim of the present study was to determine the genetic factors affecting K utilization efficiency (KUtE), defined as the reciprocal of shoot K concentration (1/[K](shoot)), and K acquisition efficiency (KUpE), defined as shoot K content, in Brassica oleracea. METHODS Genetic variation in [K](shoot) was estimated using a structured diversity foundation set (DFS) of 376 accessions and in 74 commercial genotypes grown in glasshouse and field experiments that included phosphorus (P) supply as a treatment factor. Chromosomal quantitative trait loci (QTL) associated with [K](shoot) and KUpE were identified using a genetic mapping population grown in the glasshouse and field. Putative QTL were tested using recurrent backcross substitution lines in the glasshouse. KEY RESULTS More than two-fold variation in [K](shoot) was observed among DFS accessions grown in the glasshouse, a significant proportion of which could be attributed to genetic factors. Several QTL associated with [K](shoot) were identified, which, despite a significant correlation in [K](shoot) among genotypes grown in the glasshouse and field, differed between these two environments. A QTL associated with [K](shoot) in glasshouse-grown plants (chromosome C7 at 62.2 cM) was confirmed using substitution lines. This QTL corresponds to a segment of arabidopsis chromosome 4 containing genes encoding the K+ transporters AtKUP9, AtAKT2, AtKAT2 and AtTPK3. CONCLUSIONS There is sufficient genetic variation in B. oleracea to breed for both KUtE and KUpE. However, as QTL associated with these traits differ between glasshouse and field environments, marker-assisted breeding programmes must consider carefully the conditions under which the crop will be grown.
Collapse
Affiliation(s)
- P J White
- Scottish Crop Research Institute, Invergowrie, Dundee DD25DA, UK.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ding G, Yang M, Hu Y, Liao Y, Shi L, Xu F, Meng J. Quantitative trait loci affecting seed mineral concentrations in Brassica napus grown with contrasting phosphorus supplies. ANNALS OF BOTANY 2010; 105:1221-34. [PMID: 20237116 PMCID: PMC2887070 DOI: 10.1093/aob/mcq050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/14/2010] [Accepted: 02/09/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Phosphorus (P) deficiency is one of the major limitations for crop production. A significant relationship exists between plant P uptake from soils and the accumulation of P and other mineral elements in seeds. The aims of this study were to identify and characterize genetic loci (QTLs) controlling the accumulation of mineral elements in seeds of Brassica napus grown with contrasting P availabilities. METHODS A population of 124 recombinant inbred lines derived from a cross between P-inefficient 'B104-2' and P-efficient 'Eyou Changjia' was used for phenotypic investigation and QTL analysis. Two-year field trials were conducted with two P treatments. Concentrations of mineral elements (P, Ca, Mg, Fe, Zn, Cu and Mn) in seeds were determined and QTLs were identified by composite interval mapping. KEY RESULTS There was significant genetic variation in seed concentrations of all mineral elements, and correlations between most elements were observed. A total of 78 putative QTLs (45 under the normal-P conditions and 33 under the low-P conditions) were detected, covering 17 linkage groups and accounting for 7.84-18.1 % of the phenotypic variation. Sixteen of these QTLs were identified in at least two environments, and co-location of QTLs for different mineral traits was found on several linkage groups. By in silico mapping, 21 genes involved in ion homeostasis in Arabidopsis were mapped to the QTL intervals identified in B. napus. CONCLUSIONS The accumulation of mineral elements in seeds is controlled by multiple genes. Common physiological and molecular mechanisms could be involved in the accumulation of several mineral elements, and genes involved in these processes in B. napus are suggested. These results offer insights to the genetic basis of seed mineral accumulation across different P levels in B. napus.
Collapse
Affiliation(s)
- Guangda Ding
- National Key Laboratory of Crop Genetic Improvement
- Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei Yang
- National Key Laboratory of Crop Genetic Improvement
- Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Yifan Hu
- Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Liao
- National Key Laboratory of Crop Genetic Improvement
- Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement
- Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement
- Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
- For correspondence. E-mail
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement
| |
Collapse
|
41
|
Abstract
Ionomics is the study of elemental accumulation in living systems using high-throughput elemental profiling. This approach has been applied extensively in plants for forward and reverse genetics, screening diversity panels, and modeling of physiological states. In this review, I will discuss some of the advantages and limitations of the ionomics approach as well as the important parameters to consider when designing ionomics experiments, and how to evaluate ionomics data.
Collapse
Affiliation(s)
- Ivan Baxter
- Research Computational Biologist, USDA-ARS Plant Genetics, Donald Danforth Plant Sciences Center, St Louis, MO 63132, USA.
| |
Collapse
|
42
|
Baxter I. Ionomics: studying the social network of mineral nutrients. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:381-6. [PMID: 19481970 PMCID: PMC2701637 DOI: 10.1016/j.pbi.2009.05.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 04/30/2009] [Accepted: 05/04/2009] [Indexed: 05/18/2023]
Abstract
The accumulation of a given element is a complex process controlled by a network of gene products critical for uptake, binding, transportation, and sequestration. Many of these genes and physiological processes affect more than one element. Therefore, to understand how elements are regulated, it is necessary to measure as many of the elements contained in a cell, tissue, or organism (the ionome) as possible. The elements that share components of their network vary depending on the species and genotype of the plants that are studied and environment they are grown in. Several recent papers describe high-throughput elemental profiling studies of how the ionome responds to the environment or explores the genetics that control the ionome. When combined with new genotyping technologies, ionomics provides a rapid way to identify genes that control elemental accumulation in plants.
Collapse
Affiliation(s)
- Ivan Baxter
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
43
|
Ghandilyan A, Barboza L, Tisné S, Granier C, Reymond M, Koornneef M, Schat H, Aarts MGM. Genetic analysis identifies quantitative trait loci controlling rosette mineral concentrations in Arabidopsis thaliana under drought. THE NEW PHYTOLOGIST 2009; 184:180-192. [PMID: 19656307 DOI: 10.1111/j.1469-8137.2009.02953.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Rosettes of 25 Arabidopsis thaliana accessions and an Antwerp-1 (An-1) x Landsberg erecta (Ler) population of recombinant inbred lines (RILs) grown in optimal watering conditions (OWC) and water deficit conditions (WDC) were analysed for mineral concentrations to identify genetic loci involved in adaptation of mineral homeostasis to drought stress. Correlations between mineral concentrations were determined for accessions and a quantitative trait locus (QTL) analysis was performed for the RIL population. Plant growth and rosette mineral contents strongly decreased in WDC compared with OWC. Mineral concentrations also generally decreased, except for phosphorus (P), which remained constant, and potassium (K), which increased. Large variations in mineral concentrations were observed among accessions, mostly correlated with total rosette leaf area. Mineral concentration QTLs were identified in the RIL population, but only a few were common for both conditions. Clusters of mineral concentration QTLs often cosegregated with dry weight QTLs. Water deficit has a strong effect on rosette mineral status. This is genetically determined and seems largely a pleiotropic effect of the reduction in growth. The low number of common mineral concentration QTLs, shared among different RIL populations, tissues and conditions in Arabidopsis, suggests that breeding for robust, mineral biofortified crops will be complex.
Collapse
Affiliation(s)
- Artak Ghandilyan
- Laboratory of Genetics, Wageningen University, Arboretumlaan 4, NL-6703 BD Wageningen, the Netherlands
| | - Luis Barboza
- Laboratory of Genetics, Wageningen University, Arboretumlaan 4, NL-6703 BD Wageningen, the Netherlands
- Current address: Centro para Investigaciones en Granos y Semillas (CIGRAS), Universidad de Costa Rica, San José, Costa Rica
| | - Sébastien Tisné
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux UMR759, INRA-SUPAGRO, Place Viala, F-34060 Montpellier, France
| | - Christine Granier
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux UMR759, INRA-SUPAGRO, Place Viala, F-34060 Montpellier, France
| | - Matthieu Reymond
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University, Arboretumlaan 4, NL-6703 BD Wageningen, the Netherlands
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | - Henk Schat
- Ecology and Physiology of Plants, Faculty Biology, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University, Arboretumlaan 4, NL-6703 BD Wageningen, the Netherlands
| |
Collapse
|