1
|
Nakayama M, Harada N, Murai A, Ueyama S, Harada T. Low-Oxygen Responses of Cut Carnation Flowers Associated with Modified Atmosphere Packaging. PLANTS (BASEL, SWITZERLAND) 2023; 12:2738. [PMID: 37514352 PMCID: PMC10386211 DOI: 10.3390/plants12142738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Gaseous factors affect post-harvest physiological processes in horticultural crops, including ornamental flowers. However, the molecular responses of cut flowers to the low-oxygen conditions associated with modified atmosphere packaging (MAP) have not yet been elucidated. Here, we show that storage of cut carnation flowers in a sealed polypropylene bag decreased the oxygen concentration in the bag to 3-5% and slowed flower opening. The vase life of carnation flowers after storage for seven days under MAP conditions was comparable to that without storage and was improved by the application of a commercial-quality preservative. The adenylate energy charge (AEC) was maintained at high levels in petals from florets stored under MAP conditions. This was accompanied by the upregulation of four hypoxia-related genes, among which the HYPOXIA-RESPONSIVE ETHYLENE RESPONSE FACTOR and PHYTOGLOBIN genes (DcERF19 and DcPGB1) were newly identified. These results suggest that hypoxia-responsive genes contribute to the maintenance of the energy status in carnation flowers stored under MAP conditions, making this gas-controlling technique potentially effective for maintaining cut flower quality without cooling.
Collapse
Affiliation(s)
- Misaki Nakayama
- School of Education, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Nao Harada
- School of Education, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Ai Murai
- School of Education, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Sayaka Ueyama
- School of Education, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Taro Harada
- Faculty of Education, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
2
|
Ye X, Gao Y, Chen C, Xie F, Hua Q, Zhang Z, Zhang R, Zhao J, Hu G, Qin Y. Genome-Wide Identification of Aquaporin Gene Family in Pitaya Reveals an HuNIP6;1 Involved in Flowering Process. Int J Mol Sci 2021; 22:7689. [PMID: 34299311 PMCID: PMC8306030 DOI: 10.3390/ijms22147689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Aquaporins (AQPs) are essential membrane proteins involved in seed maturation and germination, stomata movement, photosynthesis, and regulation of plant flowering processes. Pitaya flowers are open at night and wither at daybreak, which shows an obvious circadian rhythm. In this study, a comprehensive genome-wide analysis of AQPs in Hylocereus undantus was conducted to screen key genes associated with flowering processes. A total of 33 HuAQP genes were identified from the H. undantus genome. The 33 HuAQPs were grouped into four subfamilies: 10 PIPs, 13 TIPs, 8 NIPs, and 2 SIPs, which were distributed on 9 out of 11 pitaya chromosomes (Chr) (except for Chr7 and Chr10). Results from expression profiles showed that HuNIP6;1 may be involved in pitaya's floral opening. HuNIP6;1 was localized exclusively in the cell membrane. Overexpression of HuNIP6;1 in Arabidopsis thaliana significantly promoted early flowering through regulating negative flowering regulators of MJM30, COL9, and PRR5, suggesting that HuNIP6;1 plays key roles in regulating flowering time. The present study provides the first genome-wide analysis of the AQP gene family in pitaya and valuable information for utilization of HuAQPs.
Collapse
Affiliation(s)
- Xiaoying Ye
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yongshun Gao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Canbin Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Fangfang Xie
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Qingzhu Hua
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Zhike Zhang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Jietang Zhao
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Guibing Hu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| |
Collapse
|
3
|
Harada T, Horiguchi I, Ueyama S, Murai A, Tsuzuki C. Comprehensive analysis of sucrolytic enzyme gene families in carnation (Dianthus caryophyllus L.). PHYTOCHEMISTRY 2021; 185:112607. [PMID: 33774571 DOI: 10.1016/j.phytochem.2020.112607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 11/09/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Sucrose plays crucial roles in growth and responses of plants to the environment, including those in ornamental species. During post-harvest handling of cut flowers, sucrose degradation is an essential process of inter- and intra-cellular carbon partitioning affecting flower opening and senescence and, subsequently, flower quality. However, complete information about the molecular basis of sucrose degradation in ornamental flowers, which can be catalyzed by two kinds of sucrolytic enzymes, invertase (INV), and sucrose synthase (SUS), is not available from past reports. The present study shows that sucrose treatment of carnation (Dianthus caryophyllus L.) florets increased starch content in petals, accompanied by decreased vacuolar INV (VIN) activity and increased SUS activity. However, hypoxic treatment of carnation florets decreased sucrose content and cell-wall INV (CWIN) activity in petals. In silico analysis using the carnation genome database identified six CWIN, three VIN, eight cytoplasmic INV (CIN), and five SUS genes. Real-time RT-PCR analysis confirmed that these genes are differentially expressed in carnation petals in response to sucrose and hypoxic treatments, partially corresponding to the changes in enzyme activities. In contrast to DcSUS1 (Dca4507.1), a SUS gene already reported in carnation, which showed preferential expression under aerated conditions, the expression of DcSUS2 (Dca22218.1), an undescribed carnation SUS gene, was enhanced under hypoxia similarly to an alcohol dehydrogenase gene DcADH1 (Dca18671.1). These results suggest that sugar metabolism in carnation petals is regulated in response to environmental cues, accompanied by modulated activities and gene expression of a set of sucrolytic enzymes.
Collapse
Affiliation(s)
- Taro Harada
- Graduate School of Education, Okayama University, Okayama, 700-8530, Japan.
| | - Itsuku Horiguchi
- Department of Science Education, Faculty of Education, Okayama University, Okayama, 700-8530, Japan
| | - Sayaka Ueyama
- Department of Science Education, Faculty of Education, Okayama University, Okayama, 700-8530, Japan
| | - Ai Murai
- Department of Science Education, Faculty of Education, Okayama University, Okayama, 700-8530, Japan
| | - Chie Tsuzuki
- Department of Science Education, Faculty of Education, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
4
|
Liu J, Shi M, Wang J, Zhang B, Li Y, Wang J, El-Sappah AH, Liang Y. Comparative Transcriptomic Analysis of the Development of Sepal Morphology in Tomato ( Solanum Lycopersicum L.). Int J Mol Sci 2020; 21:ijms21165914. [PMID: 32824631 PMCID: PMC7460612 DOI: 10.3390/ijms21165914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Sepal is an important component of the tomato flower and fruit that typically protects the flower in bud and functions as a support for petals and fruits. Moreover, sepal appearance influences the commercial property of tomato nowadays. However, the phenotype information and development mechanism of the natural variation of sepal morphology in the tomato is still largely unexplored. To study the developmental mechanism and to determine key genes related to downward sepal in the tomato, we compared the transcriptomes of sepals between downward sepal (dsp) mutation and the wild-type by RNA sequencing and found that the differentially expressed genes were dominantly related to cell expansion, auxin, gibberellins and cytokinin. dsp mutation affected cell size and auxin, and gibberellins and cytokinin contents in sepals. The results showed that cell enlargement or abnormal cell expansion in the adaxial part of sepals in dsp. As reported, auxin, gibberellins and cytokinin were important factors for cell expansion. Hence, dsp mutation regulated cell expansion to control sepal morphology, and auxin, gibberellins and cytokinin may mediate this process. One ARF gene and nine SAUR genes were dramatically upregulated in the sepal of the dsp mutant, whereas seven AUX/IAA genes were significantly downregulated in the sepal of dsp mutant. Further bioinformatic analyses implied that seven AUX/IAA genes might function as negative regulators, while one ARF gene and nine SAUR genes might serve as positive regulators of auxin signal transduction, thereby contributing to cell expansion in dsp sepal. Thus, our data suggest that 17 auxin-responsive genes are involved in downward sepal formation in the tomato. This study provides valuable information for dissecting the molecular mechanism of sepal morphology control in the tomato.
Collapse
Affiliation(s)
- Jingyi Liu
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Meijing Shi
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Jing Wang
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Bo Zhang
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Yushun Li
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Jin Wang
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Ahmed. H. El-Sappah
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
- Correspondence: ; Tel.: +86-29-8708-2179
| |
Collapse
|
5
|
Rojas M, Jimenez-Bremont F, Villicaña C, Carreón-Palau L, Arredondo-Vega BO, Gómez-Anduro G. Involvement of OpsLTP1 from Opuntia streptacantha in abiotic stress adaptation and lipid metabolism. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:816-829. [PMID: 31138396 DOI: 10.1071/fp18280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Plant lipid transfer proteins (LTPs) exhibit the ability to transfer lipids between membranes in vitro, and have been implicated in diverse physiological processes associated to plant growth, reproduction, development, biotic and abiotic stress responses. However, their mode of action is not yet fully understood. To explore the functions of the OpsLTP1 gene encoding a LTP from cactus pear Opuntia streptacantha Lem., we generated transgenic Arabidopsis thaliana (L.) Heynh. plants to overexpress OpsLTP1 and contrasted our results with the loss-of-function mutant ltp3 from A. thaliana under abiotic stress conditions. The ltp3 mutant seeds showed impaired germination under salt and osmotic treatments, in contrast to OpsLTP1 overexpressing lines that displayed significant increases in germination rate. Moreover, stress recovery assays showed that ltp3 mutant seedlings were more sensitive to salt and osmotic treatments than wild-type plants suggesting that AtLTP3 is required for stress-induced responses, while the OpsLTP1 overexpressing line showed no significant differences. In addition, OpsLTP1 overexpressing and ltp3 mutant seeds stored lower amount of total lipids compared with wild-type seeds, showing changes primarily on 16C and 18C fatty acids. However, ltp3 mutant also lead changes in lipid profile and no over concrete lipids which may suggest a compensatory activation of other LTPs. Interestingly, linoleic acid (18:2ω6) was consistently increased in neutral, galactoglycerolipids and phosphoglycerolipids of OpsLTP1 overexpressing line indicating a role of OpsLTP1 in the modulation of lipid composition in A. thaliana.
Collapse
Affiliation(s)
- Mario Rojas
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México
| | - Francisco Jimenez-Bremont
- Instituto Potosino de Investigación Científica y Tecnológica. Camino a la Presa San José 2055, Col. Lomas 4 sección CP. 78216, San Luis Potosí, S.L.P., México
| | - Claudia Villicaña
- CONACYT-Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a Eldorado Km. 5.5, Apartado Postal 32-A. C. P. 80110, Culiacán, Sinaloa, México
| | - Laura Carreón-Palau
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México
| | - Bertha Olivia Arredondo-Vega
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México
| | - Gracia Gómez-Anduro
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México; and Corresponding author.
| |
Collapse
|
6
|
Genome-Wide Identification and Characterization of Aquaporins and Their Role in the Flower Opening Processes in Carnation ( Dianthus caryophyllus). Molecules 2018; 23:molecules23081895. [PMID: 30060619 PMCID: PMC6222698 DOI: 10.3390/molecules23081895] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
Aquaporins (AQPs) are associated with the transport of water and other small solutes across biological membranes. Genome-wide identification and characterization will pave the way for further insights into the AQPs’ roles in the commercial carnation (Dianthus caryophyllus). This study focuses on the analysis of AQPs in carnation (DcaAQPs) involved in flower opening processes. Thirty DcaAQPs were identified and grouped to five subfamilies: nine PIPs, 11 TIPs, six NIPs, three SIPs, and one XIP. Subsequently, gene structure, protein motifs, and co-expression network of DcaAQPs were analyzed and substrate specificity of DcaAQPs was predicted. qRT-PCR, RNA-seq, and semi-qRTRCR were used for DcaAQP genes expression analysis. The analysis results indicated that DcaAQPs were relatively conserved in gene structure and protein motifs, that DcaAQPs had significant differences in substrate specificity among different subfamilies, and that DcaAQP genes’ expressions were significantly different in roots, stems, leaves and flowers. Five DcaAQP genes (DcaPIP1;3, DcaPIP2;2, DcaPIP2;5, DcaTIP1;4, and DcaTIP2;2) might play important roles in flower opening process. However, the roles they play are different in flower organs, namely, sepals, petals, stamens, and pistils. Overall, this study provides a theoretical basis for further functional analysis of DcaAQPs.
Collapse
|
7
|
Zhao D, Cheng M, Tang W, Liu D, Zhou S, Meng J, Tao J. Nano-silver modifies the vase life of cut herbaceous peony (Paeonia lactiflora Pall.) flowers. PROTOPLASMA 2018; 255:1001-1013. [PMID: 29359232 DOI: 10.1007/s00709-018-1209-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
Herbaceous peony (Paeonia lactiflora Pall.) is a popular high-grade cut flower because of higher ornamental value. However, its short flowering time severely restricts the production and application of cut P. lactiflora flowers. In this study, nano-silver (NS) was applied to prolong the vase life of cut P. lactiflora flowers. Under the NS treatment, related physiological indices including relative electrical conductivity (REC), malondialdehyde (MDA), superoxide anion free radical (O2·-), hydrogen peroxide (H2O2) and free proline contents, and protective enzyme activities including superoxide dismutase (SOD), peroxidase (POD) and ascorbic acid peroxidase (APX) all increased in cut P. lactiflora flowers except soluble protein. Meanwhile, NS treatment increased relative water uptake (RWU) and Ag+ distribution. Moreover, the observation of microstructures indicated that the stem-ends without NS treatment were blocked by microbes which were identified as Alternaria sp. and Phoma sp., and NS effectively inhibited their growth by antibacterial efficacy observation. Additionally, three aquaporin genes (AQPs) including two plasma membrane intrinsic protein genes (PlPIP1;2, PlPIP2;1) and one NOD26-like intrinsic protein gene (PlNIP) were isolated, PlPIP1;2, and PlPIP2;1 that were induced by NS treatment took common effects on maintaining the water balance of cut P. lactiflora flowers. Consequently, the vase life of cut P. lactiflora flowers was prolonged and flower fresh weight together with flower diameter was well kept because of these above factors. These results would provide a theoretical basis for prolonging the vase life and improving the ornamental quality of cut P. lactiflora flowers with NS application.
Collapse
Affiliation(s)
- Daqiu Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Menglin Cheng
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Wenhui Tang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Ding Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Siyu Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jiasong Meng
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
8
|
Sun C, Li Y, Zhao W, Song X, Lu M, Li X, Li X, Liu R, Yan L, Zhang X. Integration of Hormonal and Nutritional Cues Orchestrates Progressive Corolla Opening. PLANT PHYSIOLOGY 2016; 171:1209-29. [PMID: 27208289 PMCID: PMC4902604 DOI: 10.1104/pp.16.00209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/24/2016] [Indexed: 05/19/2023]
Abstract
Flower opening is essential for pollination and thus successful sexual reproduction; however, the underlying mechanisms of its timing control remain largely elusive. We identify a unique cucumber (Cucumis sativus) line '6457' that produces normal ovaries when nutrients are under-supplied, and super ovaries (87%) with delayed corolla opening when nutrients are oversupplied. Corolla opening in both normal and super ovaries is divided into four distinct phases, namely the green bud, green-yellow bud, yellow bud, and flowering stages, along with progressive color transition, cytological tuning, and differential expression of 14,282 genes. In the super ovary, cell division and cell expansion persisted for a significantly longer period of time; the expressions of genes related to photosynthesis, protein degradation, and signaling kinases were dramatically up-regulated, whereas the activities of most transcription factors and stress-related genes were significantly down-regulated; concentrations of cytokinins (CKs) and gibberellins were higher in accordance with reduced cytokinin conjugation and degradation and increased expression of gibberellin biosynthesis genes. Exogenous CK application was sufficient for the genesis of super ovaries, suggesting a decisive role of CKs in controlling the timing of corolla opening. Furthermore, 194 out of 11,127 differentially expressed genes identified in pairwise comparisons, including critical developmental, signaling, and cytological regulators, contained all three types of cis-elements for CK, nitrate, and phosphorus responses in their promoter regions, indicating that the integration of hormone modulation and nutritional regulation orchestrated the precise control of corolla opening in cucumber. Our findings provide a valuable framework for dissecting the regulatory pathways for flower opening in plants.
Collapse
Affiliation(s)
- Chengzhen Sun
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Yanqiang Li
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Wensheng Zhao
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Xiaofei Song
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Man Lu
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Xiaoli Li
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Xuexian Li
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Renyi Liu
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Liying Yan
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Xiaolan Zhang
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| |
Collapse
|
9
|
Norikoshi R, Yamada K, Niki T, Ichimura K. Accumulation of mannitol in the cytoplasm and vacuole during the expansion of sepal cells associated with flower opening in Delphinium × belladonna cv. Bellamosum. PLANTA 2015; 242:1467-1477. [PMID: 26316074 DOI: 10.1007/s00425-015-2385-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/13/2015] [Indexed: 06/04/2023]
Abstract
The role of mannitol differs from that of glucose, fructose and sucrose in sepal cell expansion associated with flower opening in Delphinium × belladonna. Sepals of Delphinium × belladonna are colored and much larger than the petals. To determine whether the role of mannitol in sepal growth associated with flower opening differs from those of ubiquitous metabolic sugars including glucose, fructose and sucrose, we investigated changes in cell number, subcellular concentrations of soluble carbohydrates, and osmotic potential in sepals during flower opening in Delphinium × belladonna cv. Bellamosum. The number of epidermal cells in the sepals did not increase from the stage when sepal pigmentation started, whereas the cell area increased during flower opening, indicating that petal growth during flower opening depends on cell expansion. Mannitol concentrations in the vacuole at three different stages were approximately 100 mM, which were much higher than the other carbohydrate concentrations, but they decreased slightly at open stage. In contrast, mannitol concentration in the cytoplasm was 56 mM at bud stage, but it increased to 104 mM at open stage. Glucose and fructose concentrations in the vacuole at open stage increased to 45 and 56 mM, respectively. Total osmotic potential in apoplast and symplast, which was partially due to soluble carbohydrates, was almost constant during flower opening. Therefore, mannitol may be acting constitutively as the main osmoticum in the vacuole where it may contribute to the maintenance of the osmotic balance between the cytoplasm and vacuole in open flowers. The role of mannitol differs from those of glucose, fructose, and sucrose in sepal cell expansion in Delphinium × belladonna.
Collapse
Affiliation(s)
- Ryo Norikoshi
- NARO Institute of Floricultural Science, Fujimoto, Tsukuba, Ibaraki, 305-8519, Japan
- School of Agriculture, Tokyo University of Agriculture, Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Kunio Yamada
- NARO Institute of Floricultural Science, Fujimoto, Tsukuba, Ibaraki, 305-8519, Japan
- Chubu University, Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Tomoko Niki
- NARO Institute of Floricultural Science, Fujimoto, Tsukuba, Ibaraki, 305-8519, Japan
| | - Kazuo Ichimura
- NARO Institute of Floricultural Science, Fujimoto, Tsukuba, Ibaraki, 305-8519, Japan.
| |
Collapse
|
10
|
Deng CL, Wang NN, Li SF, Dong TY, Zhao XP, Wang SJ, Gao WJ, Lu LD. Isolation of differentially expressed sex genes in garden asparagus using suppression subtractive hybridization. JOURNAL OF PLANT RESEARCH 2015; 128:829-38. [PMID: 26038270 DOI: 10.1007/s10265-015-0735-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/24/2015] [Indexed: 05/03/2023]
Abstract
Garden asparagus (Asparagus officinalis L.) is a dioecious species whose male and female flowers are found in separate unisexual individuals. A region called the M-locus, located on a pair of homomorphic sex chromosomes, controls sexual dimorphism in asparagus. To date, no sex determining gene has been isolated from asparagus. To identify more genes involved in flower development in asparagus, subtractive hybridization library of male flowers in asparagus was constructed by suppression subtraction hybridization. A total of 107 expressed sequence tags (ESTs) were identified. BLASTX analysis showed that the library contained several genes that could be related to flower development. The expression patterns of seven selected genes believed to be involved in the development of asparagus male flower were further analyzed by semi-quantitative or real-time reverse-transcription polymerase chain reaction (RT-PCR). Results showed that AOEST4-5, AOEST12-40, and AOEST13-38 were strongly expressed in the male flower stage, whereas no transcript level of AOEST13-38 was detected in the female flower stage. The expression levels of AOEST13-87, AOEST13-92, AOEST13-40, and AOEST18-87 in the male flower stage were also higher than those in the female flower stage, although these transcripts were also expressed in other tissues. The identified genes can provide a strong starting point for further studies on the underlying molecular differences between the male and female flowers of asparagus.
Collapse
Affiliation(s)
- Chuan-liang Deng
- College of Life Science, Henan Normal University, Xinxiang, 453007, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
11
|
van Doorn WG, Kamdee C. Flower opening and closure: an update. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5749-57. [PMID: 25135521 DOI: 10.1093/jxb/eru327] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
This review is an update of a 2003 review (Journal of Experimental Botany 54,1801-1812) by the same corresponding author. Many examples of flower opening have been recorded using time-lapse photography, showing its velocity and the required elongation growth. Ethylene regulates flower opening, together with at least gibberellins and auxin. Ethylene and gibberellic acid often promote and inhibit, respectively, the expression of DELLA genes and the stability of DELLA proteins. DELLA results in growth inhibition. Both hormones also inhibited and promoted, respectively, the expression of aquaporin genes required for cell elongation. Arabidopsis miRNA319a mutants exhibited narrow and short petals, whereby miRNA319a indirectly regulates auxin effects. Flower opening in roses was controlled by a NAC transcription factor, acting through miRNA164. The regulatory role of light and temperature, in interaction with the circadian clock, has been further elucidated. The end of the life span in many flowers is determined by floral closure. In some species pollination resulted in earlier closure of turgid flowers, compared with unpollinated flowers. It is hypothesized that this pollination-induced effect is only found in flowers in which closure is regulated by ethylene.
Collapse
Affiliation(s)
- Wouter G van Doorn
- Mann Laboratory, Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Chanattika Kamdee
- Department of Horticulture, Kasetsart University, Kamphaeng Saen campus, Nakhon Pathom 73140, Thailand
| |
Collapse
|
12
|
Liu F, Xiong X, Wu L, Fu D, Hayward A, Zeng X, Cao Y, Wu Y, Li Y, Wu G. BraLTP1, a lipid transfer protein gene involved in epicuticular wax deposition, cell proliferation and flower development in Brassica napus. PLoS One 2014; 9:e110272. [PMID: 25314222 PMCID: PMC4196963 DOI: 10.1371/journal.pone.0110272] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022] Open
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) constitute large multigene families that possess complex physiological functions, many of which remain unclear. This study isolated and characterized the function of a lipid transfer protein gene, BraLTP1 from Brassica rapa, in the important oilseed crops Brassica napus. BraLTP1 encodes a predicted secretory protein, in the little known VI Class of nsLTP families. Overexpression of BnaLTP1 in B. napus caused abnormal green coloration and reduced wax deposition on leaves and detailed wax analysis revealed 17-80% reduction in various major wax components, which resulted in significant water-loss relative to wild type. BnaLTP1 overexpressing leaves exhibited morphological disfiguration and abaxially curled leaf edges, and leaf cross-sections revealed cell overproliferation that was correlated to increased cytokinin levels (tZ, tZR, iP, and iPR) in leaves and high expression of the cytokinin biosynthsis gene IPT3. BnaLTP1-overexpressing plants also displayed morphological disfiguration of flowers, with early-onset and elongated carpel development and outwardly curled stamen. This was consistent with altered expression of a a number of ABC model genes related to flower development. Together, these results suggest that BraLTP1 is a new nsLTP gene involved in wax production or deposition, with additional direct or indirect effects on cell division and flower development.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaojuan Xiong
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lei Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Donghui Fu
- The Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Alice Hayward
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Queensland, Australia
| | - Xinhua Zeng
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yinglong Cao
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuhua Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yunjing Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
13
|
Lan X, Li D, Zhong B, Ren J, Wang X, Sun Q, Li Y, Liu L, Liu L, Lu S. Identification of differentially expressed genes related to metabolic syndrome induced with high-fat diet in E3 rats. Exp Biol Med (Maywood) 2014; 240:235-41. [PMID: 25294893 DOI: 10.1177/1535370214554531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding the genes differentially expressing in aberrant organs of metabolic syndrome (MetS) facilitates the uncovering of molecular mechanisms and the identification of novel therapeutic targets for the disease. This study aimed to identify differentially expressed genes related to MetS in livers of E3 rats with high-fat-diet-induced metabolic syndrome (HFD-MetS). E3 rats were fed with high-fat diet for 24 weeks to induce MetS. Then, suppression subtractive hybridization (SSH) technology was used to identify the genes differentially expressed between HFD-MetS and control E3 rat livers. Twenty positive recombinant clones were chosen randomly from forward subtractive library and sent to sequence. BLAST analysis in GenBank database was used to determine the property of each cDNA fragment. In total, 11 annotated genes, 3 ESTs, and 2 novel gene fragments were identified by SSH technology. The expression of four genes (Alb, Pip4k2a, Scd1, and Tf) known to be associated with MetS and other five genes (Eif1, Rnase4, Rps12, Rup2, and Tmsb4) unknown to be relevant to MetS was significantly up-regulated in the livers of HFD-MetS E3 rats compared with control rats using real-time quantitative PCR (RT-qPCR). By analyzing the correlations between the expression of these nine genes and serum concentrations of TG, Tch, HDL-C, and LDL-C, we found that there were significant positive correlations between TG and the expression of five genes (Alb, Eif1, Pip4k2a, Rps12, and Tmsb4x), Tch and three genes (Rnase4, Scd1, and Tmsb4x), and LDL-C and two genes (Rnase4 and Scd1), as well there were significant negative correlations between HDL-C and the expression of three genes (Rup2, Scd1, and Tf). This study provides important clues for unraveling the molecular mechanisms of MetS.
Collapse
Affiliation(s)
- Xi Lan
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Dongmin Li
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Bo Zhong
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Juan Ren
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Xuan Wang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Qingzhu Sun
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Yue Li
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Lee Liu
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Li Liu
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Shemin Lu
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, PR China
| |
Collapse
|
14
|
Shinozaki Y, Tanaka R, Ono H, Ogiwara I, Kanekatsu M, van Doorn WG, Yamada T. Length of the dark period affects flower opening and the expression of circadian-clock associated genes as well as xyloglucan endotransglucosylase/hydrolase genes in petals of morning glory (Ipomoea nil). PLANT CELL REPORTS 2014; 33:1121-1131. [PMID: 24682460 DOI: 10.1007/s00299-014-1601-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/05/2014] [Accepted: 03/12/2014] [Indexed: 06/03/2023]
Abstract
We isolated differentially expressed and dark-responsive genes during flower development and opening in petals of morning glory. Flower opening usually depends on petal expansion and is regulated by both genetic and environmental factors. Flower opening in morning glory (Ipomoea nil) is controlled by the dark/light regime just prior to opening. Opening was normal after 8- or 12-h dark periods but progressed very slowly after a 4-h dark period or in continuous light. Four genes (InXTH1-InXTH4) encoding xyloglucan endotransglucosylase/hydrolases (XTHs) and three genes (InEXPA1-InEXPA3) encoding alpha-expansins (EXPAs) were isolated. The expression patterns of InXTH2, InXTH3, and InXTH4 in petals were closely correlated with the rate of flower opening controlled by the length of the dark period prior to opening, but those of the EXPA genes were not. The expression pattern of InXTH1 gene was closely correlated with petal elongation. Suppression subtractive hybridization was used to isolate dark-responsive genes accompanying flower opening. The expressions of ten isolated genes were associated with the length of the dark period prior to flower opening. One gene was highly homologous to Arabidopsis pseudo-response regulator7, which is associated with the circadian clock and phytochrome signaling; another to Arabidopsis REVEILLE1, which affects the output of the circadian clock. Other genes were related to light responses, plant hormone effects and signal transduction. The possible roles of these genes in regulation of flower opening are discussed.
Collapse
Affiliation(s)
- Yoshihito Shinozaki
- Department of Plant Production, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Liu D, Sui S, Ma J, Li Z, Guo Y, Luo D, Yang J, Li M. Transcriptomic analysis of flower development in wintersweet (Chimonanthus praecox). PLoS One 2014; 9:e86976. [PMID: 24489818 PMCID: PMC3906103 DOI: 10.1371/journal.pone.0086976] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/17/2013] [Indexed: 11/19/2022] Open
Abstract
Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data provided a useful database for further research of wintersweet and other Calycanthaceae family plants.
Collapse
Affiliation(s)
- Daofeng Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jing Ma
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Zhineng Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Yulong Guo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Dengpan Luo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jianfeng Yang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Sung SY, Kim SH, Velusamy V, Lee YM, Ha BK, Kim JB, Kang SY, Kim HG, Kim DS. Comparative gene expression analysis in a highly anthocyanin pigmented mutant of colorless chrysanthemum. Mol Biol Rep 2013; 40:5177-89. [PMID: 23666061 DOI: 10.1007/s11033-013-2620-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 04/30/2013] [Indexed: 11/25/2022]
Abstract
In this study, we investigated differentially expressed genes between the original chrysanthemum cultivar 'Argus' with white flower color and its gamma-ray irradiated mutant 'ARTI-purple' with purple flower color. The expression levels of anthocyanin biosynthetic genes were not associated with anthocyanin accumulations of Argus and ARTI-purple. Expressed sequence tags (ESTs) analysis was performed to identify a novel cDNAs encoding enzymes of specific plant metabolic pathways and the biological effects of gamma-ray mutation through alterations in expression in each flower. A total of 796 unigenes were isolated from chrysanthemum ray florets. These unigenes were functionally classified using gene ontologies and tentative pathway associations were established to 99 sequences in the Kyoto encyclopedia of genes and genomes. The expressions of the isolated ESTs were screened by cDNA dot blot hybridization. Seven differentially expressed genes were identified as being involved in carbohydrate and lipid metabolic pathways and five as transcription factor or signal transduction genes. Of particular note, decreased expression of CmMYB1 was identified at the 'ARTI-purple'. The CmMYB1 shared high similarity with AtMYB4 and AtMYBL2 which is a negative regulator of anthocyanin and flavonol accumulation. Furthermore, two genes involved in lipid metabolism, enoyl-ACP reductase and [acyl-carrier-protein] S-malonyltransferase, were decreased in the 'ARTI-purple' flower. Our results suggest that the purple pigmentation of the 'ARTI-purple' is not just dependent on the expression of anthocyanin synthesis genes, and that the pigmentation may also affect other metabolic processing and the plant cell environment.
Collapse
Affiliation(s)
- Sang Yeop Sung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kawarada M, Nomura Y, Harada T, Morita S, Masumura T, Yamaguchi H, Tanase K, Yagi M, Onozaki T, Satoh S. Cloning and Expression of cDNAs for Biosynthesis of Very-long-chain Fatty Acids, the Precursors for Cuticular Wax Formation, in Carnation (Dianthus caryophyllus L.) Petals. ACTA ACUST UNITED AC 2013. [DOI: 10.2503/jjshs1.82.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Rai V, Dey N. Identification of programmed cell death related genes in bamboo. Gene 2012; 497:243-8. [PMID: 22326529 DOI: 10.1016/j.gene.2012.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/20/2011] [Accepted: 01/17/2012] [Indexed: 11/26/2022]
Abstract
The event of bamboo flowering and subsequent death of bamboo cells, a rare phenomenon is an interesting model to study gene expression/function in the context of the programmed cell death (PCD) in plant. To identify genes involved in autolytic cell death in bamboo (Bambusa arundinacea/Bambusa bambos Voss), a suppressive subtractive cDNA hybridization (SSH) was performed between cDNA isolated from control (healthy), as driver and test internodal tissue (45days after setting of seeds), as tester. In-silico data revealed that 82% of total ESTs (231) were non-significant (unidentified proteins) while remaining ESTs were classified as protein with known/predicted function/s. Among these, net distribution and differential expression patterns of 11 important B. arundinacea PCD specific ESTs were studied using RNA slot-blot, qRT-PCR and semi-quantitative RT. In-situ localization of mRNA-transcripts for selected bamboo PCD-specific ESTs namely V2Ba48 (Aldehyde dehydrogenase 2) and V2Ba19 (Glycogen phosphorylase) were detected using digoxigenin-labeled corresponding anti-sense RNA probes employing Confocal Laser Scanning Microscope (CLSM). Differential expression-kinetics of the aforementioned genes were confirmed during the progress of PCD after setting of seeds. Global appearance of V2Ba48, V2Ba19, V2Ba95 (Ubiquitin thioesterase) and V2Ba89 (Nebulin isoform 2) genes were identified in monocot (Oryza sativa) and dicots (Arabidopsis thaliana and Nicotiana tabacum). This is the first report on systematic analysis of genes involved in death of bamboo cells that may provide critical information regarding key metabolic/regulatory genes involved in plant PCD.
Collapse
Affiliation(s)
- Vineeta Rai
- Institute of Life Sciences, Laboratory of Plant Biotechnology, Bhubaneswar, India.
| | | |
Collapse
|
19
|
Zhang L, Li L, Wu J, Peng J, Zhang L, Wang X. Cell expansion and microtubule behavior in ray floret petals of Gerbera hybrida: Responses to light and gibberellic acid. Photochem Photobiol Sci 2012; 11:279-88. [PMID: 22020373 DOI: 10.1039/c1pp05218g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Lili Zhang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | | | | | | | | | | |
Collapse
|
20
|
Nomura Y, Morita S, Harada T, Satoh S. Cloning, Characterization and Expression of Carnation (Dianthus caryophyllus L.) Ubiquitin Genes and Their Use as a Normalization Standard for Gene Expression Analysis in Senescing Petals. ACTA ACUST UNITED AC 2012. [DOI: 10.2503/jjshs1.81.357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Morita S, Torii Y, Harada T, Kawarada M, Onodera R, Satoh S. Cloning and Characterization of a cDNA Encoding Sucrose Synthase Associated with Flower Opening through Early Senescence in Carnation (Dianthus caryophyllus L.). ACTA ACUST UNITED AC 2011. [DOI: 10.2503/jjshs1.80.358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Harada T, Torii Y, Morita S, Onodera R, Hara Y, Yokoyama R, Nishitani K, Satoh S. Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:815-23. [PMID: 20959626 PMCID: PMC3003822 DOI: 10.1093/jxb/erq319] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 08/17/2010] [Accepted: 09/20/2010] [Indexed: 05/18/2023]
Abstract
Growth of petal cells is a basis for expansion and morphogenesis (outward bending) of petals during opening of carnation flowers (Dianthus caryophyllus L.). Petal growth progressed through elongation in the early stage, expansion with outward bending in the middle stage, and expansion of the whole area in the late stage of flower opening. In the present study, four cDNAs encoding xyloglucan endotransglucosylase/hydrolase (XTH) (DcXTH1-DcXTH4) and three cDNAs encoding expansin (DcEXPA1-DcEXPA3) were cloned from petals of opening carnation flowers and characterized. Real-time reverse transcription-PCR analyses showed that transcript levels of XTH and expansin genes accumulated differently in floral and vegetative tissues of carnation plants with opening flowers, indicating regulated expression of these genes. DcXTH2 and DcXTH3 transcripts were detected in large quantities in petals as compared with other tissues. DcEXPA1 and DcEXPA2 transcripts were markedly accumulated in petals of opening flowers. The action of XTH in growing petal tissues was confirmed by in situ staining of xyloglucan endotransglucosylase (XET) activity using a rhodamine-labelled xyloglucan nonasaccharide as a substrate. Based on the present findings, it is suggested that two XTH genes (DcXTH2 and DcXTH3) and two expansin genes (DcEXPA1 and DcEXPA2) are associated with petal growth and development during carnation flower opening.
Collapse
Affiliation(s)
- Taro Harada
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yuka Torii
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Shigeto Morita
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
- Kyoto Prefectural Institute of Agricultural Biotechnology, Seika-cho 619-0224, Kyoto Prefecture, Japan
| | - Reiko Onodera
- Yamagata Integrated Agricultural Research Center, Sagae 991-0043, Yamagata Prefecture, Japan
| | - Yoshinao Hara
- Laboratory of Plant Cell Wall Biology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ryusuke Yokoyama
- Laboratory of Plant Cell Wall Biology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kazuhiko Nishitani
- Laboratory of Plant Cell Wall Biology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Shigeru Satoh
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
- Kyoto Prefectural Institute of Agricultural Biotechnology, Seika-cho 619-0224, Kyoto Prefecture, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|