1
|
Li G, Manzoor MA, Wang G, Huang S, Ding X, Abdullah M, Zhang M, Song C. Comparative analysis of POD genes and their expression under multiple hormones in Pyrus bretschenedri. BMC Genom Data 2024; 25:41. [PMID: 38711007 PMCID: PMC11075270 DOI: 10.1186/s12863-024-01229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Class III peroxidase (POD) enzymes play vital roles in plant development, hormone signaling, and stress responses. Despite extensive research on POD families in various plant species, the knowledge regarding the POD family in Chinese pear (Pyrus bretschenedri) is notably limited. RESULTS We systematically characterized 113 POD family genes, designated as PbPOD1 to PbPOD113 based on their chromosomal locations. Phylogenetic analysis categorized these genes into seven distinct subfamilies (I to VII). The segmental duplication events were identified as a prevalent mechanism driving the expansion of the POD gene family. Microsynteny analysis, involving comparisons with Pyrus bretschenedri, Fragaria vesca, Prunus avium, Prunus mume and Prunus persica, highlighted the conservation of duplicated POD regions and their persistence through purifying selection during the evolutionary process. The expression patterns of PbPOD genes were performed across various plant organs and diverse fruit development stages using transcriptomic data. Furthermore, we identified stress-related cis-acting elements within the promoters of PbPOD genes, underscoring their involvement in hormonal and environmental stress responses. Notably, qRT-PCR analyses revealed distinctive expression patterns of PbPOD genes in response to melatonin (MEL), salicylic acid (SA), abscisic acid (ABA), and methyl jasmonate (MeJA), reflecting their responsiveness to abiotic stress and their role in fruit growth and development. CONCLUSIONS In this study, we investigated the potential functions and evolutionary dynamics of PbPOD genes in Pyrus bretschenedri, positioning them as promising candidates for further research and valuable indicators for enhancing fruit quality through molecular breeding strategies.
Collapse
Affiliation(s)
- Guohui Li
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shiping Huang
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Xiaoyuan Ding
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Muhammad Abdullah
- Queensland Alliance of Agriculture and Food Innovation, The University of Queensland, Brisbane, 4072, Australia
| | - Ming Zhang
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
| | - Cheng Song
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
| |
Collapse
|
2
|
Shahid M, Zeyad MT, Syed A, Bahkali AH, Pichtel J, Verma M. Assessing phytotoxicity and cyto-genotoxicity of two insecticides using a battery of in-vitro biological assays. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503688. [PMID: 37770145 DOI: 10.1016/j.mrgentox.2023.503688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Intensive use of chemical pesticides in agriculture poses environmental risks and may have negative impacts on agricultural productivity. The potential phytotoxicity of two chemical pesticides, chlorpyrifos (CPS) and fensulfothion (FSN), were evaluated using Cicer arietinum and Allium cepa as model crops. Different concentrations (0-100 μgmL-1) of both CPS and FSN decreased germination and biological attributes of C. arietinum. High pesticide doses significantly (p ≤ 0.05) caused membrane damage by producing thiobarbituric acid reactive substances (TBARS) and increasing proline (Pro) content. Pesticides elevated ROS levels and substantially increased the superoxide anions and H2O2 concentrations, thus aggravating cell injury. Plants exposed to high pesticide dosages displayed significantly higher antioxidant levels to combat pesticide-induced oxidative stress. Ascorbate peroxidase (APX), guaiacol peroxidase (GPX), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) increased by 48%, 93%, 71%, 52% and 94%, respectively, in C. arietinum roots exposed to 100 µgFSNmL-1. Under CLSM, pesticide-exposed C. arietinum and 2',7'-dichlorodihydrofluorescein diacetate (2'7'-DCF) and 3,3'-diaminobenzidine stained roots exhibited increased ROS production in a concentration-dependent manner. Additionally, enhanced Rhodamine 123 (Rhd 123) and Evan's blue fluorescence in roots, as well as changes in mitochondrial membrane potential (ΔΨm) and cellular apoptosis, were both associated with high pesticide dose. Allium cepa chromosomal aberration (CAs) assay showed a clear reduction in mitotic index (MI) and numerous chromosomal anomalies in root meristematic cells. Additionally, a-dose-dependent increase in DNA damage in root meristematic cells of A. cepa and conversion of the super-coiled form of DNA to open circular in pBR322 plasmid revealed the genotoxic potential of pesticides. The application of CPS and FSN suggests phytotoxic and cyto-genotoxic effects that emphasize the importance of careful monitoring of current pesticide level in soil before application and addition at optimal levels to soil-plant system. It is appropriate to prepare both target-specific and slow-release agrochemical formulations for crop protection with concurrent safeguarding of agroecosystems.
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - John Pichtel
- Natural Resources and Environmental Management, Ball State University, Muncie, IN 47306, USA
| | - Meenakshi Verma
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, India
| |
Collapse
|
3
|
Kolupaev YE, Yastreb TO, Dmitriev AP. Signal Mediators in the Implementation of Jasmonic Acid's Protective Effect on Plants under Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2631. [PMID: 37514246 PMCID: PMC10385206 DOI: 10.3390/plants12142631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Plant cells respond to stress by activating signaling and regulatory networks that include plant hormones and numerous mediators of non-hormonal nature. These include the universal intracellular messenger calcium, reactive oxygen species (ROS), gasotransmitters, small gaseous molecules synthesized by living organisms, and signal functions such as nitrogen monoxide (NO), hydrogen sulfide (H2S), carbon monoxide (CO), and others. This review focuses on the role of functional linkages of jasmonic acid and jasmonate signaling components with gasotransmitters and other signaling mediators, as well as some stress metabolites, in the regulation of plant adaptive responses to abiotic stressors. Data on the involvement of NO, H2S, and CO in the regulation of jasmonic acid formation in plant cells and its signal transduction were analyzed. The possible involvement of the protein components of jasmonate signaling in stress-protective gasotransmitter effects is discussed. Emphasis is placed on the significance of the functional interaction between jasmonic acid and signaling mediators in the regulation of the antioxidant system, stomatal apparatus, and other processes important for plant adaptation to abiotic stresses.
Collapse
Affiliation(s)
- Yuriy E Kolupaev
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, 61060 Kharkiv, Ukraine
- Educational and Scientific Institute of Agrotechnologies, Breeding and Ecology, Department of Plant Protection, Poltava State Agrarian University, 36003 Poltava, Ukraine
| | - Tetiana O Yastreb
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, 61060 Kharkiv, Ukraine
| | - Alexander P Dmitriev
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| |
Collapse
|
4
|
Hussain MA, Li S, Gao H, Feng C, Sun P, Sui X, Jing Y, Xu K, Zhou Y, Zhang W, Li H. Comparative analysis of physiological variations and genetic architecture for cold stress response in soybean germplasm. FRONTIERS IN PLANT SCIENCE 2023; 13:1095335. [PMID: 36684715 PMCID: PMC9852849 DOI: 10.3389/fpls.2022.1095335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max L.) is susceptible to low temperatures. Increasing lines of evidence indicate that abiotic stress-responsive genes are involved in plant low-temperature stress response. However, the involvement of photosynthesis, antioxidants and metabolites genes in low temperature response is largely unexplored in Soybean. In the current study, a genetic panel of diverse soybean varieties was analyzed for photosynthesis, chlorophyll fluorescence and leaf injury parameters under cold stress and control conditions. This helps us to identify cold tolerant (V100) and cold sensitive (V45) varieties. The V100 variety outperformed for antioxidant enzymes activities and relative expression of photosynthesis (Glyma.08G204800.1, Glyma.12G232000.1), GmSOD (GmSOD01, GmSOD08), GmPOD (GmPOD29, GmPOD47), trehalose (GmTPS01, GmTPS13) and cold marker genes (DREB1E, DREB1D, SCOF1) than V45 under cold stress. Upon cold stress, the V100 variety showed reduced accumulation of H2O2 and MDA levels and subsequently showed lower leaf injury compared to V45. Together, our results uncovered new avenues for identifying cold tolerant soybean varieties from a large panel. Additionally, we identified the role of antioxidants, osmo-protectants and their posttranscriptional regulators miRNAs such as miR319, miR394, miR397, and miR398 in Soybean cold stress tolerance.
Collapse
Affiliation(s)
- Muhammad Azhar Hussain
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Senquan Li
- College of Tropical Crops, Hainan University, Haikou, China
| | - Hongtao Gao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Chen Feng
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Pengyu Sun
- College of Tropical Crops, Hainan University, Haikou, China
| | - Xiangpeng Sui
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yan Jing
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Keheng Xu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yonggang Zhou
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Wenping Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Haiyan Li
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
5
|
Eceiza MV, Gil-Monreal M, Barco-Antoñanzas M, Zabalza A, Royuela M. The moderate oxidative stress induced by glyphosate is not detected in Amaranthus palmeri plants overexpressing EPSPS. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153720. [PMID: 35597108 DOI: 10.1016/j.jplph.2022.153720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The present study aimed to determine whether glyphosate-induced oxidative stress is directly related to the action mechanism of this herbicide (5-enolpyruvylshikimate-3-phosphate synthase or EPSPS inhibition) and analyse the role of oxidative stress in glyphosate toxicity of the weed Amaranthus palmeri S. Wats. Two kinds of populations were studied using EPSPS amplification: glyphosate-sensitive and glyphosate-resistant (by gene amplification). Plants were grown hydroponically and treated with different glyphosate doses, after which several oxidative stress markers were measured in the leaves. Untreated, sensitive and resistant plants showed similar values for the analysed parameters. Treated glyphosate-sensitive plants showed an increase in shikimate, superoxide and H2O2 contents and dose-dependent lipid peroxidation and antioxidant responses; however, none of these effects were observed in resistant plants, indicating that glyphosate-induced oxidative stress is related to EPSPS inhibition. Oxidative stress is associated with an increase in the activity of peroxidases due to EPSPS inhibition, although the link between both processes remains elusive. The fact that some glyphosate doses were lethal but did not induce major oxidative damage provides evidence that glyphosate toxicity is independent of oxidative stress.
Collapse
Affiliation(s)
- Mikel Vicente Eceiza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre, Campus Arrosadia s/n, 31006, Pamplona, Spain
| | - Miriam Gil-Monreal
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre, Campus Arrosadia s/n, 31006, Pamplona, Spain
| | - María Barco-Antoñanzas
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre, Campus Arrosadia s/n, 31006, Pamplona, Spain
| | - Ana Zabalza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre, Campus Arrosadia s/n, 31006, Pamplona, Spain
| | - Mercedes Royuela
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre, Campus Arrosadia s/n, 31006, Pamplona, Spain.
| |
Collapse
|
6
|
Aleem M, Riaz A, Raza Q, Aleem M, Aslam M, Kong K, Atif RM, Kashif M, Bhat JA, Zhao T. Genome-wide characterization and functional analysis of class III peroxidase gene family in soybean reveal regulatory roles of GsPOD40 in drought tolerance. Genomics 2022; 114:45-60. [PMID: 34813918 DOI: 10.1016/j.ygeno.2021.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/18/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022]
Abstract
Class III peroxidases (PODs) are plant-specific glycoproteins, that play essential roles in various plant physiological processes and defence responses. To date, scarce information is available about the POD gene family in soybean. Hence, the present study is the first comprehensive report about the genome-wide characterization of GmPOD gene family in soybean (Glycine max L.). Here, we identified a total of 124 GmPOD genes in soybean, that are unevenly distributed across the genome. Phylogenetic analysis classified them into six distinct sub-groups (A-F), with one soybean specific subgroup. Exon-intron and motif analysis suggested the existence of structural and functional diversity among the sub-groups. Duplication analysis identified 58 paralogous gene pairs; segmental duplication and positive/Darwinian selection were observed as the major factors involved in the evolution of GmPODs. Furthermore, RNA-seq analysis revealed that 23 out of a total 124 GmPODs showed differential expression between drought-tolerant and drought-sensitive genotypes under stress conditions; however, two of them (GmPOD40 and GmPOD42) revealed the maximum deregulation in all contrasting genotypes. Overexpression (OE) lines of GsPOD40 showed considerably higher drought tolerance compared to wild type (WT) plants under stress treatment. Moreover, the OE lines showed enhanced photosynthesis and enzymatic antioxidant activities under drought stress, resulting in alleviation of ROS induced oxidative damage. Hence, the GsPOD40 enhanced drought tolerance in soybean by regulating the key physiological and biochemical pathways involved in the defence response. Lastly, the results of our study will greatly assist in further functional characterization of GsPODs in plant growth and stress tolerance in soybean.
Collapse
Affiliation(s)
- Muqadas Aleem
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Awais Riaz
- Molecular Breeding Laboratory, Rice Research Institute, Kala Shah Kaku, Sheikhupura, Punjab, Pakistan
| | - Qasim Raza
- Molecular Breeding Laboratory, Rice Research Institute, Kala Shah Kaku, Sheikhupura, Punjab, Pakistan
| | - Maida Aleem
- Government Post Graduate College Samanabad, Faisalabad, Pakistan
| | - Muhammad Aslam
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Keke Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Kashif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Javaid Akhtar Bhat
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Blaschek L, Pesquet E. Phenoloxidases in Plants-How Structural Diversity Enables Functional Specificity. FRONTIERS IN PLANT SCIENCE 2021; 12:754601. [PMID: 34659324 PMCID: PMC8517187 DOI: 10.3389/fpls.2021.754601] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 05/23/2023]
Abstract
The metabolism of polyphenolic polymers is essential to the development and response to environmental changes of organisms from all kingdoms of life, but shows particular diversity in plants. In contrast to other biopolymers, whose polymerisation is catalysed by homologous gene families, polyphenolic metabolism depends on phenoloxidases, a group of heterogeneous oxidases that share little beyond the eponymous common substrate. In this review, we provide an overview of the differences and similarities between phenoloxidases in their protein structure, reaction mechanism, substrate specificity, and functional roles. Using the example of laccases (LACs), we also performed a meta-analysis of enzyme kinetics, a comprehensive phylogenetic analysis and machine-learning based protein structure modelling to link functions, evolution, and structures in this group of phenoloxidases. With these approaches, we generated a framework to explain the reported functional differences between paralogs, while also hinting at the likely diversity of yet undescribed LAC functions. Altogether, this review provides a basis to better understand the functional overlaps and specificities between and within the three major families of phenoloxidases, their evolutionary trajectories, and their importance for plant primary and secondary metabolism.
Collapse
|
8
|
Lukacova Z, Bokor B, Vavrova S, Soltys K, Vaculik M. Divergence of reactions to arsenic (As) toxicity in tobacco (Nicotiana benthamiana) plants: A lesson from peroxidase involvement. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126049. [PMID: 34000701 DOI: 10.1016/j.jhazmat.2021.126049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 03/25/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
To evaluate the multiplicity of reactions to toxic metalloid arsenic (As) with specific emphasis on the role of plant peroxidases, a model plant Nicotiana benthamiana was cultivated in in vitro conditions at various doses of As (applied as As5+ up to 80 μM). After 28-day cultivation, several physiological characteristics such as plant growth, photosynthetic pigment concentration, As concentration, peroxidase (POX) expression levels, and POX activity were evaluated. A newly sequenced gene for POX has been identified, that belongs to the Class III plant extracellular peroxidases, and its relationship to the genus Solanum as the most relative species has been confirmed. In the control and selected As treatments (20As, 50As, and 80As), newly identified POX expression and POX activity were continuously detected during the whole cultivation period. The plant reactions to As stress were distinguished into three groups: low As, moderate As, and high As. A tight relationship was found between the photosynthetic pigments and POX expression. Accumulation of As in roots and shoots showed correlations with POX activities. The results showed that the diversity of reactions depends on As dose and time exposure and indicate an interface of peroxidase functional role with other physiological processes in plants suffering from As toxicity.
Collapse
Affiliation(s)
- Zuzana Lukacova
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovak Republic.
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovak Republic; Comenius University Science Park, Ilkovičova 8, 841 04 Bratislava, Slovak Republic
| | - Silvia Vavrova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Marek Vaculik
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| |
Collapse
|
9
|
Yang X, Yuan J, Luo W, Qin M, Yang J, Wu W, Xie X. Genome-Wide Identification and Expression Analysis of the Class III Peroxidase Gene Family in Potato ( Solanum tuberosum L.). Front Genet 2020; 11:593577. [PMID: 33343634 PMCID: PMC7744636 DOI: 10.3389/fgene.2020.593577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/09/2020] [Indexed: 11/21/2022] Open
Abstract
Class III peroxidases (PRXs) are plant-specific enzymes and play important roles in plant growth, development and stress response. In this study, a total of 102 non-redundant PRX gene members (StPRXs) were identified in potato (Solanum tuberosum L.). They were divided into 9 subfamilies based on phylogenetic analysis. The members of each subfamily were found to contain similar organizations of the exon/intron structures and protein motifs. The StPRX genes were not equally distributed among chromosomes. There were 57 gene pairs of segmental duplication and 26 gene pairs of tandem duplication. Expression pattern analysis based on the RNA-seq data of potato from public databases indicated that StPRX genes were expressed differently in various tissues and responded specifically to heat, salt and drought stresses. Most of the StPRX genes were expressed at significantly higher levels in root than in other tissues. In addition, real-time quantitative PCR (qRT-PCR) analysis for 7 selected StPRX genes indicated that these genes displayed various expression levels under abiotic stresses. Our results provide valuable information for better understanding the evolution of StPRX gene family in potato and lay the vital foundation for further exploration of PRX gene function in plants.
Collapse
Affiliation(s)
- Xuanshong Yang
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Jiazheng Yuan
- Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC, United States
| | - Wenbin Luo
- The Crop Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Mingyue Qin
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Jiahan Yang
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Weiren Wu
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Xiaofang Xie
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture & Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Hypoxia-Responsive Class III Peroxidases in Maize Roots: Soluble and Membrane-Bound Isoenzymes. Int J Mol Sci 2020; 21:ijms21228872. [PMID: 33238617 PMCID: PMC7700428 DOI: 10.3390/ijms21228872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/21/2022] Open
Abstract
Flooding induces low-oxygen environments (hypoxia or anoxia) that lead to energy disruption and an imbalance of reactive oxygen species (ROS) production and scavenging enzymes in plants. The influence of hypoxia on roots of hydroponically grown maize (Zea mays L.) plants was investigated. Gene expression (RNA Seq and RT-qPCR) and proteome (LC–MS/MS and 2D-PAGE) analyses were used to determine the alterations in soluble and membrane-bound class III peroxidases under hypoxia. Gel-free peroxidase analyses of plasma membrane-bound proteins showed an increased abundance of ZmPrx03, ZmPrx24, ZmPrx81, and ZmPr85 in stressed samples. Furthermore, RT-qPCR analyses of the corresponding peroxidase genes revealed an increased expression. These peroxidases could be separated with 2D-PAGE and identified by mass spectrometry. An increased abundance of ZmPrx03 and ZmPrx85 was determined. Further peroxidases were identified in detergent-insoluble membranes. Co-regulation with a respiratory burst oxidase homolog (Rboh) and key enzymes of the phenylpropanoid pathway indicates a function of the peroxidases in membrane protection, aerenchyma formation, and cell wall remodeling under hypoxia. This hypothesis was supported by the following: (i) an elevated level of hydrogen peroxide and aerenchyma formation; (ii) an increased guaiacol peroxidase activity in membrane fractions of stressed samples, whereas a decrease was observed in soluble fractions; and (iii) alterations in lignified cells, cellulose, and suberin in root cross-sections.
Collapse
|
11
|
Suarez-Fernandez M, Marhuenda-Egea FC, Lopez-Moya F, Arnao MB, Cabrera-Escribano F, Nueda MJ, Gunsé B, Lopez-Llorca LV. Chitosan Induces Plant Hormones and Defenses in Tomato Root Exudates. FRONTIERS IN PLANT SCIENCE 2020; 11:572087. [PMID: 33250907 PMCID: PMC7672008 DOI: 10.3389/fpls.2020.572087] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/08/2020] [Indexed: 05/23/2023]
Abstract
In this work, we use electrophysiological and metabolomic tools to determine the role of chitosan as plant defense elicitor in soil for preventing or manage root pests and diseases sustainably. Root exudates include a wide variety of molecules that plants and root microbiota use to communicate in the rhizosphere. Tomato plants were treated with chitosan. Root exudates from tomato plants were analyzed at 3, 10, 20, and 30 days after planting (dap). We found, using high performance liquid chromatography (HPLC) and excitation emission matrix (EEM) fluorescence, that chitosan induces plant hormones, lipid signaling and defense compounds in tomato root exudates, including phenolics. High doses of chitosan induce membrane depolarization and affect membrane integrity. 1H-NMR showed the dynamic of exudation, detecting the largest number of signals in 20 dap root exudates. Root exudates from plants irrigated with chitosan inhibit ca. twofold growth kinetics of the tomato root parasitic fungus Fusarium oxysporum f. sp. radicis-lycopersici. and reduced ca. 1.5-fold egg hatching of the root-knot nematode Meloidogyne javanica.
Collapse
Affiliation(s)
- Marta Suarez-Fernandez
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies Ramon Margalef, University of Alicante, Alicante, Spain
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| | - Frutos Carlos Marhuenda-Egea
- Department of Agrochemistry and Biochemistry, Multidisciplinary Institute for Environmental Studies Ramon Margalef, University of Alicante, Alicante, Spain
| | - Federico Lopez-Moya
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| | - Marino B. Arnao
- Department of Plant Biology (Plant Physiology), University of Murcia, Murcia, Spain
| | | | - Maria Jose Nueda
- Department of Mathematics, University of Alicante, Alicante, Spain
| | - Benet Gunsé
- Plant Physiology Laboratory, Faculty of Biosciences, Universidad Autonoma de Barcelona, Bellaterra, Spain
| | - Luis Vicente Lopez-Llorca
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies Ramon Margalef, University of Alicante, Alicante, Spain
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| |
Collapse
|
12
|
Kidwai M, Ahmad IZ, Chakrabarty D. Class III peroxidase: an indispensable enzyme for biotic/abiotic stress tolerance and a potent candidate for crop improvement. PLANT CELL REPORTS 2020; 39:1381-1393. [PMID: 32886139 DOI: 10.1007/s00299-020-02588-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/26/2020] [Indexed: 05/24/2023]
Abstract
Class III peroxidases are secretory enzymes which belong to a ubiquitous multigene family in higher plants and have been identified to play role in a broad range of physiological and developmental processes. Potentially, it is involved in generation and detoxification of hydrogen peroxide (H2O2), and their subcellular localization reflects through three different cycles, namely peroxidative cycle, oxidative and hydroxylic cycles to maintain the ROS level inside the cell. Being an antioxidant, class III peroxidases are an important initial defence adapted by plants to cope with biotic and abiotic stresses. Both these stresses have become a major concern in the field of agriculture due to their devastating effect on plant growth and development. Despite numerous studies on plant defence against both the stresses, only a handful role of class III peroxidases have been uncovered by its functional characterization. This review will cover our current understanding on class III peroxidases and the signalling involved in their regulation under both types of stresses. The review will give a view of class III peroxidases and highlights their indispensable role under stress conditions. Its future application will be discussed to showcase their importance in crop improvement by genetic manipulation and by transcriptome analysis.
Collapse
Affiliation(s)
- Maria Kidwai
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
- Integral University, Uttar Pradesh, Kursi road, Lucknow, 226001, India
| | | | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Teli B, Purohit J, Rashid MM, Jailani AAK, Chattopadhyay A. Omics Insight on Fusarium Head Blight of Wheat for Translational Research Perspective. Curr Genomics 2020; 21:411-428. [PMID: 33093804 PMCID: PMC7536796 DOI: 10.2174/1389202921999200620222631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 01/11/2023] Open
Abstract
In the scenario of global warming and climate change, an outbreak of new pests and pathogens has become a serious concern owing to the rapid emergence of arms races, their epidemic infection, and the ability to break down host resistance, etc. Fusarium head blight (FHB) is one such evidence that depredates major cereals throughout the world. The symptomatological perplexity and aetiological complexity make this disease very severe, engendering significant losses in the yield. Apart from qualitative and quantitative losses, mycotoxin production solemnly deteriorates the grain quality in addition to life endangerment of humans and animals after consumption of toxified grains above the permissible limit. To minimize this risk, we must be very strategic in designing sustainable management practices constituting cultural, biological, chemical, and host resistance approaches. Even though genetic resistance is the most effective and environmentally safe strategy, a huge genetic variation and unstable resistance response limit the holistic deployment of resistance genes in FHB management. Thus, the focus must shift towards the editing of susceptible (S) host proteins that are soft targets of newly evolving effector molecules, which ultimately could be exploited to repress the disease development process. Hence, we must understand the pathological, biochemical, and molecular insight of disease development in a nutshell. In the present time, the availability of functional genomics, proteomics, and metabolomics information on host-pathogen interaction in FHB have constructed various networks which helped in understanding the pathogenesis and coherent host response(s). So now translation of this information for designing of host defense in the form of desirable resistant variety/genotype is the next step. The insights collected and presented in this review will be aiding in the understanding of the disease and apprise a solution to the multi-faceted problems which are related to FHB resistance in wheat and other cereals to ensure global food safety and food security.
Collapse
Affiliation(s)
- Basavaraj Teli
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Jyotika Purohit
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Md Mahtab Rashid
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - A Abdul Kader Jailani
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Anirudha Chattopadhyay
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
14
|
Xiao H, Wang C, Khan N, Chen M, Fu W, Guan L, Leng X. Genome-wide identification of the class III POD gene family and their expression profiling in grapevine (Vitis vinifera L). BMC Genomics 2020; 21:444. [PMID: 32600251 PMCID: PMC7325284 DOI: 10.1186/s12864-020-06828-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The class III peroxidases (PODs) are involved in a broad range of physiological activities, such as the formation of lignin, cell wall components, defense against pathogenicity or herbivore, and abiotic stress tolerance. The POD family members have been well-studied and characterized by bioinformatics analysis in several plant species, but no previous genome-wide analysis has been carried out of this gene family in grapevine to date. RESULTS We comprehensively identified 47 PODs in the grapevine genome and are further classified into 7 subgroups based on their phylogenetic analysis. Results of motif composition and gene structure organization analysis revealed that PODs in the same subgroup shared similar conjunction while the protein sequences were highly conserved. Intriguingly, the integrated analysis of chromosomal mapping and gene collinearity analysis proposed that both dispersed and tandem duplication events contributed to the expansion of PODs in grapevine. Also, the gene duplication analysis suggested that most of the genes (20) were dispersed followed by (15) tandem, (9) segmental or whole-genome duplication, and (3) proximal, respectively. The evolutionary analysis of PODs, such as Ka/Ks ratio of the 15 duplicated gene pairs were less than 1.00, indicated that most of the gene pairs exhibiting purifying selection and 7 pairs underwent positive selection with value greater than 1.00. The Gene Ontology Enrichment (GO), Kyoto Encyclopedia of Genes Genomics (KEGG) analysis, and cis-elements prediction also revealed the positive functions of PODs in plant growth and developmental activities, and response to stress stimuli. Further, based on the publically available RNA-sequence data, the expression patterns of PODs in tissue-specific response during several developmental stages revealed diverged expression patterns. Subsequently, 30 genes were selected for RT-PCR validation in response to (NaCl, drought, and ABA), which showed their critical role in grapevine. CONCLUSIONS In conclusion, we predict that these results will lead to novel insights regarding genetic improvement of grapevine.
Collapse
Affiliation(s)
- Huilin Xiao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Yantai Academy of Agricultural Sciences, Yantai, 264000, P. R. China
| | - Chaoping Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Nadeem Khan
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada.,Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Mengxia Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Weihong Fu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Le Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Xiangpeng Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, P. R. China.
| |
Collapse
|
15
|
Kot I, Kmieć K. Poplar Tree Response to Feeding by the Petiole Gall Aphid Pemphigus spyrothecae Pass. INSECTS 2020; 11:insects11050282. [PMID: 32380670 PMCID: PMC7291223 DOI: 10.3390/insects11050282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 11/16/2022]
Abstract
Pemphigus spyrothecae Pass. which is a member of the subfamily Pemphiginae is one of the gall-inducing aphids that occurs on poplar trees. Phloem feeding of a founding mother on leaf petiole results in the formation of a new organ, i.e., the spiral gall. This study documents aphid development inside the galls during the growing season and the effect of their feeding on leaf architecture and physiology of the host plant. In particular, leaf length, width, and area were measured, as well as hydrogen peroxide (H2O2) content, electrolyte leakage (EL), malondialdehyde (MDA) concentration, and the activity of ascorbate (APX) and guaiacol peroxidase (GPX) were determined in galls and galled leaves. The presence of petiole galls significantly decreased the length, width, and leaf area. Aphid activity increased H2O2 concentration in galls and EL from galls and leaf tissues, which was accompanied by a strong decrease in MDA content and both peroxidase activities, especially in gall tissues. It can be suggested that P. spyrothecae can manipulate physiological machinery of the host plant for its own benefit.
Collapse
|
16
|
Block AK, Hunter CT, Sattler SE, Rering C, McDonald S, Basset GJ, Christensen SA. Fighting on two fronts: Elevated insect resistance in flooded maize. PLANT, CELL & ENVIRONMENT 2020; 43:223-234. [PMID: 31411732 DOI: 10.1111/pce.13642] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/25/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
To grow and thrive plants must be able to adapt to both adverse environmental conditions and attack by a variety of pests. Elucidating the sophisticated mechanisms plants have developed to achieve this has been the focus of many studies. What is less well understood is how plants respond when faced with multiple stressors simultaneously. In this study, we assess the response of Zea mays (maize) to the combinatorial stress of flooding and infestation with the insect pest Spodoptera frugiperda (fall armyworm). This combined stress leads to elevated production of the defence hormone salicylic acid, which does not occur in the individual stresses, and the resultant salicylic acid-dependent increase in S. frugiperda resistance. Remodelling of phenylpropanoid pathways also occurs in response to this combinatorial stress leading to increased production of the anti-insect C-glycosyl flavones (maysins) and the herbivore-induced volatile phenolics, benzyl acetate, and phenethyl acetate. Furthermore, changes in cellular redox status also occur, as indicated by reductions in peroxidase and polyphenol oxidase activity. These data suggest that metabolite changes important for flooding tolerance and anti-insect defence may act both additively and synergistically to provide extra protection to the plant.
Collapse
Affiliation(s)
- Anna K Block
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Charles T Hunter
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE, 68583, USA
| | - Caitlin Rering
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Samantha McDonald
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608, USA
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Shawn A Christensen
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608, USA
| |
Collapse
|
17
|
Yan J, Su P, Li W, Xiao G, Zhao Y, Ma X, Wang H, Nevo E, Kong L. Genome-wide and evolutionary analysis of the class III peroxidase gene family in wheat and Aegilops tauschii reveals that some members are involved in stress responses. BMC Genomics 2019; 20:666. [PMID: 31438842 PMCID: PMC6704529 DOI: 10.1186/s12864-019-6006-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/30/2019] [Indexed: 11/16/2022] Open
Abstract
Background The class III peroxidase (PRX) gene family is a plant-specific member of the PRX superfamily that is closely related to various physiological processes, such as cell wall loosening, lignification, and abiotic and biotic stress responses. However, its classification, evolutionary history and gene expression patterns are unclear in wheat and Aegilops tauschii. Results Here, we identified 374, 159 and 169 PRXs in Triticum aestivum, Triticum urartu and Ae. tauschii, respectively. Together with PRXs detected from eight other plants, they were classified into 18 subfamilies. Among subfamilies V to XVIII, a conserved exon-intron structure within the “001” exon phases was detected in the PRX domain. Based on the analysis, we proposed a phylogenetic model to infer the evolutionary history of the exon-intron structures of PRX subfamilies. A comparative genomics analysis showed that subfamily VII could be the ancient subfamily that originated from green algae (Chlamydomonas reinhardtii). Further integrated analysis of chromosome locations and collinearity events of PRX genes suggested that both whole genome duplication (WGD) and tandem duplication (TD) events contributed to the expansion of T. aestivum PRXs (TaePRXs) during wheat evolution. To validate functions of these genes in the regulation of various physiological processes, the expression patterns of PRXs in different tissues and under various stresses were studied using public microarray datasets. The results suggested that there were distinct expression patterns among different tissues and PRXs could be involved in biotic and abiotic responses in wheat. qRT-PCR was performed on samples exposed to drought, phytohormone treatments and Fusarium graminearum infection to validate the microarray predictions. The predicted subcellular localizations of some TaePRXs were consistent with the confocal microscopy results. We predicted that some TaePRXs had hormone-responsive cis-elements in their promoter regions and validated these predicted cis-acting elements by sequencing promoters. Conclusion In this study, identification, classification, evolution, and expression patterns of PRXs in wheat and relative plants were performed. Our results will provide information for further studies on the evolution and molecular mechanisms of wheat PRXs. Electronic supplementary material The online version of this article (10.1186/s12864-019-6006-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Yan
- College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Peisen Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Wen Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Guilian Xiao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Yan Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, 3498838, Haifa, Israel.
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
18
|
Zhu T, Xin F, Wei S, Liu Y, Han Y, Xie J, Ding Q, Ma L. Genome-wide identification, phylogeny and expression profiling of class III peroxidases gene family in Brachypodium distachyon. Gene 2019; 700:149-162. [DOI: 10.1016/j.gene.2019.02.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/04/2019] [Accepted: 02/21/2019] [Indexed: 11/16/2022]
|
19
|
Quiles FA, Galvez-Valdivieso G, Guerrero-Casado J, Pineda M, Piedras P. Relationship between ureidic/amidic metabolism and antioxidant enzymatic activities in legume seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 138:1-8. [PMID: 30825724 DOI: 10.1016/j.plaphy.2019.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Ureides are nitrogenous compounds with a special function in some legume under nitrogen fixing conditions, the ureidic legumes. In this group, ureides are the predominant nitrogen transport molecule from nodules to the upper part, whereas amidic legumes use amides as nitrogen transport compounds. In this study, the ureide levels have been analysed in seedlings from four ureidic and four amidic legume plants. It has been found that the differentiation among ureide and amide plants already exists in seedlings during early seedling development, with high levels of ureide and allantoinase activity in cotyledons and embryonic axes from ureide plants. Since ureides have been implicated in the response of plant to several stress, total hydrosoluble antioxidant capacity and the levels of several antioxidant activities have been determined and compared among these two legume groups. The total antioxidant capacity did not follow any differential pattern in cotyledons or embryonic axes for the analysed plants. The levels of superoxide dismutase, guaiacol peroxidase and ascorbate peroxidase in both embryonic axes and cotyledons are statistical different between amide and ureide seedlings, whereas the catalase activity was similar among these groups of plants. We discuss than amides and ureides could follow different strategies to protect against oxidation.
Collapse
Affiliation(s)
- Francisco A Quiles
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif, Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Gregorio Galvez-Valdivieso
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif, Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Jose Guerrero-Casado
- Facultad de Ciencias Veterinarias. Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Manuel Pineda
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif, Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Pedro Piedras
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif, Severo Ochoa, Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|
20
|
Lüthje S, Martinez-Cortes T. Membrane-Bound Class III Peroxidases: Unexpected Enzymes with Exciting Functions. Int J Mol Sci 2018; 19:ijms19102876. [PMID: 30248965 PMCID: PMC6213016 DOI: 10.3390/ijms19102876] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023] Open
Abstract
Class III peroxidases are heme-containing proteins of the secretory pathway with a high redundance and versatile functions. Many soluble peroxidases have been characterized in great detail, whereas only a few studies exist on membrane-bound isoenzymes. Membrane localization of class III peroxidases has been demonstrated for tonoplast, plasma membrane and detergent resistant membrane fractions of different plant species. In silico analysis revealed transmembrane domains for about half of the class III peroxidases that are encoded by the maize (Zea mays) genome. Similar results have been found for other species like thale-cress (Arabidopsis thaliana), barrel medic (Medicago truncatula) and rice (Oryza sativa). Besides this, soluble peroxidases interact with tonoplast and plasma membranes by protein⁻protein interaction. The topology, spatiotemporal organization, molecular and biological functions of membrane-bound class III peroxidases are discussed. Besides a function in membrane protection and/or membrane repair, additional functions have been supported by experimental data and phylogenetics.
Collapse
Affiliation(s)
- Sabine Lüthje
- Oxidative Stress and Plant Proteomics Group, Institute for Plant Science and Microbiology, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany.
| | - Teresa Martinez-Cortes
- Dpto de Biología Animal, Biología Vegetal y Ecología (Lab. Fisiología Vegetal), Facultad de Ciencias-Universidade da Coruña, A Zapateira s/n, 15071 A Coruña, Spain.
| |
Collapse
|
21
|
Rosati RG, Lario LD, Hourcade ME, Cervigni GDL, Luque AG, Scandiani MM, Spampinato CP. Primary metabolism changes triggered in soybean leaves by Fusarium tucumaniae infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:91-100. [PMID: 30080645 DOI: 10.1016/j.plantsci.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Sudden death syndrome (SDS) of soybean can be caused by at least four distinct Fusarium species, with F. tucumaniae being the main causal agent in Argentina. The fungus is a soil-borne pathogen that is largely confined to the roots, but damage also reaches aerial part of the plant and interveinal chlorosis and necrosis, followed by premature defoliation can be observed. In this study, two genetically diverse soybean cultivars, one susceptible (NA 4613) and one partially resistant (DM 4670) to SDS infection, were inoculated with F. tucumaniae or kept uninoculated. Leaf samples at 7, 10, 14 and 25 days post-inoculation (dpi) were chosen for analysis. With the aim of detecting early markers that could potentially discriminate the cultivar response to SDS, gas chromatography-mass spectrometry (GC-MS) analyses and biochemical studies were performed. Metabolic analyses show higher levels of several amino acids in the inoculated than in the uninoculated susceptible cultivar starting at 10 dpi. Biochemical studies indicate that pigment contents and Rubisco level were reduced while class III peroxidase activity was increased in the inoculated susceptible plant at 10 dpi. Taken together, our results indicate that the pathogen induced an accumulation of amino acids, a decrease of the photosynthetic activity, and an increase of plant-specific peroxidase activity in the susceptible cultivar before differences of visible foliar symptoms between genotypes could be observed, thus suggesting that metabolic and biochemical approaches may contribute to a rapid characterization of the cultivar response to SDS.
Collapse
Affiliation(s)
- Romina G Rosati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Luciana D Lario
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Mónica E Hourcade
- Laboratorio de Cromatografía Gaseosa y Espectrometría de Masas, Sala de Instrumental Central, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Gerardo D L Cervigni
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alicia G Luque
- Centro de Referencia de Micología (CEREMIC), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - María M Scandiani
- Centro de Referencia de Micología (CEREMIC), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
22
|
Hasanuzzaman M, Bhuyan MHMB, Mahmud JA, Nahar K, Mohsin SM, Parvin K, Fujita M. Interaction of sulfur with phytohormones and signaling molecules in conferring abiotic stress tolerance to plants. PLANT SIGNALING & BEHAVIOR 2018; 13:e1477905. [PMID: 29939817 PMCID: PMC6103289 DOI: 10.1080/15592324.2018.1477905] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/09/2018] [Indexed: 05/20/2023]
Abstract
Sulfur (S) is a macronutrient for the plant, which has an immense role in basic plant processes and regulation of several metabolic pathways. It has also a major role in providing protection against adverse conditions. Sulfur-containing amino acids and metabolites maintain plant cell mechanisms to improve stress tolerance. It interacts with several biomolecules such as phytohormones, polyamines, nitric oxide (NO), and even with other plant nutrients, which can produce some derivatives those are essential for abiotic stress tolerance. Different S derivatives stimulate signaling cascades, for the upregulation of different cellular messengers such as abscisic acid, Ca2+, and NO. Sulfur is also known to interact with some essential plant nutrients by influencing their uptake and transport, hence, confers nutrient homeostasis efficiencies. This review focuses on how S is interacted with several signaling molecules like NO, glutathiones, phytohormones, hydrogen sulfide, polyamines, etc. This is a concise summary aimed at guiding the researchers to study S-related plant processes in the light of abiotic stress tolerance.
Collapse
Affiliation(s)
- M. Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
- CONTACT Mirza Hasanuzzaman
| | - M. H. M. B. Bhuyan
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - J. A. Mahmud
- Department of Agroforestry and Environmental Science, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - K. Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - S. M. Mohsin
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - K. Parvin
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - M. Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| |
Collapse
|
23
|
Zhang YZ, Wei ZZ, Liu CH, Chen Q, Xu BJ, Guo ZR, Cao YL, Wang Y, Han YN, Chen C, Feng X, Qiao YY, Zong LJ, Zheng T, Deng M, Jiang QT, Li W, Zheng YL, Wei YM, Qi PF. Linoleic acid isomerase gene FgLAI12 affects sensitivity to salicylic acid, mycelial growth and virulence of Fusarium graminearum. Sci Rep 2017; 7:46129. [PMID: 28387243 PMCID: PMC5384231 DOI: 10.1038/srep46129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 03/13/2017] [Indexed: 11/09/2022] Open
Abstract
Fusarium graminearum is the major causal agent of fusarium head blight in wheat, a serious disease worldwide. Linoleic acid isomerase (LAI) catalyses the transformation of linoleic acid (LA) to conjugated linoleic acid (CLA), which is beneficial for human health. We characterised a cis-12 LAI gene of F. graminearum (FGSG_02668; FgLAI12), which was downregulated by salicylic acid (SA), a plant defence hormone. Disruption of FgLAI12 in F. graminearum resulted in decreased accumulation of cis-9,trans-11 CLA, enhanced sensitivity to SA, and increased accumulation of LA and SA in wheat spikes during infection. In addition, mycelial growth, accumulation of deoxynivalenol, and pathogenicity in wheat spikes were reduced. Re-introduction of a functional FgLAI12 gene into ΔFgLAI12 recovered the wild-type phenotype. Fluorescent microscopic analysis showed that FgLAI12 protein was usually expressed in the septa zone of conidia and the vacuole of hyphae, but was expressed in the cell membrane of hyphae in response to exogenous LA, which may be an element of LA metabolism during infection by F. graminearum. The cis-12 LAI enzyme encoded by FgLAI12 is critical for fungal response to SA, mycelial growth and virulence in wheat. The gene FgLAI12 is potentially valuable for biotechnological synthesis of cis-9,trans-11 CLA.
Collapse
Affiliation(s)
- Ya-Zhou Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhen-Zhen Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Cai-Hong Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bin-Jie Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhen-Ru Guo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yong-Li Cao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ya-Nan Han
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chen Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiang Feng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuan-Yuan Qiao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lu-Juan Zong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ting Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qian-Tao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Li
- Agronomy College, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yu-Ming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Peng-Fei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
24
|
López-Orenes A, Bueso MC, Conesa HM, Calderón AA, Ferrer MA. Seasonal changes in antioxidative/oxidative profile of mining and non-mining populations of Syrian beancaper as determined by soil conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:437-447. [PMID: 27750140 DOI: 10.1016/j.scitotenv.2016.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Soil pollution by heavy metals/metalloids (HMMs) is a problem worldwide. To prevent dispersion of contaminated particles by erosion, the maintenance of a vegetative cover is needed. Successful plant establishment in multi-polluted soils can be hampered not only by HMM toxicities, but also by soil nutrient deficiencies and the co-occurrence of abiotic stresses. Some plant species are able to thrive under these multi-stress scenarios often linked to marked fluctuations in environmental factors. This study aimed to investigate the metabolic adjustments involved in Zygophyllum fabago acclimative responses to conditions prevailing in HMM-enriched mine-tailings piles, during Mediterranean spring and summer. To this end, fully expanded leaves, and rhizosphere soil, of three contrasting mining and non-mining populations of Z. fabago grown spontaneously in south-eastern Spain were sampled in two consecutive years. Approximately 50 biochemical, physiological and edaphic parameters were examined, including leaf redox components, primary and secondary metabolites, endogenous levels of salicylic acid, and physicochemical properties of soil (fertility parameters and total concentration of HMMs). Multivariate data analysis showed a clear distinction in antioxidative/oxidative profiles between and within the populations studied. Levels of chlorophylls, proteins and proline characterized control plants whereas antioxidant capacity and C- and S-based antioxidant compounds were biomarkers of mining plants. Seasonal variations were characterized by higher levels of alkaloids and PAL and soluble peroxidase activities in summer, and by soluble sugars and hydroxycinnamic acids in spring irrespective of the population considered. Although the antioxidant systems are subjected to seasonal variations, the way and the intensity with which every population changes its antioxidative/oxidative profile seem to be determined by soil conditions. In short, Z. fabago displays a high physiological plasticity that allow it to successfully shift its metabolism to withstand the multiple stresses that plants must cope with in mine tailings piles under Mediterranean climatic conditions.
Collapse
Affiliation(s)
- Antonio López-Orenes
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain
| | - María C Bueso
- Department of Applied Mathematics and Statistics, Universidad Politécnica de Cartagena, Campus Muralla del Mar, Doctor Fleming s/n, ETSII, 30202 Cartagena, Murcia, Spain
| | - Héctor M Conesa
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain
| | - Antonio A Calderón
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain
| | - María A Ferrer
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain.
| |
Collapse
|
25
|
Scully ED, Donze-Reiner T, Wang H, Eickhoff TE, Baxendale F, Twigg P, Kovacs F, Heng-Moss T, Sattler SE, Sarath G. Identification of an orthologous clade of peroxidases that respond to feeding by greenbugs (Schizaphis graminum) in C 4 grasses. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:1134-1148. [PMID: 32480533 DOI: 10.1071/fp16104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/29/2016] [Indexed: 06/11/2023]
Abstract
Knowledge of specific peroxidases that respond to aphid herbivory is limited in C4 grasses, but could provide targets for improving defence against these pests. A sorghum (Sorghum bicolor (L.) Moench) peroxidase (SbPrx-1; Sobic.002G416700) has been previously linked to biotic stress responses, and was the starting point for this study. Genomic analyses indicated that SbPrx-1 was part of a clade of five closely related peroxidase genes occurring within a ~30kb region on chromosome 2 of the sorghum genome. Comparison of this ~30-kb region to syntenic regions in switchgrass (Panicum virgatum L.) and foxtail millet (Setaria italica L.) identified similar related clusters of peroxidases. Infestation of a susceptible sorghum cultivar with greenbugs (Shizaphis graminum Rondani) induced three of the five peroxidases. Greenbug infestation of switchgrass and foxtail millet plants showed similar inductions of peroxidases. SbPrx-1 was also induced in response to aphid herbivory in a greenbug-resistant sorghum line, Cargill 607E. These data indicate that this genomic region of C4 grasses could be valuable as a marker to assess potential insect resistance in C4 grasses.
Collapse
Affiliation(s)
- Erin D Scully
- Stored Product Insect and Engineering Research Unit, Center for Grain and Animal Health Research USDA-ARS, Manhattan, KS 66502, USA
| | | | - Haichuan Wang
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Thomas E Eickhoff
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Frederick Baxendale
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Paul Twigg
- Department of Biology, University of Nebraska-Kearney, Kearney, NE 68849, USA
| | - Frank Kovacs
- Department of Chemistry, University of Nebraska-Kearney, Kearney, NE 68849, USA
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Scott E Sattler
- Grain, Forage and Bioenergy Research Unit, USDA-ARS, Lincoln, NE 68583, USA
| | - Gautam Sarath
- Grain, Forage and Bioenergy Research Unit, USDA-ARS, Lincoln, NE 68583, USA
| |
Collapse
|
26
|
Morina F, Jovanović L, Prokić L, Veljović-Jovanović S, Smith JAC. Physiological basis of differential zinc and copper tolerance of Verbascum populations from metal-contaminated and uncontaminated areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10005-20. [PMID: 26865485 DOI: 10.1007/s11356-016-6177-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/25/2016] [Indexed: 05/20/2023]
Abstract
Metal contamination represents a strong selective pressure favoring tolerant genotypes and leading to differentiation between plant populations. We investigated the adaptive capacity of early-colonizer species of Verbascum recently exposed to Zn- and Cu-contaminated soils (10-20 years). Two Verbascum thapsus L. populations from uncontaminated sites (NMET1, NMET2), one V. thapsus from a zinc-contaminated site (MET1), and a Verbascum lychnitis population from an open-cast copper mine (MET2) were exposed to elevated Zn or Cu in hydroponic culture under glasshouse conditions. MET populations showed considerably higher tolerance to both Zn and Cu than NMET populations as assessed by measurements of growth and net photosynthesis, yet they accumulated higher tissue Zn concentrations in the shoot. Abscisic acid (ABA) concentration increased with Zn and Cu treatment in the NMET populations, which was correlated to stomatal closure, decrease of net photosynthesis, and nutritional imbalance, indicative of interference with xylem loading and divalent-cation homeostasis. At the cellular level, the sensitivity of NMET2 to Zn and Cu was reflected in significant metal-induced ROS accumulation and ion leakage from roots as well as strong induction of peroxidase activity (POD, EC 1.11.1.7), while Zn had no significant effect on ABA concentration and POD activity in MET1. Interestingly, MET2 had constitutively higher root ABA concentration and POD activity. We propose that ABA distribution between shoots and roots could represent an adaptive mechanism for maintaining low ABA levels and unaffected stomatal conductance. The results show that metal tolerance can occur in Verbascum populations after relatively short time of exposure to metal-contaminated soil, indicating their potential use for phytostabilization.
Collapse
Affiliation(s)
- Filis Morina
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia.
| | | | - Ljiljana Prokić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade, Serbia
| | - Sonja Veljović-Jovanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia
| | | |
Collapse
|
27
|
Meisrimler CN, Menckhoff L, Kukavica BM, Lüthje S. Pre-fractionation strategies to resolve pea (Pisum sativum) sub-proteomes. FRONTIERS IN PLANT SCIENCE 2015; 6:849. [PMID: 26539198 PMCID: PMC4609844 DOI: 10.3389/fpls.2015.00849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Legumes are important crop plants and pea (Pisum sativum L.) has been investigated as a model with respect to several physiological aspects. The sequencing of the pea genome has not been completed. Therefore, proteomic approaches are currently limited. Nevertheless, the increasing numbers of available EST-databases as well as the high homology of the pea and medicago genome (Medicago truncatula Gaertner) allow the successful identification of proteins. Due to the un-sequenced pea genome, pre-fractionation approaches have been used in pea proteomic surveys in the past. Aside from a number of selective proteome studies on crude extracts and the chloroplast, few studies have targeted other components such as the pea secretome, an important sub-proteome of interest due to its role in abiotic and biotic stress processes. The secretome itself can be further divided into different sub-proteomes (plasma membrane, apoplast, cell wall proteins). Cell fractionation in combination with different gel-electrophoresis, chromatography methods and protein identification by mass spectrometry are important partners to gain insight into pea sub-proteomes, post-translational modifications and protein functions. Overall, pea proteomics needs to link numerous existing physiological and biochemical data to gain further insight into adaptation processes, which play important roles in field applications. Future developments and directions in pea proteomics are discussed.
Collapse
Affiliation(s)
- Claudia-Nicole Meisrimler
- Oxidative Stress and Plant Proteomics Group, Biocenter Klein Flottbek and Botanical Garden, University of HamburgHamburg, Germany
- Laboratoire de Biologie du Développement des Plantes, CEA, IBEBSaint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR 7265 Biologie Vegetale et Microbiologie EnvironnementalesSaint-Paul-lez-Durance, France
- Aix Marseille Université, BVME UMR7265Marseille, France
| | - Ljiljana Menckhoff
- Oxidative Stress and Plant Proteomics Group, Biocenter Klein Flottbek and Botanical Garden, University of HamburgHamburg, Germany
| | - Biljana M. Kukavica
- Faculty of Science and Mathematics, University of Banja LukaBanja Luka, Bosnia and Herzegovina
| | - Sabine Lüthje
- Oxidative Stress and Plant Proteomics Group, Biocenter Klein Flottbek and Botanical Garden, University of HamburgHamburg, Germany
| |
Collapse
|
28
|
Kot I, Kmieć K, Górska-Drabik E, Golan K, Rubinowska K, Łagowska B. The effect of mealybug Pseudococcus longispinus (Targioni Tozzetti) infestation of different density on physiological responses of Phalaenopsis × hybridum 'Innocence'. BULLETIN OF ENTOMOLOGICAL RESEARCH 2015; 105:373-380. [PMID: 25827410 DOI: 10.1017/s000748531500022x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cultivated orchids are the most abundantly attacked by polyphagous mealybugs. This study documented how different density of mealybug Pseudococcus longispinus (Targioni Tozzetti) infestation is associated with a response of antioxidative systems of Phalaenopsis × hybridum 'Innocence'. The degree of cell damage, estimated by electrolyte leakage measurement and the level of thiobarbituric acid reactive substances (TBARS), the content of pigments as well as the activity of antioxidative enzymes and proline level, as measurements of stress and stress compensation in moth orchid were examined. The highest electrolyte leakage (E L) value among samples from colonized plants was found in the orchids from series III (50 individuals/plant), whereas the lowest in the plants from series II (20 individuals/plant). The TBARS content reached the highest level at the lowest number of feeding insects (series I). Peroxidase activity toward guaiacol was significantly increased in series I (5 individuals/plant). The highest catalase activity was recorded in plants colonized by the highest number of scale insects (series III). Whereas, the highest value of proline was in series II. The content of individual photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids) in plant tissues did not vary significantly between control and colonized orchids. The results have not confirmed hypothesis that the increasing number of mealybugs occurring on plant enhanced plant physiological response. The degree of longtailed mealybug infestation on plants was positively correlated only with electrolyte leakage and catalase activity in leaf tissues.
Collapse
Affiliation(s)
- I Kot
- Department of Entomology,University of Life Sciences in Lublin,ul. Leszczyńskiego 7,20-069 Lublin,Poland
| | - K Kmieć
- Department of Entomology,University of Life Sciences in Lublin,ul. Leszczyńskiego 7,20-069 Lublin,Poland
| | - E Górska-Drabik
- Department of Entomology,University of Life Sciences in Lublin,ul. Leszczyńskiego 7,20-069 Lublin,Poland
| | - K Golan
- Department of Entomology,University of Life Sciences in Lublin,ul. Leszczyńskiego 7,20-069 Lublin,Poland
| | - K Rubinowska
- Department of Plant Physiology,University of Life Sciences in Lublin,ul. Akademicka 15,20-950 Lublin,Poland
| | - B Łagowska
- Department of Entomology,University of Life Sciences in Lublin,ul. Leszczyńskiego 7,20-069 Lublin,Poland
| |
Collapse
|
29
|
Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene 2015; 566:95-108. [PMID: 25895479 DOI: 10.1016/j.gene.2015.04.041] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/02/2015] [Accepted: 04/14/2015] [Indexed: 11/23/2022]
Abstract
Class III peroxidases (PRXs) are plant-specific enzymes that play key roles in the responses to biotic and abiotic stress during plant growth and development. In this study, we identified 119 nonredundant PRX genes (designated ZmPRXs). These PRX genes were divided into 18 groups based on their phylogenetic relationships. We performed systematic bioinformatics analysis of the PRX genes, including analysis of gene structures, conserved motifs, phylogenetic relationships and gene expression profiles. The ZmPRXs are unevenly distributed on the 10 maize chromosomes. In addition, these genes have undergone 16 segmental duplication and 12 tandem duplication events, indicating that both segmental and tandem duplication were the main contributors to the expansion of the maize PRX family. Ka/Ks analysis suggested that most duplicated ZmPRXs experienced purifying selection, with limited functional divergence during the duplication events, and comparative analysis among maize, sorghum and rice revealed that there were independent duplication events besides the whole-genome duplication of the maize genome. Furthermore, microarray analysis indicated that most highly expressed genes might play significant roles in root. We examined the expression of five candidate ZmPRXs under H2O2, SA, NaCl and PEG stress conditions using quantitative real-time PCR (qRT-PCR), revealing differential expression patterns. This study provides useful information for further functional analysis of the PRX gene family in maize.
Collapse
|
30
|
Meisrimler CN, Schwendke A, Lüthje S. Two-dimensional phos-tag zymograms for tracing phosphoproteins by activity in-gel staining. FRONTIERS IN PLANT SCIENCE 2015; 6:230. [PMID: 25926840 PMCID: PMC4396385 DOI: 10.3389/fpls.2015.00230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
Protein phosphorylation is one of the most common post-translational modifications regulating many cellular processes. The phos-tag technology was combined with two-dimensional zymograms, which consisted of non-reducing IEF PAGE or NEPHGE in the first dimension and high resolution clear native electrophoresis (hrCNE) in the second dimension. The combination of these electrophoresis methods was mild enough to accomplish in-gel activity staining for Fe(III)-reductases by NADH/Fe(III)-citrate/ferrozine, 3,3'-Diaminobenzidine/H2O2 or TMB/H2O2 in the second dimension. The phos-tag zymograms can be used to investigate phosphorylation-dependent changes in enzyme activity. Phos-tag zymograms can be combined with further downstream analysis like mass spectrometry. Non-reducing IEF will resolve proteins with a pI of 3-10, whereas non-reducing NEPHGE finds application for alkaline proteins with a pI higher than eight. Advantages and disadvantages of these new methods will be discussed in detail.
Collapse
Affiliation(s)
- Claudia-Nicole Meisrimler
- Plant Physiology, Biocenter Klein Flottbek and Botanical Garden, University of HamburgHamburg, Germany
- Laboratoire de Biologie du Développement des Plantes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie, Environnementale et de BiotechnologieSaint-Paul-lez-Durance, France
| | - Alexandra Schwendke
- Plant Physiology, Biocenter Klein Flottbek and Botanical Garden, University of HamburgHamburg, Germany
| | - Sabine Lüthje
- Plant Physiology, Biocenter Klein Flottbek and Botanical Garden, University of HamburgHamburg, Germany
| |
Collapse
|
31
|
Minibayeva F, Beckett RP, Kranner I. Roles of apoplastic peroxidases in plant response to wounding. PHYTOCHEMISTRY 2015; 112:122-9. [PMID: 25027646 DOI: 10.1016/j.phytochem.2014.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/16/2014] [Accepted: 06/16/2014] [Indexed: 05/03/2023]
Abstract
Apoplastic class III peroxidases (EC 1.11.1.7) play key roles in the response of plants to pathogen infection and abiotic stresses, including wounding. Wounding is a common stress for plants that can be caused by insect or animal grazing or trampling, or result from agricultural practices. Typically, mechanical damage to a plant immediately induces a rapid release and activation of apoplastic peroxidases, and an oxidative burst of reactive oxygen species (ROS), followed by the upregulation of peroxidase genes. We discuss how plants control the expression of peroxidases genes upon wounding, and also the sparse information on peroxidase-mediated signal transduction pathways. Evidence reviewed here suggests that in many plants production of the ROS that comprise the initial oxidative burst results from a complex interplay of peroxidases with other apoplastic enzymes. Later responses following wounding include various forms of tissue healing, for example through peroxidase-dependent suberinization, or cell death. Limited data suggest that ROS-mediated death signalling during the wound response may involve the peroxidase network, together with other redox molecules. In conclusion, the ability of peroxidases to both generate and scavenge ROS plays a key role in the involvement of these enigmatic enzymes in plant stress tolerance.
Collapse
Affiliation(s)
- Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russian Federation.
| | - Richard Peter Beckett
- School of Life Sciences, PBag X01, Scottsville 3209, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| | - Ilse Kranner
- Institute of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria.
| |
Collapse
|
32
|
Roach T, Colville L, Beckett RP, Minibayeva FV, Havaux M, Kranner I. A proposed interplay between peroxidase, amine oxidase and lipoxygenase in the wounding-induced oxidative burst in Pisum sativum seedlings. PHYTOCHEMISTRY 2015; 112:130-8. [PMID: 24996671 DOI: 10.1016/j.phytochem.2014.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/20/2014] [Accepted: 06/05/2014] [Indexed: 05/23/2023]
Abstract
Plant surfaces form the barrier between a plant and its environment. Upon damage, the wound healing process begins immediately and is accompanied by a rapid production of extracellular reactive oxygen species (ROS), essential in deterring pathogens, signalling responses and cell wall restructuring. Although many enzymes produce extracellular ROS, it is unclear if ROS-producing enzymes act synergistically. We characterised the oxidative burst of superoxide (O2(·-)) and hydrogen peroxide (H2O2) that follows wounding in pea (Pisum sativum L.) seedlings. Rates of ROS production were manipulated by exogenous application of enzyme substrates and inhibitors. The results indicate significant roles for di-amine oxidases (DAO) and peroxidases (Prx) rather than NADPH oxidase. The burst of O2(·-) was strongly dependent on the presence of H2O2 produced by DAO. Potential substrates released from wounded seedlings included linoleic acid that, upon exogenous application, strongly stimulated catalase-sensitive O2(·-) production. Moreover, a 65kD plasma membrane (PM) guaiacol Prx was found in the secretome of wounded seedlings and showed dependence on linoleic acid for O2(·-) production. Lipoxygenases are suggested to modulate O2(·-) production by consuming polyunsaturated fatty acids in the apoplast. Overall, a O2(·-)-producing mechanism involving H2O2-derived from DAO, linoleic acid and a PM-associated Prx is proposed.
Collapse
Affiliation(s)
- Thomas Roach
- Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK; Institute of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria.
| | - Louise Colville
- Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK.
| | - Richard P Beckett
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, Scottsville 3209, South Africa.
| | - Farida V Minibayeva
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russian Federation.
| | - Michel Havaux
- Commissariat à l'Energie Atomique et aux Energies Alternatives/Cadarache, UMR 7265 CNRS-CEA-Aix Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France.
| | - Ilse Kranner
- Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK; Institute of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria.
| |
Collapse
|
33
|
Hadži-Tašković Šukalović V, Vuletić M, Marković K, Cvetić Antić T, Vučinić Ž. Comparative biochemical characterization of peroxidases (class III) tightly bound to the maize root cell walls and modulation of the enzyme properties as a result of covalent binding. PROTOPLASMA 2015; 252:335-343. [PMID: 25081230 DOI: 10.1007/s00709-014-0684-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 07/22/2014] [Indexed: 06/03/2023]
Abstract
Comparative biochemical characterization of class III peroxidase activity tightly bound to the cell walls of maize roots was performed. Ionically bound proteins were solubilized from isolated walls by salt washing, and the remaining covalently bound peroxidases were released, either by enzymatic digestion or by a novel alkaline extraction procedure that released covalently bound alkali-resistant peroxidase enzyme. Solubilized fractions, as well as the salt-washed cell wall fragments containing covalently bound proteins, were analyzed for peroxidase activity. Peroxidative and oxidative activities indicated that peroxidase enzymes were predominately associated with walls by ionic interactions, and this fraction differs from the covalently bound one according to molecular weight, isozyme patterns, and biochemical parameters. The effect of covalent binding was evaluated by comparison of the catalytic properties of the enzyme bound to the salt-washed cell wall fragments with the corresponding solubilized and released enzyme. Higher thermal stability, improved resistance to KCN, increased susceptibility to H2O2, stimulated capacity of wall-bound enzyme to oxidize indole-3-acetic acid (IAA) as well as the difference in kinetic parameters between free and bound enzymes point to conformational changes due to covalent binding. Differences in biochemical properties of ionically and covalently bound peroxidases, as well as the modulation of the enzyme properties as a result of covalent binding to the walls, indicate that these two fractions of apoplastic peroxidases play different roles.
Collapse
|
34
|
Meisrimler CN, Buck F, Lüthje S. Alterations in Soluble Class III Peroxidases of Maize Shoots by Flooding Stress. Proteomes 2014; 2:303-322. [PMID: 28250383 PMCID: PMC5302756 DOI: 10.3390/proteomes2030303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/16/2022] Open
Abstract
Due to changing climate, flooding (waterlogged soils and submergence) becomes a major problem in agriculture and crop production. In the present study, the effect of waterlogging was investigated on peroxidases of maize (Zea mays L.) leaves. The plants showed typical adaptations to flooding stress, i.e., alterations in chlorophyll a/b ratios and increased basal shoot diameter. Seven peroxidase bands could be detected by first dimension modified SDS-PAGE and 10 bands by first dimension high resolution Clear Native Electrophoresis that altered in dependence on plant development and time of waterlogging. Native isoelectric focusing revealed three acidic to neutral and four alkaline guaiacol peroxidases that could be further separated by high resolution Clear Native Electrophorese in the second dimension. One neutral peroxidase (pI 7.0) appeared to be down-regulated within four hours after flooding, whereas alkaline peroxidases (pI 9.2, 8.0 and 7.8) were up-regulated after 28 or 52 h. Second dimensions revealed molecular masses of 133 kDa and 85 kDa for peroxidases at pI 8.0 and 7.8, respectively. Size exclusion chromatography revealed native molecular masses of 30-58 kDa for peroxidases identified as class III peroxidases and ascorbate peroxidases by mass spectrometry. Possible functions of these peroxidases in flooding stress will be discussed.
Collapse
Affiliation(s)
- Claudia-Nicole Meisrimler
- University of Hamburg, Biocenter Klein Flottbek and Botanical Garden, Oxidative Stress and Plant Proteomics Group, Ohnhorststraße 18, D-22609 Hamburg, Germany.
| | - Friedrich Buck
- University Hospital Eppendorf, Institute of Clinical Chemistry, Campus Science, Martinistraße 52, D-20246 Hamburg, Germany.
| | - Sabine Lüthje
- University of Hamburg, Biocenter Klein Flottbek and Botanical Garden, Oxidative Stress and Plant Proteomics Group, Ohnhorststraße 18, D-22609 Hamburg, Germany.
| |
Collapse
|
35
|
Rangel-Sánchez G, Castro-Mercado E, García-Pineda E. Avocado roots treated with salicylic acid produce phenol-2,4-bis (1,1-dimethylethyl), a compound with antifungal activity. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:189-98. [PMID: 23948674 DOI: 10.1016/j.jplph.2013.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/12/2013] [Accepted: 07/17/2013] [Indexed: 05/22/2023]
Abstract
We demonstrated the ability of salicylic acid (SA) to induce a compound in avocado roots that strengthens their defense against Phytophthora cinnamomi. The SA content of avocado roots, before and after the application of exogenous SA, was determined by High-Performance Liquid Chromatography (HPLC). After 4h of SA feeding, the endogenous level in the roots increased to 223 μg g(-1) FW, which was 15 times the amount found in control roots. The methanolic extract obtained from SA-treated avocado roots inhibited the radial growth of P. cinnamomi. A thin layer chromatographic bioassay with the methanolic extract and spores of Aspergillus showed a distinct inhibition zone. The compound responsible for the inhibition was identified as phenol-2,4-bis (1,1-dimethylethyl) by gas chromatography and mass spectrometry. At a concentration of 100 μg/mL, the substance reduced germinative tube length in Aspergillus and radial growth of P. cinnamomi. A commercial preparation of phenol-2,4-bis (1,1-dimethylethyl) caused the same effects on mycelium morphology and radial growth as our isolate, confirming the presence of this compound in the root extracts. This is the first report of the induction of this compound in plants by SA, and the results suggest that it plays an important role in the defense response of avocado.
Collapse
Affiliation(s)
- Gerardo Rangel-Sánchez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', Morelia, Michoacán CP 58040, Mexico
| | - Elda Castro-Mercado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', Morelia, Michoacán CP 58040, Mexico
| | - Ernesto García-Pineda
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', Morelia, Michoacán CP 58040, Mexico.
| |
Collapse
|
36
|
Abstract
Class III peroxidases are heme-containing proteins of the secretory pathway with an extremely high number of isoenzymes, indicating the tremendous and important functions of this protein family. This chapter describes fractionation of the cell in subproteomes, their separation by polyacrylamide gel electrophoresis (PAGE) and visualization of peroxidase isoenzymes by heme and specific in-gel staining procedures. Soluble and membrane-bound peroxidases were separated by differential centrifugation. Aqueous polymer two-phase partitioning and discontinuous sucrose density gradient were applied to resolve peroxidase profiles of plasma membranes and tonoplast. Peroxidase isoenzymes of subproteomes were further separated by PAGE techniques such as native isoelectric focussing (IEF), high resolution clear native electrophoresis (hrCNE), and modified sodium dodecyl sulfate (modSDS)-PAGE. These techniques were used as stand-alone method or in combination for two-dimensional PAGE.
Collapse
Affiliation(s)
- Sabine Lüthje
- Biocentre Klein Flottbek, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
37
|
The production of class III plant peroxidases in transgenic callus cultures transformed with the rolB gene of Agrobacterium rhizogenes. J Biotechnol 2013; 168:64-70. [DOI: 10.1016/j.jbiotec.2013.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/04/2013] [Accepted: 08/07/2013] [Indexed: 01/01/2023]
|
38
|
Shan Y, Zheng Y, Guan F, Zhou J, Zhao H, Xia B, Feng X. Purification and characterization of a novel anti-HSV-2 protein with antiproliferative and peroxidase activities from Stellaria media. Acta Biochim Biophys Sin (Shanghai) 2013; 45:649-55. [PMID: 23761431 DOI: 10.1093/abbs/gmt060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A novel antiviral protein, designated as Stellarmedin A, was purified from Stellaria media (L.) Vill. (Caryophyllaceae) by using ammonium sulfate precipitation, cation-exchange chromatography system. Gel electrophoresis analysis showed that Stellarmedin A is a highly basic glycoprotein with a molecular weight of 35.1 kDa and an isoelectric point of ∼8.7. The N-terminal 14-amino acid sequence, MGNTGVLTGERNDR, is similar to those of other plant peroxidases. This protein inhibited herpes simplex virus type 2 (HSV-2) replication in vitro with an IC50 of 13.18 µg/ml and a therapeutic index exceeding 75.9. It was demonstrated that Stellarmedin A affects the initial stage of HSV-2 infection and is able to inhibit the proliferation of promyelocytic leukemia HL-60 and colon carcinoma LoVo cells with an IC50 of 9.09 and 12.32 µM, respectively. Moreover, Stellarmedin A has a peroxidase activity of 36.6 µmol/min/mg protein, when guaiacol was used as substrate. To our knowledge, this is the first report about an anti-HSV-2 protein with antiproliferative and peroxidase activities from S. media.
Collapse
Affiliation(s)
- Yu Shan
- Jiangsu Center for Research & Development of Medicinal Plants, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-sen), Nanjing 210014, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Zeng MH, Liu SH, Yang MX, Zhang YJ, Liang JY, Wan XR, Liang H. Characterization of a gene encoding clathrin heavy chain in maize up-regulated by salicylic acid, abscisic acid and high boron supply. Int J Mol Sci 2013; 14:15179-98. [PMID: 23880865 PMCID: PMC3742294 DOI: 10.3390/ijms140715179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/01/2013] [Accepted: 07/16/2013] [Indexed: 02/06/2023] Open
Abstract
Clathrin, a three-legged triskelion composed of three clathrin heavy chains (CHCs) and three light chains (CLCs), plays a critical role in clathrin-mediated endocytosis (CME) in eukaryotic cells. In this study, the genes ZmCHC1 and ZmCHC2 encoding clathrin heavy chain in maize were cloned and characterized for the first time in monocots. ZmCHC1 encodes a 1693-amino acid-protein including 29 exons and 28 introns, and ZmCHC2 encodes a 1746-amino acid-protein including 28 exons and 27 introns. The high similarities of gene structure, protein sequences and 3D models among ZmCHC1, and Arabidopsis AtCHC1 and AtCHC2 suggest their similar functions in CME. ZmCHC1 gene is predominantly expressed in maize roots instead of ubiquitous expression of ZmCHC2. Consistent with a typical predicted salicylic acid (SA)-responsive element and four predicted ABA-responsive elements (ABREs) in the promoter sequence of ZmCHC1, the expression of ZmCHC1 instead of ZmCHC2 in maize roots is significantly up-regulated by SA or ABA, suggesting that ZmCHC1 gene may be involved in the SA signaling pathway in maize defense responses. The expressions of ZmCHC1 and ZmCHC2 genes in maize are down-regulated by azide or cold treatment, further revealing the energy requirement of CME and suggesting that CME in plants is sensitive to low temperatures.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiao-Rong Wan
- Authors to whom correspondence should be addressed; E-Mails: (X.-R.W.); (H.L.); Tel./Fax: +86-20-8900-3168 (X.-R.W. & H.L.)
| | - Hong Liang
- Authors to whom correspondence should be addressed; E-Mails: (X.-R.W.); (H.L.); Tel./Fax: +86-20-8900-3168 (X.-R.W. & H.L.)
| |
Collapse
|
40
|
Lüthje S, Möller B, Perrineau FC, Wöltje K. Plasma membrane electron pathways and oxidative stress. Antioxid Redox Signal 2013; 18:2163-83. [PMID: 23265437 DOI: 10.1089/ars.2012.5130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Several redox compounds, including respiratory burst oxidase homologs (Rboh) and iron chelate reductases have been identified in animal and plant plasma membrane (PM). Studies using molecular biological, biochemical, and proteomic approaches suggest that PM redox systems of plants are involved in signal transduction, nutrient uptake, transport, and cell wall-related processes. Function of PM-bound redox systems in oxidative stress will be discussed. RECENT ADVANCES Present knowledge about the properties, structures, and functions of these systems are summarized. Judging from the currently available data, it is likely that electrons are transferred from cytosolic NAD(P)H to the apoplast via quinone reductases, vitamin K, and a cytochrome b561. In tandem with these electrons, protons might be transported to the apoplastic space. CRITICAL ISSUES Recent studies suggest localization of PM-bound redox systems in microdomains (so-called lipid or membrane rafts), but also organization of these compounds in putative and high molecular mass protein complexes. Although the plant flavocytochrome b family is well characterized with respect to its function, the molecular mechanism of an electron transfer reaction by these compounds has to be verified. Localization of Rboh in other compartments needs elucidation. FUTURE DIRECTIONS Plant members of the flavodoxin and flavodoxin-like protein family and the cytochrome b561 protein family have been characterized on the biochemical level, postulated localization, and functions of these redox compounds need verification. Compositions of single microdomains and interaction partners of PM redox systems have to be elucidated. Finally, the hypothesis of an electron transfer chain in the PM needs further proof.
Collapse
Affiliation(s)
- Sabine Lüthje
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.
| | | | | | | |
Collapse
|
41
|
Jia L, Xu W, Li W, Ye N, Liu R, Shi L, Bin Rahman ANMR, Fan M, Zhang J. Class III peroxidases are activated in proanthocyanidin-deficient Arabidopsis thaliana seeds. ANNALS OF BOTANY 2013; 111:839-847. [PMID: 23448691 PMCID: PMC3631330 DOI: 10.1093/aob/mct045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/16/2013] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS It has previously been shown that proanthocyanidins (PAs) in the seed coat of Arabidopsis thaliana have the ability to scavenge superoxide radicals (O2(-)). However, the physiological processess in PA-deficit seeds are not clear. It is hypothesized that there exist alternative ways in PA-deficient seeds to cope with oxidative stress. METHODS The content of hydrogen peroxide (H2O2) and its relevance to the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidases was investigated in both wild-type and PA-deficit mutant seeds. A biochemical staining approach was used to detect tissue localizations of peroxidase activities in PA-deficit mutant seeds. KEY RESULTS PA-deficient mutants possess significantly lower levels of H2O2 than the wild-type, despite their higher accumulation of superoxide radicals. Screening of the key antioxidant enzymes revealed that peroxidase activity was significantly over-activated in mutant seeds. This high peroxidase activity was mainly confined to the seed coat zone. Interestingly, neither ascorbate peroxidase nor glutathione peroxidase, just the guaiacol peroxidases (class III peroxidases), was specifically activated in the seed coat. However, no significant difference in peroxidase activity was observed in embryos of either mutants or the wild-type, although gene expressions of several candidate peroxidases were down-regulated in the embryos of PA-deficient seeds. CONCLUSIONS The results suggest that enhanced class III peroxidase activity in the seed coat of PA-deficient mutants is an adaptive strategy for seed development and survival.
Collapse
Affiliation(s)
- Liguo Jia
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- College of Agronomy, Inner Mongolia Agricultural University, Huhhot 010019, China
| | - Weifeng Xu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenrao Li
- College of Life Sciences, Institute of Ecological Science and Technology, Henan University, Kaifeng, Henan 475004, China
| | - Nenghui Ye
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Rui Liu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Lu Shi
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - A. N. M. Rubaiyath Bin Rahman
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingshou Fan
- College of Agronomy, Inner Mongolia Agricultural University, Huhhot 010019, China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
42
|
Chakraborty N, Ghosh R, Ghosh S, Narula K, Tayal R, Datta A, Chakraborty S. Reduction of oxalate levels in tomato fruit and consequent metabolic remodeling following overexpression of a fungal oxalate decarboxylase. PLANT PHYSIOLOGY 2013; 162:364-378. [PMID: 23482874 PMCID: PMC3641215 DOI: 10.1104/pp.112.209197] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 03/09/2013] [Indexed: 05/29/2023]
Abstract
The plant metabolite oxalic acid is increasingly recognized as a food toxin with negative effects on human nutrition. Decarboxylative degradation of oxalic acid is catalyzed, in a substrate-specific reaction, by oxalate decarboxylase (OXDC), forming formic acid and carbon dioxide. Attempts to date to reduce oxalic acid levels and to understand the biological significance of OXDC in crop plants have met with little success. To investigate the role of OXDC and the metabolic consequences of oxalate down-regulation in a heterotrophic, oxalic acid-accumulating fruit, we generated transgenic tomato (Solanum lycopersicum) plants expressing an OXDC (FvOXDC) from the fungus Flammulina velutipes specifically in the fruit. These E8.2-OXDC fruit showed up to a 90% reduction in oxalate content, which correlated with concomitant increases in calcium, iron, and citrate. Expression of OXDC affected neither carbon dioxide assimilation rates nor resulted in any detectable morphological differences in the transgenic plants. Comparative proteomic analysis suggested that metabolic remodeling was associated with the decrease in oxalate content in transgenic fruit. Examination of the E8.2-OXDC fruit proteome revealed that OXDC-responsive proteins involved in metabolism and stress responses represented the most substantially up- and down-regulated categories, respectively, in the transgenic fruit, compared with those of wild-type plants. Collectively, our study provides insights into OXDC-regulated metabolic networks and may provide a widely applicable strategy for enhancing crop nutritional value.
Collapse
|
43
|
Saathoff AJ, Donze T, Palmer NA, Bradshaw J, Heng-Moss T, Twigg P, Tobias CM, Lagrimini M, Sarath G. Towards uncovering the roles of switchgrass peroxidases in plant processes. FRONTIERS IN PLANT SCIENCE 2013; 4:202. [PMID: 23802005 PMCID: PMC3686051 DOI: 10.3389/fpls.2013.00202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/29/2013] [Indexed: 05/22/2023]
Abstract
Herbaceous perennial plants selected as potential biofuel feedstocks had been understudied at the genomic and functional genomic levels. Recent investments, primarily by the U.S. Department of Energy, have led to the development of a number of molecular resources for bioenergy grasses, such as the partially annotated genome for switchgrass (Panicum virgatum L.), and some related diploid species. In its current version, the switchgrass genome contains 65,878 gene models arising from the A and B genomes of this tetraploid grass. The availability of these gene sequences provides a framework to exploit transcriptomic data obtained from next-generation sequencing platforms to address questions of biological importance. One such question pertains to discovery of genes and proteins important for biotic and abiotic stress responses, and how these components might affect biomass quality and stress response in plants engineered for a specific end purpose. It can be expected that production of switchgrass on marginal lands will expose plants to diverse stresses, including herbivory by insects. Class III plant peroxidases have been implicated in many developmental responses such as lignification and in the adaptive responses of plants to insect feeding. Here, we have analyzed the class III peroxidases encoded by the switchgrass genome, and have mined available transcriptomic datasets to develop a first understanding of the expression profiles of the class III peroxidases in different plant tissues. Lastly, we have identified switchgrass peroxidases that appear to be orthologs of enzymes shown to play key roles in lignification and plant defense responses to hemipterans.
Collapse
Affiliation(s)
- Aaron J. Saathoff
- Grain, Forage and Bioenergy Research Unit, Agricultural Research Service, United States Department of Agriculture, University of NebraskaLincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska at LincolnLincoln, NE, USA
- *Correspondence: Aaron J. Saathoff, Grain, Forage and Bioenergy Research Unit, Agricultural Research Service, United States Department of Agriculture, University of Nebraska, 137 Keim Hall, Lincoln, NE 68583-0937, USA e-mail:
| | - Teresa Donze
- Department of Entomology, University of Nebraska at LincolnLincoln, NE, USA
| | - Nathan A. Palmer
- Grain, Forage and Bioenergy Research Unit, Agricultural Research Service, United States Department of Agriculture, University of NebraskaLincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska at LincolnLincoln, NE, USA
| | - Jeff Bradshaw
- Department of Entomology, University of Nebraska at LincolnLincoln, NE, USA
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska at LincolnLincoln, NE, USA
| | - Paul Twigg
- Biology Department, University of Nebraska at KearneyKearney, NE, USA
| | - Christian M. Tobias
- Genomics and Gene Discovery Research Unit, Agricultural Research Service, United States Department of AgricultureAlbany, CA, USA
| | - Mark Lagrimini
- Department of Agronomy and Horticulture, University of Nebraska at LincolnLincoln, NE, USA
| | - Gautam Sarath
- Grain, Forage and Bioenergy Research Unit, Agricultural Research Service, United States Department of Agriculture, University of NebraskaLincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska at LincolnLincoln, NE, USA
| |
Collapse
|
44
|
Steffens B, Steffen-Heins A, Sauter M. Reactive oxygen species mediate growth and death in submerged plants. FRONTIERS IN PLANT SCIENCE 2013; 4:179. [PMID: 23761805 PMCID: PMC3671184 DOI: 10.3389/fpls.2013.00179] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/17/2013] [Indexed: 05/07/2023]
Abstract
Aquatic and semi-aquatic plants are well adapted to survive partial or complete submergence which is commonly accompanied by oxygen deprivation. The gaseous hormone ethylene controls a number of adaptive responses to submergence including adventitious root growth and aerenchyma formation. Reactive oxygen species (ROS) act as signaling intermediates in ethylene-controlled submergence adaptation and possibly also independent of ethylene. ROS levels are controlled by synthesis, enzymatic metabolism, and non-enzymatic scavenging. While the actors are by and large known, we still have to learn about altered ROS at the subcellular level and how they are brought about, and the signaling cascades that trigger a specific response. This review briefly summarizes our knowledge on the contribution of ROS to submergence adaptation and describes spectrophotometrical, histochemical, and live cell imaging detection methods that have been used to study changes in ROS abundance. Electron paramagnetic resonance (EPR) spectroscopy is introduced as a method that allows identification and quantification of specific ROS in cell compartments. The use of advanced technologies such as EPR spectroscopy will be necessary to untangle the intricate and partially interwoven signaling networks of ethylene and ROS.
Collapse
Affiliation(s)
- Bianka Steffens
- Plant Developmental Biology and Plant Physiology, Kiel UniversityKiel, Germany
- *Correspondence: Bianka Steffens, Plant Developmental Biology and Plant Physiology, Kiel University, Am Botanischen Garten 5, 24118 Kiel, Germany e-mail:
| | | | - Margret Sauter
- Plant Developmental Biology and Plant Physiology, Kiel UniversityKiel, Germany
| |
Collapse
|
45
|
Kolupaev YE, Yastreb TO, Shvidenko NV, Karpets YV. Induction of heat resistance of wheat coleoptiles by salicylic and succinic acids: Connection of the effect with the generation and neutralization of reactive oxygen species. APPL BIOCHEM MICRO+ 2012. [DOI: 10.1134/s0003683812050055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Kalachova TA, Iakovenko OM, Kretinin SV, Kravets VS. Effects of salicylic and jasmonic acid on phospholipase D activity and the level of active oxygen species in soybean seedlings. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2012. [DOI: 10.1134/s1990747812030099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Kukavica BM, Veljovicć-Jovanovicć SD, Menckhoff L, Lüthje S. Cell wall-bound cationic and anionic class III isoperoxidases of pea root: biochemical characterization and function in root growth. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4631-45. [PMID: 22760472 PMCID: PMC3421993 DOI: 10.1093/jxb/ers139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/19/2012] [Accepted: 01/25/2012] [Indexed: 05/02/2023]
Abstract
Cell wall isolated from pea roots was used to separate and characterize two fractions possessing class III peroxidase activity: (i) ionically bound proteins and (ii) covalently bound proteins. Modified SDS-PAGE separated peroxidase isoforms by their apparent molecular weights: four bands of 56, 46, 44, and 41kDa were found in the ionically bound fraction (iPOD) and one band (70kDa) was resolved after treatment of the cell wall with cellulase and pectinase (cPOD). Isoelectric focusing (IEF) patterns for iPODs and cPODs were significantly different: five iPODs with highly cationic pI (9.5-9.2) were detected, whereas the nine cPODs were anionic with pI values between pH 3.7 and 5. iPODs and cPODs showed rather specific substrate affinity and different sensitivity to inhibitors, heat, and deglycosylation treatments. Peroxidase and oxidase activities and their IEF patterns for both fractions were determined in different zones along the root and in roots of different ages. New iPODs with pI 9.34 and 9.5 were induced with root growth, while the activity of cPODs was more related to the formation of the cell wall in non-elongating tissue. Treatment with auxin that inhibits root growth led to suppression of iPOD and induction of cPOD. A similar effect was obtained with the widely used elicitor, chitosan, which also induced cPODs with pI 5.3 and 5.7, which may be specifically related to pathogen defence. The differences reported here between biochemical properties of cPOD and iPOD and their differential induction during development and under specific treatments implicate that they are involved in specific and different physiological processes.
Collapse
Affiliation(s)
- Biljana M. Kukavica
- University of Banja Luka, Faculty of Science and MathematicsMladena Stojanovicć 2, 78000 Banja LukaBosnia and Herzegovina
| | | | - Ljiljana Menckhoff
- University of Banja Luka, Faculty of Science and MathematicsMladena Stojanovicć 2, 78000 Banja LukaBosnia and Herzegovina
| | - Sabine Lüthje
- University of Hamburg, Biocenter Klein Flottbek and Botanical Garden, Plant PhysiologyOhnhorststraße 18D-22609 HamburgGermany
| |
Collapse
|
48
|
Cesarino I, Araújo P, Sampaio Mayer JL, Paes Leme AF, Mazzafera P. Enzymatic activity and proteomic profile of class III peroxidases during sugarcane stem development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 55:66-76. [PMID: 22551762 DOI: 10.1016/j.plaphy.2012.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 03/21/2012] [Indexed: 05/11/2023]
Abstract
Class III peroxidases are present as large multigene families in all land plants. This large number of genes together with the diversity of processes catalyzed by peroxidases suggests possible functional specialization of each isoform. However, assigning a precise role for each individual peroxidase gene has continued to be a major bottleneck. Here we investigated the enzyme activity and translational profile of class III peroxidases during stem development of sugarcane as a first step in the estimation of physiological functions of individual isoenzymes. Internodes at three different developmental stages (young, developing and mature) were divided into pith (inner tissue) and rind (outer tissue) fractions. The rind of mature internodes presented the highest enzymatic activity and thus could be considered the ideal tissue for the discovery of peroxidase gene function. In addition, activity staining of 2DE gels revealed different isoperoxidase profiles and protein expression regulation among different tissue fractions. In-gel tryptic digestion of excised spots followed by peptide sequencing by LC-MS/MS positively matched uncharacterized peroxidases in the sugarcane database SUCEST. Multiple spots matching the same peroxidase gene were found, which reflects the generation of more than one isoform from a particular gene by post-translational modifications. The identified sugarcane peroxidases appear to be monocot-specific sequences with no clear ortholog in dicot model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Igor Cesarino
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, 13083-970 Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
49
|
Meisrimler CN, Planchon S, Renaut J, Sergeant K, Lüthje S. Alteration of plasma membrane-bound redox systems of iron deficient pea roots by chitosan. J Proteomics 2011; 74:1437-49. [PMID: 21310270 DOI: 10.1016/j.jprot.2011.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
Abstract
Iron is essential for all living organisms and plays a crucial role in pathogenicity. This study presents the first proteome analysis of plasma membranes isolated from pea roots. Protein profiles of four different samples (+Fe, +Fe/Chitosan, -Fe, and -Fe/Chitosan) were compared by native IEF-PAGE combined with in-gel activity stains and DIGE. Using DIGE, 89 proteins of interest were detected in plasma membrane fractions. Data revealed a differential abundance of several spots in all samples investigated. In comparison to the control and -FeCh the abundance of six protein spots increased whereas 56 spots decreased in +FeCh. Altered protein spots were analyzed by MALDI-TOF-TOF mass spectrometry. Besides stress-related proteins, transport proteins and redox enzymes were identified. Activity stains after native PAGE and spectrophotometric measurements demonstrated induction of a ferric-chelate reductase (-Fe) and a putative respiratory burst oxidase homolog (-FeCh). However, the activity of the ferric-chelate reductase decreased in -Fe plants after elicitor treatment. The activity of plasma membrane-bound class III peroxidases increased after elicitor treatment and decreased under iron-deficiency, whereas activity of quinone reductases decreased mostly after elicitor treatment. Possible functions of proteins identified and reasons for a weakened pathogen response of iron-deficient plants were discussed.
Collapse
Affiliation(s)
- Claudia-Nicole Meisrimler
- University of Hamburg, Biocenter Klein Flottbek and Botanical Garden, Plant Physiology, Ohnhorststraße 18, D-22609 Hamburg, Germany
| | | | | | | | | |
Collapse
|
50
|
Libik-Konieczny M, Surówka E, Kuźniak E, Nosek M, Miszalski Z. Effects of Botrytis cinerea and Pseudomonas syringae infection on the antioxidant profile of Mesembryanthemum crystallinum C3/CAM intermediate plant. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1052-1059. [PMID: 21342714 DOI: 10.1016/j.jplph.2010.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/16/2010] [Accepted: 12/18/2010] [Indexed: 05/30/2023]
Abstract
Mesembryathemum crystallinum plants performing C(3) or CAM (crassulacean acid metabolism) appear to be highly resistant to Botrytis cinerea as well as to Pseudomonas syringae. Fungal hyphae growth was restricted to 48h post-inoculation (hpi) in both metabolic types and morphology of hyphae differed between those growing in C(3) and CAM plants. Growth of bacteria was inhibited significantly 24 hpi in both C(3) and CAM plants. B. cinerea and P. syringae infection led to an increase in the concentration of H(2)O(2) in C(3) plants 3 hpi, while a decrease in H(2)O(2) content was observed in CAM performing plants. The concentration of H(2)O(2) returned to the control level 24 and 48 hpi. Changes in H(2)O(2) content corresponded with the activity of guaiacol peroxidase (POD), mostly 3 hpi. We noted that its activity decreased significantly in C(3) plants and increased in CAM plants in response to inoculation with both pathogens. On the contrary, changes in the activity of CAT did not correlate with H(2)O(2) level. It increased significantly after interaction of C(3) plants with B. cinerea or P. syringae, but in CAM performing plants, the activity of this enzyme was unchanged. Inoculation with B. cinerea or P. syringae led to an increase in the total SOD activity in C(3) plants while CAM plants did not exhibit changes in the total SOD activity after interaction with both pathogens. In conclusion, the pathogen-induced changes in H(2)O(2) content and in SOD, POD and CAT activities in M. crystallinum leaves, were related to the photosynthetic metabolism type of the stressed plants rather than to the lifestyle of the invading pathogen.
Collapse
Affiliation(s)
- Marta Libik-Konieczny
- Institute of Plant Physiology, Polish Academy of Science, ul Niezapominajek 21, 30-239 Kraków, Poland.
| | | | | | | | | |
Collapse
|