1
|
Gkanogiannis A, Rahman H, Singh RK, Lopez-Lavalle AB. Chromosome-level genome assembly and functional annotation of Citrullus colocynthis: unlocking genetic resources for drought-resilient crop development. PLANTA 2024; 260:124. [PMID: 39443340 PMCID: PMC11499410 DOI: 10.1007/s00425-024-04551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
MAIN CONCLUSION The chromosome-level genome assembly of Citrullus colocynthis reveals its genetic potential for enhancing drought tolerance, paving the way for innovative crop improvement strategies. This study presents the first comprehensive genome assembly and annotation of Citrullus colocynthis, a drought-tolerant wild close relative of cultivated watermelon, highlighting its potential for enhancing agricultural resilience to climate change. The study achieved a chromosome-level assembly using advanced sequencing technologies, including PacBio HiFi and Hi-C, revealing a genome size of approximately 366 Mb with low heterozygosity and substantial repetitive content. Our analysis identified 23,327 gene models, that could encode stress response mechanisms for species' adaptation to arid environments. Comparative genomics with closely related species illuminated the evolutionary dynamics within the Cucurbitaceae family. In addition, resequencing of 27 accessions from the United Arab Emirates (UAE) identified genetic diversity, suggesting a foundation for future breeding programs. This genomic resource opens new avenues for the de novo domestication of C. colocynthis, offering a blueprint for developing crops with enhanced drought tolerance, disease resistance, and nutritional profiles, crucial for sustaining future food security in the face of escalating climate challenges.
Collapse
Affiliation(s)
- Anestis Gkanogiannis
- International Center for Biosaline Agriculture, ICBA, P.O. Box 14660, Dubai, United Arab Emirates.
| | - Hifzur Rahman
- International Center for Biosaline Agriculture, ICBA, P.O. Box 14660, Dubai, United Arab Emirates
| | - Rakesh Kumar Singh
- International Center for Biosaline Agriculture, ICBA, P.O. Box 14660, Dubai, United Arab Emirates
| | | |
Collapse
|
2
|
Davoudi M, Song M, Zhang M, Chen J, Lou Q. Long-distance control of pumpkin rootstock over cucumber scion under drought stress as revealed by transcriptome sequencing and mobile mRNAs identifications. HORTICULTURE RESEARCH 2022; 9:uhab033. [PMID: 35043177 PMCID: PMC8854630 DOI: 10.1093/hr/uhab033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/21/2021] [Indexed: 06/01/2023]
Abstract
Grafting with pumpkin rootstock is commonly used not only to improve the quality of cucumber fruits but also to confer biotic or abiotic stress tolerance. However, the molecular mechanism of grafted cucumbers to drought stress and the possible roles of mobile mRNAs to improve stress tolerance have remained obscure. Hence, we conducted transcriptome sequencing and combined it with morpho-physiological experiments to compare the response of homografts (cucumber as scion and rootstock) (C) and heterografts (cucumber as scion and pumpkin as rootstock) (P) to drought stress. After applying drought stress, homografts and heterografts expressed 2960 and 3088 genes in response to drought stress, respectively. The identified DEGs in heterografts under drought stress were categorized into different stress-responsive groups, such as carbohydrate metabolism (involved in osmotic adjustment by sugar accumulation), lipid and cell wall metabolism (involved in cell membrane integrity by a reduction in lipid peroxidation), redox homeostasis (increased antioxidant enzymes activities), phytohormone (increased ABA content), protein kinases and transcription factors (TFs) using MapMan software. Earlier and greater H2O2 accumulation in xylem below the graft union was accompanied by leaf ABA accumulation in heterografts in response to drought stress. Greater leaf ABA helped heterografted cucumbers to sense and respond to drought stress earlier than homografts. The timely response of heterografts to drought stress led to maintain higher water content in the leaves even in the late stage of drought stress. The identified mobile mRNAs (mb-mRNAs) in heterografts were mostly related to photosynthesis which would be the possible reason for improved chlorophyll content and maximum photochemical efficiency of PSII (Fv/Fm). The existence of some stress-responsive pumpkin (rootstock) mRNAs in cucumber (scion), such as heat shock protein (HSP70, a well-known stress-responsive gene), led to the higher proline accumulation than homografts. The expression of the mobile and immobile stress-responsive mRNAs and timely response of heterografts to drought stress could improve drought tolerance in pumpkin-rooted plants.
Collapse
Affiliation(s)
- Marzieh Davoudi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| |
Collapse
|
3
|
Huang S, Tang Z, Zhao R, Hong Y, Zhu S, Fan R, Ding K, Cao M, Luo K, Geng M, Jiang L, Chen Y. Genome-wide identification of cassava MeRboh genes and functional analysis in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:296-308. [PMID: 34391202 DOI: 10.1016/j.plaphy.2021.07.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Plant respiratory burst oxidase homolog (Rboh) gene family encodes NADPH oxidases, and plays important roles in the production of reactive oxygen species (ROS), plant signaling, growth and stress responses. Cassava is an important starchy crops in tropical region. Environmental stresses, such as drought, pathogen, have caused great yield loss. The mechanisms of stress response are little known in MeRBOH family of cassava. Investigation of Rboh genes response to disease may provide a clue for clarification the disease resistance mechanisms. In this study, eight MeRboh genes were identified from the cassava genome. Comparisons of gene structure, protein motifs, and a phylogenetic tree showed conservation of Rboh gene families in cassava, Arabidopsis and rice. Transcript levels of most MeRboh genes increased following treatment with a pathogen, Xanthomonas axonopodis pv. manihotis, or with phytohormones salicylic acid or jasmonic acid. Analysis of cis-acting elements also indicated that MeRboh genes could response to light, hormone, abiotic and biotic stress. Prediction of miRNA target and post-translation modification sites of MeRboh suggested possible regulations of miRNA and protein phosphorylation; and transient expression of MeRboh in cassava protoplasts confirmed their localization on plasma membrane. Expression of MeRbohB, MeRbohF partially complemented PAMP responses in Arabidopsis rboh mutants, including the expression of PTI marker FRK1, ROS production, peroxide accumulation and callose deposition. It suggesting that MeRbohB and MeRbohF may participate in the PTI pathway and contributed to ROS production triggered by pathogens. Moreover, overexpression of MeRbohB and MeRbohF enhanced the resistance of Arabidopsis against Pseudomonas syringae pv. tomato DC3000. Together, these results suggest the evolutionary conservation of MeRboh gene family and their important role in the immune response and in regulating the plant disease resistance, providing a foundation for revealing molecular mechanisms of cassava disease resistance.
Collapse
Affiliation(s)
- Siyuan Huang
- School of life science, Hainan University; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, 570228, PR China.
| | - Zhijuan Tang
- School of life science, Hainan University; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, 570228, PR China.
| | - Rui Zhao
- School of life science, Hainan University; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, 570228, PR China.
| | - Yuhui Hong
- School of life science, Hainan University; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, 570228, PR China.
| | - Shousong Zhu
- School of life science, Hainan University; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, 570228, PR China.
| | - Ruochen Fan
- School of life science, Hainan University; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, 570228, PR China.
| | - Kaixuan Ding
- School of life science, Hainan University; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, 570228, PR China.
| | - Min Cao
- School of life science, Hainan University; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, 570228, PR China.
| | - Kai Luo
- School of life science, Hainan University; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, 570228, PR China.
| | - Mengting Geng
- School of life science, Hainan University; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, 570228, PR China.
| | - Lingyan Jiang
- School of life science, Hainan University; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, 570228, PR China.
| | - Yinhua Chen
- School of life science, Hainan University; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, 570228, PR China.
| |
Collapse
|
4
|
Citron Watermelon Potential to Improve Crop Diversification and Reduce Negative Impacts of Climate Change. SUSTAINABILITY 2021. [DOI: 10.3390/su13042269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Citron watermelon (Citrullus lanatus var. citroides (L.H. Bailey) Mansf. ex Greb.) is an underexploited and under-researched crop species with the potential to contribute to crop diversification in Sub-Saharan Africa. The species is cultivated in the drier parts of Southern Africa, mainly by smallholder farmers who maintain a wide range of landrace varieties. Understanding the molecular and morpho-physiological basis for drought adaptation in citron watermelon under these dry environments can aid in the identification of suitable traits for drought-tolerance breeding and improve food system resilience among smallholder farmers, thus adding to crop diversification. This paper reviews the literature on drought adaptation of Citrullus lanatus spp. (C3 xerophytes), using the systematic review approach. The review discusses the potential role of citron watermelon in adding to crop diversification, alternative food uses, and potential by-products that can be processed from the crop, and it analyzes the role of Sub-Saharan African farmers play as key actors in conserving citron watermelon germplasm and biodiversity. Finally, the review provides a summary of significant findings and identifies critical knowledge gaps for further research.
Collapse
|
5
|
Lu X, Liu W, Wang T, Zhang J, Li X, Zhang W. Systemic Long-Distance Signaling and Communication Between Rootstock and Scion in Grafted Vegetables. FRONTIERS IN PLANT SCIENCE 2020; 11:460. [PMID: 32431719 PMCID: PMC7214726 DOI: 10.3389/fpls.2020.00460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/27/2020] [Indexed: 05/06/2023]
Abstract
Grafting is widely used in fruit, vegetable, and flower propagation to improve biotic and abiotic stress resistance, yield, and quality. At present, the systemic changes caused by grafting, as well as the mechanisms and effects of long-distance signal transport between rootstock and scion have mainly been investigated in model plants (Arabidopsis thaliana and Nicotiana benthamiana). However, these aspects of grafting vary when different plant materials are grafted, so the study of model plants provides only a theoretical basis and reference for the related research of grafted vegetables. The dearth of knowledge about the transport of signaling molecules in grafted vegetables is inconsistent with the rapid development of large-scale vegetable production, highlighting the need to study the mechanisms regulating the rootstock-scion interaction and long-distance transport. The rapid development of molecular biotechnology and "omics" approaches will allow researchers to unravel the physiological and molecular mechanisms involved in the rootstock-scion interaction in vegetables. We summarize recent progress in the study of the physiological aspects (e.g., hormones and nutrients) of the response in grafted vegetables and focus in particular on long-distance molecular signaling (e.g., RNA and proteins). This review provides a theoretical basis for studies of the rootstock-scion interaction in grafted vegetables, as well as provide guidance for rootstock breeding and selection to meet specific demands for efficient vegetable production.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Dubois M, Inzé D. Plant growth under suboptimal water conditions: early responses and methods to study them. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1706-1722. [PMID: 31967643 DOI: 10.1093/jxb/eraa037] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 05/03/2023]
Abstract
Drought stress forms a major environmental constraint during the life cycle of plants, often decreasing plant yield and in extreme cases threatening survival. The molecular and physiological responses induced by drought have been the topic of extensive research during the past decades. Because soil-based approaches to studying drought responses are often challenging due to low throughput and insufficient control of the conditions, osmotic stress assays in plates were developed to mimic drought. Addition of compounds such as polyethylene glycol, mannitol, sorbitol, or NaCl to controlled growth media has become increasingly popular since it offers the advantage of accurate control of stress level and onset. These osmotic stress assays enabled the discovery of very early stress responses, occurring within seconds or minutes following osmotic stress exposure. In this review, we construct a detailed timeline of early responses to osmotic stress, with a focus on how they initiate plant growth arrest. We further discuss the specific responses triggered by different types and severities of osmotic stress. Finally, we compare short-term plant responses under osmotic stress versus in-soil drought and discuss the advantages, disadvantages, and future of these plate-based proxies for drought.
Collapse
Affiliation(s)
- Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
7
|
Bhaskarla V, Zinta G, Ford R, Jain M, Varshney RK, Mantri N. Comparative Root Transcriptomics Provide Insights into Drought Adaptation Strategies in Chickpea ( Cicer arietinum L.). Int J Mol Sci 2020; 21:E1781. [PMID: 32150870 PMCID: PMC7084756 DOI: 10.3390/ijms21051781] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/28/2022] Open
Abstract
Drought adversely affects crop production across the globe. The root system immensely contributes to water management and the adaptability of plants to drought stress. In this study, drought-induced phenotypic and transcriptomic responses of two contrasting chickpea (Cicer arietinum L.) genotypes were compared at the vegetative, reproductive transition, and reproductive stages. At the vegetative stage, drought-tolerant genotype maintained higher root biomass, length, and surface area under drought stress as compared to sensitive genotype. However, at the reproductive stage, root length and surface area of tolerant genotype was lower but displayed higher root diameter than sensitive genotype. The shoot biomass of tolerant genotype was overall higher than the sensitive genotype under drought stress. RNA-seq analysis identified genotype- and developmental-stage specific differentially expressed genes (DEGs) in response to drought stress. At the vegetative stage, a total of 2161 and 1873 DEGs, and at reproductive stage 4109 and 3772 DEGs, were identified in the tolerant and sensitive genotypes, respectively. Gene ontology (GO) analysis revealed enrichment of biological categories related to cellular process, metabolic process, response to stimulus, response to abiotic stress, and response to hormones. Interestingly, the expression of stress-responsive transcription factors, kinases, ROS signaling and scavenging, transporters, root nodulation, and oxylipin biosynthesis genes were robustly upregulated in the tolerant genotype, possibly contributing to drought adaptation. Furthermore, activation/repression of hormone signaling and biosynthesis genes was observed. Overall, this study sheds new insights on drought tolerance mechanisms operating in roots with broader implications for chickpea improvement.
Collapse
Affiliation(s)
- Vijay Bhaskarla
- The Pangenomics Group, School of Science, RMIT University, Melbourne 3083, Australia;
| | - Gaurav Zinta
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Rebecca Ford
- School of Natural Sciences, Environmental Futures Research Institute, Griffith University, Brisbane, QLD 4111, Australia;
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India
| | - Nitin Mantri
- The Pangenomics Group, School of Science, RMIT University, Melbourne 3083, Australia;
| |
Collapse
|
8
|
Yu S, Kakar KU, Yang Z, Nawaz Z, Lin S, Guo Y, Ren XL, Baloch AA, Han D. Systematic study of the stress-responsive Rboh gene family in Nicotiana tabacum: Genome-wide identification, evolution and role in disease resistance. Genomics 2020; 112:1404-1418. [PMID: 31430516 DOI: 10.1016/j.ygeno.2019.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/12/2019] [Accepted: 08/14/2019] [Indexed: 12/26/2022]
Abstract
Plant respiratory burst oxidase homolog (Rboh) gene family encodes the key enzymatic subunits of reactive oxygen species (ROS) production pathways, and play crucial role in plant signaling, development and stress responses. In present work, twenty genes were identified in Nicotiana tabacum Rboh family (NtabRboh) and classified into four phylogenetic groups (I-IV). Fourteen NtabRboh genes were positioned on ten chromosomes (i.e., Ch1, 2, 4, 7-11, 14 and 21), and six scaffolds. Synteny and evolutionary analysis showed that most of the NtabRboh genes have evolved from the genomes of the ancestor species (N. tomentosiformis and N. sylvestris), which afterwards expanded through duplication events. The promoter regions of the NtabRboh genes contained numerous cis-acting regulatory elements for hormones, plant growth, and different biotic and abiotic factors. The NtabRbohF gene transcript comprised target sites for wounding and stress responsive microRNAs: nta-miR166a-d, g and h. The transcript abundance of NtabRboh genes in different tissues reflected their important for plant growth and organ development in tobacco. RT-qPCR-assays demonstrated that the expression of NtabRboh genes are regulated by viral and bacterial pathogens, drought, cold and cadmium stress. The expression levels NtabRbohA, B and C were significantly up-regulated in "black shank and tobacco mosaic virus-inoculated susceptible and transgenic tobacco cultivars, showing that these genes play important roles in disease resistance.
Collapse
Affiliation(s)
- Shizhou Yu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China; College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China.
| | - Kaleem Ullah Kakar
- Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology and Management Sciences, Quetta 87300, Pakistan.
| | - Zhixiao Yang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Zarqa Nawaz
- Department of Botany, University of Central Punjab, Rawalpindi, Pakistan.
| | - Shifeng Lin
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Yushuang Guo
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Xue-Liang Ren
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Akram Ali Baloch
- Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology and Management Sciences, Quetta 87300, Pakistan.
| | - Dejun Han
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
9
|
He J, Zhou J, Wan H, Zhuang X, Li H, Qin S, Lyu D. Rootstock-Scion Interaction Affects Cadmium Accumulation and Tolerance of Malus. FRONTIERS IN PLANT SCIENCE 2020; 11:1264. [PMID: 32922429 PMCID: PMC7457089 DOI: 10.3389/fpls.2020.01264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/31/2020] [Indexed: 05/17/2023]
Abstract
To understand the roles of Malus rootstock, scion, and their interaction in Cd accumulation and tolerance, four scion/rootstock combinations consisting of the apple cultivars "Hanfu" (HF) and "Fuji" (FJ) grafted onto M. baccata (Mb) or M. micromalus "qingzhoulinqin" (Mm) rootstocks differing in relative Cd tolerance were exposed either to 0 µM or 50 µM CdCl2 for 18 d. Cd accumulation and tolerance in grafted Malus plants varied within rootstock, scion, and rootstock-scion interaction. Cd-induced decreases in photosynthesis, photosynthetic pigment level, and biomass were lower for HF grafted onto Mb than those for HF grafted onto Mm. Reductions in growth and photosynthetic rate were always the lowest for HF/Mb. Cd concentration, bioconcentration factor (BCF), and translocation factor (Tf ) were always comparatively higher in HF and FJ grafted onto rootstock Mm than in HF and FJ grafted on Mb, respectively. When HF and FJ were grafted onto the same rootstock, the root Cd concentrations were always higher in HF than FJ, whereas the shoot Cd concentrations displayed the opposite trend. The shoot Cd concentrations and Tf were lower for HF/Mb than the other scion/rootstock combinations. Rootstock, scion, and rootstock-scion interaction also affected subcellular Cd distribution. Immobilization of Cd in the root cell walls may be a primary Cd mobility and toxicity reduction strategy in Malus. The rootstock and scion also had statistically significant influences on ROS level and antioxidant activity. Cd induced more severe oxidative stress in HF and FJ grafted onto Mm than it did in HF and FJ grafted onto Mb. Compared with FJ, HF had lower foliar O2 -, root H2O2, and root and leaf MDA levels, but higher ROS-scavenging capacity. The rootstock, scion, and rootstock-scion interaction affected the mRNA transcript levels of several genes involved in Cd uptake, transport, and detoxification including HA7, FRO2-like, NRAMP1, NRAMP3, HMA4, MT2, NAS1, and ABCC1. Hence, the responses of grafted Malus plants to Cd toxicity vary with rootstock, scion, and rootstock-scion interaction.
Collapse
Affiliation(s)
- Jiali He
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jiangtao Zhou
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
| | - Huixue Wan
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xiaolei Zhuang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Huifeng Li
- Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, China
| | - Sijun Qin
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Sijun Qin,
| | - Deguo Lyu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
10
|
Yuan H, Sun L, Tai P, Liu W, Li X, Hao L. Effects of grafting on root-to-shoot cadmium translocation in plants of eggplant (Solanum melongena) and tomato (Solanum lycopersicum). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:989-995. [PMID: 30380503 DOI: 10.1016/j.scitotenv.2018.10.129] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 05/28/2023]
Abstract
Heavy metal cadmium (Cd) pollution in farmland has become a serious threat to food security globally. In this work, a grafting technique was applied to eggplant (Solanum melongena) and tomato (Solanum lycopersicum) plants using Solanum torvum as rootstock to investigate effects of grafting on Cd accumulation in shoots. The un-grafted, self-grafted, and grafted plants were grown in soils containing 2 mg kg-1 Cd. Results showed that grafting on S. torvum could efficiently reduce Cd accumulation in leaves of eggplant and tomato, and the decrease was 89% and 72%, respectively. With S. torvum as rootstock, Cd concentrations were 1.11 mg kg-1 and 6.58 mg kg-1 in leaves of grafted eggplant and tomato, which were significantly decreased as compared with un-grafted plants (10.12 mg kg-1 and 23.19 mg kg-1, respectively, p < 0.05). In addition, Cd concentrations were 12.11 mg kg-1 and 29.47 mg kg-1 in leaves of self-grafted eggplant and tomato, respectively, which was similar to those in un-grafted eggplant, but more than those in un-grafted tomato (p < 0.05). This suggests that the S. torvum rootstock, and not the grafting operation, was responsible for efficient reduction of Cd accumulation in shoots of eggplant and tomato plants. Furthermore, total sulfur and sulfate (SO42-) concentrations analysis revealed that there was a similar trend between Cd accumulation and total sulfur or SO42- concentrations in leaves of plants tested. Additionally, a strong positive correlation between Cd accumulation and total sulfur or SO42- concentrations occurred in leaves of eggplant and tomato plants. Thus, sulfur, mainly SO42-, in leaves may play an important regulatory role in Cd accumulation of eggplant and tomato plants. This study provides the theoretical and technical support for applying grafting technique for the safe practice of farming in Cd-contaminated agricultural soil.
Collapse
Affiliation(s)
- Honghong Yuan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizong Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Wan Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lin Hao
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| |
Collapse
|
11
|
Wang W, Chen D, Zhang X, Liu D, Cheng Y, Shen F. Role of plant respiratory burst oxidase homologs in stress responses. Free Radic Res 2018; 52:826-839. [DOI: 10.1080/10715762.2018.1473572] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Dongdong Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Dan Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Yingying Cheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| |
Collapse
|
12
|
Shirani Bidabadi S, Abolghasemi R, Zheng SJ. Grafting of watermelon (Citrullus lanatus cv. Mahbubi) onto different squash rootstocks as a means to minimize cadmium toxicity. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:730-738. [PMID: 29723053 DOI: 10.1080/15226514.2017.1413338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
To test the possibility that using appropriate rootstocks could improve the tolerance of watermelon to cadmium (Cd) toxicity, a greenhouse experiment was conducted to determine growth and antioxidant activities of watermelons, either nongrafted or grafted onto summer squash and winter squash. We provided nutrient solutions having four levels (0, 50, 100, and 200 μM) of cadmium to treat the plants. Shoot and root biomass reduction were significantly lower in summer squash rootstock-grafted watermelon than winter squash rootstock-grafted and nongrafted watermelons. Cadmium induced a smaller decrease in leaf area index in grafted watermelons compared with nongrafted plants. The Cd- related reductions in chlorophyll content and efficiency of photosynthesis were more severe in nongrafted watermelons compared with dose grafted onto summer squash. Cd accumulation in shoot at the highest dose (200 µM) of CdCl2 was significantly lower (19.76 mg/kg) in summer squash rootstock-grafted watermelon compared with winter squash rootstock-grafted (37.58 mg/kg) and nongrafted watermelon (72.12 mg/kg). H2O2, MDA production and electrolyte leakage of summer squash rootstock-grafted watermelon showed less increase, which was associated with a significant increase in the activities of antioxidant. The improved crop performance of grafted watermelons was attributed to their strong capacity to inhibit Cd accumulation in the aerial parts.
Collapse
Affiliation(s)
- Siamak Shirani Bidabadi
- a Department of Horticulture , College of Agriculture, Isfahan University of Technology , Isfahan , Iran
| | - Reza Abolghasemi
- a Department of Horticulture , College of Agriculture, Isfahan University of Technology , Isfahan , Iran
| | - Si-Jun Zheng
- b Yunnan Academy of Agricultural Sciences , Yunnan , China
| |
Collapse
|
13
|
Franck CM, Westermann J, Boisson-Dernier A. Plant Malectin-Like Receptor Kinases: From Cell Wall Integrity to Immunity and Beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:301-328. [PMID: 29539271 DOI: 10.1146/annurev-arplant-042817-040557] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant cells are surrounded by cell walls protecting them from a myriad of environmental challenges. For successful habitat adaptation, extracellular cues are perceived at the cell wall and relayed to downstream signaling constituents to mediate dynamic cell wall remodeling and adapted intracellular responses. Plant malectin-like receptor kinases, also known as Catharanthus roseus receptor-like kinase 1-like proteins (CrRLK1Ls), take part in these perception and relay processes. CrRLK1Ls are involved in many different plant functions. Their ligands, interactors, and downstream signaling partners are being unraveled, and studies about CrRLK1Ls' roles in plant species other than the plant model Arabidopsis thaliana are beginning to flourish. This review focuses on recent CrRLK1L-related advances in cell growth, reproduction, hormone signaling, abiotic stress responses, and, particularly, immunity. We also give an overview of the comparative genomics and evolution of CrRLK1Ls, and present a brief outlook for future research.
Collapse
|
14
|
Kouadri I, Layachi A, Makhlouf A, Satha H. Optimization of extraction process and characterization of water-soluble polysaccharide (Galactomannan) from Algerian biomass; Citrullus colocynthis seeds. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2018. [DOI: 10.1080/1023666x.2018.1455343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Imane Kouadri
- Laboratoire des Silicates, Polymères et Nanocomposites, Université du 8 Mai 1945, Guelma, Algeria
| | - Abdelheq Layachi
- Laboratoire des Silicates, Polymères et Nanocomposites, Université du 8 Mai 1945, Guelma, Algeria
- Institut des Sciences et Technique Appliquée, UFMC 1, Algeria
| | - Azzedine Makhlouf
- Laboratoire des Silicates, Polymères et Nanocomposites, Université du 8 Mai 1945, Guelma, Algeria
- Université Abbes Laghrour Khenchela, Khenchela, Algeria
| | - Hamid Satha
- Laboratoire des Silicates, Polymères et Nanocomposites, Université du 8 Mai 1945, Guelma, Algeria
| |
Collapse
|
15
|
Kaur G, Guruprasad K, Temple BRS, Shirvanyants DG, Dokholyan NV, Pati PK. Structural complexity and functional diversity of plant NADPH oxidases. Amino Acids 2018; 50:79-94. [PMID: 29071531 PMCID: PMC6492275 DOI: 10.1007/s00726-017-2491-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
Plant NADPH oxidases also known as respiratory burst oxidase homologs (Rbohs) are a family of membrane-bound enzymes that play diverse roles in the defense response and morphogenetic processes via regulated generation of reactive oxygen species. Rbohs are associated with a variety of functions, although the reason for this is not clear. To evaluate using bioinformatics, the possible mechanisms for the observed functional diversity within the plant kingdom, 127 Rboh protein sequences representing 26 plant species were analyzed. Multiple clusters were identified with gene duplications that were both dicot as well as monocot-specific. The N-terminal sequences were observed to be highly variable. The conserved cysteine (equivalent of Cys890) in C-terminal of AtRbohD suggested that the redox-based modification like S-nitrosylation may regulate the activity of other Rbohs. Three-dimensional models corresponding to the N-terminal domain for Rbohs from Arabidopsis thaliana and Oryza sativa were constructed and molecular dynamics studies were carried out to study the role of Ca2+ in the folding of Rboh proteins. Certain mutations indicated possibly affect the structure and function of the plant NADPH oxidases, thereby providing the rationale for further experimental validation.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- Bioinformatics, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Kunchur Guruprasad
- Bioinformatics, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Brenda R S Temple
- R. L. Juliano Structural Bioinformatics Core Facility, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - David G Shirvanyants
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
16
|
Jakubowska D, Janicka M. The role of brassinosteroids in the regulation of the plasma membrane H +-ATPase and NADPH oxidase under cadmium stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:37-47. [PMID: 28969801 DOI: 10.1016/j.plantsci.2017.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 05/10/2023]
Abstract
The present research aim was to define the role of brassinosteroids (BRs) in plant adaptation to cadmium stress. We observed a stimulating effect of exogenous BR on the activity of two plasma membrane enzymes which play a key role in plants adaptation to cadmium stress, H+-ATPase (EC 3.6.3.14) and NADPH oxidase (EC 1.6.3.1). Using anti-phosphothreonine antibody we showed that modification of PM H+-ATPase activity under BR action could result from phosphorylation of the enzyme protein. Also the relative expression of genes encoding both PM H+-ATPase and NADPH oxidase was affected by BR. To confirm the role of BR in the cadmium stimulating effect on activity of both studied plasma membrane enzymes, an assay in the presence of a BR biosynthesis inhibitor (propiconazole) was performed. Moreover, as a tool in our work we used commercially available plant mutants unable to BR biosynthesis or with dysfunctional BR signaling pathway, to further confirm participation of BR in plant adaptation to heavy metal stress. Presented results demonstrate some elements of the brassinosteroid-induced pathway activated under cadmium stress, wherein H+-ATPase and NADPH oxidase are key factors.
Collapse
Affiliation(s)
- Dagmara Jakubowska
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia Street 6/8, 50-328 Wrocław, Poland.
| | - Małgorzata Janicka
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia Street 6/8, 50-328 Wrocław, Poland.
| |
Collapse
|
17
|
Li H, Wang F, Chen XJ, Shi K, Xia XJ, Considine MJ, Yu JQ, Zhou YH. The sub/supra-optimal temperature-induced inhibition of photosynthesis and oxidative damage in cucumber leaves are alleviated by grafting onto figleaf gourd/luffa rootstocks. PHYSIOLOGIA PLANTARUM 2014; 152:571-84. [PMID: 24735050 DOI: 10.1111/ppl.12200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 02/22/2014] [Accepted: 02/24/2014] [Indexed: 05/26/2023]
Abstract
Shoot-root communication is involved in plant stress responses, but its mechanism is largely unknown. To determine the role of roots in stress tolerance, cucumber (Cucumis sativus) shoots from plants with roots of their own or with figleaf gourd (Cucurbita ficifolia, a chilling-tolerant species) or luffa (Luffa cylindrica (L.) M. Roem., a heat-tolerant species) rootstocks were exposed to low (18/13°C), optimal (27/22°C) and high (36/31°C) temperatures, respectively. Grafting onto figleaf gourd and luffa rootstocks significantly alleviated chilling and heat-induced reductions, respectively, in biomass production and CO(2) assimilation capacity in the shoots, while levels of lipid peroxidation and protein oxidation were decreased. Figleaf gourd and luffa rootstocks upregulated a subset of stress-responsive genes involved in signal transduction (MAPK1 and RBOH), transcriptional regulation (MYB and MYC), protein protection (HSP45.9 and HSP70), the antioxidant response (Cu/Zn-SOD, cAPX and GR), and photosynthesis (RBCL, RBCS, RCA and FBPase) at low and high growth temperatures, respectively, and this was accompanied by increased activity of the encoded enzymes and reduced glutathione redox homeostasis in the leaves. Moreover, Heat Shock Protein 70 (HSP70) expression in cucumber leaves was strongly induced by the luffa rootstock at the high growth temperature but slightly induced by the figleaf gourd rootstock at low or high growth temperatures. These results indicate that rootstocks could induce significant changes in the transcripts of stress-responsive and defense-related genes, and the ROS scavenging activity via unknown signals, especially at stressful growth temperatures, and this is one of mechanisms involved in the grafting-induced stress tolerance.
Collapse
Affiliation(s)
- Hao Li
- Department of Horticulture, Zijin'gang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kaur G, Sharma A, Guruprasad K, Pati PK. Versatile roles of plant NADPH oxidases and emerging concepts. Biotechnol Adv 2014; 32:551-63. [PMID: 24561450 DOI: 10.1016/j.biotechadv.2014.02.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/24/2014] [Accepted: 02/07/2014] [Indexed: 02/01/2023]
Abstract
NADPH oxidase (NOX) is a key player in the network of reactive oxygen species (ROS) producing enzymes. It catalyzes the production of superoxide (O2(-)), that in turn regulates a wide range of biological functions in a broad range of organisms. Plant Noxes are known as respiratory burst oxidase homologs (Rbohs) and are homologs of catalytic subunit of mammalian phagocyte gp91(phox). They are unique among other ROS producing mechanisms in plants as they integrate different signal transduction pathways in plants. In recent years, there has been addition of knowledge on various aspects related to its structure, regulatory components and associated mechanisms, and its plethora of biological functions. This update highlights some of the recent developments in the field with particular reference to important members of the plant kingdom.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India.
| | - Ashutosh Sharma
- Department of Biotechnology, Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India.
| | - Kunchur Guruprasad
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500007, Andhra Pradesh, India.
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India.
| |
Collapse
|
19
|
Cheng C, Xu X, Gao M, Li J, Guo C, Song J, Wang X. Genome-wide analysis of respiratory burst oxidase homologs in grape (Vitis vinifera L.). Int J Mol Sci 2013; 14:24169-86. [PMID: 24351809 PMCID: PMC3876103 DOI: 10.3390/ijms141224169] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 12/01/2013] [Accepted: 12/06/2013] [Indexed: 11/18/2022] Open
Abstract
Plant respiratory burst oxidase homolog (rboh) genes appear to play crucial roles in plant development, defense reactions and hormone signaling. In this study, a total of seven rboh genes from grape were identified and characterized. Genomic structure and predicted protein sequence analysis indicated that the sequences of plant rboh genes are highly conserved. Synteny analysis demonstrated that several Vvrboh genes were found in corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of the respective lineages. The expression pattern of Vvrboh genes in different tissues was assessed by qRT-PCR and two were constitutively expressed in all tissues tested. The expression profiles were similarly analyzed following exposure to various stresses and hormone treatments. It was shown that the expression levels of VvrbohA, VvrbohB and VvrbohC1 were significantly increased by salt and drought treatments. VvrbohB, VvrbohC2, and VvrbohD exhibited a dramatic up-regulation after powdery mildew (Uncinula necator (Schw.) Burr.) inoculation, while VvrbohH was down-regulated. Finally, salicylic acid treatment strongly stimulated the expression of VvrbohD and VvrbohH, while abscisic acid treatment induced the expression of VvrbohB and VvrbohH. These results demonstrate that the expression patterns of grape rboh genes exhibit diverse and complex stress-response expression signatures.
Collapse
Affiliation(s)
- Chenxia Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; E-Mails: (C.C.); (X.X.); (M.G.); (J.L.); (C.G.); (J.S.)
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaozhao Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; E-Mails: (C.C.); (X.X.); (M.G.); (J.L.); (C.G.); (J.S.)
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; E-Mails: (C.C.); (X.X.); (M.G.); (J.L.); (C.G.); (J.S.)
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; E-Mails: (C.C.); (X.X.); (M.G.); (J.L.); (C.G.); (J.S.)
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; E-Mails: (C.C.); (X.X.); (M.G.); (J.L.); (C.G.); (J.S.)
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junyang Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; E-Mails: (C.C.); (X.X.); (M.G.); (J.L.); (C.G.); (J.S.)
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; E-Mails: (C.C.); (X.X.); (M.G.); (J.L.); (C.G.); (J.S.)
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
20
|
Lüthje S, Möller B, Perrineau FC, Wöltje K. Plasma membrane electron pathways and oxidative stress. Antioxid Redox Signal 2013; 18:2163-83. [PMID: 23265437 DOI: 10.1089/ars.2012.5130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Several redox compounds, including respiratory burst oxidase homologs (Rboh) and iron chelate reductases have been identified in animal and plant plasma membrane (PM). Studies using molecular biological, biochemical, and proteomic approaches suggest that PM redox systems of plants are involved in signal transduction, nutrient uptake, transport, and cell wall-related processes. Function of PM-bound redox systems in oxidative stress will be discussed. RECENT ADVANCES Present knowledge about the properties, structures, and functions of these systems are summarized. Judging from the currently available data, it is likely that electrons are transferred from cytosolic NAD(P)H to the apoplast via quinone reductases, vitamin K, and a cytochrome b561. In tandem with these electrons, protons might be transported to the apoplastic space. CRITICAL ISSUES Recent studies suggest localization of PM-bound redox systems in microdomains (so-called lipid or membrane rafts), but also organization of these compounds in putative and high molecular mass protein complexes. Although the plant flavocytochrome b family is well characterized with respect to its function, the molecular mechanism of an electron transfer reaction by these compounds has to be verified. Localization of Rboh in other compartments needs elucidation. FUTURE DIRECTIONS Plant members of the flavodoxin and flavodoxin-like protein family and the cytochrome b561 protein family have been characterized on the biochemical level, postulated localization, and functions of these redox compounds need verification. Compositions of single microdomains and interaction partners of PM redox systems have to be elucidated. Finally, the hypothesis of an electron transfer chain in the PM needs further proof.
Collapse
Affiliation(s)
- Sabine Lüthje
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.
| | | | | | | |
Collapse
|
21
|
Ling N, Zhang W, Wang D, Mao J, Huang Q, Guo S, Shen Q. Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum. PLoS One 2013; 8:e63383. [PMID: 23700421 PMCID: PMC3659071 DOI: 10.1371/journal.pone.0063383] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
Grafting watermelon onto bottle gourd rootstock is commonly used method to generate resistance to Fusarium oxysporum f. sp. niveum (FON), but knowledge of the effect of the root exudates of grafted watermelon on this soil-borne pathogen in rhizosphere remains limited. To investigate the root exudate profiles of the own-root bottle gourd, grafted-root watermelon and own-root watermelon, recirculating hydroponic culture system was developed to continuously trap these root exudates. Both conidial germination and growth of FON were significantly decreased in the presence of root exudates from the grafted-root watermelon compared with the own-root watermelon. HPLC analysis revealed that the composition of the root exudates released by the grafted-root watermelon differed not only from the own-root watermelon but also from the bottle gourd rootstock plants. We identified salicylic acid in all 3 root exudates, chlorogenic acid and caffeic acid in root exudates from own-root bottle gourd and grafted-root watermelon but not own-root watermelon, and abundant cinnamic acid only in own-root watermelon root exudates. The chlorogenic and caffeic acid were candidates for potentiating the enhanced resistance of the grafted watermelon to FON, therefore we tested the effects of the two compounds on the conidial germination and growth of FON. Both phenolic acids inhibited FON conidial germination and growth in a dose-dependent manner, and FON was much more susceptible to chlorogenic acid than to caffeic acid. In conclusion, the key factor in attaining the resistance to Fusarium wilt is grafting on the non-host root stock, however, the root exudates profile also showed some contribution in inhibiting FON. These results will help to better clarify the disease resistance mechanisms of grafted-root watermelon based on plant-microbe communication and will guide the improvement of strategies against Fusarium-mediated wilt of watermelon plants.
Collapse
Affiliation(s)
- Ning Ling
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenwen Zhang
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dongsheng Wang
- Nanjing Institute of Vegetable Science, Nanjing, Jiangsu, China
| | - Jiugeng Mao
- Nanjing Institute of Vegetable Science, Nanjing, Jiangsu, China
| | - Qiwei Huang
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shiwei Guo
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qirong Shen
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Ling N, Zhang W, Wang D, Mao J, Huang Q, Guo S, Shen Q. Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum. PLoS One 2013; 8:e63383. [PMID: 23700421 DOI: 10.1371/journal.pone.0063383.g001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/03/2013] [Indexed: 05/24/2023] Open
Abstract
Grafting watermelon onto bottle gourd rootstock is commonly used method to generate resistance to Fusarium oxysporum f. sp. niveum (FON), but knowledge of the effect of the root exudates of grafted watermelon on this soil-borne pathogen in rhizosphere remains limited. To investigate the root exudate profiles of the own-root bottle gourd, grafted-root watermelon and own-root watermelon, recirculating hydroponic culture system was developed to continuously trap these root exudates. Both conidial germination and growth of FON were significantly decreased in the presence of root exudates from the grafted-root watermelon compared with the own-root watermelon. HPLC analysis revealed that the composition of the root exudates released by the grafted-root watermelon differed not only from the own-root watermelon but also from the bottle gourd rootstock plants. We identified salicylic acid in all 3 root exudates, chlorogenic acid and caffeic acid in root exudates from own-root bottle gourd and grafted-root watermelon but not own-root watermelon, and abundant cinnamic acid only in own-root watermelon root exudates. The chlorogenic and caffeic acid were candidates for potentiating the enhanced resistance of the grafted watermelon to FON, therefore we tested the effects of the two compounds on the conidial germination and growth of FON. Both phenolic acids inhibited FON conidial germination and growth in a dose-dependent manner, and FON was much more susceptible to chlorogenic acid than to caffeic acid. In conclusion, the key factor in attaining the resistance to Fusarium wilt is grafting on the non-host root stock, however, the root exudates profile also showed some contribution in inhibiting FON. These results will help to better clarify the disease resistance mechanisms of grafted-root watermelon based on plant-microbe communication and will guide the improvement of strategies against Fusarium-mediated wilt of watermelon plants.
Collapse
Affiliation(s)
- Ning Ling
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Müller K, Linkies A, Leubner-Metzger G, Kermode AR. Role of a respiratory burst oxidase of Lepidium sativum (cress) seedlings in root development and auxin signalling. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6325-34. [PMID: 23095998 PMCID: PMC3504488 DOI: 10.1093/jxb/ers284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Reactive oxygen species are increasingly perceived as players in plant development and plant hormone signalling pathways. One of these species, superoxide, is produced in the apoplast by respiratory burst oxidase homologues (rbohs), a family of proteins that is conserved throughout the plant kingdom. Because of the availability of mutants, the focus of research into plant rbohs has been on Arabidopsis thaliana, mainly on AtrbohD and AtrbohF. This study investigates: (i) a different member of the Atrboh family, AtrbohB, and (ii) several rbohs from the close relative of A. thaliana, Lepidium sativum ('cress'). Five cress rbohs (Lesarbohs) were sequenced and it was found that their expression patterns were similar to their Arabidopsis orthologues throughout the life cycle. Cress plants in which LesarbohB expression was knocked down showed a strong seedling root phenotype that resembles phenotypes associated with defective auxin-related genes. These transgenic plants further displayed altered expression of auxin marker genes including those encoding the auxin responsive proteins 14 and 5 (IAA14 and IAA5), and LBD16 (LATERAL ORGAN BOUNDARIES DOMAIN16), an auxin-responsive protein implicated in lateral root initiation. It is speculated that ROS produced by rbohs play a role in root development via auxin signalling.
Collapse
Affiliation(s)
- Kerstin Müller
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby BC, V5A 1S6, Canada
| | - Ada Linkies
- Albert-Ludwigs-University, Institute for Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Gerhard Leubner-Metzger
- Albert-Ludwigs-University, Institute for Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
- Royal Holloway, University of London, School of Biological Sciences, Egham, Surrey TW20 0ZX, UK
| | - Allison R. Kermode
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby BC, V5A 1S6, Canada
| |
Collapse
|
24
|
O'Brien JA, Daudi A, Butt VS, Bolwell GP. Reactive oxygen species and their role in plant defence and cell wall metabolism. PLANTA 2012; 236:765-79. [PMID: 22767200 DOI: 10.1007/s00425-012-1696-9] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/18/2012] [Indexed: 05/18/2023]
Abstract
Harnessing the toxic properties of reactive oxygen species (ROS) to fight off invading pathogens can be considered a major evolutionary success story. All aerobic organisms have evolved the ability to regulate the levels of these toxic intermediates, whereas some have evolved elaborate signalling pathways to dramatically increase the levels of ROS and use them as weapons in mounting a defence response, a process commonly referred to as the oxidative burst. The balance between steady state levels of ROS and the exponential increase in these levels during the oxidative burst has begun to shed light on complex signalling networks mediated by these molecules. Here, we discuss the different sources of ROS that are present in plant cells and review their role in the oxidative burst. We further describe two well-studied ROS generating systems, the NADPH oxidase and apoplastic peroxidase proteins, and their role as the primary producers of ROS during pathogen invasion. We then discuss what is known about the metabolic and proteomic fluxes that occur in plant cells during the oxidative burst and after pathogen recognition, and try to highlight underlying biochemical processes that may provide more insight on the complex regulation of ROS in plants.
Collapse
Affiliation(s)
- Jose A O'Brien
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK.
| | | | | | | |
Collapse
|