1
|
Su Q, Yang H, Li X, Zhong Y, Feng Y, Li H, Tahir MM, Zhao Z. Upregulation of PECTATE LYASE5 by a NAC transcription factor promotes fruit softening in apple. PLANT PHYSIOLOGY 2024; 196:1887-1907. [PMID: 39158080 DOI: 10.1093/plphys/kiae428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 08/20/2024]
Abstract
Flesh firmness is a critical breeding trait that determines consumer selection, shelf life, and transportation. The genetic basis controlling firmness in apple (Malus × domestica Borkh.) remains to be fully elucidated. We aimed to decipher genetic variance for firmness at harvest and develop potential molecular markers for marker-assisted breeding. Maturity firmness for 439 F1 hybrids from a cross of "Cripps Pink" and "Fuji" was determined in 2016 and 2017. The phenotype segregated extensively, with a Gaussian distribution. In a combined bulked segregant analysis (BSA) and RNA-sequencing analysis, 84 differentially expressed genes were screened from the 10 quantitative trait loci regions. Interestingly, next-generation re-sequencing analysis revealed a Harbinger-like transposon element insertion upstream of the candidate gene PECTATE LYASE5 (MdPL5); the genotype was associated with flesh firmness at harvest. The presence of this transposon repressed MdPL5 expression and was closely linked to the extra-hard phenotype. MdPL5 was demonstrated to promote softening in apples and tomatoes. Subsequently, using the MdPL5 promoter as bait, MdNAC1-L was identified as a transcription activator that positively regulates ripening and softening in the developing fruit. We also demonstrated that MdNAC1-L could induce the up-regulation of MdPL5, MdPG1, and the ethylene-related genes MdACS1 and MdACO1. Our findings provide insight into TE-related genetic variation and the PL-mediated regulatory network for the firmness of apple fruit.
Collapse
Affiliation(s)
- Qiufang Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huijuan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianglu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanwen Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifeng Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongfei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling, shaanxi 712100, China
| |
Collapse
|
2
|
Xiao Y, Wu L, Wang B, Zhang M, Pan Q, Xian L, Sheng J, Yan M, Jin J, Zhang R, Zhang J, Zeng Q, Li T, Li W. Development and application of Key Allele-Specific PCR (KASP) molecular markers for assessing apple fruit crispness. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:71. [PMID: 39399693 PMCID: PMC11467153 DOI: 10.1007/s11032-024-01509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Crispness stands as a pivotal criterion in assessing apple texture, widely cherished by consumers. Yet, owing to its multifaceted nature, crispness remains a formidable challenge in artificial enhancement efforts. To expedite the early and precise evaluation of apple crispness, this study centered on a hybrid population derived from 'Fuji' and 'Pink Lady' cultivars, showcasing segregating crispness traits. We conducted measurements of flesh water content, cellular anatomical morphology, and employed a texture analyzer to assess mechanical properties of the offspring flesh. Integrating these three dimensions, we conducted a comprehensive analysis of quantitative characteristics of apple crispness, juxtaposed with sensory evaluation. Utilizing BSA-seq technology, we scrutinized extreme phenotypic individuals, revealing QTL loci intricately linked to the aforementioned dimensions, and subsequently developed Key Allele-Specific PCR (KASP) markers. These markers underwent validation in hybrid populations of 'Hanfu' x 'Pink Lady' and 'Hanfu' x 'Honey Crisp'. Our findings underscored significant correlations between mechanical properties, water content, and cell size with crispness. Higher mechanical properties and water content, alongside smaller cell size, correlated with firmer flesh texture; moderate mechanical properties, and elevated water content and cell size, with crisper texture; whereas lower mechanical properties, water content, and cell size implied softer flesh.The study yielded KASP markers effectively reflecting flesh mechanical properties (SNP_24399345), water content (SNP_8667563), and cell size (SNP_15566229). Comprehensive analysis of these markers identified CC-CC-TT as an effective identifier of soft flesh individuals; while GG-TC-TT and GG-CC-TT combinations better represented individuals with harder flesh. The Crunchy subclass could be discerned by combinations of GG-TC-TC, GG-TC-CC, GG-TT-TC, and GG-TT-CC. These findings furnish effective molecular markers for the genetic enhancement of apple crispness, bearing significant implications for the cultivation of novel apple varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01509-1.
Collapse
Affiliation(s)
- Yao Xiao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Ling Wu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Baoan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Manyu Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Qi Pan
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Linfeng Xian
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Jing Sheng
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Mengbo Yan
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Jingxian Jin
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Rui Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Jing Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Qiulin Zeng
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
3
|
Wei Y, Liu Z, Lv T, Xu Y, Wei Y, Liu W, Liu L, Wang A, Li T. Ethylene enhances MdMAPK3-mediated phosphorylation of MdNAC72 to promote apple fruit softening. THE PLANT CELL 2023; 35:2887-2909. [PMID: 37132483 PMCID: PMC10396387 DOI: 10.1093/plcell/koad122] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023]
Abstract
The phytohormone ethylene plays an important role in promoting the softening of climacteric fruits, such as apples (Malus domestica); however, important aspects of the underlying regulatory mechanisms are not well understood. In this study, we identified apple MITOGEN-ACTIVATED PROTEIN KINASE 3 (MdMAPK3) as an important positive regulator of ethylene-induced apple fruit softening during storage. Specifically, we show that MdMAPK3 interacts with and phosphorylates the transcription factor NAM-ATAF1/2-CUC2 72 (MdNAC72), which functions as a transcriptional repressor of the cell wall degradation-related gene POLYGALACTURONASE1 (MdPG1). The increase in MdMAPK3 kinase activity was induced by ethylene, which promoted the phosphorylation of MdNAC72 by MdMAPK3. Additionally, MdPUB24 functions as an E3 ubiquitin ligase to ubiquitinate MdNAC72, resulting in its degradation via the 26S proteasome pathway, which was enhanced by ethylene-induced phosphorylation of MdNAC72 by MdMAPK3. The degradation of MdNAC72 increased the expression of MdPG1, which in turn promoted apple fruit softening. Notably, using variants of MdNAC72 that were mutated at specific phosphorylation sites, we observed that the phosphorylation state of MdNAC72 affected apple fruit softening during storage. This study thus reveals that the ethylene-MdMAPK3-MdNAC72-MdPUB24 module is involved in ethylene-induced apple fruit softening, providing insights into climacteric fruit softening.
Collapse
Affiliation(s)
- Yun Wei
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhi Liu
- Liaoning Institute of Pomology, Xiongyue 115009, China
| | - Tianxing Lv
- Liaoning Institute of Pomology, Xiongyue 115009, China
| | - Yaxiu Xu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yajing Wei
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Weiting Liu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Li Liu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Tong Li
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
4
|
Wu M, Luo Z, Cao S. Promoter Variation of the Key Apple Fruit Texture Related Gene MdPG1 and the Upstream Regulation Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1452. [PMID: 37050079 PMCID: PMC10096972 DOI: 10.3390/plants12071452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
MdPG1 encoding polygalacturonase in apple (Malus × domestica) is a key gene associated with fruit firmness and texture variations among apple cultivars. However, the causative variants of MdPG1 are still not known. In this study, we identified a SNPA/C variant within an ERF-binding element located in the promoter region of MdPG1. The promoter containing the ERF-binding element with SNPA, rather than the SNPC, could be strongly bound and activated by MdCBF2, a member of the AP2/ERF transcription factor family, as determined by yeast-one-hybrid and dual-luciferase reporter assays. We also demonstrated that the presence of a novel long non-coding RNA, lncRNAPG1, in the promoter of MdPG1 was a causative variant. lncRNAPG1 was specifically expressed in fruit tissues postharvest. lncRNAPG1 could reduce promoter activity when it was fused to the promoter of MdPG1 and a tobacco gene encoding Mg-chelatase H subunit (NtCHLH) in transgenic tobacco cells but could not reduce promoter activity when it was supplied in a separate gene construct, indicating a cis-regulatory effect. Our results provide new insights into genetic regulation of MdPG1 allele expression and are also useful for the development of elite apple cultivars.
Collapse
Affiliation(s)
- Mengmeng Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou 450009, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengrong Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Shangyin Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou 450009, China
| |
Collapse
|
5
|
Mhetre VB, Patel V, Singh S, Mishra GP, Verma M, Kumar C, Dahuja A, Kumar S, Singh R, Wasim Siddiqui M. Unraveling the pathways influencing the berry color and firmness of grapevine cv. Flame Seedless treated with bioregulators using biochemical and RNA-Seq analysis under semi-arid subtropics. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 5:100116. [PMID: 35818381 PMCID: PMC9270244 DOI: 10.1016/j.fochms.2022.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/11/2022] [Accepted: 06/18/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Vishal B. Mhetre
- Division of Fruits and Horticultural Technology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| | - V.B. Patel
- Division of Fruits and Horticultural Technology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
- Corresponding author.
| | - S.K. Singh
- Division of Fruits and Horticultural Technology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| | - Gyan P. Mishra
- Division of Genetics, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| | - M.K. Verma
- Division of Fruits and Horticultural Technology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| | - Chavlesh Kumar
- Division of Fruits and Horticultural Technology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| | - Anil Dahuja
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sanjeev Kumar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Rakesh Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - M. Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Sabour 813210, Bhagalpur, Bihar, India
| |
Collapse
|
6
|
Yang X, Wu B, Liu J, Zhang Z, Wang X, Zhang H, Ren X, Zhang X, Wang Y, Wu T, Xu X, Han Z, Zhang X. A single QTL harboring multiple genetic variations leads to complicated phenotypic segregation in apple flesh firmness and crispness. PLANT CELL REPORTS 2022; 41:2379-2391. [PMID: 36208306 DOI: 10.1007/s00299-022-02929-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Within a QTL, the genetic recombination and interactions among five and two functional variations at MdbHLH25 and MdWDR5A caused much complicated phenotype segregation in apple FFR and FCR. The storability of climacteric fruit like apple is a quantitative trait. We previously identified 62 quantitative trait loci (QTLs) associating flesh firmness retainability (FFR) and flesh crispness retainability (FCR), but only a few functional genetic variations were identified and validated. The genetic variation network controlling fruit storability is far to be understood and diagnostic markers are needed for molecular breeding. We previously identified overlapped QTLs F16.1/H16.2 for FFR and FCR using an F1 population derived from 'Zisai Pearl' × 'Red Fuji'. In this study, five and two single-nucleotide polymorphisms (SNPs) were identified on the candidate genes MdbHLH25 and MdWDR5A within the QTL region. The SNP1 A allele at MdbHLH25 promoter reduced the expression and SNP2 T allele and/or SNP4/5 GT alleles at the exons attenuated the function of MdbHLH25 by downregulating the expression of the target genes MdACS1, which in turn led to a reduction in ethylene production and maintenance of higher flesh crispness. The SNPs did not alter the protein-protein interaction between MdbHLH25 and MdWDR5A. The joint effect of SNP genotype combinations by the SNPs on MdbHLH25 (SNP1, SNP2, and SNP4) and MdWDR5A (SNPi and SNPii) led to a much broad spectrum of phenotypic segregation in FFR and FCR. Together, the dissection of these genetic variations contributes to understanding the complicated effects of a QTL and provides good potential for marker development in molecular breeding.
Collapse
Affiliation(s)
- Xianglong Yang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bei Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jing Liu
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, China
| | - Zhongyan Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuan Wang
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, China
| | - Haie Zhang
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, China
| | - Xuejun Ren
- Testing and Analysis Center, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, China
| | - Xi Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Jung M, Keller B, Roth M, Aranzana MJ, Auwerkerken A, Guerra W, Al-Rifaï M, Lewandowski M, Sanin N, Rymenants M, Didelot F, Dujak C, Font i Forcada C, Knauf A, Laurens F, Studer B, Muranty H, Patocchi A. Genetic architecture and genomic predictive ability of apple quantitative traits across environments. HORTICULTURE RESEARCH 2022; 9:uhac028. [PMID: 35184165 PMCID: PMC8976694 DOI: 10.1093/hr/uhac028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Implementation of genomic tools is desirable to increase the efficiency of apple breeding. Recently, the multi-environment apple reference population (apple REFPOP) proved useful for rediscovering loci, estimating genomic predictive ability, and studying genotype by environment interactions (G × E). So far, only two phenological traits were investigated using the apple REFPOP, although the population may be valuable when dissecting genetic architecture and reporting predictive abilities for additional key traits in apple breeding. Here we show contrasting genetic architecture and genomic predictive abilities for 30 quantitative traits across up to six European locations using the apple REFPOP. A total of 59 stable and 277 location-specific associations were found using GWAS, 69.2% of which are novel when compared with 41 reviewed publications. Average genomic predictive abilities of 0.18-0.88 were estimated using main-effect univariate, main-effect multivariate, multi-environment univariate, and multi-environment multivariate models. The G × E accounted for up to 24% of the phenotypic variability. This most comprehensive genomic study in apple in terms of trait-environment combinations provided knowledge of trait biology and prediction models that can be readily applied for marker-assisted or genomic selection, thus facilitating increased breeding efficiency.
Collapse
Affiliation(s)
- Michaela Jung
- Agroscope, Breeding Research Group, 8820 Wädenswil, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Beat Keller
- Agroscope, Breeding Research Group, 8820 Wädenswil, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Morgane Roth
- Agroscope, Breeding Research Group, 8820 Wädenswil, Switzerland
- GAFL, INRAE, 84140 Montfavet, France
| | - Maria José Aranzana
- IRTA (Institut de Recerca i Tecnologia Agroalimentà ries), 08140 Caldes de Montbui, Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | | | | | - Mehdi Al-Rifaï
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QuaSaV, F-49000 Angers, France
| | - Mariusz Lewandowski
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | | | - Marijn Rymenants
- Better3fruit N.V., 3202 Rillaar, Belgium
- Laboratory for Plant Genetics and Crop Improvement, KU Leuven, B-3001 Leuven, Belgium
| | | | - Christian Dujak
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Carolina Font i Forcada
- IRTA (Institut de Recerca i Tecnologia Agroalimentà ries), 08140 Caldes de Montbui, Barcelona, Spain
| | - Andrea Knauf
- Agroscope, Breeding Research Group, 8820 Wädenswil, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - François Laurens
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QuaSaV, F-49000 Angers, France
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Hélène Muranty
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QuaSaV, F-49000 Angers, France
| | - Andrea Patocchi
- Agroscope, Breeding Research Group, 8820 Wädenswil, Switzerland
| |
Collapse
|
8
|
Qian M, Xu Z, Zhang Z, Li Q, Yan X, Liu H, Han M, Li F, Zheng J, Zhang D, Zhao C. The downregulation of PpPG21 and PpPG22 influences peach fruit texture and softening. PLANTA 2021; 254:22. [PMID: 34218358 DOI: 10.1007/s00425-021-03673-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The downregulation of PpPG21 and PpPG22 expression in melting-flesh peach delays fruit softening and hinders texture changes by influencing pectin solubilization and depolymerization. The polygalacturonase (PG)-catalyzed solubilization and depolymerization of pectin plays a central role in the softening and texture formation processes in peach fruit. In this study, the expression characteristics of 15 PpPG members in peach fruits belonging to the melting flesh (MF) and non-melting flesh (NMF) types were analyzed, and virus-induced gene silencing (VIGS) technology was used to identify the roles of PpPG21 (ppa006839m) and PpPG22 (ppa006857m) in peach fruit softening and texture changes. In both MF and NMF peaches, the expression of PpPG1, 10, 12, 23, and 25 was upregulated, whereas that of PpPG14, 24, 35, 38, and 39 was relatively stable or downregulated during shelf life. PpPG1 was highly expressed in NMF fruit, whereas PpPG21 and 22 were highly expressed in MF peaches. Suppressing the expression of PpPG21 and 22 by VIGS in MF peaches significantly reduced PG enzyme activity, maintained the firmness of the fruit during the late shelf life stage, and suppressed the occurrence of the "melting" stage compared with the control fruits. Moreover, the downregulation of PpPG21 and 22 expression also reduced the water-soluble pectin (WSP) content, increased the contents of ionic-soluble pectin (ISP) and covalent-soluble pectin (CSP) and affected the expression levels of ethylene synthesis- and pectin depolymerization-related genes in the late shelf life stage. These results indicate that PpPG21 and 22 play a major role in the development of the melting texture trait of peaches by depolymerizing cell wall pectin. Our results provide direct evidence showing that PG regulates peach fruit softening and texture changes.
Collapse
Affiliation(s)
- Ming Qian
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Ze Xu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Zehua Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Qin Li
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiangyan Yan
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Hangkong Liu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Furui Li
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jicheng Zheng
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Caiping Zhao
- College of Horticulture, Northwest A&F University, Yangling, China.
| |
Collapse
|
9
|
Migicovsky Z, Yeats TH, Watts S, Song J, Forney CF, Burgher-MacLellan K, Somers DJ, Gong Y, Zhang Z, Vrebalov J, van Velzen R, Giovannoni JG, Rose JKC, Myles S. Apple Ripening Is Controlled by a NAC Transcription Factor. Front Genet 2021; 12:671300. [PMID: 34239539 PMCID: PMC8258254 DOI: 10.3389/fgene.2021.671300] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Softening is a hallmark of ripening in fleshy fruits, and has both desirable and undesirable implications for texture and postharvest stability. Accordingly, the timing and extent of pre-harvest ripening and associated textural changes following harvest are key targets for improving fruit quality through breeding. Previously, we identified a large effect locus associated with harvest date and firmness in apple (Malus domestica) using genome-wide association studies (GWAS). Here, we present additional evidence that polymorphisms in or around a transcription factor gene, NAC18.1, may cause variation in these traits. First, we confirmed our previous findings with new phenotype and genotype data from ∼800 apple accessions. In this population, we compared a genetic marker within NAC18.1 to markers targeting three other firmness-related genes currently used by breeders (ACS1, ACO1, and PG1), and found that the NAC18.1 marker was the strongest predictor of both firmness at harvest and firmness after 3 months of cold storage. By sequencing NAC18.1 across 18 accessions, we revealed two predominant haplotypes containing the single nucleotide polymorphism (SNP) previously identified using GWAS, as well as dozens of additional SNPs and indels in both the coding and promoter sequences. NAC18.1 encodes a protein that is orthogolous to the NON-RIPENING (NOR) transcription factor, a regulator of ripening in tomato (Solanum lycopersicum). We introduced both NAC18.1 transgene haplotypes into the tomato nor mutant and showed that both haplotypes complement the nor ripening deficiency. Taken together, these results indicate that polymorphisms in NAC18.1 may underlie substantial variation in apple firmness through modulation of a conserved ripening program.
Collapse
Affiliation(s)
- Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - Trevor H Yeats
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States.,Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Sophie Watts
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - Jun Song
- Agriculture and Agri-Food Canada, Kentville, NS, Canada
| | | | | | - Daryl J Somers
- Vineland Research and Innovation Centre, Vineland Station, ON, Canada
| | - Yihui Gong
- College of Horticulture, South China Agriculture University, Guangzhou, China
| | - Zhaoqi Zhang
- College of Horticulture, South China Agriculture University, Guangzhou, China
| | - Julia Vrebalov
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States.,Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Robin van Velzen
- Biosystematics Group, Wageningen University, Wageningen, Netherlands
| | - James G Giovannoni
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States.,United States Department of Agriculture, Robert W. Holley Center, Cornell University, Ithaca, NY, United States
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Sean Myles
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| |
Collapse
|
10
|
Wu B, Shen F, Wang X, Zheng WY, Xiao C, Deng Y, Wang T, Yu Huang Z, Zhou Q, Wang Y, Wu T, Feng Xu X, Hai Han Z, Zhong Zhang X. Role of MdERF3 and MdERF118 natural variations in apple flesh firmness/crispness retainability and development of QTL-based genomics-assisted prediction. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1022-1037. [PMID: 33319456 PMCID: PMC8131039 DOI: 10.1111/pbi.13527] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/29/2020] [Accepted: 12/06/2020] [Indexed: 05/24/2023]
Abstract
Retention of flesh texture attributes during cold storage is critical for the long-term maintenance of fruit quality. The genetic variations determining flesh firmness and crispness retainability are not well understood. The objectives of this study are to identify gene markers based on quantitative trait loci (QTLs) and to develop genomics-assisted prediction (GAP) models for apple flesh firmness and crispness retainability. Phenotype data of 2664 hybrids derived from three Malus domestica cultivars and a M. asiatica cultivar were collected in 2016 and 2017. The phenotype segregated considerably with high broad-sense heritability of 83.85% and 83.64% for flesh firmness and crispness retainability, respectively. Fifty-six candidate genes were predicted from the 62 QTLs identified using bulked segregant analysis and RNA-seq. The genotype effects of the markers designed on each candidate gene were estimated. The genomics-predicted values were obtained using pyramiding marker genotype effects and overall mean phenotype values. Fivefold cross-validation revealed that the prediction accuracy was 0.5541 and 0.6018 for retainability of flesh firmness and crispness, respectively. An 8-bp deletion in the MdERF3 promoter disrupted MdDOF5.3 binding, reduced MdERF3 expression, relieved the inhibition on MdPGLR3, MdPME2, and MdACO4 expression, and ultimately decreased flesh firmness and crispness retainability. A 3-bp deletion in the MdERF118 promoter decreased its expression by disrupting the binding of MdRAVL1, which increased MdPGLR3 and MdACO4 expression and reduced flesh firmness and crispness retainability. These results provide insights regarding the genetic variation network regulating flesh firmness and crispness retainability, and the GAP models can assist in apple breeding.
Collapse
Affiliation(s)
- Bei Wu
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Fei Shen
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Xuan Wang
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Wen Yan Zheng
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Chen Xiao
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Yang Deng
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Ting Wang
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Zhen Yu Huang
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Qian Zhou
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Yi Wang
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Ting Wu
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Xue Feng Xu
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Zhen Hai Han
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Xin Zhong Zhang
- College of HorticultureChina Agricultural UniversityBeijingChina
| |
Collapse
|
11
|
Wu B, Shen F, Chen CJ, Liu L, Wang X, Zheng WY, Deng Y, Wang T, Huang ZY, Xiao C, Zhou Q, Wang Y, Wu T, Xu XF, Han ZH, Zhang XZ. Natural variations in a pectin acetylesterase gene, MdPAE10, contribute to prolonged apple fruit shelf life. THE PLANT GENOME 2021; 14:e20084. [PMID: 33605090 DOI: 10.1002/tpg2.20084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/13/2020] [Indexed: 05/18/2023]
Abstract
Room-temperature shelf life is a key factor in fresh market apple (Malus domestica Borkh.) quality and commercial value. To investigate the genetic and molecular mechanism underlying apple shelf life, quantitative trait loci (QTL) were identified using bulked segregant analysis via sequencing (BSA-seq). Ethylene emission, flesh firmness, or crispness of apple fruit from 1,273 F1 plants of M. asiatica Nakai 'Zisai Pearl' × M. domestica 'Golden Delicious' were phenotyped prior to and during 6 wk of room-temperature storage. Segregation of ethylene emission and the flesh firmness or crispness traits was detected in the population. Thirteen QTL, including three major ones, were identified on chromosome 03, 08, and 16. A candidate gene encoding pectin acetylesterase, MdPAE10, from the QTL Z16.1 negatively affected fruit shelf life. A 379-bp deletion in the coding sequence of MdPAE10 disrupted its function. A single nucleotide polymorphism (SNP) in the MdPAE10 promoter region reduced its transcription activity. These findings provided insight into the genetic control of fruit shelf life and can be potentially used in apple marker-assisted selection.
Collapse
Affiliation(s)
- Bei Wu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Fei Shen
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Chi Jie Chen
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Li Liu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xuan Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Wen Yan Zheng
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yang Deng
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Ting Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Zhen Yu Huang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Chen Xiao
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Qian Zhou
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xue Feng Xu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Zhen Hai Han
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xin Zhong Zhang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| |
Collapse
|
12
|
Roth M, Muranty H, Di Guardo M, Guerra W, Patocchi A, Costa F. Genomic prediction of fruit texture and training population optimization towards the application of genomic selection in apple. HORTICULTURE RESEARCH 2020; 7:148. [PMID: 32922820 PMCID: PMC7459338 DOI: 10.1038/s41438-020-00370-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/18/2020] [Accepted: 07/24/2020] [Indexed: 05/11/2023]
Abstract
Texture is a complex trait and a major component of fruit quality in apple. While the major effect of MdPG1, a gene controlling firmness, has already been exploited in elite cultivars, the genetic basis of crispness remains poorly understood. To further improve fruit texture, harnessing loci with minor effects via genomic selection is therefore necessary. In this study, we measured acoustic and mechanical features in 537 genotypes to dissect the firmness and crispness components of fruit texture. Predictions of across-year phenotypic values for these components were calculated using a model calibrated with 8,294 SNP markers. The best prediction accuracies following cross-validations within the training set of 259 genotypes were obtained for the acoustic linear distance (0.64). Predictions for biparental families using the entire training set varied from low to high accuracy, depending on the family considered. While adding siblings or half-siblings into the training set did not clearly improve predictions, we performed an optimization of the training set size and composition for each validation set. This allowed us to increase prediction accuracies by 0.17 on average, with a maximal accuracy of 0.81 when predicting firmness in the 'Gala' × 'Pink Lady' family. Our results therefore identified key genetic parameters to consider when deploying genomic selection for texture in apple. In particular, we advise to rely on a large training population, with high phenotypic variability from which a 'tailored training population' can be extracted using a priori information on genetic relatedness, in order to predict a specific target population.
Collapse
Affiliation(s)
- Morgane Roth
- Plant Breeding Research Division, Agroscope, Wädenswil, Zurich, Switzerland
- Present Address: GAFL, INRAE, 84140 Montfavet, France
| | - Hélène Muranty
- IRHS, INRAE, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Mario Di Guardo
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all’Adige, Italy
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Walter Guerra
- Research Centre Laimburg, Laimburg 6, 39040 Auer, Italy
| | - Andrea Patocchi
- Plant Breeding Research Division, Agroscope, Wädenswil, Zurich, Switzerland
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all’Adige, Italy
- Center Agriculture Food Environment, University of Trento, Via Mach 1, 38010 San Michele all’Adige, Italy
| |
Collapse
|
13
|
Ma L, Sun L, Guo Y, Lin H, Liu Z, Li K, Guo X. Transcriptome analysis of table grapes (Vitis vinifera L.) identified a gene network module associated with berry firmness. PLoS One 2020; 15:e0237526. [PMID: 32804968 PMCID: PMC7430731 DOI: 10.1371/journal.pone.0237526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/28/2020] [Indexed: 11/29/2022] Open
Abstract
Berry firmness is one of the main selection criteria for table grape breeding. However, the underlying genetic determinants and mechanisms involved in gene expression during berry development are still poorly understood. In this study, eighteen libraries sampled from Vitis vinifera L. cv. ‘Red Globe’ and ‘Muscat Hamburg’ at three developmental stages (preveraison, veraison and maturation) were analyzed by RNA sequencing (RNA-Seq). The firmness of ‘Red Globe’ was significantly higher than that of ‘Muscat Hamburg’ at the three developmental stages. In total, a set of 4,559 differentially expressed genes (DEGs) was identified between ‘Red Globe’ and ‘Muscat Hamburg’ in the preveraison (2,259), veraison (2030) and maturation stages (2682), including 302 transcription factors (TFs). Weighted gene coexpression network analysis (WGCNA) showed that 23 TFs were predicted to be highly correlated with fruit firmness and propectin content. In addition, the differential expression of the PE, PL, PG, β-GAL, GATL, WAK, XTH and EXP genes might be the reason for the differences in firmness between ‘Red Globe’ and ‘Muscat Hamburg’. The results will provide new information for analysis of grape berry firmness and softening.
Collapse
Affiliation(s)
- Li Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
- Liaoning Institute of Pomology, Yingkou, Liaoning, P.R. China
| | - Lingjun Sun
- Liaoning Institute of Pomology, Yingkou, Liaoning, P.R. China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
- * E-mail: (YG); (XG)
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
- * E-mail: (YG); (XG)
| |
Collapse
|
14
|
Nybom H, Ahmadi-Afzadi M, Rumpunen K, Tahir I. Review of the Impact of Apple Fruit Ripening, Texture and Chemical Contents on Genetically Determined Susceptibility to Storage Rots. PLANTS 2020; 9:plants9070831. [PMID: 32630736 PMCID: PMC7411992 DOI: 10.3390/plants9070831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
Abstract
Fungal storage rots like blue mould, grey mould, bull's eye rot, bitter rot and brown rot destroy large amounts of the harvested apple crop around the world. Application of fungicides is nowadays severely restricted in many countries and production systems, and these problems are therefore likely to increase. Considerable variation among apple cultivars in resistance/susceptibility has been reported, suggesting that efficient defence mechanisms can be selected for and used in plant breeding. These are, however, likely to vary between pathogens, since some fungi are mainly wound-mediated while others attack through lenticels or by infecting blossoms. Since mature fruits are considerably more susceptible than immature fruits, mechanisms involving fruit-ripening processes are likely to play an important role. Significant associations have been detected between the susceptibility to rots in harvested fruit and various fruit maturation-related traits like ripening time, fruit firmness at harvest and rate of fruit softening during storage, as well as fruit biochemical contents like acidity, sugars and polyphenols. Some sources of resistance to blue mould have been described, but more research is needed on the development of spore inoculation methods that produce reproducible data and can be used for large screenings, especially for lenticel-infecting fungi.
Collapse
Affiliation(s)
- Hilde Nybom
- Department of Plant Breeding–Balsgård, Swedish University of Agricultural Sciences, Fjälkestadsvägen 459, 29194 Kristianstad, Sweden;
- Correspondence:
| | - Masoud Ahmadi-Afzadi
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran;
| | - Kimmo Rumpunen
- Department of Plant Breeding–Balsgård, Swedish University of Agricultural Sciences, Fjälkestadsvägen 459, 29194 Kristianstad, Sweden;
| | - Ibrahim Tahir
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, 23053 Alnarp, Sweden;
| |
Collapse
|
15
|
Wang Y, Xu Y, Gupta S, Zhou Y, Wallwork H, Zhou G, Broughton S, Zhang XQ, Tan C, Westcott S, Moody D, Sun D, Loughman R, Zhang W, Li C. Fine mapping QSc.VR4, an effective and stable scald resistance locus in barley (Hordeum vulgare L.), to a 0.38-Mb region enriched with LRR-RLK and GLP genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2307-2321. [PMID: 32405768 DOI: 10.1007/s00122-020-03599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
An effective and stable quantitative resistance locus, QSc.VR4, was fine mapped, characterized and physically anchored to the short arm of 4H, conferring adult plant resistance to the fungus Rhynchosporium commune in barley. Scald caused by Rhynchosporium commune is one of the most destructive barley diseases worldwide. Accumulation of adult plant resistance (APR) governed by multiple resistance alleles is predicted to be effective and long-lasting against a broad spectrum of pathotypes. However, the molecular mechanisms that control APR remain poorly understood. Here, quantitative trait loci (QTL) analysis of APR and fine mapping were performed on five barley populations derived from a common parent Vlamingh, which expresses APR to scald. Two QTLs, designated QSc.VR4 and QSc.BR7, were detected from a cross between Vlamingh and Buloke. Our data confirmed that QSc.VR4 is an effective and stable APR locus, residing on the short arm of chromosome 4H, and QSc.BR7 derived from Buloke may be an allele of reported Rrs2. High-resolution fine mapping revealed that QSc.VR4 is located in a 0.38Â Mb genomic region between InDel markers 4H2282169 and 4H2665106. The gene annotation analysis and sequence comparison suggested that a gene cluster containing two adjacent multigene families encoding leucine-rich repeat receptor kinase-like proteins (LRR-RLKs) and germin-like proteins (GLPs), respectively, is likely contributing to scald resistance. Adult plant resistance (APR) governed by QSc.VR4 may confer partial levels of resistance to the fungus Rhynchosporium commune and, furthermore, be an important resource for gene pyramiding that may contribute broad-based and more durable resistance.
Collapse
Affiliation(s)
- Yonggang Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Yanhao Xu
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China
| | - Sanjiv Gupta
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Yi Zhou
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China
| | - Hugh Wallwork
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Sue Broughton
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Cong Tan
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Sharon Westcott
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - David Moody
- InterGrain Pty Ltd, South Perth, WA, Australia
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China
| | - Robert Loughman
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Wenying Zhang
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China.
| | - Chengdao Li
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia.
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China.
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia.
| |
Collapse
|
16
|
Carrasco-Valenzuela T, Muñoz-Espinoza C, Riveros A, Pedreschi R, Arús P, Campos-Vargas R, Meneses C. Expression QTL (eQTLs) Analyses Reveal Candidate Genes Associated With Fruit Flesh Softening Rate in Peach [ Prunus persica (L.) Batsch]. FRONTIERS IN PLANT SCIENCE 2019; 10:1581. [PMID: 31850046 PMCID: PMC6901599 DOI: 10.3389/fpls.2019.01581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/12/2019] [Indexed: 05/22/2023]
Abstract
Significant differences in softening rate have been reported between melting flesh in peach and nectarine varieties. This trait seems to be controlled by several genes. We aimed to identify candidate genes involved in fruit softening rate by integrating quantitative trait loci (QTL) and expression QTL (eQTL) analyses, comparing siblings with contrasting softening rates. We used a segregating population derived from nectarine cv. 'Venus' selfing, which was phenotyped for softening rate during three seasons. Six siblings with high (HSR) and six with low softening rate (LSR) were sequenced using RNA-Seq. A group of 5,041 differentially expressed genes was identified. Also, we found a QTL with a LOD (logarithm of odds) score of 9.7 on LG4 in all analyzed seasons. Furthermore, we detected 1,062 eQTLs, of which 133 were found co-localizing with the identified QTL. Gene Ontology (GO) analysis showed 'Response to auxin' as one the main over-represented categories. Our findings suggest over-expression of auxin biosynthetic related genes in the HSR group, which implies a higher expression and/or accumulation of auxin, thereby triggering fast softening. Conversely, the LSR phenotype might be explained by an altered auxin-homeostasis associated with low auxin levels. This work will contribute to unraveling the genetic mechanisms responsible for the softening rate in peaches and nectarines and lead to the development of molecular markers.
Collapse
Affiliation(s)
- Tomás Carrasco-Valenzuela
- Centro de BiotecnologÃa Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Claudia Muñoz-Espinoza
- Centro de BiotecnologÃa Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - AnÃbal Riveros
- Centro de BiotecnologÃa Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Romina Pedreschi
- Escuela de AgronomÃa, Pontificia Universidad Católica de ValparaÃso, Quillota, Chile
| | - Pere Arús
- IRTA, Centre de Recerca en Agrigenòmica (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Reinaldo Campos-Vargas
- Centro de BiotecnologÃa Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Claudio Meneses
- Centro de BiotecnologÃa Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
- *Correspondence: Claudio Meneses,
| |
Collapse
|
17
|
Lahaye M, Bouin C, Barbacci A, Le Gall S, Foucat L. Water and cell wall contributions to apple mechanical properties. Food Chem 2018; 268:386-394. [DOI: 10.1016/j.foodchem.2018.06.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
|
18
|
Jia D, Shen F, Wang Y, Wu T, Xu X, Zhang X, Han Z. Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes: MdSAUR37, MdPP2CH and MdALMTII. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:427-443. [PMID: 29750477 DOI: 10.1111/tpj.13957] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 05/21/2023]
Abstract
Many efforts have been made to map quantitative trait loci (QTLs) to facilitate practical marker-assisted selection (MAS) in plants. In the present study, using MapQTL and BSA-seq (bulk segregant analysis using next generation sequencing) with two independent pedigree-based populations, we identified four major genome-wide QTLs responsible for apple fruit acidity. Candidate genes were screened in major QTL regions, and three functional gene markers, including a non-synonymous A/G single-nucleotide polymorphism (SNP) in the coding region of MdPP2CH, a 36-bp insertion in the promoter of MdSAUR37 and a previously reported SNP in MdALMTII, were validated to influence the malate content of apple fruits. In addition, MdPP2CH inactivated three vacuolar H+ -ATPases (MdVHA-A3, MdVHA-B2 and MdVHA-D2) and one aluminium-activated malate transporter (MdALMTII) via dephosphorylation and negatively influenced fruit malate accumulation. The dephosphotase activity of MdPP2CH was suppressed by MdSAUR37, which implied a higher hierarchy of genetic interaction. Therefore, the MdSAUR37/MdPP2CH/MdALMTII chain cascaded hierarchical epistatic genetic effects to precisely determine apple fruit malate content. An A/G SNP (-1010) on the MdMYB44 promoter region from a major QTL (qtl08.1) was closely associated with fruit malate content. The predicted phenotype values (PPVs) were estimated using the tentative genotype values of the gene markers, and the PPVs were significantly correlated with the observed phenotype values. Our findings provide an insight into plant genome-based selection in apples and will aid in conducting research to understand the fundamental physiological basis of quantitative genetics.
Collapse
Affiliation(s)
- Dongjie Jia
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Fei Shen
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ting Wu
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinzhong Zhang
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenhai Han
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
19
|
Wang H, Zhao S, Mao K, Dong Q, Liang B, Li C, Wei Z, Li M, Ma F. Mapping QTLs for water-use efficiency reveals the potential candidate genes involved in regulating the trait in apple under drought stress. BMC PLANT BIOLOGY 2018; 18:136. [PMID: 29940853 PMCID: PMC6019725 DOI: 10.1186/s12870-018-1308-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 05/10/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Improvement of water-use efficiency (WUE) can effectively reduce production losses caused by drought stress. A better understanding of the genetic determination of WUE in crops under drought stress has great potential value for developing cultivars adapted to arid regions. To identify the genetic loci associated with WUE and reveal genes responsible for the trait in apple, we aim to map the quantitative trait loci (QTLs) for carbon isotope composition, the proxy for WUE, applying two contrasting irrigating regimes over the two-year experiment and search for the candidate genes encompassed in the mapped QTLs. RESULTS We constructed a high-density genetic linkage map with 10,172 markers of apple, using single nucleotide polymorphism (SNP) markers obtained through restriction site-associated DNA sequencing (RADseq) and a final segregating population of 350 seedlings from the cross of Honeycrisp and Qinguan. In total, 33 QTLs were identified for carbon isotope composition in apple under both well-watered and drought-stressed conditions. Three QTLs were stable over 2 years under drought stress on linkage groups LG8, LG15 and LG16, as validated by Kompetitive Allele-Specific PCR (KASP) assays. In those validated QTLs, 258 genes were screened according to their Gene Ontology functional annotations. Among them, 28 genes were identified, which exhibited significant responses to drought stress in 'Honeycrisp' and/or 'Qinguan'. These genes are involved in signaling, photosynthesis, response to stresses, carbohydrate metabolism, protein metabolism and modification, hormone metabolism and transport, transport, respiration, transcriptional regulation, and development regulation. They, especially those for photoprotection and relevant signal transduction, are potential candidate genes connected with WUE regulation in drought-stressed apple. CONCLUSIONS We detected three stable QTLs for carbon isotope composition in apple under drought stress over 2 years, and validated them by KASP assay. Twenty-eight candidate genes encompassed in these QTLs were identified. These stable genetic loci and series of genes provided here serve as a foundation for further studies on marker-assisted selection of high WUE and regulatory mechanism of WUE in apple exposed to drought conditions, respectively.
Collapse
Affiliation(s)
- Haibo Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Bowen Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zhiwei Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
20
|
McClure KA, Gardner KM, Douglas GM, Song J, Forney CF, DeLong J, Fan L, Du L, Toivonen PMA, Somers DJ, Rajcan I, Myles S. A Genome-Wide Association Study of Apple Quality and Scab Resistance. THE PLANT GENOME 2018; 11:170075. [PMID: 29505632 DOI: 10.3835/plantgenome2017.08.0075] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The apple ( × Borkh.) is an economically and culturally important crop grown worldwide. Growers of this long-lived perennial must produce fruit of adequate quality while also combatting abiotic and biotic stress. Traditional apple breeding can take up to 20 yr from initial cross to commercial release, but genomics-assisted breeding can help accelerate this process. To advance genomics-assisted breeding in apple, we performed genome-wide association studies (GWAS) and genomic prediction in a collection of 172 apple accessions by linking over 55,000 single nucleotide polymorphisms (SNPs) with 10 phenotypes collected over 2 yr. Genome-wide association studies revealed several known loci for skin color, harvest date and firmness at harvest. Several significant GWAS associations were detected for resistance to a major fungal pathogen, apple scab ( [Cke.] Wint.), but we demonstrate that these hits likely represent a single ancestral source. Using genomic prediction, we show that most phenotypes are sufficiently predictable using genome-wide SNPs to be candidates for genomic selection. Finally, we detect a signal for firmness retention after storage on chromosome 10 and show that it may not stem from variation in , a gene repeatedly identified in bi-parental mapping studies and widely believed to underlie a major QTL for firmness on chromosome 10. We provide evidence that this major QTL is more likely due to variation in a neighboring ethylene response factor (ERF) gene. The present study showcases the superior mapping resolution of GWAS compared to bi-parental linkage mapping by identifying a novel candidate gene underlying a well-studied, major QTL involved in apple firmness.
Collapse
|
21
|
Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds. Sci Rep 2017; 7:44950. [PMID: 28322320 PMCID: PMC5359574 DOI: 10.1038/srep44950] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/16/2017] [Indexed: 11/08/2022] Open
Abstract
Sweetness is one of the main drivers of consumer preference, and thus is given high priority in apple breeding programmes. Due to the complexity of sweetness evaluation, soluble solid content (SSC) is commonly used as an estimation of this trait. Nevertheless, it has been demonstrated that SSC and sweet taste are poorly correlated. Though individual sugar content may vary greatly between and within apple cultivars, no previous study has tried to investigate the relationship between the amount of individual sugars, or ratios of these, and apple sweetness. In this work, we quantified the major sugars (sucrose, glucose, fructose, xylose) and sorbitol and explored their influence on perceived sweetness in apple; we also related this to malic acid content, SSC and volatile compounds. Our data confirmed that the correlation between sweetness and SSC is weak. We found that sorbitol content correlates (similarly to SSC) with perceived sweetness better than any other single sugar or total sugar content. The single sugars show no differentiable importance in determining apple sweetness. Our predictive model based on partial least squares regression shows that after sorbitol and SSC, the most important contribution to apple sweetness is provided by several volatile compounds, mainly esters and farnesene.
Collapse
|
22
|
Farneti B, Di Guardo M, Khomenko I, Cappellin L, Biasioli F, Velasco R, Costa F. Genome-wide association study unravels the genetic control of the apple volatilome and its interplay with fruit texture. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1467-1478. [PMID: 28338794 PMCID: PMC5441895 DOI: 10.1093/jxb/erx018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fruit quality represents a fundamental factor guiding consumers' preferences. Among apple quality traits, volatile organic compounds and texture features play a major role. Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS), coupled with an artificial chewing device, was used to profile the entire apple volatilome of 162 apple accessions, while the fruit texture was dissected with a TAXT-AED texture analyzer. The array of volatile compounds was classed into seven major groups and used in a genome-wide association analysis carried out with 9142 single nucleotide polymorphisms (SNPs). Marker-trait associations were identified on seven chromosomes co-locating with important candidate genes for aroma, such as MdAAT1 and MdIGS. The integration of volatilome and fruit texture data conducted with a multiple factor analysis unraveled contrasting behavior, underlying opposite regulation of the two fruit quality aspects. The association analysis using the first two principal components identified two QTLs located on chromosomes 10 and 2, respectively. The distinction of the apple accessions on the basis of the allelic configuration of two functional markers, MdPG1 and MdACO1, shed light on the type of interplay existing between fruit texture and the production of volatile organic compounds.
Collapse
Affiliation(s)
- Brian Farneti
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| | - Mario Di Guardo
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento, Italy
- Graduate School Experimental Plant Sciences, Wageningen University, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - Iuliia Khomenko
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento, Italy
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstr. 25/3, 6020 Innsbruck, Austria
| | - Luca Cappellin
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| | - Riccardo Velasco
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| | - Fabrizio Costa
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| |
Collapse
|
23
|
Di Guardo M, Bink MCAM, Guerra W, Letschka T, Lozano L, Busatto N, Poles L, Tadiello A, Bianco L, Visser RGF, van de Weg E, Costa F. Deciphering the genetic control of fruit texture in apple by multiple family-based analysis and genome-wide association. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1451-1466. [PMID: 28338805 PMCID: PMC5441909 DOI: 10.1093/jxb/erx017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fruit texture is a complex feature composed of mechanical and acoustic properties relying on the modifications occurring in the cell wall throughout fruit development and ripening. Apple is characterized by a large variation in fruit texture behavior that directly impacts both the consumer's appreciation and post-harvest performance. To decipher the genetic control of fruit texture comprehensively, two complementing quantitative trait locus (QTL) mapping approaches were employed. The first was represented by a pedigree-based analysis (PBA) carried out on six full-sib pedigreed families, while the second was a genome-wide association study (GWAS) performed on a collection of 233 apple accessions. Both plant materials were genotyped with a 20K single nucleotide polymorphism (SNP) array and phenotyped with a sophisticated high-resolution texture analyzer. The overall QTL results indicated the fundamental role of chromosome 10 in controlling the mechanical properties, while chromosomes 2 and 14 were more associated with the acoustic response. The latter QTL, moreover, showed a consistent relationship between the QTL-estimated genotypes and the acoustic performance assessed among seedlings. The in silico annotation of these intervals revealed interesting candidate genes potentially involved in fruit texture regulation, as suggested by the gene expression profile. The joint integration of these approaches sheds light on the specific control of fruit texture, enabling important genetic information to assist in the selection of valuable fruit quality apple varieties.
Collapse
Affiliation(s)
- Mario Di Guardo
- Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento, Italy
- Graduate School Experimental Plant Sciences, Wageningen University, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - Marco C A M Bink
- Biometris, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Walter Guerra
- Laimburg Research Centre for Agriculture and Forestry, via Laimburg 6, 39040 Ora (BZ),Italy
| | - Thomas Letschka
- Laimburg Research Centre for Agriculture and Forestry, via Laimburg 6, 39040 Ora (BZ),Italy
| | - Lidia Lozano
- Laimburg Research Centre for Agriculture and Forestry, via Laimburg 6, 39040 Ora (BZ),Italy
| | - Nicola Busatto
- Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| | - Lara Poles
- Innovation Fruit Consortium (CIF), via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Alice Tadiello
- Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| | - Luca Bianco
- Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - Eric van de Weg
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - Fabrizio Costa
- Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| |
Collapse
|
24
|
Amyotte B, Bowen AJ, Banks T, Rajcan I, Somers DJ. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study. PLoS One 2017; 12:e0171710. [PMID: 28231290 PMCID: PMC5322975 DOI: 10.1371/journal.pone.0171710] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/12/2017] [Indexed: 01/27/2023] Open
Abstract
Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants.
Collapse
Affiliation(s)
- Beatrice Amyotte
- Vineland Research and Innovation Centre, Victoria Avenue North, Vineland Station, ON, Canada
| | - Amy J. Bowen
- Vineland Research and Innovation Centre, Victoria Avenue North, Vineland Station, ON, Canada
| | - Travis Banks
- Vineland Research and Innovation Centre, Victoria Avenue North, Vineland Station, ON, Canada
| | - Istvan Rajcan
- University of Guelph, Department of Plant Agriculture, Guelph, ON, Canada
| | - Daryl J. Somers
- Vineland Research and Innovation Centre, Victoria Avenue North, Vineland Station, ON, Canada
| |
Collapse
|
25
|
Tadiello A, Longhi S, Moretto M, Ferrarini A, Tononi P, Farneti B, Busatto N, Vrhovsek U, Molin AD, Avanzato C, Biasioli F, Cappellin L, Scholz M, Velasco R, Trainotti L, Delledonne M, Costa F. Interference with ethylene perception at receptor level sheds light on auxin and transcriptional circuits associated with the climacteric ripening of apple fruit (Malus x domestica Borkh.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:963-975. [PMID: 27531564 DOI: 10.1111/tpj.13306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 05/08/2023]
Abstract
Apple (Malus x domestica Borkh.) is a model species for studying the metabolic changes that occur at the onset of ripening in fruit crops, and the physiological mechanisms that are governed by the hormone ethylene. In this study, to dissect the climacteric interplay in apple, a multidisciplinary approach was employed. To this end, a comprehensive analysis of gene expression together with the investigation of several physiological entities (texture, volatilome and content of polyphenolic compounds) was performed throughout fruit development and ripening. The transcriptomic profiling was conducted with two microarray platforms: a dedicated custom array (iRIPE) and a whole genome array specifically enriched with ripening-related genes for apple (WGAA). The transcriptomic and phenotypic changes following the application of 1-methylcyclopropene (1-MCP), an ethylene inhibitor leading to important modifications in overall fruit physiology, were also highlighted. The integrative comparative network analysis showed both negative and positive correlations between ripening-related transcripts and the accumulation of specific metabolites or texture components. The ripening distortion caused by the inhibition of ethylene perception, in addition to affecting the ethylene pathway, stimulated the de-repression of auxin-related genes, transcription factors and photosynthetic genes. Overall, the comprehensive repertoire of results obtained here advances the elucidation of the multi-layered climacteric mechanism of fruit ripening, thus suggesting a possible transcriptional circuit governed by hormones and transcription factors.
Collapse
Affiliation(s)
- Alice Tadiello
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Sara Longhi
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Alberto Ferrarini
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| | - Paola Tononi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| | - Brian Farneti
- Department of Agricultural Sciences, Bologna University, Via Fanin 46, Bologna, 40127, Italy
| | - Nicola Busatto
- Department of Agricultural Sciences, Bologna University, Via Fanin 46, Bologna, 40127, Italy
| | - Urska Vrhovsek
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Alessandra Dal Molin
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| | - Carla Avanzato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Luca Cappellin
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Matthias Scholz
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Riccardo Velasco
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Livio Trainotti
- Biology Department, Padova University, Viale Giuseppe Colombo 3, Padova, 35121, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| | - Fabrizio Costa
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| |
Collapse
|
26
|
Kunihisa M, Moriya S, Abe K, Okada K, Haji T, Hayashi T, Kawahara Y, Itoh R, Itoh T, Katayose Y, Kanamori H, Matsumoto T, Mori S, Sasaki H, Matsumoto T, Nishitani C, Terakami S, Yamamoto T. Genomic dissection of a 'Fuji' apple cultivar: re-sequencing, SNP marker development, definition of haplotypes, and QTL detection. BREEDING SCIENCE 2016; 66:499-515. [PMID: 27795675 PMCID: PMC5010306 DOI: 10.1270/jsbbs.16018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/19/2016] [Indexed: 05/03/2023]
Abstract
'Fuji' is one of the most popular and highly-produced apple cultivars worldwide, and has been frequently used in breeding programs. The development of genotypic markers for the preferable phenotypes of 'Fuji' is required. Here, we aimed to define the haplotypes of 'Fuji' and find associations between haplotypes and phenotypes of five traits (harvest day, fruit weight, acidity, degree of watercore, and flesh mealiness) by using 115 accessions related to 'Fuji'. Through the re-sequencing of 'Fuji' genome, total of 2,820,759 variants, including single nucleotide polymorphisms (SNPs) and insertions or deletions (indels) were detected between 'Fuji' and 'Golden Delicious' reference genome. We selected mapping-validated 1,014 SNPs, most of which were heterozygous in 'Fuji' and capable of distinguishing alleles inherited from the parents of 'Fuji' (i.e., 'Ralls Janet' and 'Delicious'). We used these SNPs to define the haplotypes of 'Fuji' and trace their inheritance in relatives, which were shown to have an average of 27% of 'Fuji' genome. Analysis of variance (ANOVA) based on 'Fuji' haplotypes identified one quantitative trait loci (QTL) each for harvest time, acidity, degree of watercore, and mealiness. A haplotype from 'Delicious' chr14 was considered to dominantly cause watercore, and one from 'Ralls Janet' chr1 was related to low-mealiness.
Collapse
Affiliation(s)
- Miyuki Kunihisa
- NARO Institute of Fruit Tree Science,
2-1 Fujimoto, Tsukuba, Ibaraki 305-8605,
Japan
- Corresponding author (e-mail: )
| | - Shigeki Moriya
- NARO Institute of Fruit Tree Science,
92-24 Shimokuriyagawa, Morioka, Iwate 020-0123,
Japan
| | - Kazuyuki Abe
- NARO Institute of Fruit Tree Science,
92-24 Shimokuriyagawa, Morioka, Iwate 020-0123,
Japan
| | - Kazuma Okada
- NARO Institute of Fruit Tree Science,
92-24 Shimokuriyagawa, Morioka, Iwate 020-0123,
Japan
| | - Takashi Haji
- NARO Institute of Fruit Tree Science,
92-24 Shimokuriyagawa, Morioka, Iwate 020-0123,
Japan
| | - Takeshi Hayashi
- NARO Agricultural Research Center,
3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666,
Japan
| | - Yoshihiro Kawahara
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305- 8602,
Japan
| | - Ryutaro Itoh
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305- 8602,
Japan
- DYNACOM Co., Ltd.,
E-25F, WBG, 2-6-1 Nakase, Mihama-ku, Chiba 261-7125,
Japan
| | - Takeshi Itoh
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305- 8602,
Japan
| | - Yuichi Katayose
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305- 8602,
Japan
| | - Hiroyuki Kanamori
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305- 8602,
Japan
| | - Toshimi Matsumoto
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305- 8602,
Japan
| | - Satomi Mori
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305- 8602,
Japan
| | - Harumi Sasaki
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305- 8602,
Japan
| | - Takashi Matsumoto
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305- 8602,
Japan
| | - Chikako Nishitani
- NARO Institute of Fruit Tree Science,
2-1 Fujimoto, Tsukuba, Ibaraki 305-8605,
Japan
| | - Shingo Terakami
- NARO Institute of Fruit Tree Science,
2-1 Fujimoto, Tsukuba, Ibaraki 305-8605,
Japan
| | - Toshiya Yamamoto
- NARO Institute of Fruit Tree Science,
2-1 Fujimoto, Tsukuba, Ibaraki 305-8605,
Japan
| |
Collapse
|
27
|
Igarashi M, Hatsuyama Y, Harada T, Fukasawa-Akada T. Biotechnology and apple breeding in Japan. BREEDING SCIENCE 2016; 66:18-33. [PMID: 27069388 PMCID: PMC4780799 DOI: 10.1270/jsbbs.66.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/23/2015] [Indexed: 05/11/2023]
Abstract
Apple is a fruit crop of significant economic importance, and breeders world wide continue to develop novel cultivars with improved characteristics. The lengthy juvenile period and the large field space required to grow apple populations have imposed major limitations on breeding. Various molecular biological techniques have been employed to make apple breeding easier. Transgenic technology has facilitated the development of apples with resistance to fungal or bacterial diseases, improved fruit quality, or root stocks with better rooting or dwarfing ability. DNA markers for disease resistance (scab, powdery mildew, fire-blight, Alternaria blotch) and fruit skin color have also been developed, and marker-assisted selection (MAS) has been employed in breeding programs. In the last decade, genomic sequences and chromosome maps of various cultivars have become available, allowing the development of large SNP arrays, enabling efficient QTL mapping and genomic selection (GS). In recent years, new technologies for genetic improvement, such as trans-grafting, virus vectors, and genome-editing, have emerged. Using these techniques, no foreign genes are present in the final product, and some of them show considerable promise for application to apple breeding.
Collapse
Affiliation(s)
- Megumi Igarashi
- Hirosaki Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center,
Ogimachi 1-1-8, Hirosaki, Aomori 036-8104,
Japan
| | - Yoshimichi Hatsuyama
- Apple Research Institute, Aomori Prefectural Industrial Technology Research Center,
Fukutami 24, Botandaira, Kuroishi, Aomori 036-0332,
Japan
| | - Takeo Harada
- Department of Agriculture and Life Science, Hirosaki University,
Bunkyouchou 3, Hirosaki, Aomori 036-8563,
Japan
| | - Tomoko Fukasawa-Akada
- Hirosaki Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center,
Ogimachi 1-1-8, Hirosaki, Aomori 036-8104,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
28
|
Lashbrooke J, Aharoni A, Costa F. Genome investigation suggests MdSHN3, an APETALA2-domain transcription factor gene, to be a positive regulator of apple fruit cuticle formation and an inhibitor of russet development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6579-89. [PMID: 26220084 PMCID: PMC4623677 DOI: 10.1093/jxb/erv366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The outer epidermal layer of apple fruit is covered by a protective cuticle. Composed of a polymerized cutin matrix embedded with waxes, the cuticle is a natural waterproof barrier and protects against several abiotic and biotic stresses. In terms of apple production, the cuticle is essential to maintain long post-harvest storage, while severe failure of the cuticle can result in the formation of a disorder known as russet. Apple russet results from micro-cracking of the cuticle and the formation of a corky suberized layer. This is typically an undesirable consumer trait, and negatively impacts the post-harvest storage of apples. In order to identify genetic factors controlling cuticle biosynthesis (and thus preventing russet) in apple, a quantitative trait locus (QTL) mapping survey was performed on a full-sib population. Two genomic regions located on chromosomes 2 and 15 that could be associated with russeting were identified. Apples with compromised cuticles were identified through a novel and high-throughput tensile analysis of the skin, while histological analysis confirmed cuticle failure in a subset of the progeny. Additional genomic investigation of the determined QTL regions identified a set of underlying genes involved in cuticle biosynthesis. Candidate gene expression profiling by quantitative real-time PCR on a subset of the progeny highlighted the specific expression pattern of a SHN1/WIN1 transcription factor gene (termed MdSHN3) on chromosome 15. Orthologues of SHN1/WIN1 have been previously shown to regulate cuticle formation in Arabidopsis, tomato, and barley. The MdSHN3 transcription factor gene displayed extremely low expression in lines with improper cuticle formation, suggesting it to be a fundamental regulator of cuticle biosynthesis in apple fruit.
Collapse
Affiliation(s)
- Justin Lashbrooke
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige (Trento), Italy Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | - Fabrizio Costa
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige (Trento), Italy
| |
Collapse
|
29
|
Ma B, Liao L, Zheng H, Chen J, Wu B, Ogutu C, Li S, Korban SS, Han Y. Genes Encoding Aluminum-Activated Malate Transporter II and their Association with Fruit Acidity in Apple. THE PLANT GENOME 2015; 8:eplantgenome2015.03.0016. [PMID: 33228269 DOI: 10.3835/plantgenome2015.03.0016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/27/2015] [Indexed: 05/25/2023]
Abstract
A gene encoding aluminum-activated malate transporter (ALMT) was previously reported as a candidate for the Ma locus controlling acidity in apple (Malus × domestica Borkh.). In this study, we found that apple ALMT genes can be divided into three families and the Ma1 gene belongs to the ALMTII family. Duplication of ALMTII genes in apple is related to the polyploid origin of the apple genome. Divergence in expression has occurred between the Ma1 gene and its homologs in the ALMTII family and only the Ma1 gene is significantly associated with malic acid content. The Ma locus consists of two alleles, Ma1 and ma1. Ma1 resides in the tonoplast and its ectopic expression in yeast was found to increase the influx of malic acid into yeast cells significantly, suggesting it may function as a vacuolar malate channel. In contrast, ma1 encodes a truncated protein because of a single nucleotide substitution of G with A in the last exon. As this truncated protein resides within the cell membrane, it is deemed to be nonfunctional as a vacuolar malate channel. The frequency of the Ma1Ma1 genotype is very low in apple cultivars but is high in wild relatives, which suggests that apple domestication may be accompanied by selection for the Ma1 gene. In addition, variations in the malic acid content of mature fruits were also observed between accessions with the same genotype in the Ma locus. This suggests that the Ma gene is not the only genetic determinant of fruit acidity in apple.
Collapse
Affiliation(s)
- Baiquan Ma
- Key Lab. of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, P.R. China
- Graduate Univ. of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P.R. China
| | - Liao Liao
- Key Lab. of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, P.R. China
| | - Hongyu Zheng
- Key Lab. of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, P.R. China
- Graduate Univ. of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P.R. China
| | - Jie Chen
- Beijing Key Lab. of Grape Sciences and Enology, and Key Lab. of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Graduate Univ. of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P.R. China
| | - Benhong Wu
- Beijing Key Lab. of Grape Sciences and Enology, and Key Lab. of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Collins Ogutu
- Key Lab. of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, P.R. China
- Graduate Univ. of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P.R. China
| | - Shaohua Li
- Key Lab. of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, P.R. China
| | - Schuyler S Korban
- Dep. of Biology, Univ. of Massachusetts-Boston, Boston, MA, 02184, USA
| | - Yuepeng Han
- Key Lab. of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, P.R. China
| |
Collapse
|
30
|
Sun R, Chang Y, Yang F, Wang Y, Li H, Zhao Y, Chen D, Wu T, Zhang X, Han Z. A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. BMC Genomics 2015; 16:747. [PMID: 26437648 PMCID: PMC4595315 DOI: 10.1186/s12864-015-1946-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 09/22/2015] [Indexed: 02/05/2023] Open
Abstract
Background Genetic map based quantitative trait locus (QTL) analysis is an important method for studying important horticultural traits in apple. To facilitate molecular breeding studies of fruit quality traits in apple, we aim to construct a high density map which was efficient for QTL mapping and possible to search for candidate genes directly in mapped QTLs regions. Methods A total of 1733 F1 seedlings derived from ‘Jonathan’ × ‘Golden Delicious’ was used for the map constructionand QTL analysis. The SNP markers were developed by restriction site-associated DNA sequencing (RADseq). Phenotyping data of fruit quality traits were calculated in 2008-2011. Once QTLs were mapped, candidate genes were searched for in the corresponding regions of the apple genome sequence underlying the QTLs. Then some of the candidate genes were validated using real-time PCR. Results A high-density genetic map with 3441 SNP markers from 297 individuals was generated. Of the 3441 markers, 2017 were mapped to ‘Jonathan’ with a length of 1343.4 cM and the average distance between markers was 0.67 cM, 1932 were mapped to ‘Golden Delicious’ with a length of 1516.0 cM and the average distance between markers was 0.78 cM. Twelve significant QTLs linked to the control of fruit weight, fruit firmness, sugar content and fruit acidity were mapped to seven linkage groups. Based on gene annotation, 80, 64 and 17 genes related to fruit weight, fruit firmness and fruit acidity, respectively, were analyzed.Among the 17 candidate genes associated with control of fruit acidity, changes in the expression of MDP0000582174 (MdMYB4) were in agreement with the pattern of changes in malic acid content in apple during ripening, and the relative expression of MDP0000239624 (MdME) was significantly correlated withfruit acidity. Conclusions We demonstrated the construction of a dense SNP genetic map in apple using next generation sequencing and that the increased resolution enabled the detection of narrow interval QTLs linked to the three fruit quality traits assessed. The candidate genes MDP0000582174 and MDP0000239624 were found to be related to fruit acidity regulation. We conclude that application of RADseq for genetic map construction improved the precision of QTL detection and should be utilized in future studies on the regulatory mechanisms of important fruit traits in apple. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1946-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Sun
- Institute for Horticultural Plants, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Yuansheng Chang
- Institute for Horticultural Plants, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Fengqiu Yang
- Changli Institute for Pomology, Hebei Academy of Agricultural and Forestry Science, Changli, Heibei 066600, China.
| | - Yi Wang
- Institute for Horticultural Plants, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Hui Li
- Institute for Horticultural Plants, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Yongbo Zhao
- Changli Institute for Pomology, Hebei Academy of Agricultural and Forestry Science, Changli, Heibei 066600, China.
| | - Dongmei Chen
- Changli Institute for Pomology, Hebei Academy of Agricultural and Forestry Science, Changli, Heibei 066600, China.
| | - Ting Wu
- Institute for Horticultural Plants, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Xinzhong Zhang
- Institute for Horticultural Plants, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Zhenhai Han
- Institute for Horticultural Plants, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
31
|
Ethylene-dependent regulation of an α-l-arabinofuranosidase is associated to firmness loss in ‘Gala’ apples under long term cold storage. Food Chem 2015; 182:111-9. [DOI: 10.1016/j.foodchem.2015.02.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 11/19/2022]
|
32
|
Falginella L, Cipriani G, Monte C, Gregori R, Testolin R, Velasco R, Troggio M, Tartarini S. A major QTL controlling apple skin russeting maps on the linkage group 12 of 'Renetta Grigia di Torriana'. BMC PLANT BIOLOGY 2015; 15:150. [PMID: 26084469 PMCID: PMC4472412 DOI: 10.1186/s12870-015-0507-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/27/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Russeting is a disorder developed by apple fruits that consists of cuticle cracking followed by the replacement of the epidermis by a corky layer that protects the fruit surface from water loss and pathogens. Although influenced by many environmental conditions and orchard management practices, russeting is under genetic control. The difficulty in classifying offspring and consequent variable segregation ratios have led several authors to conclude that more than one genetic determinant could be involved, although some evidence favours a major gene (Ru). RESULTS In this study we report the mapping of a major genetic russeting determinant on linkage group 12 of apple as inferred from the phenotypic observation in a segregating progeny derived from 'Renetta Grigia di Torriana', the construction of a 20 K Illumina SNP chip based genetic map, and QTL analysis. Recombination analysis in two mapping populations restricted the region of interest to approximately 400 Kb. Of the 58 genes predicted from the Golden Delicious sequence, a putative ABCG family transporter has been identified. Within a small set of russeted cultivars tested with markers of the region, only six showed the same haplotype of 'Renetta Grigia di Torriana'. CONCLUSIONS A major determinant (Ru_RGT) for russeting development putatively involved in cuticle organization is proposed as a candidate for controlling the trait. SNP and SSR markers tightly co-segregating with the Ru_RGT locus may assist the breeder selection. The observed segregations and the analysis of the 'Renetta Grigia di Torriana' haplotypic region in a panel of russeted and non-russeted cultivars may suggest the presence of other determinants for russeting in apple.
Collapse
Affiliation(s)
- Luigi Falginella
- Department of Agriculture and Environmental Sciences, University of Udine, Via delle Scienze 208, 33100, Udine, Italy.
| | - Guido Cipriani
- Department of Agriculture and Environmental Sciences, University of Udine, Via delle Scienze 208, 33100, Udine, Italy.
| | - Corinne Monte
- Department of Agriculture and Environmental Sciences, University of Udine, Via delle Scienze 208, 33100, Udine, Italy.
| | - Roberto Gregori
- Department of Agricultural Sciences, University of Bologna, Via Fanin 44, 40127, Bologna, Italy.
| | - Raffaele Testolin
- Department of Agriculture and Environmental Sciences, University of Udine, Via delle Scienze 208, 33100, Udine, Italy.
| | - Riccardo Velasco
- Research and Innovation Centre - Fondazione Edmund Mach - Department of Genomics and Biology of Fruit Crop, Via E. Mach 1, 38010Â S, Michele all'Adige TN, Italy.
| | - Michela Troggio
- Research and Innovation Centre - Fondazione Edmund Mach - Department of Genomics and Biology of Fruit Crop, Via E. Mach 1, 38010Â S, Michele all'Adige TN, Italy.
| | - Stefano Tartarini
- Department of Agricultural Sciences, University of Bologna, Via Fanin 44, 40127, Bologna, Italy.
| |
Collapse
|
33
|
Leforestier D, Ravon E, Muranty H, Cornille A, Lemaire C, Giraud T, Durel CE, Branca A. Genomic basis of the differences between cider and dessert apple varieties. Evol Appl 2015; 8:650-61. [PMID: 26240603 PMCID: PMC4516418 DOI: 10.1111/eva.12270] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/15/2015] [Indexed: 12/26/2022] Open
Abstract
Unraveling the genomic processes at play during variety diversification is of fundamental interest for understanding evolution, but also of applied interest in crop science. It can indeed provide knowledge on the genetic bases of traits for crop improvement and germplasm diversity management. Apple is one of the most important fruit crops in temperate regions, having both great economic and cultural values. Sweet dessert apples are used for direct consumption, while bitter cider apples are used to produce cider. Several important traits are known to differentiate the two variety types, in particular fruit size, biennial versus annual fruit bearing, and bitterness, caused by a higher content in polyphenols. Here, we used an Illumina 8k SNP chip on two core collections, of 48 dessert and 48 cider apples, respectively, for identifying genomic regions responsible for the differences between cider and dessert apples. The genome-wide level of genetic differentiation between cider and dessert apples was low, although 17 candidate regions showed signatures of divergent selection, displaying either outlier FST values or significant association with phenotypic traits (bitter versus sweet fruits). These candidate regions encompassed 420 genes involved in a variety of functions and metabolic pathways, including several colocalizations with QTLs for polyphenol compounds.
Collapse
Affiliation(s)
- Diane Leforestier
- UMR 1345 Institut de Recherche en Horticulture et Semences, Université d'Angers Angers, France
| | - Elisa Ravon
- UMR 1345 Institut de Recherche en Horticulture et Semences, INRA Beaucouzé, France
| | - Hélène Muranty
- UMR 1345 Institut de Recherche en Horticulture et Semences, INRA Beaucouzé, France
| | - Amandine Cornille
- Ecologie, Systématique et Evolution, Université Paris-Sud Orsay, France ; Ecologie, Systématique et Evolution, CNRS Orsay, France
| | - Christophe Lemaire
- UMR 1345 Institut de Recherche en Horticulture et Semences, Université d'Angers Angers, France
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution, Université Paris-Sud Orsay, France ; Ecologie, Systématique et Evolution, CNRS Orsay, France
| | - Charles-Eric Durel
- UMR 1345 Institut de Recherche en Horticulture et Semences, INRA Beaucouzé, France
| | - Antoine Branca
- Ecologie, Systématique et Evolution, Université Paris-Sud Orsay, France ; Ecologie, Systématique et Evolution, CNRS Orsay, France
| |
Collapse
|
34
|
Herremans E, Verboven P, Hertog MLATM, Cantre D, van Dael M, De Schryver T, Van Hoorebeke L, Nicolaï BM. Spatial development of transport structures in apple (Malus × domestica Borkh.) fruit. FRONTIERS IN PLANT SCIENCE 2015; 6:679. [PMID: 26388883 PMCID: PMC4554951 DOI: 10.3389/fpls.2015.00679] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/17/2015] [Indexed: 05/07/2023]
Abstract
The void network and vascular system are important pathways for the transport of gases, water and solutes in apple fruit (Malus × domestica Borkh). Here we used X-ray micro-tomography at various spatial resolutions to investigate the growth of these transport structures in 3D during fruit development of "Jonagold" apple. The size of the void space and porosity in the cortex tissue increased considerably. In the core tissue, the porosity was consistently lower, and seemed to decrease toward the end of the maturation period. The voids in the core were more narrow and fragmented than the voids in the cortex. Both the void network in the core and in the cortex changed significantly in terms of void morphology. An automated segmentation protocol underestimated the total vasculature length by 9-12% in comparison to manually processed images. Vascular networks increased in length from a total of 5 m at 9 weeks after full bloom, to more than 20 m corresponding to 5 cm of vascular tissue per cubic centimeter of apple tissue. A high degree of branching in both the void network and vascular system and a complex three-dimensional pattern was observed across the whole fruit. The 3D visualizations of the transport structures may be useful for numerical modeling of organ growth and transport processes in fruit.
Collapse
Affiliation(s)
- Els Herremans
- Division of MeBioS, Department of Biosystems, KU Leuven, University of LeuvenLeuven, Belgium
| | - Pieter Verboven
- Division of MeBioS, Department of Biosystems, KU Leuven, University of LeuvenLeuven, Belgium
| | | | - Dennis Cantre
- Division of MeBioS, Department of Biosystems, KU Leuven, University of LeuvenLeuven, Belgium
| | - Mattias van Dael
- Division of MeBioS, Department of Biosystems, KU Leuven, University of LeuvenLeuven, Belgium
| | - Thomas De Schryver
- Department of Physics and Astronomy, UGCT-Radiation Physics, Ghent UniversityGhent, Belgium
| | - Luc Van Hoorebeke
- Department of Physics and Astronomy, UGCT-Radiation Physics, Ghent UniversityGhent, Belgium
| | - Bart M. Nicolaï
- Division of MeBioS, Department of Biosystems, KU Leuven, University of LeuvenLeuven, Belgium
- Flanders Centre of Postharvest TechnologyLeuven, Belgium
- *Correspondence: Bart M. Nicolaï, Flanders Centre of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
| |
Collapse
|
35
|
Yamamoto T, Terakami S, Takada N, Nishio S, Onoue N, Nishitani C, Kunihisa M, Inoue E, Iwata H, Hayashi T, Itai A, Saito T. Identification of QTLs controlling harvest time and fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). BREEDING SCIENCE 2014; 64:351-61. [PMID: 25914590 PMCID: PMC4267310 DOI: 10.1270/jsbbs.64.351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/05/2014] [Indexed: 05/19/2023]
Abstract
Using an F1 population from a cross between Japanese pear (Pyrus pyrifolia Nakai) cultivars 'Akiakari' and 'Taihaku', we performed quantitative trait locus (QTL) analysis of seven fruit traits (harvest time, fruit skin color, flesh firmness, fruit weight, acid content, total soluble solids content, and preharvest fruit drop). The constructed simple sequence repeat-based genetic linkage map of 'Akiakari' consisted of 208 loci and spanned 799 cM; that of 'Taihaku' consisted of 275 loci and spanned 1039 cM. Out of significant QTLs, two QTLs for harvest time, one for fruit skin color, and one for flesh firmness were stably detected in two successive years. The QTLs for harvest time were located at the bottom of linkage group (LG) Tai3 (nearest marker: BGA35) and at the top of LG Tai15 (nearest markers: PPACS2 and MEST050), in good accordance with results of genome-wide association study. The PPACS2 gene, a member of the ACC synthase gene family, may control harvest time, preharvest fruit drop, and fruit storage potential. One major QTL associated with fruit skin color was identified at the top of LG 8. QTLs identified in this study would be useful for marker-assisted selection in Japanese pear breeding programs.
Collapse
Affiliation(s)
- Toshiya Yamamoto
- NARO Institute of Fruit Tree Science,
2-1 Fujimoto, Tsukuba, Ibaraki 305-8605,
Japan
- Corresponding author (e-mail: )
| | - Shingo Terakami
- NARO Institute of Fruit Tree Science,
2-1 Fujimoto, Tsukuba, Ibaraki 305-8605,
Japan
| | - Norio Takada
- NARO Institute of Fruit Tree Science,
2-1 Fujimoto, Tsukuba, Ibaraki 305-8605,
Japan
| | - Sogo Nishio
- NARO Institute of Fruit Tree Science,
2-1 Fujimoto, Tsukuba, Ibaraki 305-8605,
Japan
| | - Noriyuki Onoue
- NARO Institute of Fruit Tree Science,
2-1 Fujimoto, Tsukuba, Ibaraki 305-8605,
Japan
| | - Chikako Nishitani
- NARO Institute of Fruit Tree Science,
2-1 Fujimoto, Tsukuba, Ibaraki 305-8605,
Japan
| | - Miyuki Kunihisa
- NARO Institute of Fruit Tree Science,
2-1 Fujimoto, Tsukuba, Ibaraki 305-8605,
Japan
| | - Eiichi Inoue
- College of Agriculture, Ibaraki University,
3-21-1 Chuou, Ami-machi, Ibaraki 300-0393,
Japan
| | - Hiroyoshi Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo,
1-1-1 Yayoi, Bunkyo, Tokyo 113-8657,
Japan
| | - Takeshi Hayashi
- NARO Agricultural Research Center,
3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666,
Japan
| | - Akihiro Itai
- Tottori University,
Koyamacho-minami, Tottori 680-8550,
Japan
| | - Toshihiro Saito
- NARO Institute of Fruit Tree Science,
2-1 Fujimoto, Tsukuba, Ibaraki 305-8605,
Japan
| |
Collapse
|
36
|
Lahaye M, Falourd X, Quemener B, Devaux MF, Audergon JM. Histological and cell wall polysaccharide chemical variability among apricot varieties. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Busatto N, Farneti B, Tadiello A, Vrhovsek U, Cappellin L, Biasioli F, Velasco R, Costa G, Costa F. Target metabolite and gene transcription profiling during the development of superficial scald in apple (Malus x domestica Borkh). BMC PLANT BIOLOGY 2014; 14:193. [PMID: 25038781 PMCID: PMC4115171 DOI: 10.1186/s12870-014-0193-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/14/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND Fruit quality features resulting from ripening processes need to be preserved throughout storage for economical reasons. However, during this period several physiological disorders can occur, of which superficial scald is one of the most important, due to the development of large brown areas on the fruit skin surface. RESULTS This study examined the variation in polyphenolic content with the progress of superficial scald in apple, also with respect to 1-MCP, an ethylene competitor interacting with the hormone receptors and known to interfere with this etiology. The change in the accumulation of these metabolites was further correlated with the gene set involved in this pathway, together with two specific VOCs (Volatile Organic Compounds), α-farnesene and its oxidative form, 6-methyl-5-hepten-2-one. Metabolite profiling and qRT-PCR assay showed these volatiles are more heavily involved in the signalling system, while the browning coloration would seem to be due more to a specific accumulation of chlorogenic acid (as a consequence of the activation of MdPAL and MdC3H), and its further oxidation carried out by a polyphenol oxidase gene (MdPPO). In this physiological scenario, new evidence regarding the involvement of an anti-apoptotic regulatory mechanism for the compartmentation of this phenomenon in the skin alone was also hypothesized, as suggested by the expression profile of the MdDAD1, MdDND1 and MdLSD1 genes. CONCLUSIONS The results presented in this work represent a step forward in understanding the physiological mechanisms of superficial scald in apple, shedding light on the regulation of the specific physiological cascade.
Collapse
Affiliation(s)
- Nicola Busatto
- Department of Agricultural Sciences, Bologna University, Via Fanin 46, Bologna, 40127, Italy
| | - Brian Farneti
- Department of Agricultural Sciences, Bologna University, Via Fanin 46, Bologna, 40127, Italy
| | - Alice Tadiello
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Urska Vrhovsek
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Luca Cappellin
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Riccardo Velasco
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Guglielmo Costa
- Department of Agricultural Sciences, Bologna University, Via Fanin 46, Bologna, 40127, Italy
| | - Fabrizio Costa
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all’Adige, Trento, Italy
| |
Collapse
|
38
|
Chagné D, Dayatilake D, Diack R, Oliver M, Ireland H, Watson A, Gardiner SE, Johnston JW, Schaffer RJ, Tustin S. Genetic and environmental control of fruit maturation, dry matter and firmness in apple (Malus × domestica Borkh.). HORTICULTURE RESEARCH 2014; 1:14046. [PMID: 26504549 PMCID: PMC4596328 DOI: 10.1038/hortres.2014.46] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 07/22/2014] [Accepted: 07/30/2014] [Indexed: 05/19/2023]
Abstract
For any given genotype, the environment in which an apple is grown can influence the properties of the fruit considerably. While there has been extensive research on the mechanism of the genetic control of fruit quality traits, less effort has been made to investigate the way that these genetic mechanisms interact with the environment. To address this issue, we employed a large 'Royal Gala' × 'Braeburn' population of 572 seedlings replicated over sites in three climatically diverse apple-growing regions in New Zealand. Phenotyping for traits including fruit maturation timing, firmness and dry matter content was performed at each of these three sites for a single growing season (2011), and at two sites (Motueka and Hawke's Bay) for two seasons (2009 and 2010). The phenotype data collected over 2 years at two sites enabled the detection of 190 quantitative trait loci (QTL) that controlled these traits regardless of year or growing location, as well as some chromosomal loci that influenced the traits in a single given environment or year. For those loci that were environmentally stable over three sites, there was an interdependency of fruit maturation date, dry matter content and storage potential within this population, with two regions on Linkage Groups (LGs) 10 and 16 strongly contributing. If these loci were used in a marker-assisted selection programme to select for progeny bearing firmer fruit, this would have the unintentional consequence of selecting, high dry matter content, later maturing apples. In addition, a further 113 new QTLs with a smaller effect were identified, some of which were exhibited only in a single growing environment, demonstrating the underlying complexity of control of traits determining fruit quality, in addition to the need for being aware of environmental effects when developing new apple varieties.
Collapse
Affiliation(s)
- David Chagné
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Palmerston North Research Centre, Palmerston North, New Zealand
| | - Daya Dayatilake
- Plant & Food Research, Hawke's Bay Research Centre, Havelock North, New Zealand
| | - Robert Diack
- Plant & Food Research, Motueka Research Centre, Motueka, New Zealand
| | - Murray Oliver
- Plant & Food Research, Hawke's Bay Research Centre, Havelock North, New Zealand
| | - Hilary Ireland
- Plant & Food Research, Mount Albert Research Centre, Auckland, New Zealand
| | - Amy Watson
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Palmerston North Research Centre, Palmerston North, New Zealand
| | - Susan E Gardiner
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Palmerston North Research Centre, Palmerston North, New Zealand
| | - Jason W Johnston
- Plant & Food Research, Hawke's Bay Research Centre, Havelock North, New Zealand
| | - Robert J Schaffer
- Plant & Food Research, Mount Albert Research Centre, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Stuart Tustin
- Plant & Food Research, Hawke's Bay Research Centre, Havelock North, New Zealand
| |
Collapse
|
39
|
Di Guardo M, Tadiello A, Farneti B, Lorenz G, Masuero D, Vrhovsek U, Costa G, Velasco R, Costa F. A multidisciplinary approach providing new insight into fruit flesh browning physiology in apple (Malus x domestica Borkh.). PLoS One 2013; 8:e78004. [PMID: 24205065 PMCID: PMC3799748 DOI: 10.1371/journal.pone.0078004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/09/2013] [Indexed: 11/18/2022] Open
Abstract
In terms of the quality of minimally processed fruit, flesh browning is fundamentally important in the development of an aesthetically unpleasant appearance, with consequent off-flavours. The development of browning depends on the enzymatic action of the polyphenol oxidase (PPO). In the 'Golden Delicious' apple genome ten PPO genes were initially identified and located on three main chromosomes (2, 5 and 10). Of these genes, one element in particular, here called Md-PPO, located on chromosome 10, was further investigated and genetically mapped in two apple progenies ('Fuji x Pink Lady' and 'Golden Delicious x Braeburn'). Both linkage maps, made up of 481 and 608 markers respectively, were then employed to find QTL regions associated with fruit flesh browning, allowing the detection of 25 QTLs related to several browning parameters. These were distributed over six linkage groups with LOD values spanning from 3.08 to 4.99 and showed a rate of phenotypic variance from 26.1 to 38.6%. Anchoring of these intervals to the apple genome led to the identification of several genes involved in polyphenol synthesis and cell wall metabolism. Finally, the expression profile of two specific candidate genes, up and downstream of the polyphenolic pathway, namely phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO), provided insight into flesh browning physiology. Md-PPO was further analyzed and two haplotypes were characterised and associated with fruit flesh browning in apple.
Collapse
Affiliation(s)
- Mario Di Guardo
- Genomics and Crop Biology Department Research and Innovation Centre, Fondazione Edmund, Mach, San Michele all’Adige (Trento), Italy
| | - Alice Tadiello
- Genomics and Crop Biology Department Research and Innovation Centre, Fondazione Edmund, Mach, San Michele all’Adige (Trento), Italy
| | - Brian Farneti
- Department of Fruit Trees & Woody Plant Science, University of Bologna, Bologna, Italy
| | - Giorgia Lorenz
- Genomics and Crop Biology Department Research and Innovation Centre, Fondazione Edmund, Mach, San Michele all’Adige (Trento), Italy
| | - Domenico Masuero
- Genomics and Crop Biology Department Research and Innovation Centre, Fondazione Edmund, Mach, San Michele all’Adige (Trento), Italy
| | - Urska Vrhovsek
- Genomics and Crop Biology Department Research and Innovation Centre, Fondazione Edmund, Mach, San Michele all’Adige (Trento), Italy
| | - Guglielmo Costa
- Department of Fruit Trees & Woody Plant Science, University of Bologna, Bologna, Italy
| | - Riccardo Velasco
- Genomics and Crop Biology Department Research and Innovation Centre, Fondazione Edmund, Mach, San Michele all’Adige (Trento), Italy
| | - Fabrizio Costa
- Genomics and Crop Biology Department Research and Innovation Centre, Fondazione Edmund, Mach, San Michele all’Adige (Trento), Italy
- * E-mail:
| |
Collapse
|
40
|
Costa F, Cappellin L, Zini E, Patocchi A, Kellerhals M, Komjanc M, Gessler C, Biasioli F. QTL validation and stability for volatile organic compounds (VOCs) in apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 211:1-7. [PMID: 23987805 DOI: 10.1016/j.plantsci.2013.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/28/2013] [Accepted: 05/31/2013] [Indexed: 05/22/2023]
Abstract
The aroma trait in apple is a key factor for fruit quality strongly affecting the consumer appreciation, and its detection and analysis is often an extremely laborious and time consuming procedure. Molecular markers associated to this trait can to date represent a valuable selection tool to overcome these limitations. QTL mapping is the first step in the process of targeting valuable molecular markers to be employed in marker-assisted breeding programmes (MAB). However, a validation step is usually required before a newly identified molecular marker can be implemented in marker-assisted selection. In this work the position of a set of QTLs associated to volatile organic compounds (VOCs) was confirmed and validated in three different environments in Switzerland, namely Wädenswil, Conthey and Cadenazzo, where the progeny 'Fiesta×Discovery' was replicated. For both QTL identification and validation, the phenotypic data were represented by VOCs produced by mature apple fruit and assessed with a Proton Transfer Reaction-Mass Spectrometer (PTR-MS) instrument. The QTL-VOC combined analysis performed among these three locations validated the presence of important QTLs in three specific genomic regions, two located in the linkage group 2 and one in linkage group 15, respectively, for compounds related to esters (m/z 43, 61 and 131) and to the hormone ethylene (m/z 28). The QTL set presented here confirmed that in apple some compounds are highly genetically regulated and stable across environments.
Collapse
Affiliation(s)
- Fabrizio Costa
- Research and Innovation Centre, Foundation Edmund Mach, Via Mach 1, San Michele all'Adige (TN), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Guerriero G, Giorno F, Folgado R, Printz B, Baric S, Hausman JF. Callose and cellulose synthase gene expression analysis from the tight cluster to the full bloom stage and during early fruit development in Malus × domestica. JOURNAL OF PLANT RESEARCH 2013; 127:173-183. [PMID: 23934062 DOI: 10.1007/s10265-013-0586-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 06/24/2013] [Indexed: 06/02/2023]
Abstract
Apple (Malus × domestica) is an economically important temperate fruit-bearing crop which belongs to the family of Rosaceae and its pomaceous fruit is one of the most commonly cultivated. Several studies have demonstrated that the cell wall plays a pivotal role during flower and fruit development. It takes active part in pollen tube growth and contributes to determine the fruit firmness trait through the action of cell wall-related enzymes (i.e. polygalacturonase and pectinmethylesterase). We have investigated the expression of callose and cellulose synthase genes during flowering from tight cluster to anthesis and during early fruit development in domesticated apple. We also link the changes observed in gene expression to the profile of soluble non-structural carbohydrates at different developmental stages of flowers/fruitlets and to the qualitative results linked to wall polysaccharides' composition obtained through near-infrared spectroscopy. This work represents an important addition to the study of tree physiology with respect to the analysis of the expression of callose and cellulose synthase genes during flower and early fruit development in domesticated apple.
Collapse
Affiliation(s)
- Gea Guerriero
- Laimburg Research Centre for Agriculture and Forestry, Laimburg 6, Pfatten (Vadena), 39040, Auer (Ora), BZ, Italy,
| | | | | | | | | | | |
Collapse
|
42
|
Longhi S, Hamblin MT, Trainotti L, Peace CP, Velasco R, Costa F. A candidate gene based approach validates Md-PG1 as the main responsible for a QTL impacting fruit texture in apple (Malus x domestica Borkh). BMC PLANT BIOLOGY 2013; 13:37. [PMID: 23496960 PMCID: PMC3599472 DOI: 10.1186/1471-2229-13-37] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 02/22/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Apple is a widely cultivated fruit crop for its quality properties and extended storability. Among the several quality factors, texture is the most important and appreciated, and within the apple variety panorama the cortex texture shows a broad range of variability. Anatomically these variations depend on degradation events occurring in both fruit primary cell wall and middle lamella. This physiological process is regulated by an enzymatic network generally encoded by large gene families, among which polygalacturonase is devoted to the depolymerization of pectin. In apple, Md-PG1, a key gene belonging to the polygalacturonase gene family, was mapped on chromosome 10 and co-localized within the statistical interval of a major hot spot QTL associated to several fruit texture sub-phenotypes. RESULTS In this work, a QTL corresponding to the position of Md-PG1 was validated and new functional alleles associated to the fruit texture properties in 77 apple cultivars were discovered. 38 SNPs genotyped by gene full length resequencing and 2 SSR markers ad hoc targeted in the gene metacontig were employed. Out of this SNP set, eleven were used to define three significant haplotypes statistically associated to several texture components. The impact of Md-PG1 in the fruit cell wall disassembly was further confirmed by the cortex structure electron microscope scanning in two apple varieties characterized by opposite texture performance, such as 'Golden Delicious' and 'Granny Smith'. CONCLUSIONS The results here presented step forward into the genetic dissection of fruit texture in apple. This new set of haplotypes, and microsatellite alleles, can represent a valuable toolbox for a more efficient parental selection as well as the identification of new apple accessions distinguished by superior fruit quality features.
Collapse
Affiliation(s)
- Sara Longhi
- Research and Innovation Centre, Foundation Edmund Mach, Via Mach 1, 38010, San Michele all’Adige, TN, Italy
| | - Martha T Hamblin
- Institute for Genomic Diversity, Cornell University, 130 Biotechnology Building, 14853-2703, Ithaca, NY, USA
| | - Livio Trainotti
- Dipartimento di Biologia, Università di Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Cameron P Peace
- Horticulture and Landscape Architecture, Washington State University, PO Box 646414, 99164-6414, Pullman, WA, USA
| | - Riccardo Velasco
- Research and Innovation Centre, Foundation Edmund Mach, Via Mach 1, 38010, San Michele all’Adige, TN, Italy
| | - Fabrizio Costa
- Research and Innovation Centre, Foundation Edmund Mach, Via Mach 1, 38010, San Michele all’Adige, TN, Italy
| |
Collapse
|
43
|
Hemicellulose fine structure is affected differently during ripening of tomato lines with contrasted texture. Int J Biol Macromol 2012; 51:462-70. [DOI: 10.1016/j.ijbiomac.2012.05.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 11/20/2022]
|
44
|
Atkinson RG, Sutherland PW, Johnston SL, Gunaseelan K, Hallett IC, Mitra D, Brummell DA, Schröder R, Johnston JW, Schaffer RJ. Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus x domestica) fruit. BMC PLANT BIOLOGY 2012; 12:129. [PMID: 22856470 PMCID: PMC3509026 DOI: 10.1186/1471-2229-12-129] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/25/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND While there is now a significant body of research correlating apple (Malus x domestica) fruit softening with the cell wall hydrolase ENDO-POLYGALACTURONASE1 (PG1), there is currently little knowledge of its physiological effects in planta. This study examined the effect of down regulation of PG1 expression in 'Royal Gala' apples, a cultivar that typically has high levels of PG1, and softens during fruit ripening. RESULTS PG1-suppressed 'Royal Gala' apples harvested from multiple seasons were firmer than controls after ripening, and intercellular adhesion was higher. Cell wall analyses indicated changes in yield and composition of pectin, and a higher molecular weight distribution of CDTA-soluble pectin. Structural analyses revealed more ruptured cells and free juice in pulled apart sections, suggesting improved integrity of intercellular connections and consequent cell rupture due to failure of the primary cell walls under stress. PG1-suppressed lines also had reduced expansion of cells in the hypodermis of ripe apples, resulting in more densely packed cells in this layer. This change in morphology appears to be linked with reduced transpirational water loss in the fruit. CONCLUSIONS These findings confirm PG1's role in apple fruit softening and suggests that this is achieved in part by reducing cellular adhesion. This is consistent with previous studies carried out in strawberry but not with those performed in tomato. In apple PG1 also appears to influence other fruit texture characters such as juiciness and water loss.
Collapse
Affiliation(s)
- Ross G Atkinson
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Paul W Sutherland
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Sarah L Johnston
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Kularajathevan Gunaseelan
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Ian C Hallett
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Deepali Mitra
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - David A Brummell
- PFR, Food Industry Science Centre, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Roswitha Schröder
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Jason W Johnston
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Robert J Schaffer
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
- The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|