1
|
Silva LM, Pereira L, Kaack L, Guan X, Pfaff J, Trabi CL, Jansen S. The potential link between gas diffusion and embolism spread in angiosperm xylem: Evidence from flow-centrifuge experiments and modelling. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39119783 DOI: 10.1111/pce.15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/19/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Understanding xylem embolism formation is challenging due to dynamic changes and multiphase interactions in conduits. Here, we hypothesise that embolism spread involves gas diffusion in xylem, and is affected by time. We measured hydraulic conductivity (Kh) in flow-centrifuge experiments over 1 h at a given pressure and temperature for stem samples of three angiosperm species. Temporal changes in Kh at 5, 22, and 35°C, and at various pressures were compared to modelled gas concentration changes in a recently embolised vessel in the centre of a centrifuge sample. Temporal changes in Kh were logarithmic and species-specific. Maximum relative increases of Kh between 6% and 40% happened at 22°C for low centrifugal speed (<3250 RPM), while maximum decreases between 41% and 61% occurred at higher speeds. These reductions in Kh were experimentally shown to be associated with a temporal increase of embolism at the centre of centrifuge samples, which was likely associated with gas concentration increases in recently embolized vessels. Although embolism is mostly pressure-driven, our experimental and modelled data indicate that time, conduit characteristics, and temperature are involved due to their potential role in gas diffusion. Gas diffusion, however, does not seem to cover the entire process of embolism spread.
Collapse
Affiliation(s)
| | | | - Lucian Kaack
- Institute of Botany, Ulm University, Ulm, Germany
- Botanical Garden of Ulm University, Hans-Krebs-Weg, Ulm, Germany
| | - Xinyi Guan
- Institute of Botany, Ulm University, Ulm, Germany
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Jonas Pfaff
- Institute of Botany, Ulm University, Ulm, Germany
| | - Christophe L Trabi
- Institute of Botany, Ulm University, Ulm, Germany
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Ulm, Germany
| | | |
Collapse
|
2
|
Zhang Y, Pereira L, Kaack L, Liu J, Jansen S. Gold perfusion experiments support the multi-layered, mesoporous nature of intervessel pit membranes in angiosperm xylem. THE NEW PHYTOLOGIST 2024; 242:493-506. [PMID: 38404029 DOI: 10.1111/nph.19608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Fluid transport across intervessel pit membranes of angiosperm xylem plays a major role in plant transpiration, with transport resistance largely depending on pore constriction sizes. Traditionally, fluid particles traversing pit membranes are assumed to cross a single instead of multiple pore constrictions. We tested a multi-layered pit membrane model in xylem of eight angiosperm species by estimating the size frequency of pore constrictions in relation to pit membrane thickness and compared modelled data with perfusion characteristics of nanoscale gold particles based on transmission electron microscopy. The size frequency of modelled pore constrictions showed similar patterns to the measured number of perfused particle sizes inside pit membranes, although frequency values measured were 10-50 times below modelled data. Small particles enter pit membranes most easily, especially when injected in thin pit membranes. The trapping of gold particles by pore constrictions becomes more likely with increasing pore constriction number and pit membrane thickness. While quantitative differences between modelled and experimental data are due to various practical limitations, their qualitative agreement supports a multi-layered pit membrane model with multiple pore constrictions. Pore constrictions between 5 and 50 nm are realistic, and confirm the mesoporous nature of pit membranes.
Collapse
Affiliation(s)
- Ya Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Beijingzhong Road 2, Wuhu, 241000, China
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Lucian Kaack
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Jiabao Liu
- College of Ecology and Environment, Anhui Normal University, Beijingzhong Road 2, Wuhu, 241000, China
| | - Steven Jansen
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| |
Collapse
|
3
|
Palliyalil AC, Mohan A, Dash S, Tomar G. Ion-Specific Bubble Coalescence Dynamics in Electrolyte Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1035-1045. [PMID: 38134361 DOI: 10.1021/acs.langmuir.3c03259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Bubble coalescence time scale is important in applications such as froth flotation, food and pharmaceutical industries, and two-phase thermal management. The time scale of coalescence is sensitive to the dissolved ions. In this study, we investigate the evolution of a thin electrolyte film between a bubble and a hydrophilic substrate during coalescence. We present a thin-film equation-based numerical model that accounts for the dependence of the surface tension gradient and electric double layer (EDL) on the concentration of ions at the air-liquid interface. The influence of Marangoni stresses and the EDL on the hydrodynamics of drainage determines the coalescence time scale. We show that the electrolytes, such as NaCl, Na2SO4, and NaI retard coalescence, in contrast to HCl and HNO3 that have little effect on the coalescence time scale. We also show that the drainage of the electrolyte films with higher concentrations is retarded due to increased Marangoni stresses at the air-water interface. The slow drainage triggers an early formation of the dimple in the thin film, thus trapping more fluid within, which further decreases the drainage rate. For a hydrophilic substrate, EDL along with van der Waals for a given concentration governs the final dynamics of thin films, eventually resulting in a stable thin layer of the electrolyte between the bubble and the substrate. The stabilizing thickness reduces by an order of magnitude as the NaCl concentration increases from 0.01 to 10 mM. For Na2SO4 solution, the film is stabilized at a smaller thickness due to higher valency cations resulting in higher screening of the EDL repulsion.
Collapse
Affiliation(s)
| | - Ananthan Mohan
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Susmita Dash
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Gaurav Tomar
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Aritsara ANA, Ni MY, Wang YQ, Yan CL, Zeng WH, Song HQ, Cao KF, Zhu SD. Tree growth is correlated with hydraulic efficiency and safety across 22 tree species in a subtropical karst forest. TREE PHYSIOLOGY 2023; 43:1307-1318. [PMID: 37067918 DOI: 10.1093/treephys/tpad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/16/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Karst forests are habitats in which access to soil water can be challenging for plants. Therefore, safe and efficient xylem water transport and large internal water storage may benefit tree growth. In this study, we selected 22 tree species from a primary subtropical karst forest in southern China and measured their xylem anatomical traits, saturated water content (SWC), hydraulic conductivity (Ks) and embolism resistance (P50). Additionally, we monitored growth of diameter at breast height (DBH) in 440 individual trees of various sizes over three consecutive years. Our objective was to analyze the relationships between xylem structure, hydraulic efficiency, safety, water storage and growth of karst tree species. The results showed significant differences in structure but not in hydraulic traits between deciduous and evergreen species. Larger vessel diameter, paratracheal parenchyma and higher SWC were correlated with higher Ks. Embolism resistance was not correlated with the studied anatomical traits, and no tradeoff with Ks was observed. In small trees (5-15 cm DBH), diameter growth rate (DGR) was independent of hydraulic traits. In large trees (>15 cm DBH), higher Ks and more negative P50 accounted for higher DGR. From lower to greater embolism resistance, the size-growth relationship shifted from growth deceleration to acceleration with increasing tree size in eight of the 22 species. Our study highlights the vital contributions of xylem hydraulic efficiency and safety to growth rate and dynamics in karst tree species; therefore, we strongly recommend their integration into trait-based forest dynamic models.
Collapse
Affiliation(s)
- Amy N A Aritsara
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
- College of Life Sciences and Technology, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Ming-Yuan Ni
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, No. 98 Chengxiang Road, Baise 533000, Guangxi, China
| | - Yong-Qiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Chao-Long Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Wen-Hao Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Hui-Qing Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Shi-Dan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| |
Collapse
|
5
|
Chen J, Ye Y, Qu J, Wu C. PIIN_05330 transgenic Arabidopsis plants enhanced drought-stress tolerance. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Sapes G, Sala A. Relative water content consistently predicts drought mortality risk in seedling populations with different morphology, physiology and times to death. PLANT, CELL & ENVIRONMENT 2021; 44:3322-3335. [PMID: 34251033 DOI: 10.1111/pce.14149] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/08/2021] [Indexed: 05/14/2023]
Abstract
Predicted increases in forest drought mortality highlight the need for predictors of incipient drought-induced mortality (DIM) risk that enable proactive large-scale management. Such predictors should be consistent across plants with varying morphology and physiology. Because of their integrative nature, indicators of water status are promising candidates for real-time monitoring of DIM, particularly if they standardize morphological differences among plants. We assessed the extent to which differences in morphology and physiology between Pinus ponderosa populations influence time to mortality and the predictive power of key indicators of DIM risk. Time to incipient mortality differed between populations but occurred at the same relative water content (RWC) and water potential (WP). RWC and WP were accurate predictors of drought mortality risk. These results highlight that variables related to water status capture critical thresholds during DIM and the associated dehydration processes. Both WP and RWC are promising candidates for large-scale assessments of DIM risk. RWC is of special interest because it allows comparisons across different morphologies and can be remotely sensed. Our results offer promise for real-time landscape-level monitoring of DIM and its global impacts in the near term.
Collapse
Affiliation(s)
- Gerard Sapes
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
7
|
Nolting KM, Prunier R, Midgley GF, Holsinger KE. Intraspecific trait variation influences physiological performance and fitness in the South Africa shrub genus Protea (Proteaceae). ANNALS OF BOTANY 2021; 127:519-531. [PMID: 32249291 PMCID: PMC7988518 DOI: 10.1093/aob/mcaa060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/03/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Global plant trait datasets commonly identify trait relationships that are interpreted to reflect fundamental trade-offs associated with plant strategies, but often these trait relationships are not identified when evaluating them at smaller taxonomic and spatial scales. In this study we evaluate trait relationships measured on individual plants for five widespread Protea species in South Africa to determine whether broad-scale patterns of structural trait (e.g. leaf area) and physiological trait (e.g. photosynthetic rates) relationships can be detected within natural populations, and if these traits are themselves related to plant fitness. METHODS We evaluated the variance structure (i.e. the proportional intraspecific trait variation relative to among-species variation) for nine structural traits and six physiological traits measured in wild populations. We used a multivariate path model to evaluate the relationships between structural traits and physiological traits, and the relationship between these traits and plant size and reproductive effort. KEY RESULTS While intraspecific trait variation is relatively low for structural traits, it accounts for between 50 and 100 % of the variation in physiological traits. Furthermore, we identified few trait associations between any one structural trait and physiological trait, but multivariate regressions revealed clear associations between combinations of structural traits and physiological performance (R2 = 0.37-0.64), and almost all traits had detectable associations with plant fitness. CONCLUSIONS Intraspecific variation in structural traits leads to predictable differences in individual-level physiological performance in a multivariate framework, even though the relationship of any particular structural trait to physiological performance may be weak or undetectable. Furthermore, intraspecific variation in both structural and physiological traits leads to differences in plant size and fitness. These results demonstrate the importance of considering measurements of multivariate phenotypes on individual plants when evaluating trait relationships and how trait variation influences predictions of ecological and evolutionary outcomes.
Collapse
Affiliation(s)
- Kristen M Nolting
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Rachel Prunier
- Department of Biological and Environmental Sciences, Western Connecticut State University, Danbury, CT, USAand
| | - Guy F Midgley
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Kent E Holsinger
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
8
|
Schenk HJ, Michaud JM, Mocko K, Espino S, Melendres T, Roth MR, Welti R, Kaack L, Jansen S. Lipids in xylem sap of woody plants across the angiosperm phylogeny. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1477-1494. [PMID: 33295003 DOI: 10.1111/tpj.15125] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Lipids have been observed attached to lumen-facing surfaces of mature xylem conduits of several plant species, but there has been little research on their functions or effects on water transport, and only one lipidomic study of the xylem apoplast. Therefore, we conducted lipidomic analyses of xylem sap from woody stems of seven plants representing six major angiosperm clades, including basal magnoliids, monocots and eudicots, to characterize and quantify phospholipids, galactolipids and sulfolipids in sap using mass spectrometry. Locations of lipids in vessels of Laurus nobilis were imaged using transmission electron microscopy and confocal microscopy. Xylem sap contained the galactolipids di- and monogalactosyldiacylglycerol, as well as all common plant phospholipids, but only traces of sulfolipids, with total lipid concentrations in extracted sap ranging from 0.18 to 0.63 nmol ml-1 across all seven species. Contamination of extracted sap from lipids in cut living cells was found to be negligible. Lipid composition of sap was compared with wood in two species and was largely similar, suggesting that sap lipids, including galactolipids, originate from cell content of living vessels. Seasonal changes in lipid composition of sap were observed for one species. Lipid layers coated all lumen-facing vessel surfaces of L. nobilis, and lipids were highly concentrated in inter-vessel pits. The findings suggest that apoplastic, amphiphilic xylem lipids are a universal feature of angiosperms. The findings require a reinterpretation of the cohesion-tension theory of water transport to account for the effects of apoplastic lipids on dynamic surface tension and hydraulic conductance in xylem.
Collapse
Affiliation(s)
- H Jochen Schenk
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA, 92831, USA
| | - Joseph M Michaud
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA, 92831, USA
| | - Kerri Mocko
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA, 92831, USA
| | - Susana Espino
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA, 92831, USA
| | - Tatiana Melendres
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA, 92831, USA
| | - Mary R Roth
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ruth Welti
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| |
Collapse
|
9
|
Bonetti S, Breitenstein D, Fatichi S, Domec JC, Or D. Persistent decay of fresh xylem hydraulic conductivity varies with pressure gradient and marks plant responses to injury. PLANT, CELL & ENVIRONMENT 2021; 44:371-386. [PMID: 32964494 DOI: 10.1111/pce.13893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 05/29/2023]
Abstract
Defining plant hydraulic traits is central to the quantification of ecohydrological processes ranging from land-atmosphere interactions, to tree mortality and water-carbon budgets. A key plant trait is the xylem specific hydraulic conductivity (Kx ), that describes the plant's vascular system capacity to transport water. While xylem's vessels and tracheids are dead upon maturity, the xylem is neither inert nor deadwood, various components of the sapwood and surrounding tissue remaining alive and functional. Moreover, the established definition of Kx assumes linear relations between water flux and pressure gradient by tacitly considering the xylem as a "passive conduit". Here, we re-examine this notion of an inert xylem by systematically characterizing xylem flow in several woody plants using Kx measurements under constant and cyclic pressure gradients. Results show a temporal and pressure gradient dependence of Kx . Additionally, microscopic features in "living branches" are irreversibly modified upon drying of the xylem, thus differentiating the macroscopic definition of Kx for living and dead xylem. The findings highlight the picture of the xylem as a complex and delicate conductive system whose hydraulic behaviour transcends a passive gradient-based flow. The study sheds new light on xylem conceptualization, conductivity measurement protocols, in situ long-distance water transport and ecosystem modelling.
Collapse
Affiliation(s)
- Sara Bonetti
- Institute for Sustainable Resources, Bartlett School of Environment, Energy and Resources, University College London, London, UK
- Soil and Terrestrial Environmental Physics, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Daniel Breitenstein
- Soil and Terrestrial Environmental Physics, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Simone Fatichi
- Institute of Environmental Engineering, ETH Zurich, Zürich, Switzerland
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Jean-Christophe Domec
- Bordeaux Sciences Agro, UMR 1391 INRA ISPA, Gradignan Cedex, France
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Dani Or
- Soil and Terrestrial Environmental Physics, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Division of Hydrologic Sciences, Desert Research Institute, Reno, Nevada, USA
| |
Collapse
|
10
|
Gauthey A, Peters JMR, Carins-Murphy MR, Rodriguez-Dominguez CM, Li X, Delzon S, King A, López R, Medlyn BE, Tissue DT, Brodribb TJ, Choat B. Visual and hydraulic techniques produce similar estimates of cavitation resistance in woody species. THE NEW PHYTOLOGIST 2020; 228:884-897. [PMID: 32542732 DOI: 10.1111/nph.16746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/02/2020] [Indexed: 05/24/2023]
Abstract
Hydraulic failure of the plant vascular system is a principal cause of forest die-off under drought. Accurate quantification of this process is essential to our understanding of the physiological mechanisms underpinning plant mortality. Imaging techniques increasingly are applied to estimate xylem cavitation resistance. These techniques allow for in situ measurement of embolism formation in real time, although the benefits and trade-offs associated with different techniques have not been evaluated in detail. Here we compare two imaging methods, microcomputed tomography (microCT) and optical vulnerability (OV), to standard hydraulic methods for measurement of cavitation resistance in seven woody species representing a diversity of major phylogenetic and xylem anatomical groups. Across the seven species, there was strong agreement between cavitation resistance values (P50 ) estimated from visualization techniques (microCT and OV) and between visual techniques and hydraulic techniques. The results indicate that visual techniques provide accurate estimates of cavitation resistance and the degree to which xylem hydraulic function is impacted by embolism. Results are discussed in the context of trade-offs associated with each technique and possible causes of discrepancy between estimates of cavitation resistance provided by visual and hydraulic techniques.
Collapse
Affiliation(s)
- Alice Gauthey
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Madeline R Carins-Murphy
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tas, 7001, Australia
| | - Celia M Rodriguez-Dominguez
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tas, 7001, Australia
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avenida Reina Mercedes, 10, Sevilla, 41012, Spain
| | - Ximeng Li
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Sylvain Delzon
- UMR BIOGECO, INRA, Univ Bordeaux, Talence, 33450, France
| | - Andrew King
- L'Orme de Merisiers, Synchrotron SOLEIL, 91190 Saint-Aubin-BP48, Gif-sur-Yvette Cedex, France
| | - Rosana López
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
- PIAF, INRA, University of Clermont-Auvergne, 63100, Clermont-Ferrand, France
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Tim J Brodribb
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tas, 7001, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
11
|
Peters JMR, Gauthey A, Lopez R, Carins-Murphy MR, Brodribb TJ, Choat B. Non-invasive imaging reveals convergence in root and stem vulnerability to cavitation across five tree species. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6623-6637. [PMID: 32822502 PMCID: PMC7586747 DOI: 10.1093/jxb/eraa381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/18/2020] [Indexed: 05/08/2023]
Abstract
Root vulnerability to cavitation is challenging to measure and under-represented in current datasets. This gap limits the precision of models used to predict plant responses to drought because roots comprise the critical interface between plant and soil. In this study, we measured vulnerability to drought-induced cavitation in woody roots and stems of five tree species (Acacia aneura, Cedrus deodara, Eucalyptus crebra, Eucalytus saligna, and Quercus palustris) with a wide range of xylem anatomies. X-ray microtomography was used to visualize the accumulation of xylem embolism in stems and roots of intact plants that were naturally dehydrated to varying levels of water stress. Vulnerability to cavitation, defined as the water potential causing a 50% loss of hydraulic function (P50), varied broadly among the species (-4.51 MPa to -11.93 MPa in stems and -3.13 MPa to -9.64 MPa in roots). The P50 of roots and stems was significantly related across species, with species that had more vulnerable stems also having more vulnerable roots. While there was strong convergence in root and stem vulnerability to cavitation, the P50 of roots was significantly higher than the P50 of stems in three species. However, the difference in root and stem vulnerability for these species was small; between 1% and 31% of stem P50. Thus, while some differences existed between organs, roots were not dramatically more vulnerable to embolism than stems, and the differences observed were less than those reported in previous studies. Further study is required to evaluate the vulnerability across root orders and to extend these conclusions to a greater number of species and xylem functional types.
Collapse
Affiliation(s)
- Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Oak Ridge National Laboratory, Climate Change Science Institute & Environmental Science Division, Oak Ridge, TN, USA
| | - Alice Gauthey
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Rosana Lopez
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Departamento de Sistemas y Recursos Naturales. Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid, Spain
| | | | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
12
|
Bittencourt PRL, Oliveira RS, da Costa ACL, Giles AL, Coughlin I, Costa PB, Bartholomew DC, Ferreira LV, Vasconcelos SS, Barros FV, Junior JAS, Oliveira AAR, Mencuccini M, Meir P, Rowland L. Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long-term drought. GLOBAL CHANGE BIOLOGY 2020; 26:3569-3584. [PMID: 32061003 DOI: 10.1111/gcb.15040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/30/2019] [Accepted: 02/02/2020] [Indexed: 05/29/2023]
Abstract
The fate of tropical forests under future climate change is dependent on the capacity of their trees to adjust to drier conditions. The capacity of trees to withstand drought is likely to be determined by traits associated with their hydraulic systems. However, data on whether tropical trees can adjust hydraulic traits when experiencing drought remain rare. We measured plant hydraulic traits (e.g. hydraulic conductivity and embolism resistance) and plant hydraulic system status (e.g. leaf water potential, native embolism and safety margin) on >150 trees from 12 genera (36 species) and spanning a stem size range from 14 to 68 cm diameter at breast height at the world's only long-running tropical forest drought experiment. Hydraulic traits showed no adjustment following 15 years of experimentally imposed moisture deficit. This failure to adjust resulted in these drought-stressed trees experiencing significantly lower leaf water potentials, and higher, but variable, levels of native embolism in the branches. This result suggests that hydraulic damage caused by elevated levels of embolism is likely to be one of the key drivers of drought-induced mortality following long-term soil moisture deficit. We demonstrate that some hydraulic traits changed with tree size, however, the direction and magnitude of the change was controlled by taxonomic identity. Our results suggest that Amazonian trees, both small and large, have limited capacity to acclimate their hydraulic systems to future droughts, potentially making them more at risk of drought-induced mortality.
Collapse
Affiliation(s)
- Paulo R L Bittencourt
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Instituto de Biologia, University of Campinas (UNICAMP), Campinas, Brazil
| | - Rafael S Oliveira
- Instituto de Biologia, University of Campinas (UNICAMP), Campinas, Brazil
- Biological Sciences, UWA, Perth, WA, Australia
| | | | - Andre L Giles
- Instituto de Biologia, University of Campinas (UNICAMP), Campinas, Brazil
| | - Ingrid Coughlin
- Departamento de Biologia, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Patricia B Costa
- Instituto de Biologia, University of Campinas (UNICAMP), Campinas, Brazil
- Biological Sciences, UWA, Perth, WA, Australia
| | - David C Bartholomew
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | | | - Fernanda V Barros
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Instituto de Biologia, University of Campinas (UNICAMP), Campinas, Brazil
| | - Joao A S Junior
- Instituto de Biologia, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Patrick Meir
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Lucy Rowland
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
13
|
Pereira L, Bittencourt PRL, Pacheco VS, Miranda MT, Zhang Y, Oliveira RS, Groenendijk P, Machado EC, Tyree MT, Jansen S, Rowland L, Ribeiro RV. The Pneumatron: An automated pneumatic apparatus for estimating xylem vulnerability to embolism at high temporal resolution. PLANT, CELL & ENVIRONMENT 2020; 43:131-142. [PMID: 31461536 DOI: 10.1111/pce.13647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 05/29/2023]
Abstract
Xylem vulnerability to embolism represents an important trait to determine species distribution patterns and drought resistance. However, estimating embolism resistance frequently requires time-consuming and ambiguous hydraulic lab measurements. Based on a recently developed pneumatic method, we present and test the "Pneumatron", a device that generates high time-resolution and fully automated vulnerability curves. Embolism resistance is estimated by applying a partial vacuum to extract air from an excised xylem sample, while monitoring the pressure change over time. Although the amount of gas extracted is strongly correlated with the percentage loss of xylem conductivity, validation of the Pneumatron was performed by comparison with the optical method for Eucalyptus camaldulensis leaves. The Pneumatron improved the precision of the pneumatic method considerably, facilitating the detection of small differences in the (percentage of air discharged [PAD] < 0.47%). Hence, the Pneumatron can directly measure the 50% PAD without any fitting of vulnerability curves. PAD and embolism frequency based on the optical method were strongly correlated (r2 = 0.93) for E. camaldulensis. By providing an open source platform, the Pneumatron represents an easy, low-cost, and powerful tool for field measurements, which can significantly improve our understanding of plant-water relations and the mechanisms behind embolism.
Collapse
Affiliation(s)
- Luciano Pereira
- Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, Brazil
- Laboratory of Crop Physiology, Department of Plant Biology, Institute of Biology, P.O. Box 6109, University of Campinas (UNICAMP), Campinas, 13083-970, Brazil
| | - Paulo R L Bittencourt
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Department of Plant Biology, Institute of Biology, P.O. Box 6109, UNICAMP, Campinas, 13083-970, Brazil
| | - Vinícius S Pacheco
- Department of Plant Biology, Institute of Biology, P.O. Box 6109, UNICAMP, Campinas, 13083-970, Brazil
| | - Marcela T Miranda
- Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, Brazil
| | - Ya Zhang
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, 89081, Germany
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, P.O. Box 6109, UNICAMP, Campinas, 13083-970, Brazil
| | - Peter Groenendijk
- Department of Plant Biology, Institute of Biology, P.O. Box 6109, UNICAMP, Campinas, 13083-970, Brazil
| | - Eduardo C Machado
- Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, Brazil
| | - Melvin T Tyree
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, 89081, Germany
| | - Lucy Rowland
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Rafael V Ribeiro
- Laboratory of Crop Physiology, Department of Plant Biology, Institute of Biology, P.O. Box 6109, University of Campinas (UNICAMP), Campinas, 13083-970, Brazil
| |
Collapse
|
14
|
Zhang Y, Carmesin C, Kaack L, Klepsch MM, Kotowska M, Matei T, Schenk HJ, Weber M, Walther P, Schmidt V, Jansen S. High porosity with tiny pore constrictions and unbending pathways characterize the 3D structure of intervessel pit membranes in angiosperm xylem. PLANT, CELL & ENVIRONMENT 2020; 43:116-130. [PMID: 31595539 DOI: 10.1111/pce.13654] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 05/29/2023]
Abstract
Pit membranes between xylem vessels play a major role in angiosperm water transport. Yet, their three-dimensional (3D) structure as fibrous porous media remains unknown, largely due to technical challenges and sample preparation artefacts. Here, we applied a modelling approach based on thickness measurements of fresh and fully shrunken pit membranes of seven species. Pore constrictions were also investigated visually by perfusing fresh material with colloidal gold particles of known sizes. Based on a shrinkage model, fresh pit membranes showed tiny pore constrictions of ca. 20 nm, but a very high porosity (i.e. pore volume fraction) of on average 0.81. Perfusion experiments showed similar pore constrictions in fresh samples, well below 50 nm based on transmission electron microscopy. Drying caused a 50% shrinkage of pit membranes, resulting in much smaller pore constrictions. These findings suggest that pit membranes represent a mesoporous medium, with the pore space characterized by multiple constrictions. Constrictions are much smaller than previously assumed, but the pore volume is large and highly interconnected. Pores do not form highly tortuous, bent, or zigzagging pathways. These insights provide a novel view on pit membranes, which is essential to develop a mechanistic, 3D understanding of air-seeding through this porous medium.
Collapse
Affiliation(s)
- Ya Zhang
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- College of Life Sciences, Anhui Normal University, Beijingdong Road 1, 241000, Wuhu, Anhui, China
| | - Cora Carmesin
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Matthias M Klepsch
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Martyna Kotowska
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Tabea Matei
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - H Jochen Schenk
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd, CA, 92831-3599, Fullerton, USA
| | - Matthias Weber
- Institute of Stochastics, Ulm University, Helmholtzstraße 18, 89069, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Volker Schmidt
- Institute of Stochastics, Ulm University, Helmholtzstraße 18, 89069, Ulm, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
15
|
Mencuccini M, Rosas T, Rowland L, Choat B, Cornelissen H, Jansen S, Kramer K, Lapenis A, Manzoni S, Niinemets Ü, Reich P, Schrodt F, Soudzilovskaia N, Wright IJ, Martínez-Vilalta J. Leaf economics and plant hydraulics drive leaf : wood area ratios. THE NEW PHYTOLOGIST 2019; 224:1544-1556. [PMID: 31215647 DOI: 10.1111/nph.15998] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Biomass and area ratios between leaves, stems and roots regulate many physiological and ecological processes. The Huber value Hv (sapwood area/leaf area ratio) is central to plant water balance and drought responses. However, its coordination with key plant functional traits is poorly understood, and prevents developing trait-based prediction models. Based on theoretical arguments, we hypothesise that global patterns in Hv of terminal woody branches can be predicted from variables related to plant trait spectra, that is plant hydraulics and size and leaf economics. Using a global compilation of 1135 species-averaged Hv , we show that Hv varies over three orders of magnitude. Higher Hv are seen in short small-leaved low-specific leaf area (SLA) shrubs with low Ks in arid relative to tall large-leaved high-SLA trees with high Ks in moist environments. All traits depend on climate but climatic correlations are stronger for explanatory traits than Hv . Negative isometry is found between Hv and Ks , suggesting a compensation to maintain hydraulic supply to leaves across species. This work identifies the major global drivers of branch sapwood/leaf area ratios. Our approach based on widely available traits facilitates the development of accurate models of above-ground biomass allocation and helps predict vegetation responses to drought.
Collapse
Affiliation(s)
- Maurizio Mencuccini
- CREAF, Bellaterra, 08193, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Teresa Rosas
- CREAF, Bellaterra, 08193, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Lucy Rowland
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, EX4 4QE, Exeter, UK
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia
| | - Hans Cornelissen
- Systems Ecology, Department of Ecological Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Koen Kramer
- Wageningen University and Research, Droevendaalsesteeg 1, 6700 AA, Wageningen, the Netherlands
| | - Andrei Lapenis
- Department of Geography, New York State University at Albany, Albany, NY, 12222, USA
| | - Stefano Manzoni
- Physical Geography, Stockholm University, SE-10691, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, SE-10691, Stockholm, Sweden
| | - Ülo Niinemets
- Estonian University of Life Science, Kreutzwladi 1, 51006, Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| | - Peter Reich
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia
- Department of Forest Resources, University of Minnesota, St Paul, MN, 55108, USA
| | - Franziska Schrodt
- School of Geography, University of Nottingham, NG7 2RD, Nottingham, UK
| | - Nadia Soudzilovskaia
- Institute of Environmental Sciences, CML, Leiden University, Einsteinweg 2, 2333 CC, Leiden, the Netherlands
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra, 08193, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
16
|
De Baerdemaeker NJF, Arachchige KNR, Zinkernagel J, Van den Bulcke J, Van Acker J, Schenk HJ, Steppe K. The stability enigma of hydraulic vulnerability curves: addressing the link between hydraulic conductivity and drought-induced embolism. TREE PHYSIOLOGY 2019; 39:1646-1664. [PMID: 31274162 DOI: 10.1093/treephys/tpz078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/29/2019] [Accepted: 06/13/2019] [Indexed: 05/29/2023]
Abstract
Maintaining xylem water transport under drought is vital for plants, but xylem failure does occur when drought-induced embolisms form and progressively spread through the xylem. The hydraulic method is widely considered the gold standard to quantify drought-induced xylem embolism. The method determines hydraulic conductivity (Kh) in cut branch samples, dehydrated to specific drought levels, by pushing water through them. The technique is widely considered for its reliable Kh measurements, but there is some uncertainty in the literature over how to define stable Kh and how that relates to the degree of xylem embolism formation. Therefore, the most common setup for this method was extended to measure four parameters: (i) inlet Kh, (ii) outlet Kh, (iii) radial flow from xylem to surrounding living tissue and (iv) the pressure difference across the sample. From a strictly theoretical viewpoint, hydraulic steady state, where inflow equals outflow and radial flow is zero, will result in stable Kh. Application of the setup to Malus domestica Borkh. branches showed that achieving hydraulic steady state takes considerable time (up to 300 min) and that time to reach steady state increased with declining xylem water potentials. During each experimental run, Kh and xylem water potentials dynamically increased, which was supported by X-ray computed microtomography visualizations of embolism refilling under both high- (8 kPa) and low-pressure (2 kPa) heads. Supplying pressurized water can hence cause artificial refilling of vessels, which makes it difficult to achieve a truly stable Kh in partially embolized xylem.
Collapse
Affiliation(s)
- Niels J F De Baerdemaeker
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | | | - Jana Zinkernagel
- Department of Vegetable Crops, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Jan Van den Bulcke
- UGCT-Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Joris Van Acker
- UGCT-Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - H Jochen Schenk
- Plants and H2O Laboratory, Department of Biological Science, California State University Fullerton, PO Box 6850, Fullerton, CA 92834-6850, USA
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
17
|
Sapes G, Roskilly B, Dobrowski S, Maneta M, Anderegg WRL, Martinez-Vilalta J, Sala A. Plant water content integrates hydraulics and carbon depletion to predict drought-induced seedling mortality. TREE PHYSIOLOGY 2019; 39:1300-1312. [PMID: 31135927 DOI: 10.1093/treephys/tpz062] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 05/25/2023]
Abstract
Widespread drought-induced forest mortality (DIM) is expected to increase with climate change and drought, and is expected to have major impacts on carbon and water cycles. For large-scale assessment and management, it is critical to identify variables that integrate the physiological mechanisms of DIM and signal risk of DIM. We tested whether plant water content, a variable that can be remotely sensed at large scales, is a useful indicator of DIM risk at the population level. We subjected Pinus ponderosa Douglas ex C. Lawson seedlings to experimental drought using a point of no return experimental design. Periodically during the drought, independent sets of seedlings were sampled to measure physiological state (volumetric water content (VWC), percent loss of conductivity (PLC) and non-structural carbohydrates) and to estimate population-level probability of mortality through re-watering. We show that plant VWC is a good predictor of population-level DIM risk and exhibits a threshold-type response that distinguishes plants at no risk from those at increasing risk of mortality. We also show that plant VWC integrates the mechanisms involved in individual tree death: hydraulic failure (PLC), carbon depletion across organs and their interaction. Our results are promising for landscape-level monitoring of DIM risk.
Collapse
Affiliation(s)
- Gerard Sapes
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Beth Roskilly
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Solomon Dobrowski
- Department of Forest Management, University of Montana, Missoula, MT 59812, USA
| | - Marco Maneta
- Department of Geosciences, University of Montana, Missoula, MT 59812, USA
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84103, USA
| | - Jordi Martinez-Vilalta
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF) Cerdanyola del Vallès 08193 Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193 Barcelona, Spain
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
18
|
Zinkernagel J, Mayer N. Water absorption into stems affects the measurement of vulnerability curves as a function of plant water status. ACTA ACUST UNITED AC 2018. [DOI: 10.17660/actahortic.2018.1222.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Zhang Y, Lamarque LJ, Torres-Ruiz JM, Schuldt B, Karimi Z, Li S, Qin DW, Bittencourt P, Burlett R, Cao KF, Delzon S, Oliveira R, Pereira L, Jansen S. Testing the plant pneumatic method to estimate xylem embolism resistance in stems of temperate trees. TREE PHYSIOLOGY 2018; 38:1016-1025. [PMID: 29474679 PMCID: PMC6025199 DOI: 10.1093/treephys/tpy015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/19/2018] [Accepted: 01/31/2018] [Indexed: 05/23/2023]
Abstract
Methods to estimate xylem embolism resistance generally rely on hydraulic measurements, which can be far from straightforward. Recently, a pneumatic method based on air flow measurements of terminal branch ends was proposed to construct vulnerability curves by linking the amount of air extracted from a branch with the degree of embolism. We applied this novel technique for 10 temperate tree species, including six diffuse, two ring-porous and two gymnosperm species, and compared the pneumatic curves with hydraulic ones obtained from either the flow-centrifuge or the hydraulic-bench dehydration method. We found that the pneumatic method provides a good estimate of the degree of xylem embolism for all angiosperm species. The xylem pressure at 50% and 88% loss of hydraulic conductivity (i.e., Ψ50 and Ψ88) based on the methods applied showed a strongly significant correlation for all eight angiosperms. However, the pneumatic method showed significantly reduced Ψ50 values for the two conifers. Our findings suggest that the pneumatic method could provide a fast and accurate approach for angiosperms due to its convenience and feasibility, at least within the range of embolism resistances covered by our samples.
Collapse
Affiliation(s)
- Ya Zhang
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, Germany
| | - Laurent J Lamarque
- BIOGECO, INRA, University of Bordeaux, Pessac, France
- EGFV, INRA, University of Bordeaux, Villenave d’Ornon, France
| | | | - Bernhard Schuldt
- Albrecht-von-Haller-Institute for Plant Sciences, Göttingen University, Göttingen, Germany
| | - Zohreh Karimi
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| | - Shan Li
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, Germany
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, PR China
| | - De-Wen Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, PR China
| | - Paulo Bittencourt
- Department of Plant Biology, Institute of Biology, PO Box 6109, University of Campinas – UNICAMP, Campinas, SP, Brazil
| | - Régis Burlett
- BIOGECO, INRA, University of Bordeaux, Pessac, France
| | - Kun-Fang Cao
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, PR China
| | | | - Rafael Oliveira
- Department of Plant Biology, Institute of Biology, PO Box 6109, University of Campinas – UNICAMP, Campinas, SP, Brazil
| | - Luciano Pereira
- Department of Plant Biology, Institute of Biology, PO Box 6109, University of Campinas – UNICAMP, Campinas, SP, Brazil
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, Germany
| |
Collapse
|
20
|
Wason JW, Anstreicher KS, Stephansky N, Huggett BA, Brodersen CR. Hydraulic safety margins and air-seeding thresholds in roots, trunks, branches and petioles of four northern hardwood trees. THE NEW PHYTOLOGIST 2018; 219:77-88. [PMID: 29663388 DOI: 10.1111/nph.15135] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/28/2018] [Indexed: 05/23/2023]
Abstract
During drought, xylem sap pressures can approach or exceed critical thresholds where gas embolisms form and propagate through the xylem network, leading to systemic hydraulic dysfunction. The vulnerability segmentation hypothesis (VSH) predicts that low-investment organs (e.g. leaf petioles) should be more vulnerable to embolism spread compared to high-investment, perennial organs (e.g. trunks, stems), as a means of mitigating embolism spread and excessive negative pressures in the perennial organs. We tested this hypothesis by measuring air-seeding thresholds using the single-vessel air-injection method and calculating hydraulic safety margins in four northern hardwood tree species of the northeastern United States, in both saplings and canopy height trees, and at five points along the soil-plant-atmosphere continuum. Acer rubrum was the most resistant to air-seeding and generally supported the VSH. However, Fagus grandifolia, Fraxinus americana and Quercus rubra showed little to no variation in air-seeding thresholds across organ types within each species. Leaf-petiole xylem operated at water potentials close to or exceeding their hydraulic safety margins in all species, whereas roots, trunks and stems of A. rubrum, F. grandifolia and Q. rubra operated within their safety margins, even during the third-driest summer in the last 100 yr.
Collapse
Affiliation(s)
- Jay W Wason
- School of Forestry & Environmental Studies, Yale University, New Haven, CT, 06511, USA
| | | | | | - Brett A Huggett
- Department of Biology, Bates College, Lewiston, ME, 04240, USA
| | - Craig R Brodersen
- School of Forestry & Environmental Studies, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
21
|
Zhang Y, Klepsch M, Jansen S. Bordered pits in xylem of vesselless angiosperms and their possible misinterpretation as perforation plates. PLANT, CELL & ENVIRONMENT 2017; 40:2133-2146. [PMID: 28667823 DOI: 10.1111/pce.13014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Vesselless wood represents a rare phenomenon within the angiosperms, characterizing Amborellaceae, Trochodendraceae and Winteraceae. Anatomical observations of bordered pits and their pit membranes based on light, scanning and transmission electron microscopy (SEM and TEM) are required to understand functional questions surrounding vesselless angiosperms and the potential occurrence of cryptic vessels. Interconduit pit membranes in 11 vesselless species showed a similar ultrastructure as mesophytic vessel-bearing angiosperms, with a mean thickness of 245 nm (± 53, SD; n = six species). Shrunken, damaged and aspirated pit membranes, which were 52% thinner than pit membranes in fresh samples (n = four species), occurred in all dried-and-rehydrated samples, and in fresh latewood of Tetracentron sinense and Trochodendron aralioides. SEM demonstrated that shrunken pit membranes showed artificially enlarged, > 100 nm wide pores. Moreover, perfusion experiments with stem segments of Drimys winteri showed that 20 and 50 nm colloidal gold particles only passed through 2 cm long dried-and-rehydrated segments, but not through similar sized fresh ones. These results indicate that pit membrane shrinkage is irreversible and associated with a considerable increase in pore size. Moreover, our findings suggest that pit membrane damage, which may occur in planta, could explain earlier records of vessels in vesselless angiosperms.
Collapse
Affiliation(s)
- Ya Zhang
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Matthias Klepsch
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
22
|
Klein T, Cohen S, Paudel I, Preisler Y, Rotenberg E, Yakir D. Diurnal dynamics of water transport, storage and hydraulic conductivity in pine trees under seasonal drought. IFOREST - BIOGEOSCIENCES AND FORESTRY 2016; 9:710-719. [PMID: 0 DOI: 10.3832/ifor2046-009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
23
|
García-Tejera O, López-Bernal Á, Villalobos FJ, Orgaz F, Testi L. Effect of soil temperature on root resistance: implications for different trees under Mediterranean conditions. TREE PHYSIOLOGY 2016; 36:469-78. [PMID: 26769470 DOI: 10.1093/treephys/tpv126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/11/2015] [Indexed: 05/27/2023]
Abstract
The effect of temperature on radial root hydraulic specific resistance (Rp) is a known phenomenon; however, the impact ofRpvariations expected from soil temperature changes over the tree root system is unknown. The present article analyses the relations hip ofRpwith temperature in olive 'Picual' and a hybrid rootstock, GF677, at five different temperatures, showing that a variation of 3- and 4.5-folds exists for olive 'Picual' and GF677 in the range from 10 to 20 °C. The functions obtained were scaled up to show the theoretical changes of total radial root system resistance in a common tree orchard in a Mediterranean climate at a daily and seasonal scale, using recorded soil temperature values: a difference between summer and winter of 3.5-fold for olive 'Picual' and 9-fold for GF677 was observed. Nevertheless,Rpchanges are not only related to temperature, as cavitation or circadian rhythms in aquaporin expression may also play a role. The results obtained from an experiment with the two cultivars submitted to constant pressure and temperature during several hours exhibited a variation inRp, but this was of lower magnitude than that observed due to temperature changes. Finally, a comparison ofRpat 25 °C between GF677 and GN15 (another rootstock obtained from the same parental as GF677) showed significant differences. According to our results, diurnal and seasonal changes inRpdue to temperature variations are of significant importance, and it would therefore be advisable to assess them explicitly into soil-plant-atmosphere continuum models.
Collapse
Affiliation(s)
- Omar García-Tejera
- Instituto de Agricultura Sostenible - CSIC, Apartado 4084, 14080 Córdoba, Spain
| | | | - Francisco J Villalobos
- Instituto de Agricultura Sostenible - CSIC, Apartado 4084, 14080 Córdoba, Spain Dep. Agronomía, Universidad de Córdoba, Apartado 3048, 14080 Córdoba, Spain
| | - Francisco Orgaz
- Instituto de Agricultura Sostenible - CSIC, Apartado 4084, 14080 Córdoba, Spain
| | - Luca Testi
- Instituto de Agricultura Sostenible - CSIC, Apartado 4084, 14080 Córdoba, Spain
| |
Collapse
|
24
|
Schenk HJ, Espino S, Visser A, Esser BK. Dissolved atmospheric gas in xylem sap measured with membrane inlet mass spectrometry. PLANT, CELL & ENVIRONMENT 2016; 39:944-50. [PMID: 26868162 DOI: 10.1111/pce.12678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/07/2015] [Indexed: 05/13/2023]
Abstract
A new method is described for measuring dissolved gas concentrations in small volumes of xylem sap using membrane inlet mass spectrometry. The technique can be used to determine concentrations of atmospheric gases, such as argon, as reported here, or for any dissolved gases and their isotopes for a variety of applications, such as rapid detection of trace gases from groundwater only hours after they were taken up by trees and rooting depth estimation. Atmospheric gas content in xylem sap directly affects the conditions and mechanisms that allow for gas removal from xylem embolisms, because gas can dissolve into saturated or supersaturated sap only under gas pressure that is above atmospheric pressure. The method was tested for red trumpet vine, Distictis buccinatoria (Bignoniaceae), by measuring atmospheric gas concentrations in sap collected at times of minimum and maximum daily temperature and during temperature increase and decline. Mean argon concentration in xylem sap did not differ significantly from saturation levels for the temperature and pressure conditions at any time of collection, but more than 40% of all samples were supersaturated, especially during the warm parts of day. There was no significant diurnal pattern, due to high variability between samples.
Collapse
Affiliation(s)
- H Jochen Schenk
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA, 92831, USA
| | - Susana Espino
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA, 92831, USA
| | - Ate Visser
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Bradley K Esser
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| |
Collapse
|
25
|
Ogasa MY, Utsumi Y, Miki NH, Yazaki K, Fukuda K. Cutting stems before relaxing xylem tension induces artefacts in Vitis coignetiae, as evidenced by magnetic resonance imaging. PLANT, CELL & ENVIRONMENT 2016; 39:329-337. [PMID: 26234764 DOI: 10.1111/pce.12617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/17/2015] [Indexed: 06/04/2023]
Abstract
It was recently reported that cutting artefacts occur in some species when branches under tension are cut, even under water. We used non-destructive magnetic resonance imaging (MRI) to investigate the change in xylem water distribution at the cellular level in Vitis coignetiae standing stems before and after relaxing tension. Less than 3% of vessels were cavitated when stems under tension were cut under water at a position shorter than the maximum vessel length (MVL) from the MRI point, in three of four plants. The vessel contents remained at their original status, and cutting artefact vessel cavitation declined to <1% when stems were cut at a position farther than the MVL from the MRI point. Water infiltration into the originally cavitated vessels after cutting the stem, i.e. vessel refilling, was found in <1% of vessels independent of cutting position on three of nine plants. The results indicate that both vessel cavitation and refilling occur in xylem tissue under tension following stem cutting, but its frequency is quite small, and artefacts can be minimized altogether if the distance between the monitoring position and the cutting point is longer than the MVL.
Collapse
Affiliation(s)
- Mayumi Y Ogasa
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8563, Japan
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Tsukuba, 305-8687, Japan
| | - Yasuhiro Utsumi
- Kyushu University Forest, Kyushu University, Ashoro, 089-3705, Japan
| | - Naoko H Miki
- Department of Environmental Ecology, Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Kenichi Yazaki
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Tsukuba, 305-8687, Japan
| | - Kenji Fukuda
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8563, Japan
| |
Collapse
|
26
|
Knipfer T, Brodersen CR, Zedan A, Kluepfel DA, McElrone AJ. Patterns of drought-induced embolism formation and spread in living walnut saplings visualized using X-ray microtomography. TREE PHYSIOLOGY 2015; 35:744-55. [PMID: 26063708 DOI: 10.1093/treephys/tpv040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/27/2015] [Indexed: 05/23/2023]
Abstract
Embolism formation and spread are dependent on conduit structure and xylem network connectivity. Detailed spatial analysis has been limited due to a lack of non-destructive methods to visualize these processes in living plants. We used synchrotron X-ray computed tomography (microCT) to visualize these processes in vivo for Juglans microcarpa Berl. saplings subjected to drought, and also evaluated embolism repair capability after re-watering. Cavitation was not detected in vivo until stem water potentials (Ψ(stem)) reached -2.2 MPa, and loss of stem hydraulic conductivity as derived from microCT images predicted that 50% of conductivity was lost at Ψ(stem) of ∼ -3.5 MPa; xylem vulnerability as determined with the centrifuge method was comparable only in the range of Ψ(stem) from -2.5 to -3.5 MPa. MicroCT images showed that cavitation appeared initially in isolated vessels not connected to other air-filled conduits. Once embolized vessels were present, multiple vessels in close proximity cavitated, and 3-D analysis along the stem axis revealed some connections between cavitated vessels. A tomography-derived automated xylem network analysis found that only 36% of vessels had one or more connections to other vessels. Cavitation susceptibility was related to vessel diameter, with large diameter vessels (>40 μm, mean diameter 25-30 μm) cavitating mainly under moderate stress (Ψ(stem) > -3 MPa) and small diameter vessels (<30 μm) under severe stress. After re-watering there was no evidence for short or longer term vessel refilling over 2 weeks despite a rapid recovery of plant water status. The low embolism susceptibility in 1-year-old J. microcarpa may aid sapling survival during establishment.
Collapse
Affiliation(s)
- Thorsten Knipfer
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | - Craig R Brodersen
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT 06511, USA
| | - Amr Zedan
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | - Daniel A Kluepfel
- US Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA
| | - Andrew J McElrone
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA US Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA
| |
Collapse
|
27
|
Paulsen JD, Carmigniani R, Kannan A, Burton JC, Nagel SR. Coalescence of bubbles and drops in an outer fluid. Nat Commun 2015; 5:3182. [PMID: 24458225 DOI: 10.1038/ncomms4182] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/30/2013] [Indexed: 11/09/2022] Open
Abstract
When two liquid drops touch, a microscopic connecting liquid bridge forms and rapidly grows as the two drops merge into one. Whereas coalescence has been thoroughly studied when drops coalesce in vacuum or air, many important situations involve coalescence in a dense surrounding fluid, such as oil coalescence in brine. Here we study the merging of gas bubbles and liquid drops in an external fluid. Our data indicate that the flows occur over much larger length scales in the outer fluid than inside the drops themselves. Thus, we find that the asymptotic early regime is always dominated by the viscosity of the drops, independent of the external fluid. A phase diagram showing the crossovers into the different possible late-time dynamics identifies a dimensionless number that signifies when the external viscosity can be important.
Collapse
Affiliation(s)
- Joseph D Paulsen
- The Department of Physics, The James Franck and Enrico Fermi Institutes, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Rémi Carmigniani
- The Department of Physics, The James Franck and Enrico Fermi Institutes, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Anerudh Kannan
- The Department of Physics, The James Franck and Enrico Fermi Institutes, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Justin C Burton
- The Department of Physics, The James Franck and Enrico Fermi Institutes, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Sidney R Nagel
- The Department of Physics, The James Franck and Enrico Fermi Institutes, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
28
|
Schenk HJ, Steppe K, Jansen S. Nanobubbles: a new paradigm for air-seeding in xylem. TRENDS IN PLANT SCIENCE 2015; 20:199-205. [PMID: 25680733 DOI: 10.1016/j.tplants.2015.01.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 01/13/2015] [Accepted: 01/17/2015] [Indexed: 05/23/2023]
Abstract
Long-distance water transport in plants relies on a system that typically operates under negative pressure and is prone to hydraulic failure due to gas bubble formation. One primary mechanism of bubble formation takes place at nanoporous pit membranes between neighboring conduits. We argue that this process is likely to snap off nanobubbles because the local increase in liquid pressure caused by entry of air-water menisci into the complex pit membrane pores would energetically favor nanobubble formation over instant cavitation. Nanobubbles would be stabilized by surfactants and by gas supersaturation of the sap, may dissolve, fragment into smaller bubbles, or create embolisms. The hypothesis that safe and stable nanobubbles occur in plants adds a new component supporting the cohesion-tension theory.
Collapse
Affiliation(s)
- H Jochen Schenk
- Department of Biological Science, California State University Fullerton, PO Box 6850, Fullerton, CA 92834-6850, USA
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Steven Jansen
- Institute for Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
29
|
Baert A, De Schepper V, Steppe K. Variable hydraulic resistances and their impact on plant drought response modelling. TREE PHYSIOLOGY 2015; 35:439-449. [PMID: 25273815 DOI: 10.1093/treephys/tpu078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 08/17/2014] [Indexed: 06/03/2023]
Abstract
Plant drought responses are still not fully understood. Improved knowledge on drought responses is, however, crucial to better predict their impact on individual plant and ecosystem functioning. Mechanistic models in combination with plant measurements are promising for obtaining information on plant water status and can assist us in understanding the effect of limiting soil water availability and drought stress. While existing models are reliable under sufficient soil water availability, they generally fail under dry conditions as not all appropriate mechanisms seem yet to have been implemented. We therefore aimed at identifying mechanisms underlying plant drought responses, and in particular investigated the behaviour of hydraulic resistances encountered in the soil and xylem for grapevine (Vitis vinifera L.) and oak (Quercus robur L.). A variable hydraulic soil-to-stem resistance was necessary to describe plant drought responses. In addition, implementation of a variable soil-to-stem hydraulic resistance enabled us to generate an in situ soil-to-stem vulnerability curve, which might be an alternative to the conventionally used vulnerability curves. Furthermore, a daily recalibration of the model revealed a drought-induced increase in radial hydraulic resistance between xylem and elastic living tissues. Accurate information on plant hydraulic resistances and simulation of plant drought responses can foster important discussions regarding the functioning of plants and ecosystems during droughts.
Collapse
Affiliation(s)
- Annelies Baert
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Veerle De Schepper
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| |
Collapse
|
30
|
Kotowska MM, Hertel D, Rajab YA, Barus H, Schuldt B. Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth. FRONTIERS IN PLANT SCIENCE 2015; 6:191. [PMID: 25873922 PMCID: PMC4379754 DOI: 10.3389/fpls.2015.00191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/09/2015] [Indexed: 05/04/2023]
Abstract
For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing toward the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, WD showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and WD. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation mechanisms to environment.
Collapse
Affiliation(s)
- Martyna M. Kotowska
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, GöttingenGermany
| | - Dietrich Hertel
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, GöttingenGermany
| | - Yasmin Abou Rajab
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, GöttingenGermany
| | - Henry Barus
- Faculty of Agriculture, Tadulaku University, PaluIndonesia
| | - Bernhard Schuldt
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, GöttingenGermany
| |
Collapse
|
31
|
Aguadé D, Poyatos R, Gómez M, Oliva J, Martínez-Vilalta J. The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.). TREE PHYSIOLOGY 2015; 35:229-42. [PMID: 25724949 DOI: 10.1093/treephys/tpv005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/16/2015] [Indexed: 05/23/2023]
Abstract
Drought-related tree die-off episodes have been observed in all vegetated continents. Despite much research effort, however, the multiple interactions between carbon starvation, hydraulic failure and biotic agents in driving tree mortality under field conditions are still not well understood. We analysed the seasonal variability of non-structural carbohydrates (NSCs) in four organs (leaves, branches, trunk and roots), the vulnerability to embolism in roots and branches, native embolism (percentage loss of hydraulic conductivity (PLC)) in branches and the presence of root rot pathogens in defoliated and non-defoliated individuals in a declining Scots pine (Pinus sylvestris L.) population in the NE Iberian Peninsula in 2012, which included a particularly dry and warm summer. No differences were observed between defoliated and non-defoliated pines in hydraulic parameters, except for a higher vulnerability to embolism at pressures below -2 MPa in roots of defoliated pines. No differences were found between defoliation classes in branch PLC. Total NSC (TNSC, soluble sugars plus starch) values decreased during drought, particularly in leaves. Defoliation reduced TNSC levels across tree organs, especially just before (June) and during (August) drought. Root rot infection by the fungal pathogen Onnia P. Karst spp. was detected but it did not appear to be associated to tree defoliation. However, Onnia infection was associated with reduced leaf-specific hydraulic conductivity and sapwood depth, and thus contributed to hydraulic impairment, especially in defoliated pines. Infection was also associated with virtually depleted root starch reserves during and after drought in defoliated pines. Moreover, defoliated and infected trees tended to show lower basal area increment. Overall, our results show the intertwined nature of physiological mechanisms leading to drought-induced mortality and the inherent difficulty of isolating their contribution under field conditions.
Collapse
Affiliation(s)
- D Aguadé
- CREAF, Cerdanyola del Vallès, E-08193 Barcelona, Spain Universitat Autònoma Barcelona, Cerdanyola del Vallès, E-08193 Barcelona, Spain
| | - R Poyatos
- CREAF, Cerdanyola del Vallès, E-08193 Barcelona, Spain
| | - M Gómez
- Forest Science Centre of Catalonia, Solsona, Catalonia, Spain
| | - J Oliva
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Box 7026, S-750 07 Uppsala, Sweden
| | - J Martínez-Vilalta
- CREAF, Cerdanyola del Vallès, E-08193 Barcelona, Spain Universitat Autònoma Barcelona, Cerdanyola del Vallès, E-08193 Barcelona, Spain
| |
Collapse
|
32
|
Abstract
Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees--a readily available, inexpensive, biodegradable, and disposable material--can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm(3) of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings.
Collapse
|
33
|
Tobin MF, Pratt RB, Jacobsen AL, De Guzman ME. Xylem vulnerability to cavitation can be accurately characterised in species with long vessels using a centrifuge method. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:496-504. [PMID: 23127246 DOI: 10.1111/j.1438-8677.2012.00678.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 08/23/2012] [Indexed: 06/01/2023]
Abstract
Vulnerability to cavitation curves describe the decrease in xylem hydraulic conductivity as xylem pressure declines. Several techniques for constructing vulnerability curves use centrifugal force to induce negative xylem pressure in stem or root segments. Centrifuge vulnerability curves constructed for long-vesselled species have been hypothesised to overestimate xylem vulnerability to cavitation due to increased vulnerability of vessels cut open at stem ends that extend to the middle or entirely through segments. We tested two key predictions of this hypothesis: (i) centrifugation induces greater embolism than dehydration in long-vesselled species, and (ii) the proportion of open vessels changes centrifuge vulnerability curves. Centrifuge and dehydration vulnerability curves were compared for a long- and short-vesselled species. The effect of open vessels was tested in four species by comparing centrifuge vulnerability curves for stems of two lengths. Centrifuge and dehydration vulnerability curves agreed well for the long- and short-vesselled species. Centrifuge vulnerability curves constructed using two stem lengths were similar. Also, the distribution of embolism along the length of centrifuged stems matched the theoretical pressure profile induced by centrifugation. We conclude that vulnerability to cavitation can be accurately characterised with vulnerability curves constructed using a centrifuge technique, even in long-vesselled species.
Collapse
Affiliation(s)
- M F Tobin
- Department of Biology, California State University, Bakersfield, Bakersfield, CA 93311, USA.
| | | | | | | |
Collapse
|
34
|
Schuldt B, Leuschner C, Brock N, Horna V. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees. TREE PHYSIOLOGY 2013; 33:161-74. [PMID: 23292668 DOI: 10.1093/treephys/tps122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
It is generally assumed that the largest vessels are occurring in the roots and that vessel diameters and the related hydraulic conductance in the xylem are decreasing acropetally from roots to leaves. With this study in five tree species of a perhumid tropical rainforest in Sulawesi (Indonesia), we searched for patterns in hydraulic architecture and axial conductivity along the flow path from small-diameter roots through strong roots and the trunk to distal sun-canopy twigs. Wood density differed by not more than 10% across the different flow path positions in a species, and branch and stem wood density were closely related in three of the five species. Other than wood density, the wood anatomical and xylem hydraulic traits varied in dependence on the position along the flow path, but were unrelated to wood density within a tree. In contrast to reports from conifers and certain dicotyledonous species, we found a hump-shaped variation in vessel diameter and sapwood area--specific conductivity along the flow path in all five species with a maximum in the trunk and strong roots and minima in both small roots and twigs; the vessel size depended on the diameter of the organ. This pattern might be an adaptation to the perhumid climate with a low risk of hydraulic failure. Despite a similar mean vessel diameter in small roots and twigs, the two distal organs, hydraulically weighted mean vessel diameters were on average 30% larger in small roots, resulting in ∼ 85% higher empirical and theoretical specific conductivities. Relative vessel lumen area in percent of sapwood area decreased linearly by 70% from roots to twigs, reflecting the increase in sclerenchymatic tissue and tracheids in acropetal direction in the xylem. Vessel size was more closely related to the organ diameter than to the distance along the root-to-shoot flow path. We conclude that (i) the five co-occurring tree species show convergent patterns in their hydraulic architecture despite different growth strategies, and (ii) the paradigm assuming continuous acropetal vessel tapering and decrease in specific conductance from fine roots towards distal twigs needs reconsideration.
Collapse
Affiliation(s)
- Bernhard Schuldt
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
| | | | | | | |
Collapse
|
35
|
Torres-Ruiz JM, Sperry JS, Fernández JE. Improving xylem hydraulic conductivity measurements by correcting the error caused by passive water uptake. PHYSIOLOGIA PLANTARUM 2012; 146:129-35. [PMID: 22443461 DOI: 10.1111/j.1399-3054.2012.01619.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Xylem hydraulic conductivity (K) is typically defined as K = F/(P/L), where F is the flow rate through a xylem segment associated with an applied pressure gradient (P/L) along the segment. This definition assumes a linear flow-pressure relationship with a flow intercept (F(0)) of zero. While linearity is typically the case, there is often a non-zero F(0) that persists in the absence of leaks or evaporation and is caused by passive uptake of water by the sample. In this study, we determined the consequences of failing to account for non-zero F(0) for both K measurements and the use of K to estimate the vulnerability to xylem cavitation. We generated vulnerability curves for olive root samples (Olea europaea) by the centrifuge technique, measuring a maximally accurate reference K(ref) as the slope of a four-point F vs P/L relationship. The K(ref) was compared with three more rapid ways of estimating K. When F(0) was assumed to be zero, K was significantly under-estimated (average of -81.4 ± 4.7%), especially when K(ref) was low. Vulnerability curves derived from these under-estimated K values overestimated the vulnerability to cavitation. When non-zero F(0) was taken into account, whether it was measured or estimated, more accurate K values (relative to K(ref)) were obtained, and vulnerability curves indicated greater resistance to cavitation. We recommend accounting for non-zero F(0) for obtaining accurate estimates of K and cavitation resistance in hydraulic studies.
Collapse
Affiliation(s)
- José M Torres-Ruiz
- Instituto de Recursos Naturales y Agrobiología (IRNAS-CSIC), Avenida de Reina Mercedes, no. 10, 41012 Seville, Spain.
| | | | | |
Collapse
|
36
|
Jedrzejuk A, Rochala J, Zakrzewski J, Rabiza-Świder J. Identification of xylem occlusions occurring in cut clematis (Clematis L., fam. Ranunculaceae Juss.) stems during their vase life. ScientificWorldJournal 2012; 2012:749281. [PMID: 22919351 PMCID: PMC3417206 DOI: 10.1100/2012/749281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/08/2012] [Indexed: 12/03/2022] Open
Abstract
During the vase life of cut stems obstruction of xylem vessels occurs due to microbial growth, formation of tyloses, deposition of materials in the lumen of xylem vessels and the presence of air emboli in the vascular system. Such obstructions may restrict water uptake and its transport towards upwards thus lowering their ornamental value and longevity of cut flowers. Clematis is a very attractive plant material which may be used as cut flower in floral compositions. Nothing is known about the histochemical or cytological nature of xylem blockages occurring in cut stems of this plant. This study shows that in clematis, tyloses are the main source of occlusions, although bacteria and some amorphic substances may also appear inside the vessels. A preservative composed of 200 mg dm−3 8-HQC (8-hydroxyquinolin citrate) and 2% sucrose arrested bacterial development and the growth of tyloses. This information can be helpful in the development of new treatments to improve keeping qualities of cut clematis stems.
Collapse
Affiliation(s)
- Agata Jedrzejuk
- Department of Ornamental Plants, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland.
| | | | | | | |
Collapse
|
37
|
Melcher PJ, Michele Holbrook N, Burns MJ, Zwieniecki MA, Cobb AR, Brodribb TJ, Choat B, Sack L. Measurements of stem xylem hydraulic conductivity in the laboratory and field. Methods Ecol Evol 2012. [DOI: 10.1111/j.2041-210x.2012.00204.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
van Doorn WG, Hiemstra T, Fanourakis D. Hydrogel regulation of xylem water flow: an alternative hypothesis. PLANT PHYSIOLOGY 2011; 157:1642-9. [PMID: 22025608 PMCID: PMC3327220 DOI: 10.1104/pp.111.185314] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/10/2011] [Indexed: 05/18/2023]
Affiliation(s)
- Wouter G van Doorn
- Mann Laboratory, Department of Plant Sciences, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
39
|
Nardini A, Salleo S, Jansen S. More than just a vulnerable pipeline: xylem physiology in the light of ion-mediated regulation of plant water transport. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4701-18. [PMID: 21765173 DOI: 10.1093/jxb/err208] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Major restrictions to the hydraulic conductance of xylem (K(XYL)) in vascular plants have traditionally been attributed to anatomical constraints. More recently, changes in the cationic concentration of xylem sap have been suggested to be responsible for short-term changes in K(XYL) based on data for 35 dicot species, and very few gymnosperms and ferns, indicating that xylem water transport may no longer be considered as an entirely passive process. Recent studies have revealed that this so-called ionic effect: (i) varies from little or no increase to >30%, (ii) is species specific, (iii) changes on a seasonal basis, (iv) depends on the cationic concentration, (v) is enhanced in embolized stems, and (vi) is positively correlated with vessel grouping. Furthermore, the ionic effect has been suggested to play functional roles in planta with respect to: (i) phloem-mediated control of xylem hydraulic properties, (ii) compensation of cavitation-induced loss of hydraulic conductance, with the result of optimizing light and water utilization, and (iii) differential regulation of water delivery to branches exposed to different levels of light. Pits are likely to play a key role in the ionic effect, which has largely been explained as a consequence of the poly-electrolytic nature and hydrogel properties of the pectic matrix of interconduit pit membranes, despite little evidence that pit membrane pectins remain present after cell hydrolysis. More research is needed to address the ionic effect in more species, physico-chemical properties of pit membranes, and how the ionic effect may increase xylem hydraulic conductance 'on demand'.
Collapse
Affiliation(s)
- Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, Italia.
| | | | | |
Collapse
|