1
|
Huang Y, Schnurbusch T. The Birth and Death of Floral Organs in Cereal Crops. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:427-458. [PMID: 38424062 DOI: 10.1146/annurev-arplant-060223-041716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Florets of cereal crops are the basic reproductive organs that produce grains for food or feed. The birth of a floret progresses through meristem initiation and floral organ identity specification and maintenance. During these processes, both endogenous and external cues can trigger a premature floral organ death, leading to reproductive failure. Recent advances in different cereal crops have identified both conserved and distinct regulators governing the birth of a floret. However, the molecular underpinnings of floral death are just beginning to be understood. In this review, we first provide a general overview of the current findings in the field of floral development in major cereals and outline different forms of floral deaths, particularly in the Triticeae crops. We then highlight the importance of vascular patterning and photosynthesis in floral development and reproductive success and argue for an expanded knowledge of floral birth-death balance in the context of agroecology.
Collapse
Affiliation(s)
- Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany; ,
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany; ,
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
2
|
Zhou C, Gu X, Li J, Su X, Chen S, Tang J, Chen L, Cai N, Xu Y. Physiological Characteristics and Transcriptomic Responses of Pinus yunnanensis Lateral Branching to Different Shading Environments. PLANTS (BASEL, SWITZERLAND) 2024; 13:1588. [PMID: 38931020 PMCID: PMC11207258 DOI: 10.3390/plants13121588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Pinus yunnanensis is an important component of China's economic development and forest ecosystems. The growth of P. yunnanensis seedlings experienced a slow growth phase, which led to a long seedling cultivation period. However, asexual reproduction can ensure the stable inheritance of the superior traits of the mother tree and also shorten the breeding cycle. The quantity and quality of branching significantly impact the cutting reproduction of P. yunnanensis, and a shaded environment affects lateral branching growth, development, and photosynthesis. Nonetheless, the physiological characteristics and the level of the transcriptome that underlie the growth of lateral branches of P. yunnanensis under shade conditions are still unclear. In our experiment, we subjected annual P. yunnanensis seedlings to varying shade intensities (0%, 25%, 50%, 75%) and studied the effects of shading on growth, physiological and biochemical changes, and gene expression in branching. Results from this study show that shading reduces biomass production by inhibiting the branching ability of P. yunnanensis seedlings. Due to the regulatory and protective roles of osmotically active substances against environmental stress, the contents of soluble sugars, soluble proteins, photosynthetic pigments, and enzyme activities exhibit varying responses to different shading treatments. Under shading treatment, the contents of phytohormones were altered. Additionally, genes associated with phytohormone signaling and photosynthetic pathways exhibited differential expression. This study established a theoretical foundation for shading regulation of P. yunnanensis lateral branch growth and provides scientific evidence for the management of cutting orchards.
Collapse
Affiliation(s)
- Chiyu Zhou
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Xuesha Gu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Jiangfei Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Xin Su
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Shi Chen
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Junrong Tang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Lin Chen
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Nianhui Cai
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Yulan Xu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
3
|
Guo X, Zhang Z, Li J, Zhang S, Sun W, Xiao X, Sun Z, Xue X, Wang Z, Zhang Y. Phenotypic and transcriptome profiling of spikes reveals the regulation of light regimens on spike growth and fertile floret number in wheat. PLANT, CELL & ENVIRONMENT 2024; 47:1575-1591. [PMID: 38269615 DOI: 10.1111/pce.14832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
The spike growth phase is critical for the establishment of fertile floret (grain) numbers in wheat (Triticum aestivum L.). Then, how to shorten the spike growth phase and increase grain number synergistically? Here, we showed high-resolution analyses of floret primordia (FP) number, morphology and spike transcriptomes during the spike growth phase under three light regimens. The development of all FP in a spike could be divided into four distinct stages: differentiation (Stage I), differentiation and morphology development concurrently (Stage II), morphology development (Stage III), and polarization (Stage IV). Compared to the short photoperiod, the long photoperiod shortened spike growth and stimulated early flowering by shortening Stage III; however, this reduced assimilate accumulation, resulting in fertile floret loss. Interestingly, long photoperiod supplemented with red light shortened the time required to complete Stages I-II, then raised assimilates supply in the spike and promoted anther development before polarization initiation, thereby increasing fertile FP number during Stage III, and finally maintained fertile FP development during Stage IV until they became fertile florets via a predicted dynamic gene network. Our findings proposed a light regimen, critical stages and candidate regulators that achieved a shorter spike growth phase and a higher fertile floret number in wheat.
Collapse
Affiliation(s)
- Xiaolei Guo
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
- Department of Agronomy, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Zhang
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Junyan Li
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| | - Siqi Zhang
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| | - Wan Sun
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xuechen Xiao
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhencai Sun
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xuzhang Xue
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| | - Zhimin Wang
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yinghua Zhang
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Golan G, Weiner J, Zhao Y, Schnurbusch T. Agroecological genetics of biomass allocation in wheat uncovers genotype interactions with canopy shade and plant size. THE NEW PHYTOLOGIST 2024; 242:107-120. [PMID: 38326944 DOI: 10.1111/nph.19576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
How plants distribute biomass among organs influences resource acquisition, reproduction and plant-plant interactions, and is essential in understanding plant ecology, evolution, and yield production in agriculture. However, the genetic mechanisms regulating allocation responses to the environment are largely unknown. We studied recombinant lines of wheat (Triticum spp.) grown as single plants under sunlight and simulated canopy shade to investigate genotype-by-environment interactions in biomass allocation to the leaves, stems, spikes, and grains. Size-corrected mass fractions and allometric slopes were employed to dissect allocation responses to light limitation and plant size. Size adjustments revealed light-responsive alleles associated with adaptation to the crop environment. Combined with an allometric approach, we demonstrated that polymorphism in the DELLA protein is associated with the response to shade and size. While a gibberellin-sensitive allelic effect on stem allocation was amplified when plants were shaded, size-dependent effects of this allele drive allocation to reproduction, suggesting that the ontogenetic trajectory of the plant affects the consequences of shade responses for allocation. Our approach provides a basis for exploring the genetic determinants underlying investment strategies in the face of different resource constraints and will be useful in predicting social behaviours of individuals in a crop community.
Collapse
Affiliation(s)
- Guy Golan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, 06466, Seeland, Germany
| | - Jacob Weiner
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871, Frederiksberg, Denmark
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, 06466, Seeland, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, 06466, Seeland, Germany
- Martin Luther University Halle-Wittenberg, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, 06120, Halle, Germany
| |
Collapse
|
5
|
Han R, Ma L, Terzaghi W, Guo Y, Li J. Molecular mechanisms underlying coordinated responses of plants to shade and environmental stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1893-1913. [PMID: 38289877 DOI: 10.1111/tpj.16653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Shade avoidance syndrome (SAS) is triggered by a low ratio of red (R) to far-red (FR) light (R/FR ratio), which is caused by neighbor detection and/or canopy shade. In order to compete for the limited light, plants elongate hypocotyls and petioles by deactivating phytochrome B (phyB), a major R light photoreceptor, thus releasing its inhibition of the growth-promoting transcription factors PHYTOCHROME-INTERACTING FACTORs. Under natural conditions, plants must cope with abiotic stresses such as drought, soil salinity, and extreme temperatures, and biotic stresses such as pathogens and pests. Plants have evolved sophisticated mechanisms to simultaneously deal with multiple environmental stresses. In this review, we will summarize recent major advances in our understanding of how plants coordinately respond to shade and environmental stresses, and will also discuss the important questions for future research. A deep understanding of how plants synergistically respond to shade together with abiotic and biotic stresses will facilitate the design and breeding of new crop varieties with enhanced tolerance to high-density planting and environmental stresses.
Collapse
Affiliation(s)
- Run Han
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, 18766, USA
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| |
Collapse
|
6
|
Lei K, Hu H, Chang M, Sun C, Ullah A, Yu J, Dong C, Gao Q, Jiang D, Cao W, Tian Z, Dai T. A low red/far-red ratio restricts nitrogen assimilation by inhibiting nitrate reductase associated with downregulated TaNR1.2 and upregulated TaPIL5 in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:107850. [PMID: 38042099 DOI: 10.1016/j.plaphy.2023.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 12/04/2023]
Abstract
Understanding the physiological mechanism underlying nitrogen levels response to a low red/far-red ratio (R/FR) can provide new insights for optimizing wheat yield potential but has been not well documented. This study focused on the changes in nitrogen levels, nitrogen assimilation and nitrate uptake in wheat plants grown with and without additional far-red light. A low R/FR reduced wheat nitrogen accumulation and grain yield compared with the control. The levels of total nitrogen, free amino acid and ammonium were decreased in leaves but nitrate content was temporarily increased under a low R/FR. The nitrate reductase (NR) activity in leaves was more sensitive to a low R/FR than glutamine synthetase, glutamate synthase, glutamic oxalacetic transaminase and glutamic-pyruvic transaminase. Further analysis showed that a low R/FR had little effect on the NR activation state but reduced the level of NR protein and the expression of encoding gene TaNR1.2. Interestingly, a low R/FR rapidly induced TaPIL5 expression rather than TaHY5 and other members of TaPILs in wheat, suggesting that TaPIL5 was the key transcription factor response to a low R/FR in wheat and might be involved in the downregulation of TaNR1.2 expression. Besides, a low R/FR downregulated the expression of TaNR1.2 in leaves earlier than that of TaNRT1.1/1.2/1.5/1.8 in roots, which highlights the importance of NR and nitrogen assimilation in response to a low R/FR. Our results provide revelatory evidence that restricted nitrate reductase associated with downregulated TaNR1.2 and upregulated TaPIL5 mediate the suppression of nitrogen assimilation under a low R/FR in wheat.
Collapse
Affiliation(s)
- Kangqi Lei
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hang Hu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mengjie Chang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chuanjiao Sun
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Attiq Ullah
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinhong Yu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chaofeng Dong
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiang Gao
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dong Jiang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weixing Cao
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Rodríguez Del Río Á, Monteagudo A, Contreras-Moreira B, Kiss T, Mayer M, Karsai I, Igartua E, Casas AM. Diversity of gene expression responses to light quality in barley. Sci Rep 2023; 13:17143. [PMID: 37816785 PMCID: PMC10564772 DOI: 10.1038/s41598-023-44263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Light quality influence on barley development is poorly understood. We exposed three barley genotypes with either sensitive or insensitive response to two light sources producing different light spectra, fluorescent bulbs, and metal halide lamps, keeping constant light intensity, duration, and temperature. Through RNA-seq, we identified the main genes and pathways involved in the genotypic responses. A first analysis identified genotypic differences in gene expression of development-related genes, including photoreceptors and flowering time genes. Genes from the vernalization pathway of light quality-sensitive genotypes were affected by fluorescent light. In particular, vernalization-related repressors reacted differently: HvVRN2 did not experience relevant changes, whereas HvOS2 expression increased under fluorescent light. To identify the genes primarily related to light quality responses, and avoid the confounding effect of plant developmental stage, genes influenced by development were masked in a second analysis. Quantitative expression levels of PPD-H1, which influenced HvVRN1 and HvFT1, explained genotypic differences in development. Upstream mechanisms (light signaling and circadian clock) were also altered, but no specific genes linking photoreceptors and the photoperiod pathway were identified. The variety of light-quality sensitivities reveals the presence of possible mechanisms of adaptation of winter and facultative barley to latitudinal variation in light quality, which deserves further research.
Collapse
Affiliation(s)
- Álvaro Rodríguez Del Río
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
- Centro de Biotecnología y Genómica de Plantas, UPM/INIA-CSIC, Madrid, Spain
| | - Arantxa Monteagudo
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
| | - Bruno Contreras-Moreira
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | - Tibor Kiss
- Centre for Agriculture Research ELKH (ATK), Martonvásár, Hungary
- Center for Research and Development, Food and Wine Center of Excellence, Eszterházy Károly Catholic University, Eger, Hungary
| | - Marianna Mayer
- Centre for Agriculture Research ELKH (ATK), Martonvásár, Hungary
| | - Ildikó Karsai
- Centre for Agriculture Research ELKH (ATK), Martonvásár, Hungary
| | - Ernesto Igartua
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain.
| | - Ana M Casas
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
| |
Collapse
|
8
|
Golan G, Abbai R, Schnurbusch T. Exploring the trade-off between individual fitness and community performance of wheat crops using simulated canopy shade. PLANT, CELL & ENVIRONMENT 2023; 46:3144-3157. [PMID: 36428231 DOI: 10.1111/pce.14499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
The genetic heritage of wheat (Triticum spp.) crops has been shaped by millions of years of predomestication natural selection, often driven by competition among individuals. However, genetic improvements in yield potential are thought to involve selection towards reduced competitiveness, thus enhancing adaptation to the crop environment. We investigated potential trade-offs between individual plant fitness and community performance using a population of introgression lines carrying chromosome segments of wild emmer (nondomesticated) in the background of an elite durum cultivar. We focused on light as a primary factor affecting plant-plant interactions and assessed morphological and biomass phenotypes of single plants grown in mixtures under sunlight and a simulated canopy shade, and the relevance of these phenotypes for the monoculture community in the field. We found that responses to canopy shade resemble responses to high density and contribute to both the individual and the community. Stepwise regressions suggested that grain number per spike and its persistence under shade are essential attributes of productive communities, advocating their use as a breeding target during early-generation selection. Overall, multiple phenotypes attained under shade could better explain community performance. Our novel, applicable, high-throughput set-up provides new prospects for studying and selecting single-plant phenotypes in a canopy-like environment.
Collapse
Affiliation(s)
- Guy Golan
- Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Seeland, Germany
| | - Ragavendran Abbai
- Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Seeland, Germany
| | - Thorsten Schnurbusch
- Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Seeland, Germany
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
9
|
Gómez-Ocampo G, Cascales J, Medina-Fraga AL, Ploschuk EL, Mantese AI, Crocco CD, Matsusaka D, Sánchez DH, Botto JF. Transcriptomic and physiological shade avoidance responses in potato (Solanum tuberosum) plants. PHYSIOLOGIA PLANTARUM 2023; 175:e13991. [PMID: 37616016 DOI: 10.1111/ppl.13991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
Plants detect competitors in shaded environments by perceiving a reduction in photosynthetically active radiation (PAR) and the reduction between the red and far-red light (R:FR) ratio and blue photons. These light signals are detected by phytochromes and cryptochromes, which trigger shade avoidance responses such as shoot and petiole elongation and lead to increased susceptibility to pathogen attack. We studied morphological, anatomical, and photosynthesis differences in potato plants (Solanum tuberosum var. Spunta) exposed to sunlight or simulated shade in a greenhouse. We found that simulated shade strongly induced stem and internode elongation with a higher production of free auxin in stems and a lower production of tubers. The mesophyll thickness of the upper leaves of plants grown in simulated shade was lower, but the epidermis was wider compared with the leaves of plants cultivated in sunlight. In addition, the photosynthesis rate was lower in the upper leaves exposed to nonsaturated irradiances and higher in the basal leaves at saturated irradiances compared with control plants. RNA-seq analysis showed that 146 and 155 genes were up- and downregulated by shade, respectively. By quantitative reverse transcription polymerase chain reaction, we confirmed that FLOWERING LOCUS T (FT), WRKY-like, and PAR1b were induced, while FLAVONOL 4-SULFOTRANSFERASE was repressed under shade. In shaded plants, leaves and tubers were more susceptible to the necrotrophic fungus Botrytis cinerea attack. Overall, our work demonstrates configurational changes between growth and defense decisions in potato plants cultivated in simulated shade.
Collapse
Affiliation(s)
- Gabriel Gómez-Ocampo
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jimena Cascales
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana L Medina-Fraga
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Edmundo L Ploschuk
- Cátedra de Cultivos Industriales, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Anita I Mantese
- Cátedra de Botánica General, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlos D Crocco
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniel Matsusaka
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego H Sánchez
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Javier F Botto
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
10
|
Kong D, Li C, Xue W, Wei H, Ding H, Hu G, Zhang X, Zhang G, Zou T, Xian Y, Wang B, Zhao Y, Liu Y, Xie Y, Xu M, Wu H, Liu Q, Wang H. UB2/UB3/TSH4-anchored transcriptional networks regulate early maize inflorescence development in response to simulated shade. THE PLANT CELL 2023; 35:717-737. [PMID: 36472157 PMCID: PMC9940873 DOI: 10.1093/plcell/koac352] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 05/12/2023]
Abstract
Increasing planting density has been adopted as an effective means to increase maize (Zea mays) yield. Competition for light from neighbors can trigger plant shade avoidance syndrome, which includes accelerated flowering. However, the regulatory networks of maize inflorescence development in response to high-density planting remain poorly understood. In this study, we showed that shade-mimicking treatments cause precocious development of the tassels and ears. Comparative transcriptome profiling analyses revealed the enrichment of phytohormone-related genes and transcriptional regulators among the genes co-regulated by developmental progression and simulated shade. Network analysis showed that three homologous Squamosa promoter binding protein (SBP)-like (SPL) transcription factors, Unbranched2 (UB2), Unbranched3 (UB3), and Tasselsheath4 (TSH4), individually exhibited connectivity to over 2,400 genes across the V3-to-V9 stages of tassel development. In addition, we showed that the ub2 ub3 double mutant and tsh4 single mutant were almost insensitive to simulated shade treatments. Moreover, we demonstrated that UB2/UB3/TSH4 could directly regulate the expression of Barren inflorescence2 (BIF2) and Zea mays teosinte branched1/cycloidea/proliferating cell factor30 (ZmTCP30). Furthermore, we functionally verified a role of ZmTCP30 in regulating tassel branching and ear development. Our results reveal a UB2/UB3/TSH4-anchored transcriptional regulatory network of maize inflorescence development and provide valuable targets for breeding shade-tolerant maize cultivars.
Collapse
Affiliation(s)
- Dexin Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Changyu Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weicong Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hongbin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hui Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Guizhen Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Guisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Ting Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yuting Xian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongping Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaoyun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
11
|
Slafer GA, Foulkes MJ, Reynolds MP, Murchie EH, Carmo-Silva E, Flavell R, Gwyn J, Sawkins M, Griffiths S. A 'wiring diagram' for sink strength traits impacting wheat yield potential. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:40-71. [PMID: 36334052 PMCID: PMC9786893 DOI: 10.1093/jxb/erac410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/04/2022] [Indexed: 05/17/2023]
Abstract
Identifying traits for improving sink strength is a bottleneck to increasing wheat yield. The interacting processes determining sink strength and yield potential are reviewed and visualized in a set of 'wiring diagrams', covering critical phases of development (and summarizing known underlying genetics). Using this framework, we reviewed and assembled the main traits determining sink strength and identified research gaps and potential hypotheses to be tested for achieving gains in sink strength. In pre-anthesis, grain number could be increased through: (i) enhanced spike growth associated with optimized floret development and/or a reduction in specific stem-internode lengths and (ii) improved fruiting efficiency through an accelerated rate of floret development, improved partitioning between spikes, or optimized spike cytokinin levels. In post-anthesis, grain, sink strength could be augmented through manipulation of grain size potential via ovary size and/or endosperm cell division and expansion. Prospects for improving spike vascular architecture to support all rapidly growing florets, enabling the improved flow of assimilate, are also discussed. Finally, we considered the prospects for enhancing grain weight realization in relation to genetic variation in stay-green traits as well as stem carbohydrate remobilization. The wiring diagrams provide a potential workspace for breeders and crop scientists to achieve yield gains in wheat and other field crops.
Collapse
Affiliation(s)
- Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida–AGROTECNIO-CERCA Center, Av. R. Roure 191, 25198 Lleida, Spain
- ICREA (Catalonian Institution for Research and Advanced Studies), Barcelona, Spain
| | - M John Foulkes
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Matthew P Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico, El Batan, Texcoco, Mexico
| | - Erik H Murchie
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | | | - Richard Flavell
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Jeff Gwyn
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Mark Sawkins
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Ln, Norwich NR4 7UH, UK
| |
Collapse
|
12
|
Lei K, Tan Q, Zhu L, Xu L, Yang S, Hu J, Gao L, Hou P, Shao Y, Jiang D, Cao W, Dai T, Tian Z. Low red/far-red ratio can induce cytokinin degradation resulting in the inhibition of tillering in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:971003. [PMID: 36570939 PMCID: PMC9773260 DOI: 10.3389/fpls.2022.971003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Shoot branching is inhibited by a low red/far-red ratio (R/FR). Prior studies have shown that the R/FR suppressed Arabidopsis thaliana branching by promotes bud abscisic acid (ABA) accumulation directly. Given that wheat tiller buds are wrapped in leaf sheaths and may not respond rapidly to a R/FR, systemic cytokinin (CTK) may be more critical. Here, systemic hormonal signals including indole-3-acetic acid (IAA), gibberellins (GA) and CTK and bud ABA signals in wheat were tested under a low R/FR. The results showed that a low R/FR reduced the percentage of tiller occurrence of tiller IV and the tiller number per plant. The low R/FR did not rapidly induced ABA accumulation in the tiller IV because of the protection of the leaf sheath and had little effect on IAA content and signaling in the tiller nodes. The significant change in the CTK levels was observed earlier than those of other hormone (ABA, IAA and GA) and exogenous cytokinin restored the CTK levels and tiller number per plant under low R/FR conditions. Further analysis revealed that the decrease in cytokinin levels was mainly associated with upregulation of cytokinin degradation genes (TaCKX5, TaCKX11) in tiller nodes. In addition, exposure to a decreased R/FR upregulated the expression of GA biosynthesis genes (TaGA20ox1, TaGA3ox2), resulting in elevated GA levels, which might further promote CTK degradation in tiller nodes and inhibit tillering. Therefore, our results provide evidence that the enhancement of cytokinin degradation is a novel mechanism underlying the wheat tillering response to a low R/FR.
Collapse
Affiliation(s)
- Kangqi Lei
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qingwen Tan
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liqi Zhu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Libing Xu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shuke Yang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinling Hu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lijun Gao
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pan Hou
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuhang Shao
- National Agricultural Exhibition Center (China Agricultural Museum), Chaoyang District, Beijing, China
| | - Dong Jiang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weixing Cao
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Dreccer MF, Zwart AB, Schmidt RC, Condon AG, Awasi MA, Grant TJ, Galle A, Bourot S, Frohberg C. Wheat yield potential can be maximized by increasing red to far-red light conditions at critical developmental stages. PLANT, CELL & ENVIRONMENT 2022; 45:2652-2670. [PMID: 35815553 DOI: 10.1111/pce.14390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Sensing of neighbours via the Red to Far-Red light ratio (R:FR) may exert a cap to yield potential in wheat. The effects of an increased R:FR inside the canopy were studied in dense wheat mini canopies grown in controlled environments by lowering FR. To distinguish between effects exerted by light sensing and assimilate supply, the treatments were complemented with elevated CO2 , applied between different developmental timepoints to specifically impact tillering, spike growth, floret fertility and grain filling, in different combinations. The yield response to high R:FR was strongly dependent on the developmental stage in all three cultivars and pivoted between positive if applied after the start of stem elongation, and negative or null if applied before. Yield gains of up to 70% and 120% were observed, respectively, in two cultivars, associated with a higher number of tiller spikes and grains per spike in the main shoot. The response to the combination of high R:FR and elevated CO2 or CO2 alone were cultivar dependent. Taken together, our results suggest that R:FR exerts a significant control on yield potential in wheat and achieving a high R:FR from stem elongation to maturity is a promising lever towards a significant increase in grain yield.
Collapse
Affiliation(s)
| | - Alec B Zwart
- CSIRO Agriculture and Food, Black Mountain, Australia
| | | | | | - Mary A Awasi
- CSIRO Cooper Laboratory, University of Queensland Gatton Campus, Gatton, Australia
| | - Terry J Grant
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, Saint Lucia, Australia
| | - Alexander Galle
- BASF Innovation Center Gent, BASF Belgium Coordination Center CommV, Gent, Belgium
| | - Stephane Bourot
- BASF Innovation Center Gent, BASF Belgium Coordination Center CommV, Gent, Belgium
| | - Claus Frohberg
- BASF Innovation Center Gent, BASF Belgium Coordination Center CommV, Gent, Belgium
| |
Collapse
|
14
|
Bouché F, Woods DP, Linden J, Li W, Mayer KS, Amasino RM, Périlleux C. EARLY FLOWERING 3 and Photoperiod Sensing in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2022; 12:769194. [PMID: 35069625 PMCID: PMC8770904 DOI: 10.3389/fpls.2021.769194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 05/26/2023]
Abstract
The proper timing of flowering, which is key to maximize reproductive success and yield, relies in many plant species on the coordination between environmental cues and endogenous developmental programs. The perception of changes in day length is one of the most reliable cues of seasonal change, and this involves the interplay between the sensing of light signals and the circadian clock. Here, we describe a Brachypodium distachyon mutant allele of the evening complex protein EARLY FLOWERING 3 (ELF3). We show that the elf3 mutant flowers more rapidly than wild type plants in short days as well as under longer photoperiods but, in very long (20 h) days, flowering is equally rapid in elf3 and wild type. Furthermore, flowering in the elf3 mutant is still sensitive to vernalization, but not to ambient temperature changes. Molecular analyses revealed that the expression of a short-day marker gene is suppressed in elf3 grown in short days, and the expression patterns of clock genes and flowering time regulators are altered. We also explored the mechanisms of photoperiodic perception in temperate grasses by exposing B. distachyon plants grown under a 12 h photoperiod to a daily night break consisting of a mixture of red and far-red light. We showed that 2 h breaks are sufficient to accelerate flowering in B. distachyon under non-inductive photoperiods and that this acceleration of flowering is mediated by red light. Finally, we discuss advances and perspectives for research on the perception of photoperiod in temperate grasses.
Collapse
Affiliation(s)
- Frédéric Bouché
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Daniel P. Woods
- Plant Sciences Department, University of California, Davis, Davis, CA, United States
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Julie Linden
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Weiya Li
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
| | - Kevin S. Mayer
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
| | - Richard M. Amasino
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, United States
| | - Claire Périlleux
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
15
|
Ivanova YN, Rosenfread KK, Stasyuk AI, Skolotneva ES, Silkova OG. Raise and characterization of a bread wheat hybrid line (Tulaykovskaya 10 × Saratovskaya 29) with chromosome 6Agi2 introgressed from Thinopyrum intermedium. Vavilovskii Zhurnal Genet Selektsii 2021; 25:701-712. [PMID: 34950842 PMCID: PMC8649751 DOI: 10.18699/vj21.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/04/2022] Open
Abstract
Wheatgrass Thinopyrum intermedium is a source of agronomically valuable traits for common wheat. Partial wheat–wheatgrass amphidiploids and lines with wheatgrass chromosome substitutions are extensively used as intermediates in breeding programs. Line Agis 1 (6Agi2/6D) is present in the cultivar Tulaykovskaya 10 pedigree. Wheatgrass chromosome 6Agi2 carries multiple resistance to fungal diseases in various ecogeographical zones. In this work, we studied the transfer of chromosome 6Agi2 in hybrid populations Saratovskaya 29 × skaya 10 (S29 × T10) and Tulaykovskaya 10 × Saratovskaya 29 (T10 × S29). Chromosome 6Agi2 was identif ied by PCR
with chromosome-specif ic primers and by genomic in situ hybridization (GISH). According to molecular data, 6Agi2
was transmitted to nearly half of the plants tested in the F2 and F3 generations. A new breeding line 49-14 (2n = 42)
with chromosome pair 6Agi2 was isolated and characterized in T10 × S29 F5 by GISH. According to the results of
our f ield experiment in 2020, the line had high productivity traits. The grain weights per plant (10.04 ± 0.93 g) and
the number of grains per plant (259.36 ± 22.49) did not differ signif icantly from the parent varieties. The number of
grains per spikelet in the main spike was signif icantly higher than in S29 ( p ≤ 0.001) or T10 ( p ≤ 0.05). Plants were
characterized by the ability to set 3.77 ± 0.1 grains per spikelet, and this trait varied among individuals from 2.93 to
4.62. The grain protein content was 17.91 %, and the gluten content, 40.55 %. According to the screening for fungal
disease resistance carried out in the f ield in 2018 and 2020, chromosome 6Agi2 makes plants retain immunity to
the West Siberian population of brown rust and to dominant races of stem rust. It also provides medium resistant
and medium susceptible types of response to yellow rust. The possibility of using lines/varieties of bread wheat
with wheatgrass chromosomes 6Agi2 in breeding in order to increase protein content in the grain, to confer resistance
to leaf diseases on plants and to create multif lowered forms is discussed.
Collapse
Affiliation(s)
- Yu N Ivanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - K K Rosenfread
- Novosibirsk State Agrarian University, Novosibirsk, Russia
| | - A I Stasyuk
- Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - E S Skolotneva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O G Silkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
16
|
Xie Y, Zeng W, Wang C, Xu D, Guo H, Xiong H, Fang H, Zhao L, Gu J, Zhao S, Ding Y, Liu L. Fine Mapping of qd1, a Dominant Gene that Regulates Stem Elongation in Bread Wheat. Front Genet 2021; 12:793572. [PMID: 34912380 PMCID: PMC8667865 DOI: 10.3389/fgene.2021.793572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Stem elongation is a critical phase for yield determination and, as a major trait, is targeted for manipulation for improvement in bread wheat (Triticum aestivum L.). In a previous study, we characterized a mutant showing rapid stem elongation but with no effect on plant height at maturity. The present study aimed to finely map the underlying mutated gene, qd1, in this mutant. By analyzing an F2 segregating population consisting of 606 individuals, we found that the qd1 gene behaved in a dominant manner. Moreover, by using the bulked segregant RNA sequencing (BSR-seq)-based linkage analysis method, we initially mapped the qd1 gene to a 13.55 Mb region on chromosome 4B (from 15.41 to 28.96 Mb). This result was further confirmed in F2 and BC3F2 segregating populations. Furthermore, by using transcriptome sequencing data, we developed 14 Kompetitive Allele-Specific PCR (KASP) markers and then mapped the qd1 gene to a smaller and more precise 5.08 Mb interval from 26.80 to 31.88 Mb. To develop additional markers to finely map the qd1 gene, a total of 4,481 single-nucleotide polymorphisms (SNPs) within the 5.08 Mb interval were screened, and 25 KASP markers were developed based on 10x-depth genome resequencing data from both wild-type (WT) and mutant plants. The qd1 gene was finally mapped to a 1.33 Mb interval from 28.86 to 30.19 Mb on chromosome 4B. Four candidate genes were identified in this region. Among them, the expression pattern of only TraesCS4B02G042300 in the stems was concurrent with the stem development of the mutant and WT. The qd1 gene could be used in conjunction with molecular markers to manipulate stem development in the future.
Collapse
Affiliation(s)
- Yongdun Xie
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Weiwei Zeng
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Chaojie Wang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Daxing Xu
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Huijun Guo
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Hongchun Xiong
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Hanshun Fang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Linshu Zhao
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Jiayu Gu
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Shirong Zhao
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yuping Ding
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Luxiang Liu
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| |
Collapse
|
17
|
Fortineau A, Combes D, Richard-Molard C, Frak E, Jullien A. LightCue: An Innovative Far-Red Light Emitter for Locally Modifying the Spectral Cue in Outdoor Conditions with Global Consequences on Plant Architecture. PLANTS 2021; 10:plants10112483. [PMID: 34834846 PMCID: PMC8625856 DOI: 10.3390/plants10112483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Plasticity of plant architecture is a promising lever to increase crop resilience to biotic and abiotic damage. Among the main drivers of its regulation are the spectral signals which occur via photomorphogenesis processes. In particular, branching, one of the yield components, is responsive to photosynthetic photon flux density (PPFD) and to red to far-red ratio (R:FR), both signals whose effects are tricky to decorrelate in the field. Here, we developed a device consisting of far-red light emitting diode (LED) rings. It can reduce the R:FR ratio to 0.14 in the vicinity of an organ without changing the PPFD in outdoor high irradiance fluctuating conditions, which is a breakthrough as LEDs have been mostly used in non-fluctuant controlled conditions at low irradiance over short periods of time. Applied at the base of rapeseed stems during the whole bolting-reproductive phase, LightCue induced an expected significant inhibitory effect on two basal targeted axillary buds and a strong unexpected stimulatory effect on the overall plant aerial architecture. It increased shoot/root ratio while not modifying the carbon balance. LightCue therefore represents a promising device for progress in the understanding of light signal regulation in the field.
Collapse
Affiliation(s)
- Alain Fortineau
- INRAE, AgroParisTech, UMR EcoSys, Université Paris-Saclay, 78850 Thiverval-Grignon, France; (A.F.); (C.R.-M.)
| | - Didier Combes
- INRAE, UR P3F, 86600 Lusignan, France; (D.C.); (E.F.)
| | - Céline Richard-Molard
- INRAE, AgroParisTech, UMR EcoSys, Université Paris-Saclay, 78850 Thiverval-Grignon, France; (A.F.); (C.R.-M.)
| | - Ela Frak
- INRAE, UR P3F, 86600 Lusignan, France; (D.C.); (E.F.)
| | - Alexandra Jullien
- INRAE, AgroParisTech, UMR EcoSys, Université Paris-Saclay, 78850 Thiverval-Grignon, France; (A.F.); (C.R.-M.)
- Correspondence: ; Tel.: +33-130815579
| |
Collapse
|
18
|
Kim JH, Khan IU, Lee CW, Kim DY, Jang CS, Lim SD, Park YC, Kim JH, Seo YW. Identification and analysis of a differentially expressed wheat RING-type E3 ligase in spike primordia development during post-vernalization. PLANT CELL REPORTS 2021; 40:543-558. [PMID: 33423075 DOI: 10.1007/s00299-020-02651-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
We identified a RING-type E3 ligase (TaBAH1) protein in winter wheat that targets TaSAHH1 for degradation and might be involved in primordia development by regulating targeted protein degradation. Grain yield per spike in wheat (Triticum aestivum), is mainly determined prior to flowering during mature primordia development; however, the genes involved in primordia development have yet to be characterized. In this study, we demonstrated that, after vernalization for 50 days at 4 °C, there was a rapid acceleration in primordia development to the mature stages in the winter wheat cultivars Keumgang and Yeongkwang compared with the Chinese Spring cultivar. Although Yeongkwang flowers later than Keumgang under normal condition, it has the same heading time and reaches the WS9 stage of floral development after vernalization for 50 days. Using RNA sequencing, we identified candidate genes associated with primordia development in cvs. Keumgang and Yeongkwang, that are differentially expressed during wheat reproductive stages. Among these, the RING-type E3 ligase TaBAH1 (TraesCS5B01G373000) was transcriptionally upregulated between the double-ridge (WS2.5) stage and later stages of floret primordia development (WS10) after vernalization. Transient expression analysis indicated that TaBAH1 was localized to the plasma membrane and nucleus and was characterized by self-ubiquitination activity. Furthermore, we found that TaBAH1 interacts with TaSAHH1 to mediate its polyubiquitination and degradation through a 26S proteasomal pathway. Collectively, the findings of this study indicate that TaBAH1 might play a prominent role in post-vernalization floret primordia development.
Collapse
Affiliation(s)
- Jae Ho Kim
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Irfan Ullah Khan
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Cheol Won Lee
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Dae Yeon Kim
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 200-713, Republic of Korea
| | - Sung Don Lim
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 200-713, Republic of Korea
| | - Yong Chan Park
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 200-713, Republic of Korea
| | - Ju Hee Kim
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 200-713, Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
19
|
Zhang S, Liu G, Cui Q, Huang Z, Ye X, Cornelissen JHC. New field wind manipulation methodology reveals adaptive responses of steppe plants to increased and reduced wind speed. PLANT METHODS 2021; 17:5. [PMID: 33407697 PMCID: PMC7788872 DOI: 10.1186/s13007-020-00705-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Wind strongly impacts plant growth, leaf traits, biomass allocation, and stem mechanical properties. However, whether there are common whole-plant wind responses among different plant species is still unclear. We tested this null hypothesis by exposing four eudicot steppe species to three different wind treatments in a field experiment: reduced wind velocity using windbreaks, ambient wind velocity, and enhanced wind velocity through a novel methodology using wind-funneling baffles. RESULTS Across the four species, wind generally decreased plant height, projected crown area, and stepwise bifurcation ratio, and increased root length and stem base diameter. In contrast, the response patterns of shoot traits, especially mechanical properties, to wind velocity were idiosyncratic among species. There was no significant difference in total biomass among different treatments; this might be because the negative effects on heat dissipation and photosynthesis of low wind speed during hot periods, could counteract positive effects during favorable cooler periods. CONCLUSIONS There are common wind response patterns in plant-size-related traits across different steppe species, while the response patterns in shoot traits vary among species. This indicates the species-specific ways by which plants balance growth and mechanical support facing wind stress. Our new field wind manipulation methodology was effective in altering wind speed with the intended magnitude. Especially, our field wind-funneling baffle system showed a great potential for use in future field wind velocity enhancement. Further experiments are needed to reveal how negative and positive effects play out on whole-plant performance in response to different wind regimes, which is important as ongoing global climatic changes involve big changes in wind regimes.
Collapse
Affiliation(s)
- Shudong Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Systems Ecology, Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Guofang Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Qingguo Cui
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Zhenying Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Xuehua Ye
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Johannes H C Cornelissen
- Systems Ecology, Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Yadav R, Gupta S, Gaikwad KB, Bainsla NK, Kumar M, Babu P, Ansari R, Dhar N, Dharmateja P, Prasad R. Genetic Gain in Yield and Associated Changes in Agronomic Traits in Wheat Cultivars Developed Between 1900 and 2016 for Irrigated Ecosystems of Northwestern Plain Zone of India. FRONTIERS IN PLANT SCIENCE 2021; 12:719394. [PMID: 34630466 PMCID: PMC8496457 DOI: 10.3389/fpls.2021.719394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/18/2021] [Indexed: 05/06/2023]
Abstract
Knowledge about the yield gain over the years due to associated changes in the yield component traits is essential for a critical understanding of yield-limiting factors. To estimate genetic gain in grain yield (GY) and component agronomic traits of wheat varieties released between 1900 and 2016 for northwestern plain zone (NWPZ) of India and to identify agronomic and/or genetic basis of the realized gains, two sets of wheat varieties comprising mega varieties and two recently developed varieties were evaluated under timely sown, tilled, and early sown conservation agriculture (CA) conditions for four consecutive years under irrigated conditions. The average annual genetic gain in GY since 1,905 under timely sown irrigated conditions was found to be 0.544% yr-1 over the average of all varieties and 0.822% yr-1 (24.27 kg ha-1 yr-1) over the first released variety, NP4. The realized mean yield increased from 2,950 kg ha-1 of the variety NP4 released in 1,905-5,649 kg ha-1 of HD3086 released in 2014. Regression analysis revealed a linear reduction in height and peduncle length (PL) over the years with a simultaneous and linear increase in biomass at the rate of 43.9 kg ha-1 yr-1 or relatively at 0.368% yr-1 mainly because of delayed heading and increased crop duration. Regression analysis showed no linear trend for tiller number and thousand-grain weight (TGW). Though harvest index (HI) was found to linearly increase relatively at the rate of 0.198% per annum, polynomial regression improved the fitness of data with the indication of no increase in HI since 1982. Interestingly, genetic gain evaluation under early sown CA conditions for 4 years showed similar relative gain (RG) [a relative improvement in varieties across breeding periods (BP)] (0.544% yr-1) but with a higher absolute value (29.28 kg ha-1 yr-1). Major mega varieties like Kalyan Sona, HD2009, PBW 343, HD2967, and HD3086, which occupied a comparatively larger area, were found highly plastic to the improvements in the production environment under timely sown conditions.
Collapse
Affiliation(s)
- Rajbir Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Rajbir Yadav
| | - Soma Gupta
- ICAR-Indian Institute of Seed Science, Mau, India
| | - Kiran B. Gaikwad
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Naresh Kumar Bainsla
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Manjeet Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prashanth Babu
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rihan Ansari
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Narain Dhar
- Borlaug Institute for South Asia, Jabalpur, India
| | | | - Rajender Prasad
- Department of Design of Experiment, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
21
|
Phenology and related traits for wheat adaptation. Heredity (Edinb) 2020; 125:417-430. [PMID: 32457509 PMCID: PMC7784700 DOI: 10.1038/s41437-020-0320-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
Wheat is a major food crop, with around 765 million tonnes produced globally. The largest wheat producers include the European Union, China, India, Russia, United States, Canada, Pakistan, Australia, Ukraine and Argentina. Cultivation of wheat across such diverse global environments with variation in climate, biotic and abiotic stresses, requires cultivars adapted to a range of growing conditions. One intrinsic way that wheat achieves adaptation is through variation in phenology (seasonal timing of the lifecycle) and related traits (e.g., those affecting plant architecture). It is important to understand the genes that underlie this variation, and how they interact with each other, other traits and the growing environment. This review summarises the current understanding of phenology and developmental traits that adapt wheat to different environments. Examples are provided to illustrate how different combinations of alleles can facilitate breeding of wheat varieties with optimal crop performance for different growing regions or farming systems.
Collapse
|
22
|
Monteagudo A, Kiss T, Mayer M, Casas AM, Igartua E, Karsai I. Genetic diversity in developmental responses to light spectral quality in barley (Hordeum vulgare L.). BMC PLANT BIOLOGY 2020; 20:207. [PMID: 32397955 PMCID: PMC7216675 DOI: 10.1186/s12870-020-02416-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/29/2020] [Indexed: 06/06/2023]
Abstract
BACKGROUND Plants use light wavelength, intensity, direction and duration to predict imminent seasonal changes and to determine when to initiate physiological and developmental processes. Among them, crop responses to light are not fully understood. Here, we study how light quality affects barley development, using two broad-spectrum light sources, metal halide (M) and fluorescent (F) lamps. Eleven varieties with known allelic variants for the major flowering time genes were evaluated under controlled conditions (long days, same light intensity). Two experiments were carried out with fully-vernalized plants: 1) control treatments (M, F); 2) shifting chambers 10 days after the start of the experiment (MF, FM). RESULTS In general, varieties developed faster under longer exposure to M conditions. The greatest differences were due to a delay promoted by F light bulbs, especially in the time to first node appearance and until the onset of stem elongation. Yield related-traits as the number of seeds were also affected by the conditions experienced. However, not each variety responded equally, and they could be classified in insensitive and sensitive to light quality. Expression levels of flowering time genes HvVRN1, HvFT1 and PPD-H1 were high in M, while HvFT3 and HvVRN2 were higher under F conditions. The expression under shift treatments revealed also a high correlation between HvVRN1 and PPD-H1 transcript levels. CONCLUSIONS The characterization of light quality effects has highlighted the important influence of the spectrum on early developmental stages, affecting the moment of onset of stem elongation, and further consequences on the morphology of the plant and yield components. We suggest that light spectra control the vernalization and photoperiod genes probably through the regulation of upstream elements of signalling pathways. The players behind the different responses to light spectra found deserve further research, which could help to optimize breeding strategies.
Collapse
Affiliation(s)
- Arantxa Monteagudo
- Aula Dei Experimental Station (EEAD-CSIC), Avda. Montañana 1005, E-50059 Zaragoza, Spain
| | - Tibor Kiss
- Centre for Agriculture Research (ATK), Martonvásár, H-2462 Hungary
| | - Marianna Mayer
- Centre for Agriculture Research (ATK), Martonvásár, H-2462 Hungary
| | - Ana M. Casas
- Aula Dei Experimental Station (EEAD-CSIC), Avda. Montañana 1005, E-50059 Zaragoza, Spain
| | - Ernesto Igartua
- Aula Dei Experimental Station (EEAD-CSIC), Avda. Montañana 1005, E-50059 Zaragoza, Spain
| | - Ildikó Karsai
- Centre for Agriculture Research (ATK), Martonvásár, H-2462 Hungary
| |
Collapse
|
23
|
Plant Transformation Techniques: Agrobacterium- and Microparticle-Mediated Gene Transfer in Cereal Plants. Methods Mol Biol 2020; 2124:281-294. [PMID: 32277460 DOI: 10.1007/978-1-0716-0356-7_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biotechnological methods for targeted gene transfers into plants are key for successful breeding in the twenty-first century and thus essential for the survival of humanity. Two decades ago, genetic transformation of crop plants was not routine, and it was all but impossible with important cereals such as barley and wheat. The recent focus on crop plant genomics-yet based on the Arabidopsis toolbox-boosted the research for more efficient plant transformation protocols, thereby considerably widened the number of genetically tractable crops. Moreover, modern genome editing methods such as the CRISPR/Cas technique are game changers in plant breeding, though heavily dependent on technical optimization of plant transformation. Basically, there are two successful ways of introducing DNA into plant cells: one is making use of a living DNA vector, namely, microbes such as the soil bacterium Agrobacterium tumefaciens that infects plants and naturally transfers and subsequently integrates DNA into the plant genome. The other method uses a direct physical transfer of DNA by means of microinjection, microprojectile bombardment, or polymers such as polyethylene glycol. Both ways subsequently require sophisticated strategies for selecting and multiplying the transformed cells under tissue culture conditions to develop into a fully functional plant with the new desirable characteristics. Here we discuss practical and theoretical aspects of cereal crop plant transformation by Agrobacterium-mediated transformation and microparticle bombardment. Using immature embryos as explants, the efficiency of cereal transformation is compelling, reaching today up to 80% transformation efficiency.
Collapse
|
24
|
Shade tolerance in Swarnaprabha rice is associated with higher rate of panicle emergence and positively regulated by genes of ethylene and cytokinin pathway. Sci Rep 2019; 9:6817. [PMID: 31048729 PMCID: PMC6497668 DOI: 10.1038/s41598-019-43096-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 03/06/2019] [Indexed: 12/27/2022] Open
Abstract
This study identifies characteristics of seedling, mature plant phenotypes, changes at genetic and genomic level associated with Swarnaprabha (SP) rice grown under prolonged shade and compared with Nagina 22 (N22). Coleoptile length under low red/far-red was intermediate between that in dark and red light in a 7-days growth frame. Whereas, highest rootlet number was discriminating in seedlings grown for 28 days in hydroponics. In shade, SP and N22 both showed several tolerant mature plant phenotypes, except the panicle length, yield per plant and % grain filling, which were higher in SP. Percentage decrease in yield / plant in shade showed significant positive correlation with increase in NDVI, decrease in panicle length and % grain filling (p ≤ 0.01). Rate of panicle emergence in shade was higher in SP than N22. Expression patterns of PHYTOCHROME INTERACTING FACTOR LIKE-13 and PHYTOCHROME B were contrasting in SP and N22 seedlings under continuous red or red/far-red. Microarray analysis revealed the up-regulation of most of the ethylene and cytokinin pathway genes in shade grown panicles of SP. Significant up-regulation of ETHYLENE RESPONSE ELEMENT BINDING PROTEIN-2, MOTHER OF FLOWERING TIME 1, and SHORT PANICLE1 genes in shade grown panicles of SP could explain its sustainable higher yield in shade.
Collapse
|
25
|
Sessa G, Carabelli M, Possenti M, Morelli G, Ruberti I. Multiple Pathways in the Control of the Shade Avoidance Response. PLANTS 2018; 7:plants7040102. [PMID: 30453622 PMCID: PMC6313891 DOI: 10.3390/plants7040102] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 01/09/2023]
Abstract
To detect the presence of neighboring vegetation, shade-avoiding plants have evolved the ability to perceive and integrate multiple signals. Among them, changes in light quality and quantity are central to elicit and regulate the shade avoidance response. Here, we describe recent progresses in the comprehension of the signaling mechanisms underlying the shade avoidance response, focusing on Arabidopsis, because most of our knowledge derives from studies conducted on this model plant. Shade avoidance is an adaptive response that results in phenotypes with a high relative fitness in individual plants growing within dense vegetation. However, it affects the growth, development, and yield of crops, and the design of new strategies aimed at attenuating shade avoidance at defined developmental stages and/or in specific organs in high-density crop plantings is a major challenge for the future. For this reason, in this review, we also report on recent advances in the molecular description of the shade avoidance response in crops, such as maize and tomato, and discuss their similarities and differences with Arabidopsis.
Collapse
Affiliation(s)
- Giovanna Sessa
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy.
| | - Monica Carabelli
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy.
| | - Marco Possenti
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), 00178 Rome, Italy.
| | - Giorgio Morelli
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), 00178 Rome, Italy.
| | - Ida Ruberti
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy.
| |
Collapse
|
26
|
Jones MA. Using light to improve commercial value. HORTICULTURE RESEARCH 2018; 5:47. [PMID: 30181887 PMCID: PMC6119199 DOI: 10.1038/s41438-018-0049-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 05/20/2023]
Abstract
The plasticity of plant morphology has evolved to maximize reproductive fitness in response to prevailing environmental conditions. Leaf architecture elaborates to maximize light harvesting, while the transition to flowering can either be accelerated or delayed to improve an individual's fitness. One of the most important environmental signals is light, with plants using light for both photosynthesis and as an environmental signal. Plants perceive different wavelengths of light using distinct photoreceptors. Recent advances in LED technology now enable light quality to be manipulated at a commercial scale, and as such opportunities now exist to take advantage of plants' developmental plasticity to enhance crop yield and quality through precise manipulation of a crops' lighting regime. This review will discuss how plants perceive and respond to light, and consider how these specific signaling pathways can be manipulated to improve crop yield and quality.
Collapse
Affiliation(s)
- Matthew Alan Jones
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, Colchester, CO4 3SQ UK
| |
Collapse
|
27
|
Prieto P, Ochagavía H, Savin R, Griffiths S, Slafer GA. Dynamics of floret initiation/death determining spike fertility in wheat as affected by Ppd genes under field conditions. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2633-2645. [PMID: 29562264 PMCID: PMC5920323 DOI: 10.1093/jxb/ery105] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/10/2018] [Indexed: 05/28/2023]
Abstract
As wheat yield is linearly related to grain number, understanding the physiological determinants of the number of fertile florets based on floret development dynamics due to the role of the particular genes is relevant. The effects of photoperiod genes on dynamics of floret development are largely ignored. Field experiments were carried out to (i) characterize the dynamics of floret primordia initiation and degeneration and (ii) to determine which are the most critical traits of such dynamics in establishing genotypic differences in the number of fertile florets at anthesis in near isogenic lines (NILs) carrying photoperiod-insensitive alleles. Results varied in magnitude between the two growing seasons, but in general introgression of Ppd-1a alleles reduced the number of fertile florets. The actual effect was affected not only by the genome and the doses but also by the source of the alleles. Differences in the number of fertile florets were mainly explained by differences in the floret generation/degeneration dynamics, and in most cases associated with floret survival. Manipulating photoperiod insensitivity, unquestionably useful for changing flowering time, may reduce spike fertility but much less than proportionally to the change in duration of development, as the insensitivity alleles did increase the rate of floret development.
Collapse
Affiliation(s)
- Paula Prieto
- Department of Crop and Forest Sciences and AGROTECNIO (Center for Research in Agrotechnology), University of Lleida, Lleida, Spain
| | - Helga Ochagavía
- Department of Crop and Forest Sciences and AGROTECNIO (Center for Research in Agrotechnology), University of Lleida, Lleida, Spain
| | - Roxana Savin
- Department of Crop and Forest Sciences and AGROTECNIO (Center for Research in Agrotechnology), University of Lleida, Lleida, Spain
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| | - Gustavo A Slafer
- Department of Crop and Forest Sciences and AGROTECNIO (Center for Research in Agrotechnology), University of Lleida, Lleida, Spain
- ICREA, Catalonian Institution for Research and Advanced Studies, Spain
| |
Collapse
|
28
|
Wille W, Pipper CB, Rosenqvist E, Andersen SB, Weiner J. Reducing shade avoidance responses in a cereal crop. AOB PLANTS 2017; 9:plx039. [PMID: 29071064 PMCID: PMC5647810 DOI: 10.1093/aobpla/plx039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/04/2017] [Indexed: 05/22/2023]
Abstract
Several researchers have hypothesized that shade avoidance behaviour is favoured by natural selection because it increases the fitness of individuals. Shade avoidance can be disadvantageous for crops, however, because it reduces allocation of resources to reproductive yield, increases the risk of lodging and reduces weed suppression. One approach to develop varieties with reduced shade avoidance and enhanced agronomic performance is by inducing mutations followed by phenotypic screening. We treated spring wheat seeds with ethyl methanesulfonate and screened the seedlings repeatedly under green filters for plants showing reduced elongation of the first leaf sheath and second leaf lamina. The shade avoidance responses of five promising mutant lines were further compared to non-mutated plants in a climate chamber experiment with added far-red light. Two of the selected lines displayed significantly reduced elongation under all light treatments while two lines showed reduced elongation only in added far-red light. The most promising mutant line did not differ in height from the non-mutated cultivar in neutral light, but elongated 20.6% less in strong far-red light. This traditional forward approach of screening mutagenized spring wheat produced plants with reduced shade avoidance responses. These mutants may generate new molecular handles to modify the reaction of plants to changes in light spectral distribution in traditional and novel cultivation systems.
Collapse
Affiliation(s)
- Wibke Wille
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Christian B Pipper
- Department of Public Health, University of Copenhagen, DK-1014 Copenhagen, Denmark
| | - Eva Rosenqvist
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Sven B Andersen
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Jacob Weiner
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
29
|
|
30
|
Light-mediated self-organization of sunflower stands increases oil yield in the field. Proc Natl Acad Sci U S A 2017; 114:7975-7980. [PMID: 28696316 DOI: 10.1073/pnas.1618990114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we show a unique crop response to intraspecific interference, whereby neighboring sunflower plants in a row avoid each other by growing toward a more favorable light environment and collectively increase production per unit land area. In high-density stands, a given plant inclined toward one side of the interrow space, and the immediate neighbors inclined in the opposite direction. This process started early as an incipient inclination of pioneer plants, and the arrangement propagated gradually as a "wave" of alternate inclination that persisted until maturity. Measurements and experimental manipulation of light spectral composition indicate that these responses are mediated by changes in the red/far-red ratio of the light, which is perceived by phytochrome. Cellular automata simulations reproduced the patterns of stem inclination in field experiments, supporting the proposition of self-organization of stand structure. Under high crop population densities (10 and 14 plants per m2), as yet unachievable in commercial farms with current hybrids due to lodging and diseases, self-organized crops yielded between 19 and 47% more oil than crops forced to remain erect.
Collapse
|
31
|
Morphology and Hydraulic Architecture of Vitis vinifera L. cv. Syrah and Torrontés Riojano Plants Are Unaffected by Variations in Red to Far-Red Ratio. PLoS One 2016; 11:e0167767. [PMID: 27911923 PMCID: PMC5135135 DOI: 10.1371/journal.pone.0167767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/18/2016] [Indexed: 11/20/2022] Open
Abstract
Plants have evolved an array of specific photoreceptors to acclimate to the light environment. By sensing light signals, photoreceptors modulate plant morphology, carbon- and water-physiology, crop yield and quality of harvestable organs, among other responses. Many cultural practices and crop management decisions alter light quantity and quality perceived by plants cultivated in the field. Under full sunlight, phytochromes perceive high red to far red ratios (R:FR; 1.1), whereas overhead or lateral low R:FR (below 1.1) are sensed in the presence of plant shade or neighboring plants, respectively. Grapevine is one of the most important fruit crops in the world. To date, studies on grapevine response to light focused on different Photosynthetic Active Radiation (PAR) levels; however, limited data exist about its response to light quality. In this study we aimed to investigate morphological, biochemical, and hydraulic responses of Vitis vinifera to variations in R:FR. Therefore, we irradiated Syrah and Torrontés Riojano plants, grown in a glasshouse, with lateral FR light (low lateral R:FR treatment), while others, that were kept as controls, were not irradiated (ambient lateral R:FR treatment). In response to the low lateral R:FR treatment, grapevine plants did not display any of the SAS morphological markers (i.e. stem length, petiole length and angle, number of lateral shoots) in any of the cultivars assessed, despite an increase in gibberelins and auxin concentrations in leaf tissues. Low lateral R:FR did not affect dry matter partitioning, water-related traits (stomata density and index, wood anatomy), or water-related physiology (plant conductance, transpiration rate, stem hydraulic conductivity, stomatal conductance). None of the Vitis vinifera varieties assessed displayed the classical morphological and hydraulic responses associated to SAS induced by phytochromes. We discuss these results in the context of natural grapevine environment and agronomical relevance.
Collapse
|
32
|
Guo Z, Slafer GA, Schnurbusch T. Genotypic variation in spike fertility traits and ovary size as determinants of floret and grain survival rate in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4221-30. [PMID: 27279276 PMCID: PMC5301927 DOI: 10.1093/jxb/erw200] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Spike fertility traits are critical attributes for grain yield in wheat (Triticum aestivum L.). Here, we examine the genotypic variation in three important traits: maximum number of floret primordia, number of fertile florets, and number of grains. We determine their relationship in determining spike fertility in 30 genotypes grown under two contrasting conditions: field and greenhouse. The maximum number of floret primordia per spikelet (MFS), fertile florets per spikelet (FFS), and number of grains per spikelet (GS) not only exhibited large genotypic variation in both growth conditions and across all spikelet positions studied, but also displayed moderate levels of heritability. FFS was closely associated with floret survival and only weakly related to MFS. We also found that the post-anthesis process of grain set/abortion was important in determining genotypic variation in GS; an increase in GS was mainly associated with improved grain survival. Ovary size at anthesis was associated with both floret survival (pre-anthesis) and grain survival (post-anthesis), and was thus believed to 'connect' the two traits. In this work, proximal florets (i.e. the first three florets from the base of a spikelet: F1, F2, and F3) produced fertile florets and set grains in most cases. The ovary size of more distal florets (F4 and beyond) seemed to act as a decisive factor for grain setting and effectively reflected pre-anthesis floret development. In both growth conditions, GS positively correlated with ovary size of florets in the distal position (F4), suggesting that assimilates allocated to distal florets may play a critical role in regulating grain set.
Collapse
Affiliation(s)
- Zifeng Guo
- HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Gustavo A Slafer
- ICREA (Catalonian Institution for Research and Advanced Studies), Department of Crop and Forest Sciences and AGROTECNIO (Centre for Research in Agrotechnology), University of Lleida, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Thorsten Schnurbusch
- HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| |
Collapse
|
33
|
Pearce S, Kippes N, Chen A, Debernardi JM, Dubcovsky J. RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways. BMC PLANT BIOLOGY 2016; 16:141. [PMID: 27329140 PMCID: PMC4915087 DOI: 10.1186/s12870-016-0831-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/15/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND In cereal crops such as wheat, an optimal timing of developmental transitions is required to maximize grain yield. Many of these developmental changes are precisely regulated by changes in the duration, intensity or quality of light. Phytochromes are dimeric photoreceptors that absorb light maximally in the red and far-red wavelengths and induce large-scale transcriptional changes in response to variation in light quality. In wheat, PHYC is required for early flowering under long days. However, it is currently unknown whether this function requires the presence of PHYB. In this study, we characterized the role of PHYB in wheat development and used RNA-seq to analyze and compare the transcriptomes of phyB-null and phyC-null TILLING mutants. RESULTS Under long-day photoperiods, phyB-null plants exhibit a severe delay in flowering comparable to the delay observed in phyC-null plants. These results demonstrate that both genes are required for the induction of wheat flowering under long days. Using replicated RNA-seq studies we identified 82 genes that are significantly up or down regulated in both the phyB-null and phyC-null mutant relative to their respective wild-type controls. Among these genes are several well-characterized positive regulators of flowering, including PPD1, FT1 and VRN1. Eight-fold more genes were differentially regulated only in the phyB-null mutant (2202) than only in the phyC-null mutant (261). The PHYB-regulated genes were enriched in components of the auxin, gibberellin and brassinosteroid biosynthesis and signaling pathways, and in transcription factors with putative roles in regulating vegetative development and shade-avoidance responses. Several genes involved in abiotic stress tolerance pathways were also found to be regulated by PHYB. CONCLUSIONS PHYB and PHYC are both required for the photoperiodic induction of wheat flowering, whereas PHYB alone regulates a large number of genes involved in hormone biosynthesis and signaling, shade-avoidance response, and abiotic stress tolerance. Our analysis provides a comprehensive overview of the PHYB- and PHYC-mediated transcriptional changes during light signaling, and an initial step towards the dissection of this regulatory gene network in wheat. This further dissection will be required to explore the individual phytochrome-mediated developmental responses and to evaluate their potential to improve wheat adaptation to changing environments.
Collapse
Affiliation(s)
- Stephen Pearce
- />Department of Plant Sciences, University of California, Davis, CA 95616 USA
- />Present Address: Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Nestor Kippes
- />Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Andrew Chen
- />Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | | | - Jorge Dubcovsky
- />Department of Plant Sciences, University of California, Davis, CA 95616 USA
- />Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| |
Collapse
|
34
|
Wang H, Wu G, Zhao B, Wang B, Lang Z, Zhang C, Wang H. Regulatory modules controlling early shade avoidance response in maize seedlings. BMC Genomics 2016. [PMID: 27030359 DOI: 10.1186/s12864-016-2593-2596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Optimization of shade avoidance response (SAR) is crucial for enhancing crop yield in high-density planting conditions in modern agriculture, but a comprehensive study of the regulatory network of SAR is still lacking in monocot crops. RESULTS In this study, the genome-wide early responses in maize seedlings to the simulated shade (low red/far-red ratio) and also to far-red light treatment were transcriptionally profiled. The two processes were predominantly mediated by phytochrome B and phytochrome A, respectively. Clustering of differentially transcribed genes (DTGs) along with functional enrichment analysis identified important biological processes regulated in response to both treatments. Co-expression network analysis identified two transcription factor modules as potentially pivotal regulators of SAR and de-etiolation, respectively. A comprehensive cross-species comparison of orthologous DTG pairs between maize and Arabidopsis in SAR was also conducted, with emphasis on regulatory circuits controlling accelerated flowering and elongated growth, two physiological hallmarks of SAR. Moreover, it was found that the genome-wide distribution of DTGs in SAR and de-etiolation both biased toward the maize1 subgenome, and this was associated with differential retention of various cis-elements between the two subgenomes. CONCLUSIONS The results provide the first transcriptional picture for the early dynamics of maize phytochrome signaling. Candidate genes with regulatory functions involved in maize shade avoidance response have been identified, offering a starting point for further functional genomics investigation of maize adaptation to heavily shaded field conditions.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Guangxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Binbin Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhihong Lang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
35
|
Wang H, Wu G, Zhao B, Wang B, Lang Z, Zhang C, Wang H. Regulatory modules controlling early shade avoidance response in maize seedlings. BMC Genomics 2016; 17:269. [PMID: 27030359 PMCID: PMC4815114 DOI: 10.1186/s12864-016-2593-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/16/2016] [Indexed: 11/20/2022] Open
Abstract
Background Optimization of shade avoidance response (SAR) is crucial for enhancing crop yield in high-density planting conditions in modern agriculture, but a comprehensive study of the regulatory network of SAR is still lacking in monocot crops. Results In this study, the genome-wide early responses in maize seedlings to the simulated shade (low red/far-red ratio) and also to far-red light treatment were transcriptionally profiled. The two processes were predominantly mediated by phytochrome B and phytochrome A, respectively. Clustering of differentially transcribed genes (DTGs) along with functional enrichment analysis identified important biological processes regulated in response to both treatments. Co-expression network analysis identified two transcription factor modules as potentially pivotal regulators of SAR and de-etiolation, respectively. A comprehensive cross-species comparison of orthologous DTG pairs between maize and Arabidopsis in SAR was also conducted, with emphasis on regulatory circuits controlling accelerated flowering and elongated growth, two physiological hallmarks of SAR. Moreover, it was found that the genome-wide distribution of DTGs in SAR and de-etiolation both biased toward the maize1 subgenome, and this was associated with differential retention of various cis-elements between the two subgenomes. Conclusions The results provide the first transcriptional picture for the early dynamics of maize phytochrome signaling. Candidate genes with regulatory functions involved in maize shade avoidance response have been identified, offering a starting point for further functional genomics investigation of maize adaptation to heavily shaded field conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2593-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Guangxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Binbin Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhihong Lang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
36
|
Xie Q, Mayes S, Sparkes DL. Optimizing tiller production and survival for grain yield improvement in a bread wheat × spelt mapping population. ANNALS OF BOTANY 2016; 117:51-66. [PMID: 26424785 PMCID: PMC4701148 DOI: 10.1093/aob/mcv147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/23/2015] [Accepted: 08/11/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Tiller production and survival determine final spike number, and play key roles in grain yield formation in wheat (Triticum aestivum). This study aimed to understand the genetic and physiological basis of the tillering process, and its trade-offs with other yield components, by introducing genetic variation in tillering patterns via a mapping population of wheat × spelt (Triticum spelta). METHODS The dynamics of tillering and red/far-red ratio (R:FR) at the base of a canopy arising from neighbouring plants in a bread wheat (Triticum aestivum 'Forno') × spelt (Triticum spelta 'Oberkulmer') mapping population were measured in the field in two growing seasons. Additional thinning and shading experiments were conducted in the field and glasshouse, respectively. Yield components were analysed for all experiments, followed by identification of quantitative trait loci (QTL) associated with each trait. KEY RESULTS Large genetic variation in tillering was observed, and more fertile shoots per plant were associated with more total shoots initiated, faster tillering rate, delayed tillering onset and cessation, and higher shoot survival. A total of 34 QTL for tillering traits were identified, and analysis of allelic effects confirmed the above associations. Low R:FR was associated with early tillering cessation, few total shoots, high infertile shoot number and shoot abortion, and these results concurred with the thinning and shading experiments. These effects probably resulted from an assimilate shortage for tiller buds or developing tillers, due to early stem elongation and enhanced stem growth induced by low R:FR. More fertile tillers normally contributed to plant yield and grain number without reducing yield and grain set of individual shoots. However, there was a decrease in grain weight, partly because of smaller carpels and fewer stem water-soluble carbohydrates at anthesis caused by pleiotropy or tight gene linkages. CONCLUSIONS Tillering is under the control of both genetic factors and R:FR. Genetic variation in tillering and tolerance to low R:FR can be used to optimize tillering patterns for yield improvement in wheat.
Collapse
Affiliation(s)
- Quan Xie
- Division of Plant and Crop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Sean Mayes
- Division of Plant and Crop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Debbie L Sparkes
- Division of Plant and Crop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| |
Collapse
|
37
|
Adriani DE, Lafarge T, Dardou A, Fabro A, Clément-Vidal A, Yahya S, Dingkuhn M, Luquet D. The qTSN Positive Effect on Panicle and Flag Leaf Size of Rice is Associated with an Early Down-Regulation of Tillering. FRONTIERS IN PLANT SCIENCE 2015; 6:1197. [PMID: 26779230 PMCID: PMC4703761 DOI: 10.3389/fpls.2015.01197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/14/2015] [Indexed: 05/08/2023]
Abstract
The qTSN4 was identified as rice QTL (Quantitative Traits Locus) increasing total spikelet number per panicle and flag leaf area but potentially reducing panicle number depending on the environment. So far, this trade-off was mainly observed at grain maturity and not specifically studied in details, limiting the apprehension of the agronomic interest of qTSN4. This study aimed to understand the effect of qTSN4 and of the environment on panicle sizing, its trade-off with panicle number, and finally plant grain production. It compared two high yielding genotypes to their Near Isogenic Lines (NIL) carrying either QTL qTSN4 or qTSN12, two distinct QTLs contributing to the enlarged panicle size, thereafter designated as qTSN. Traits describing C sink (organ appearance rate, size, biomass) and source (leaf area, photosynthesis, sugar availability) were dynamically characterized along plant and/or panicle development within two trials (greenhouse, field), each comparing two treatments contrasting for plant access to light (with or without shading, high or low planting densities). The positive effect of qTSN on panicle size and flag leaf area of the main tiller was confirmed. More precisely, it could be shown that qTSN increased leaf area and internode cross-section, and in some cases of the photosynthetic rate and starch reserves, of the top 3-4 phytomers of the main tiller. This was accompanied by an earlier tillering cessation, that coincided with the initiation of these phytomers, and an enhanced panicle size on the main tiller. Plant leaf area at flowering was not affected by qTSN but fertile tiller number was reduced to an extent that depended on the environment. Accordingly, plant grain production was enhanced by qTSN only under shading in the greenhouse experiment, where panicle number was not affected and photosynthesis and starch storage in internodes was enhanced. The effect of qTSN on rice phenotype was thus expressed before panicle initiation (PI). Whether early tillering reduction or organ oversizing at meristem level is affected first cannot be entirely unraveled. Further studies are needed to better understand any signal involved in this early regulation and the qTSN × Environment interactions underlying its agronomic interest.
Collapse
Affiliation(s)
- Dewi E. Adriani
- CIRAD, UMR AGAP, F-34398 MontpellierFrance
- Faculty of Agriculture, University of Lambung MangkuratBanjarbaru, Indonesia
| | | | | | - Aubrey Fabro
- Crop and Environment Science Division, International Rice Research InstituteLos Baños, Philippines
| | | | - Sudirman Yahya
- Department of Agronomy and Horticulture, Bogor Agricultural UniversityBogor, Indonesia
| | - Michael Dingkuhn
- CIRAD, UMR AGAP, F-34398 MontpellierFrance
- Crop and Environment Science Division, International Rice Research InstituteLos Baños, Philippines
| | - Delphine Luquet
- CIRAD, UMR AGAP, F-34398 MontpellierFrance
- *Correspondence: Delphine Luquet
| |
Collapse
|
38
|
Rondanini DP, del Pilar Vilariño M, Roberts ME, Polosa MA, Botto JF. Physiological responses of spring rapeseed (Brassica napus) to red/far-red ratios and irradiance during pre- and post-flowering stages. PHYSIOLOGIA PLANTARUM 2014; 152:784-794. [PMID: 24814241 DOI: 10.1111/ppl.12227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/21/2014] [Accepted: 04/09/2014] [Indexed: 06/03/2023]
Abstract
Early shade signals promote the shade avoidance syndrome (SAS) which causes, among others, petiole and shoot elongation and upward leaf position. In spite of its relevance, these photomorphogenic responses have not been deeply studied in rapeseed (Brassica napus). In contrast to other crops like maize and wheat, rapeseed has a complex developmental phenotypic pattern as it evolves from an initial rosette to the main stem elongation and an indeterminate growth of floral raceme. In this work, we analyzed (1) morphological and physiological responses at individual level due to low red/far-red (R/FR) ratio during plant development, and (2) changes in biomass allocation, grain yield and composition at crop level in response to high R/FR ratio and low irradiance in two modern spring rapeseed genotypes. We carried out pot and field experiments modifying R/FR ratios and irradiance at vegetative or reproductive stages. In pot experiments, low R/FR ratio increased the petiole and lamina length, upward leaf position and also accelerated leaf senescence. Furthermore, low R/FR ratio reduced main floral raceme and increased floral branching with higher remobilization of soluble carbohydrates from the stems. In field experiments, low irradiance during post-flowering reduced grain yield, harvest index and grain oil content, and high R/FR ratio reaching the crop partially alleviated such effects. We conclude that photomorphogenic signals are integrated early during the vegetative growth, and irradiance has stronger effects than R/FR signals at rapeseed crop level.
Collapse
Affiliation(s)
- Deborah P Rondanini
- Facultad de Agronomía, Universidad de Buenos Aires, C1417DSE, Buenos Aires, Argentina; CONICET, C1033AAJ, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
39
|
Pierik R, Testerink C. The art of being flexible: how to escape from shade, salt, and drought. PLANT PHYSIOLOGY 2014; 166:5-22. [PMID: 24972713 PMCID: PMC4149730 DOI: 10.1104/pp.114.239160] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/20/2014] [Indexed: 05/18/2023]
Abstract
Environmental stresses, such as shading of the shoot, drought, and soil salinity, threaten plant growth, yield, and survival. Plants can alleviate the impact of these stresses through various modes of phenotypic plasticity, such as shade avoidance and halotropism. Here, we review the current state of knowledge regarding the mechanisms that control plant developmental responses to shade, salt, and drought stress. We discuss plant hormones and cellular signaling pathways that control shoot branching and elongation responses to shade and root architecture modulation in response to drought and salinity. Because belowground stresses also result in aboveground changes and vice versa, we then outline how a wider palette of plant phenotypic traits is affected by the individual stresses. Consequently, we argue for a research agenda that integrates multiple plant organs, responses, and stresses. This will generate the scientific understanding needed for future crop improvement programs aiming at crops that can maintain yields under variable and suboptimal conditions.
Collapse
Affiliation(s)
- Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (R.P.); andPlant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (C.T.)
| | - Christa Testerink
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (R.P.); andPlant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (C.T.)
| |
Collapse
|
40
|
Abstract
The dynamic light environment of vegetation canopies is perceived by phytochromes, cryptochromes, phototropins, and UV RESISTANCE LOCUS 8 (UVR8). These receptors control avoidance responses to preclude exposure to limiting or excessive light and acclimation responses to cope with conditions that cannot be avoided. The low red/far-red ratios of shade light reduce phytochrome B activity, which allows PHYTOCHROME INTERACTING FACTORS (PIFs) to directly activate the transcription of auxin-synthesis genes, leading to shade-avoidance responses. Direct PIF interaction with DELLA proteins links gibberellin and brassinosteroid signaling to shade avoidance. Shade avoidance also requires CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1), a target of cryptochromes, phytochromes, and UVR8. Multiple regulatory loops and the input of the circadian clock create a complex network able to respond even to subtle threats of competition with neighbors while still compensating for major environmental fluctuations such as the day-night cycles.
Collapse
Affiliation(s)
- Jorge J Casal
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, 1417 Buenos Aires, Argentina.
| |
Collapse
|
41
|
Abstract
The presence of neighboring vegetation modifies the light environment experienced by plants, generating signals that are perceived by phytochromes and cryptochromes. These signals cause large changes in plant body form and function, including enhanced growth of the hypocotyl and petioles, a more erect position of the leaves and early flowering in Arabidopsis thaliana. Collectively, these so-called shade-avoidance responses tend to reduce the degree of current or future shade by neighbors. Shade light signals increase the abundance of PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5 proteins, promote the synthesis and redirection of auxin, favor the degradation of DELLA proteins and increase the expression of auxin, gibberellins and brassinosteroid-promoted genes, among other events downstream the photoreceptors. Selectively disrupting these events by genetic or pharmacological approaches affects shade-avoidance responses with an intensity that depends on the developmental context and the environment. Shade-avoidance responses provide a model to investigate the signaling networks used by plants to take advantage of the cues provided by the environment to adjust to the challenges imposed by the environment itself.
Collapse
Affiliation(s)
- Jorge J. Casal
- IFEVA. Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, 1417-Buenos Aires, Argentina, and Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, 1405-Buenos Aires, Argentina
- Address correspondence to
| |
Collapse
|
42
|
González FG, Miralles DJ, Slafer GA. Wheat floret survival as related to pre-anthesis spike growth. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4889-901. [PMID: 21705386 DOI: 10.1093/jxb/err182] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Further improvements to wheat yield potential will be essential to meet future food demand. As yield is related to the number of fertile florets and grains, an understanding of the basis of their generation is instrumental to raising yield. Based on (i) a strong positive association between the number of fertile florets or grains and spike dry weight at anthesis; and (ii) the finding that floret death occurs when spikes grow at maximum rate, it was always assumed that floret survival depends on the growth of the spike. However, this assumption was recently questioned, suggesting that assimilates diverted to the spike do not determine the number of florets and grains and that the onset of floret death may instead be a developmental process that is not associated with spike growth. In this study, the relationships between the fate of floret primordia and spike growth from six independent experiments that included different growing conditions (greenhouse/field experiments, growing seasons, photoperiod/shading treatments during the floret primordia phase) and diverse cultivar types (winter/spring, semi-dwarf/standard-height, photoperiod sensitive/insensitive) were re-analysed together. Onset of floret death was associated with the beginning of spike growth at the maximum rate in c. 80% of the cases analysed; and the rate of floret death (the main determinant of floret survival) showed a negative quantitative relationship with spike weight at anthesis. As floret death and survival were shown to be linked to pre-anthesis spike growth, the strategy of focusing on traits associated with pre-anthesis spike growth when breeding to increase wheat yield potential further is valuable.
Collapse
Affiliation(s)
- Fernanda G González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), EEA Pergamino, INTA. Ruta 32 km 4.5, B2700WAA Pergamino, Buenos Aires, Argentina.
| | | | | |
Collapse
|