1
|
Bournonville C, Mori K, Deslous P, Decros G, Blomeier T, Mauxion JP, Jorly J, Gadin S, Cassan C, Maucourt M, Just D, Brès C, Rothan C, Ferrand C, Fernandez-Lochu L, Bataille L, Miura K, Beven L, Zurbriggen MD, Pétriacq P, Gibon Y, Baldet P. Blue light promotes ascorbate synthesis by deactivating the PAS/LOV photoreceptor that inhibits GDP-L-galactose phosphorylase. THE PLANT CELL 2023; 35:2615-2634. [PMID: 37052931 PMCID: PMC10291033 DOI: 10.1093/plcell/koad108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/14/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Ascorbate (vitamin C) is an essential antioxidant in fresh fruits and vegetables. To gain insight into the regulation of ascorbate metabolism in plants, we studied mutant tomato plants (Solanum lycopersicum) that produce ascorbate-enriched fruits. The causal mutation, identified by a mapping-by-sequencing strategy, corresponded to a knock-out recessive mutation in a class of photoreceptor named PAS/LOV protein (PLP), which acts as a negative regulator of ascorbate biosynthesis. This trait was confirmed by CRISPR/Cas9 gene editing and further found in all plant organs, including fruit that accumulated 2 to 3 times more ascorbate than in the WT. The functional characterization revealed that PLP interacted with the 2 isoforms of GDP-L-galactose phosphorylase (GGP), known as the controlling step of the L-galactose pathway of ascorbate synthesis. The interaction with GGP occurred in the cytoplasm and the nucleus, but was abolished when PLP was truncated. These results were confirmed by a synthetic approach using an animal cell system, which additionally demonstrated that blue light modulated the PLP-GGP interaction. Assays performed in vitro with heterologously expressed GGP and PLP showed that PLP is a noncompetitive inhibitor of GGP that is inactivated after blue light exposure. This discovery provides a greater understanding of the light-dependent regulation of ascorbate metabolism in plants.
Collapse
Affiliation(s)
- Céline Bournonville
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Kentaro Mori
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Paul Deslous
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Guillaume Decros
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Tim Blomeier
- Institute of Synthetic Biology—CEPLAS—Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, Dusseldorf 40225, Germany
| | - Jean-Philippe Mauxion
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Joana Jorly
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Stéphanie Gadin
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Cédric Cassan
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Mickael Maucourt
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Daniel Just
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Cécile Brès
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Christophe Rothan
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Carine Ferrand
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Lucie Fernandez-Lochu
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Laure Bataille
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Kenji Miura
- Tsukuba Innovation Plant Research Center, University of Tsukuba, 1-1-1 Tennodai, 305-8577 Ibaraki, Tsukuba, Japan
| | - Laure Beven
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Matias D Zurbriggen
- Institute of Synthetic Biology—CEPLAS—Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, Dusseldorf 40225, Germany
| | - Pierre Pétriacq
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Pierre Baldet
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| |
Collapse
|
2
|
Chaturvedi S, Khan S, Bhunia RK, Kaur K, Tiwari S. Metabolic engineering in food crops to enhance ascorbic acid production: crop biofortification perspectives for human health. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:871-884. [PMID: 35464783 PMCID: PMC9016690 DOI: 10.1007/s12298-022-01172-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Ascorbic acid (AsA) also known as vitamin C is considered as an essential micronutrient in the diet of humans. The human body is unable to synthesize AsA, thus solely dependent on exogenous sources to accomplish the nutritional requirement. AsA plays a crucial role in different physiological aspects of human health like bone formation, iron absorption, maintenance and development of connective tissues, conversion of cholesterol to bile acid and production of serotonin. It carries antioxidant properties and is involved in curing various clinical disorders such as scurvy, viral infection, neurodegenerative diseases, cardiovascular diseases, anemia, and diabetes. It also plays a significant role in COVID-19 prevention and recovery by improving the oxygen index and enhancing the production of natural killer cells and T-lymphocytes. In plants, AsA plays important role in floral induction, seed germination, senescence, ROS regulation and photosynthesis. AsA is an essential counterpart of the antioxidant system and helps to defend the plants against abiotic and biotic stresses. Surprisingly, the deficiencies of AsA are spreading in both developed and developing countries. The amount of AsA in the major food crops such as wheat, rice, maize, and other raw natural plant foods is inadequate to fulfill its dietary requirements. Hence, the biofortification of AsA in staple crops would be feasible and cost-effective means of delivering AsA to populations that may have limited access to diverse diets and other interventions. In this review, we endeavor to provide information on the role of AsA in plants and human health, and also perused various biotechnological and agronomical approaches for elevating AsA content in food crops.
Collapse
Affiliation(s)
- Siddhant Chaturvedi
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-
Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306 India
- Department of Biotechnology, Panjab University, Chandigarh, 160014 India
| | - Shahirina Khan
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-
Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306 India
- Department of Botany, Central University of Punjab, Bathinda, Punjab, 151001 India
| | - Rupam Kumar Bhunia
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-
Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306 India
| | - Karambir Kaur
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-
Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306 India
| | - Siddharth Tiwari
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-
Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306 India
| |
Collapse
|
3
|
Riemer E, Pullagurla NJ, Yadav R, Rana P, Jessen HJ, Kamleitner M, Schaaf G, Laha D. Regulation of plant biotic interactions and abiotic stress responses by inositol polyphosphates. FRONTIERS IN PLANT SCIENCE 2022; 13:944515. [PMID: 36035672 PMCID: PMC9403785 DOI: 10.3389/fpls.2022.944515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/20/2022] [Indexed: 05/14/2023]
Abstract
Inositol pyrophosphates (PP-InsPs), derivatives of inositol hexakisphosphate (phytic acid, InsP6) or lower inositol polyphosphates, are energy-rich signaling molecules that have critical regulatory functions in eukaryotes. In plants, the biosynthesis and the cellular targets of these messengers are not fully understood. This is because, in part, plants do not possess canonical InsP6 kinases and are able to synthesize PP-InsP isomers that appear to be absent in yeast or mammalian cells. This review will shed light on recent discoveries in the biosynthesis of these enigmatic messengers and on how they regulate important physiological processes in response to abiotic and biotic stresses in plants.
Collapse
Affiliation(s)
- Esther Riemer
- Departmentof Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- *Correspondence: Esther Riemer,
| | | | - Ranjana Yadav
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Priyanshi Rana
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Henning J. Jessen
- Department of Chemistry and Pharmacy & CIBSS – The Center of Biological Signaling Studies, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Marília Kamleitner
- Departmentof Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Gabriel Schaaf
- Departmentof Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Debabrata Laha
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
- Debabrata Laha,
| |
Collapse
|
4
|
Zhu L, Dou L, Shang H, Li H, Yu J, Xiao G. GhPIPLC2D promotes cotton fiber elongation by enhancing ethylene biosynthesis. iScience 2021; 24:102199. [PMID: 33718844 PMCID: PMC7921840 DOI: 10.1016/j.isci.2021.102199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 11/29/2022] Open
Abstract
Inositol-1,4,5-trisphosphate (IP3) is an important second messenger and one of the products of phosphoinositide-specific phospholipase C (PIPLC)-mediated phosphatidylinositol (4,5) bisphosphate (PIP2) hydrolysis. However, the function of IP3 in cotton is unknown. Here, we characterized the function of GhPIPLC2D in cotton fiber elongation. GhPIPLC2D was preferentially expressed in elongating fibers. Suppression of GhPIPLC2D transcripts resulted in shorter fibers and decreased IP3 accumulation and ethylene biosynthesis. Exogenous application of linolenic acid (C18:3) and phosphatidylinositol (PI), the precursor of IP3, improved IP3 and myo-inositol-1,2,3,4,5,6-hexakisphosphate (IP6) accumulation, as well as ethylene biosynthesis. Moreover, fiber length in GhPIPLC2D-silenced plant was reduced after exogenous application of IP6 and ethylene. These results indicate that GhPIPLC2D positively regulates fiber elongation and IP3 promotes fiber elongation by enhancing ethylene biosynthesis. Our study broadens our understanding of the function of IP3 in cotton fiber elongation and highlights the possibility of cultivating better cotton varieties by manipulating GhPIPLC2D in the future. GhPIPLC2D positively regulates cotton fiber elongation GhPIPLC2D cleaves PIP2 into IP3, which could be phosphorylated to IP6 IP6 enhances fiber elongation via improving ethylene biosynthesis
Collapse
Affiliation(s)
- Liping Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lingling Dou
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China
| | - Haihong Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
5
|
Montecchiarini ML, Margarit E, Morales L, Rivadeneira MF, Bello F, Gollán A, Vázquez D, Podestá FE, Tripodi KEJ. Proteomic and metabolomic approaches unveil relevant biochemical changes in carbohydrate and cell wall metabolisms of two blueberry (Vaccinium corymbosum) varieties with different quality attributes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:230-244. [PMID: 30708258 DOI: 10.1016/j.plaphy.2018.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Quality maintenance in rapidly decaying fruit such as blueberries (Vaccinium corymbosum) is of essential importance to guarantee the economic success of the crop. Fruit quality is a multifaceted subject that encompasses flavor, aroma, visual and physical issues as main factors. In this paper we report an ample characterization of different biochemical and physical aspects in two varieties (O'Neal and Emerald) of blueberries that differ in firmness, aspect, flavor and harvesting times, at two different phenological stages (fruit set vs. ripe), with the intention of unveiling how the metabolic signature of each contributes to their contrasting quality. To this effect a metabolomic, ionomic and proteomic approach was selected. The results presented here show marked differences in several variables at the two stages and between varieties. Emerald is an early variety with a large, good taste and firm fruit, while O'Neal is soft, medium sized and very sweet. Proteomic data comparison between both cultivars showed that, at fruit set, processes related with the response to inorganic compounds and small molecule metabolisms are relevant in both varieties. However, solute accumulation (mainly amino acids and organic acids), enzymes related with C: N balance, water transport and cell wall recycling are enhanced in Emerald. In ripe fruit, Emerald showed an enrichment of proteins associated with TCA, nitrogen, small molecules and cell wall in muro recycling processes, while mannitol and fatty acid metabolism were enhanced in the soft variety. The measured variation in metabolite levels gave strong support to the precedent results. This study suggests that at fruit set, a composite scenario of active metabolic recycling of the cell wall, improved C: N balance and solute accumulation give place to a more efficient carbon and water resource management. During the ripe stage, an increased and efficient in muro and metabolic recycling of the cell wall, added to enhanced inositol and secondary metabolism may be responsible for a best turgor conservation in Emerald. These findings may yield clues for improvements in fertilization practices, as well as to assist the guided development of new varieties based on biochemical quality.
Collapse
Affiliation(s)
- M L Montecchiarini
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Santa Fe, Argentina
| | - E Margarit
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Santa Fe, Argentina
| | - L Morales
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Santa Fe, Argentina
| | - M F Rivadeneira
- Estación Experimental Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Yuquerí, 3200, Concordia, Entre Ríos, Argentina
| | - F Bello
- Estación Experimental Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Yuquerí, 3200, Concordia, Entre Ríos, Argentina
| | - A Gollán
- Estación Experimental Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Yuquerí, 3200, Concordia, Entre Ríos, Argentina
| | - D Vázquez
- Estación Experimental Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Yuquerí, 3200, Concordia, Entre Ríos, Argentina
| | - F E Podestá
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Santa Fe, Argentina.
| | - K E J Tripodi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Santa Fe, Argentina.
| |
Collapse
|
6
|
Alimohammadi M, Lahiani MH, McGehee D, Khodakovskaya M. Polyphenolic extract of InsP 5-ptase expressing tomato plants reduce the proliferation of MCF-7 breast cancer cells. PLoS One 2017; 12:e0175778. [PMID: 28448505 PMCID: PMC5407797 DOI: 10.1371/journal.pone.0175778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 03/09/2017] [Indexed: 01/15/2023] Open
Abstract
In recent years, by extensive achievements in understanding the mechanisms and the pathways affected by cancer, the focus of cancer research is shifting from developing new chemotherapy methods to using natural compounds with therapeutic properties to reduce the adverse effects of synthetic drugs on human health. We used fruit extracts from previously generated human type I InsP 5-ptase gene expressing transgenic tomato plants for assessment of the anti-cancer activity of established genetically modified tomato lines. Cellular assays (MTT, Fluorescent microscopy, Flow Cytometry analysis) were used to confirm that InsP 5-ptase fruit extract was more effective for reducing the proliferation of breast cancer cells compared to wild-type tomato fruit extract. Metabolome analysis of InsP 5-ptase expressing tomato fruits performed by LC-MS identified tomato metabolites that may play a key role in the increased anti-cancer activity observed for the transgenic fruits. Total transcriptome analysis of cancer cells (MCF-7 line) exposed to an extract of transgenic fruits revealed a number of differently regulated genes in the cells treated with transgenic extract compared to untreated cells or cells treated with wild-type tomato extract. Together, this data demonstrate the potential role of the plant derived metabolites in suppressing cell viability of cancer cells and further prove the potential application of plant genetic engineering in the cancer research and drug discovery.
Collapse
Affiliation(s)
- Mohammad Alimohammadi
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| | - Mohamed Hassen Lahiani
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| | - Diamond McGehee
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| | - Mariya Khodakovskaya
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
- Institute of Biology and Soil Sciences, Far-Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
7
|
Pi E, Qu L, Hu J, Huang Y, Qiu L, Lu H, Jiang B, Liu C, Peng T, Zhao Y, Wang H, Tsai SN, Ngai S, Du L. Mechanisms of Soybean Roots' Tolerances to Salinity Revealed by Proteomic and Phosphoproteomic Comparisons Between Two Cultivars. Mol Cell Proteomics 2016; 15:266-88. [PMID: 26407991 PMCID: PMC4762511 DOI: 10.1074/mcp.m115.051961] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/15/2015] [Indexed: 12/23/2022] Open
Abstract
Understanding molecular mechanisms underlying plant salinity tolerance provides valuable knowledgebase for effective crop improvement through genetic engineering. Current proteomic technologies, which support reliable and high-throughput analyses, have been broadly used for exploring sophisticated molecular networks in plants. In the current study, we compared phosphoproteomic and proteomic changes in roots of different soybean seedlings of a salt-tolerant cultivar (Wenfeng07) and a salt-sensitive cultivar (Union85140) induced by salt stress. The root samples of Wenfeng07 and Union85140 at three-trifoliate stage were collected at 0 h, 0.5 h, 1 h, 4 h, 12 h, 24 h, and 48 h after been treated with 150 mm NaCl. LC-MS/MS based phosphoproteomic analysis of these samples identified a total of 2692 phosphoproteins and 5509 phosphorylation sites. Of these, 2344 phosphoproteins containing 3744 phosphorylation sites were quantitatively analyzed. Our results showed that 1163 phosphorylation sites were differentially phosphorylated in the two compared cultivars. Among them, 10 MYB/MYB transcription factor like proteins were identified with fluctuating phosphorylation modifications at different time points, indicating that their crucial roles in regulating flavonol accumulation might be mediated by phosphorylated modifications. In addition, the protein expression profiles of these two cultivars were compared using LC MS/MS based shotgun proteomic analysis, and expression pattern of all the 89 differentially expressed proteins were independently confirmed by qRT-PCR. Interestingly, the enzymes involved in chalcone metabolic pathway exhibited positive correlations with salt tolerance. We confirmed the functional relevance of chalcone synthase, chalcone isomerase, and cytochrome P450 monooxygenase genes using soybean composites and Arabidopsis thaliana mutants, and found that their salt tolerance were positively regulated by chalcone synthase, but was negatively regulated by chalcone isomerase and cytochrome P450 monooxygenase. A novel salt tolerance pathway involving chalcone metabolism, mostly mediated by phosphorylated MYB transcription factors, was proposed based on our findings. (The mass spectrometry raw data are available via ProteomeXchange with identifier PXD002856).
Collapse
Affiliation(s)
- Erxu Pi
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China;
| | - Liqun Qu
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Jianwen Hu
- §Shanghai Applied Protein Technology Co. Ltd, Shanghai, 200233, PR China
| | - Yingying Huang
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Lijuan Qiu
- ¶The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Hongfei Lu
- ‖College of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Bo Jiang
- **College of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Cong Liu
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Tingting Peng
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Ying Zhao
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Huizhong Wang
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Sau-Na Tsai
- ‡‡Centre for Soybean Research of Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Saiming Ngai
- ‡‡Centre for Soybean Research of Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Liqun Du
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China;
| |
Collapse
|
8
|
Alimohammadi M, Lahiani MH, Khodakovskaya MV. Genetic reduction of inositol triphosphate (InsP₃) increases tolerance of tomato plants to oxidative stress. PLANTA 2015; 242:123-135. [PMID: 25893866 DOI: 10.1007/s00425-015-2289-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/27/2015] [Indexed: 06/04/2023]
Abstract
We demonstrate here that the reduction of InsP 3 , the key component of the phosphoinositol pathway, results in changes in ROS-scavenging machinery and, subsequently, increases the tolerance of tomato plants to light stress. Different plant stress signaling pathways share similar elements and, therefore, 'cross-talk' between the various pathways can exist. Links between the phosphoinositol signaling pathway and light signaling were recently found. Tomato plants expressing InsP 5-ptase and exhibiting reduction in the level of inositol 1,4,5-triphosphate (InsP3) demonstrated enhanced tolerance to stress caused by continuous light exposure. To understand the molecular basis of observed stress tolerance in tomato lines with decreased amount of InsP3, we monitored the expression of enzymatic antioxidants as well as important factors in light signaling associated with non-enzymatic antioxidants (secondary metabolites). Here, we demonstrated that InsP 5-ptase transgenic plants accumulate less hydroxide peroxide and maintain higher chlorophyll content during stress caused by continuous light exposure. This observation can be explained by documented activation of multiple enzymatic antioxidants (LeAPX1, SICAT2, LeSOD) at levels of gene expression and enzymatic activities during continuous light exposure. In addition, we noticed the up-regulation of photoreceptors LePHYB and LeCHS1, key enzymes in flavonoid biosynthesis pathway, transcription factors LeHY5, SIMYB12, and early light-inducible protein (LeELIP) genes in transgenic tomato seedlings exposed to blue or red light. Our study confirmed the existence of a correlation between phosphoinositol signaling pathway modification, increased tolerance to stress caused by continuous light exposure, activation of ROS-scavenging enzymes, and up-regulation of molecular activators of non-enzymatic antioxidants in InsP 5-ptase expressing tomato lines.
Collapse
|
9
|
Rao J, Yang L, Wang C, Zhang D, Shi J. Digital gene expression analysis of mature seeds of transgenic maize overexpressingAspergillus nigerphyA2and its non-transgenic counterpart. GM CROPS & FOOD 2014; 4:98-108. [DOI: 10.4161/gmcr.25593] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Massot C, Bancel D, Lopez Lauri F, Truffault V, Baldet P, Stevens R, Gautier H. High temperature inhibits ascorbate recycling and light stimulation of the ascorbate pool in tomato despite increased expression of biosynthesis genes. PLoS One 2013; 8:e84474. [PMID: 24367665 PMCID: PMC3868655 DOI: 10.1371/journal.pone.0084474] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/21/2013] [Indexed: 11/26/2022] Open
Abstract
Understanding how the fruit microclimate affects ascorbate (AsA) biosynthesis, oxidation and recycling is a great challenge in improving fruit nutritional quality. For this purpose, tomatoes at breaker stage were harvested and placed in controlled environment conditions at different temperatures (12, 17, 23, 27 and 31 °C) and irradiance regimes (darkness or 150 µmol m(-2) s(-1)). Fruit pericarp tissue was used to assay ascorbate, glutathione, enzymes related to oxidative stress and the AsA/glutathione cycle and follow the expression of genes coding for 5 enzymes of the AsA biosynthesis pathway (GME, VTC2, GPP, L-GalDH, GLDH). The AsA pool size in pericarp tissue was significantly higher under light at temperatures below 27 °C. In addition, light promoted glutathione accumulation at low and high temperatures. At 12 °C, increased AsA content was correlated with the enhanced expression of all genes of the biosynthesis pathway studied, combined with higher DHAR and MDHAR activities and increased enzymatic activities related to oxidative stress (CAT and APX). In contrast, at 31 °C, MDHAR and GR activities were significantly reduced under light indicating that enzymes of the AsA/glutathione cycle may limit AsA recycling and pool size in fruit pericarp, despite enhanced expression of genes coding for AsA biosynthesis enzymes. In conclusion, this study confirms the important role of fruit microclimate in the regulation of fruit pericarp AsA content, as under oxidative conditions (12 °C, light) total fruit pericarp AsA content increased up to 71%. Moreover, it reveals that light and temperature interact to regulate both AsA biosynthesis gene expression in tomato fruits and AsA oxidation and recycling.
Collapse
Affiliation(s)
- Capucine Massot
- INRA, UR 1115 Plantes et Système de cultures Horticoles, Avignon, France
| | - Doriane Bancel
- INRA, UR 1115 Plantes et Système de cultures Horticoles, Avignon, France
| | | | - Vincent Truffault
- INRA, UR 1115 Plantes et Système de cultures Horticoles, Avignon, France
| | - Pierre Baldet
- INRA, UMR 1332 Biologie du Fruit et Pathologie, France Université de Bordeaux, Bordeaux, France
| | - Rebecca Stevens
- INRA, UR 1052, Génétique et Amélioration des Fruits et Légumes, Montfavet, France
| | - Hélène Gautier
- INRA, UR 1115 Plantes et Système de cultures Horticoles, Avignon, France
| |
Collapse
|
11
|
Sotelo-Silveira M, Cucinotta M, Chauvin AL, Chávez Montes RA, Colombo L, Marsch-Martínez N, de Folter S. Cytochrome P450 CYP78A9 is involved in Arabidopsis reproductive development. PLANT PHYSIOLOGY 2013; 162:779-99. [PMID: 23610218 PMCID: PMC3668070 DOI: 10.1104/pp.113.218214] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/16/2013] [Indexed: 05/18/2023]
Abstract
Synchronized communication between gametophytic and sporophytic tissue is crucial for successful reproduction, and hormones seem to have a prominent role in it. Here, we studied the role of the Arabidopsis (Arabidopsis thaliana) cytochrome P450 CYP78A9 enzyme during reproductive development. First, controlled pollination experiments indicate that CYP78A9 responds to fertilization. Second, while CYP78A9 overexpression can uncouple fruit development from fertilization, the cyp78a8 cyp78a9 loss-of-function mutant has reduced seed set due to outer ovule integument development arrest, leading to female sterility. Moreover, CYP78A9 has a specific expression pattern in inner integuments in early steps of ovule development as well as in the funiculus, embryo, and integuments of developing seeds. CYP78A9 overexpression did not change the response to the known hormones involved in flower development and fruit set, and it did not seem to have much effect on the major known hormonal pathways. Furthermore, according to previous predictions, perturbations in the flavonol biosynthesis pathway were detected in cyp78a9, cyp78a8 cyp78a9, and empty siliques (es1-D) mutants. However, it appeared that they do not cause the observed phenotypes. In summary, these results add new insights into the role of CYP78A9 in plant reproduction and present, to our knowledge, the first characterization of metabolite differences between mutants in this gene family.
Collapse
|
12
|
Ali N, Paul S, Gayen D, Sarkar SN, Datta SK, Datta K. RNAi mediated down regulation of myo-inositol-3-phosphate synthase to generate low phytate rice. RICE (NEW YORK, N.Y.) 2013; 6:12. [PMID: 24280240 PMCID: PMC4883737 DOI: 10.1186/1939-8433-6-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 05/07/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Phytic acid (InsP6) is considered as the major source of phosphorus and inositol phosphates in cereal grains. Reduction of phytic acid level in cereal grains is desirable in view of its antinutrient properties to maximize mineral bioavailability and minimize the load of phosphorus waste management. We report here RNAi mediated seed-specific silencing of myo-inositol-3-phosphate synthase (MIPS) gene catalyzing the first step of phytic acid biosynthesis in rice. Moreover, we also studied the possible implications of MIPS silencing on myo-inositol and related metabolism, since, first step of phytic acid biosynthesis is also the rate limiting step of myo-inositol synthesis, catalyzed by MIPS. RESULTS The resulting transgenic rice plants (T3) showed a 4.59 fold down regulation in MIPS gene expression, which corresponds to a significant decrease in phytate levels and a simultaneous increment in the amount of inorganic phosphate in the seeds. A diminution in the myo-inositol content of transgenic plants was also observed due to disruption of the first step of phytic acid biosynthetic pathway, which further reduced the level of ascorbate and altered abscisic acid (ABA) sensitivity of the transgenic plants. In addition, our results shows that in the transgenic plants, the lower phytate levels has led to an increment of divalent cations, of which a 1.6 fold increase in the iron concentration in milled rice seeds was noteworthy. This increase could be attributed to reduced chelation of divalent metal (iron) cations, which may correlate to higher iron bioavailability in the endosperm of rice grains. CONCLUSION The present study evidently suggests that seed-specific silencing of MIPS in transgenic rice plants can yield substantial reduction in levels of phytic acid along with an increase in inorganic phosphate content. However, it was also demonstrated that the low phytate seeds had an undesirable diminution in levels of myo-inositol and ascorbate, which probably led to sensitiveness of seeds to abscisic acid during germination. Therefore, it is suggested that though MIPS is the prime target for generation of low phytate transgenic plants, down-regulation of MIPS can have detrimental effect on myo-inositol synthesis and related pathways which are involved in key plant metabolism.
Collapse
Affiliation(s)
- Nusrat Ali
- />Plant Molecular Biology and Biotechnology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular road, Kolkata, 700019 WB India
| | - Soumitra Paul
- />Plant Molecular Biology and Biotechnology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular road, Kolkata, 700019 WB India
| | - Dipak Gayen
- />Plant Molecular Biology and Biotechnology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular road, Kolkata, 700019 WB India
| | - Sailendra Nath Sarkar
- />Plant Molecular Biology and Biotechnology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular road, Kolkata, 700019 WB India
| | - Swapan K Datta
- />Plant Molecular Biology and Biotechnology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular road, Kolkata, 700019 WB India
- />Division of Crop Science, Indian Council of Agricultural Research (ICAR), Krishi Bhavan, Dr. Rajendra Prasad Road, New Delhi, 110001 India
| | - Karabi Datta
- />Plant Molecular Biology and Biotechnology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular road, Kolkata, 700019 WB India
| |
Collapse
|