1
|
Aleamotuʻa M, Baker JK, McCurdy DW, Collings DA. Phi thickenings in Brassica oleracea roots are induced by osmotic stress and mechanical effects, both involving jasmonic acid. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:756-769. [PMID: 34677585 DOI: 10.1093/jxb/erab468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Phi thickenings are peculiar secondary cell wall thickenings found in radial walls of cortical cells in plant roots. However, while thickenings are widespread in the plant kingdom, research into their development has been lacking. Here, we describe a simple system for rapid induction of phi thickenings in primary roots of Brassica. Four-day-old seedlings were transferred from control agar plates to new plates containing increased levels of osmotica. Phi thickening development occurred within a narrow region of the differentiation zone proportional to osmolarity, with cellulose deposition and lignification starting after 12h and 15h, respectively. However, osmoprotectants not only failed to induce phi thickenings, but inhibited induction when tested in combination with thickening-inducing osmotica. An independent, biomechanical pathway exists regulating phi thickening induction, with root growth rates and substrate texture being important factors in determining thickening induction. Phi thickening development is also controlled by stress-related plant hormones, most notably jasmonic acid, but also abscisic acid. Our research not only provides the first understanding of the developmental pathways controlling phi thickening induction, but also provides tools with which the functions of these enigmatic structures might be clarified.
Collapse
Affiliation(s)
- Maketalena Aleamotuʻa
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jaime K Baker
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - David W McCurdy
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - David A Collings
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
2
|
Wang J, Li M, Feng J, Yan X, Chen H, Han R. Effects of TiO 2-NPs pretreatment on UV-B stress tolerance in Arabidopsis thaliana. CHEMOSPHERE 2021; 281:130809. [PMID: 33992849 DOI: 10.1016/j.chemosphere.2021.130809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/18/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
As the ozone hole in the North and South poles continues to increase, the entire ecosystem will face an environmental crisis caused by enhanced UV-B radiation. Considering the function of TiO2 and the application of nanomaterials in agriculture, the effect of TiO2-NPs on UV-B stress tolerance in Arabidopsis was investigated. The phenotype of plants was determined, and the expression patterns of antioxidant systems and related genes were analyzed. Modification of the antioxidant system and changes in the flavonoid content of plants were observed by histochemical staining. The effects of TiO2-NPs and UV-B on mitosis were observed at the cellular level, and the degree of DNA damage was analyzed by the detection of CPDs content. The effects of TiO2-NPs and UV-B on SOD isozymes were detected by SOD isozyme Native-PAGE electrophoresis. A laser confocal microscope was used to explore the protective mechanism of TiO2-NPs against UV-B radiation. Results showed that pretreatment of TiO2-NPs significantly alleviated the stress of UV-B radiation on plants. TiO2-NPs activated the antioxidant system of plants, improved the activity of antioxidant enzymes, and promoted the synthesis of flavonoids. Moreover, TiO2-NPs could effectively shield UV-B radiation to prevent the depolymerization of microtubules in plant cells. 10 mg/L of TiO2-NPs is a safe and effective application dose, which has no biological toxicity to plants. Our research results reported for the first time that pretreatment of TiO2-NPs could effectively alleviate UV-B stress to plants, providing new ideas for the application of nanomaterials in agriculture.
Collapse
Affiliation(s)
- Jianhua Wang
- Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| | - Mingwei Li
- Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| | - Jinlin Feng
- Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| | - Xiaoyan Yan
- Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| | - Huize Chen
- Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| | - Rong Han
- Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| |
Collapse
|
3
|
Offler CE, Patrick JW. Transfer cells: what regulates the development of their intricate wall labyrinths? THE NEW PHYTOLOGIST 2020; 228:427-444. [PMID: 32463520 DOI: 10.1111/nph.16707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/14/2020] [Indexed: 05/26/2023]
Abstract
Transfer cells (TCs) support high nutrient rates into, or at symplasmic discontinuities within, the plant body. Their transport capacity is conferred by an amplified plasma membrane surface area, enriched in nutrient transporters, supported on an intricately invaginated wall labyrinth (WL). Thus, development of the WL is at the heart of TC function. Enquiry has shifted from describing WL architecture and formation to discovering mechanisms regulating WL assembly. Experimental systems used to examine these phenomena are critiqued. Considerable progress has been made in identifying master regulators that commit stem cells to a TC fate (e.g. the maize Myeloblastosis (MYB)-related R1-type transcription factor) and signals that induce differentiated cells to undergo trans-differentiation to a TC phenotype (e.g. sugar, auxin and ethylene). In addition, signals that provide positional information for assembly of the WL include apoplasmic hydrogen peroxide and cytosolic Ca2+ plumes. The former switches on, and specifies the intracellular site for WL construction, while the latter creates subdomains to direct assembly of WL invaginations. Less is known about macromolecule species and their spatial organization essential for WL assembly. Emerging evidence points to a dependency on methyl-esterified homogalacturonan accumulation, unique patterns of cellulose and callose deposition and spatial positioning of arabinogalactan proteins.
Collapse
Affiliation(s)
- Christina E Offler
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - John W Patrick
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
4
|
Foyer CH, Kyndt T, Hancock RD. Vitamin C in Plants: Novel Concepts, New Perspectives, and Outstanding Issues. Antioxid Redox Signal 2020; 32:463-485. [PMID: 31701753 DOI: 10.1089/ars.2019.7819] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Significance: The concept that vitamin C (l-ascorbic acid) is at the heart of the peroxide processing and redox signaling hub in plants is well established, but our knowledge of the precise mechanisms involved remains patchy at best. Recent Advances: Ascorbate participates in the multifaceted signaling pathways initiated by both reactive oxygen species (ROS) and reactive nitrogen species. Crucially, the apoplastic ascorbate/dehydroascorbate (DHA) ratio that is regulated by ascorbate oxidase (AO) sculpts the apoplastic ROS (apoROS) signal that controls polarized cell growth, biotic and abiotic defences, and cell to cell signaling, as well as exerting control over the light-dependent regulation of photosynthesis. Critical Issues: Here we re-evaluate the roles of ascorbate in photosynthesis and other processes, addressing the question of how much we really know about the regulation of ascorbate homeostasis and its functions in plants, or how AO is regulated to modulate apoROS signals. Future Directions: The role of microRNAs in the regulation of AO activity in relation to stress perception and signaling must be resolved. Similarly, the molecular characterization of ascorbate transporters and mechanistic links between photosynthetic and respiratory electron transport and ascorbate synthesis/homeostasis are a prerequisite to understanding ascorbate homeostasis and function. Similarly, there is little in vivo evidence for ascorbate functions as an enzyme cofactor.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Tina Kyndt
- Department Biotechnology, University of Ghent, Ghent, Belgium
| | - Robert D Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
5
|
Xia X, Zhang HM, Offler CE, Patrick JW. Enzymes contributing to the hydrogen peroxide signal dynamics that regulate wall labyrinth formation in transfer cells. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:219-233. [PMID: 31587068 PMCID: PMC6913738 DOI: 10.1093/jxb/erz443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/25/2019] [Indexed: 05/31/2023]
Abstract
Transfer cells are characterized by an amplified plasma membrane area supported on a wall labyrinth composed of a uniform wall layer (UWL) from which wall ingrowth (WI) papillae arise. Adaxial epidermal cells of developing Vicia faba cotyledons, when placed in culture, undergo a rapid (hours) trans-differentiation to a functional epidermal transfer cell (ETC) phenotype. The trans-differentiation event is controlled by a signalling cascade comprising auxin, ethylene, apoplasmic reactive oxygen species (apoROS), and cytosolic Ca2+. Apoplasmic hydrogen peroxide (apoH2O2) was confirmed as the apoROS regulating UWL and WI papillae formation. Informed by an ETC-specific transcriptome, a pharmacological approach identified a temporally changing cohort of H2O2 biosynthetic enzymes. The cohort contained a respiratory burst oxidase homologue, polyamine oxidase, copper amine oxidase, and a suite of class III peroxidases. Collectively these generated two consecutive bursts in apoH2O2 production. Spatial organization of biosynthetic/catabolic enzymes was deduced from responses to pharmacologically blocking their activities on the cellular and subcellular distribution of apoH2O2. The findings were consistent with catalase activity constraining the apoH2O2 signal to the outer periclinal wall of the ETCs. Strategic positioning of class III peroxidases in this outer domain shaped subcellular apoH2O2 signatures that differed during assembly of the UWL and WI papillae.
Collapse
Affiliation(s)
- Xue Xia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- School of Life Sciences, Henan University, Kaifeng, Henan, China
- International Joint Center for Biomedical Innovation, Henan University, Kaifeng, Henan, China
- Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, Henan, China
| | - Hui-Ming Zhang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Christina E Offler
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - John W Patrick
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
6
|
Zhang R, Huang G, Wang L, Zhou Q, Huang X. Effects of elevated ultraviolet-B radiation on root growth and chemical signaling molecules in plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:683-690. [PMID: 30658304 DOI: 10.1016/j.ecoenv.2019.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/26/2018] [Accepted: 01/09/2019] [Indexed: 05/13/2023]
Abstract
Ozone layer depletion leads to elevated ultraviolet-B (UV-B) radiation, which affects plant growth; however, little is known about the relationship between root growth and signaling molecules in roots. Therefore, in this work, simulated UV-B radiation was used to study the effects of elevated UV-B radiation on root growth of soybean seedlings and changes in the content of signaling molecules in roots. The results showed that compared with the control, the 2.63 kJ m-2 d-1 and 6.17 kJ m-2 d-1 elevated UV-B radiation treatments inhibited root growth, and root growth parameters (total root length, root surface area, root volume, average diameter, root tip number, and root dry weight) all decreased. For root signaling molecules, the content of nitric oxide, reactive oxygen species, abscisic acid, salicylic acid, and jasmonic acid increased, and the content of auxin, cytokinin, and gibberellin decreased. The above indices changed more significantly under the 6.17 kJ m-2 d-1 treatment. After withdrawal of the exposure, the above indices could be restored to a certain extent. These data indicated that UV-B radiation interfered with root growth by affecting the content of signaling molecules in roots, and the degree of the effects was related to the intensity of UV-B radiation. The results from this study provide a theoretical basis for studying the preliminary mechanism of elevated UV-B radiation on root growth and possible pathways that can mitigate UV-B radiation damage for root growth. ONE SENTENCE SUMMARY: The effects of elevated UV-B on root growth of soybean seedlings were regulated by signaling molecules, and the degree of the effects was related to the intensity of UV-B radiation.
Collapse
Affiliation(s)
- Rutao Zhang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Guangrong Huang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaohua Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
7
|
Zhang HM, Devine LB, Xia X, Offler CE, Patrick JW. Ethylene and hydrogen peroxide regulate formation of a sterol-enriched domain essential for wall labyrinth assembly in transfer cells. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1469-1482. [PMID: 30649402 PMCID: PMC6411373 DOI: 10.1093/jxb/erz003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/02/2019] [Indexed: 05/20/2023]
Abstract
Transfer cells (TCs) facilitate high rates of nutrient transport into, and within, the plant body. Their transport function is conferred by polarized wall ingrowth papillae, deposited upon a specialized uniform wall layer, that form a scaffold supporting an amplified area of plasma membrane enriched in nutrient transporters. We explored the question of whether lipid-enriched domains of the TC plasma membrane could serve as organizational platforms for proteins regulating the construction of the intricate TC wall labyrinth using developing Vicia faba cotyledons. When these cotyledons are placed in culture, their adaxial epidermal cells trans-differentiate to a TC phenotype regulated by auxin, ethylene, extracellular hydrogen peroxide (apoH2O2), and cytosolic Ca2+ ([Ca2+]cyt) arranged in series. Staining cultured cotyledons with the sterol-specific dye, Filipin III, detected a polarized sterol-enriched domain in the plasma membrane of their trans-differentiating epidermal transfer cells (ETCs). Ethylene activated sterol biosynthesis while extracellular apoH2O2 directed sterol-enriched vesicles to fuse with the outer periclinal region of the ETC plasma membrane. The sterol-enriched domain was essential for generating the [Ca2+]cyt signal and orchestrating construction of both the uniform wall layer and wall ingrowth papillae. A model is presented outlining how the sterol-enriched plasma membrane domain forms and functions to regulate wall labyrinth assembly.
Collapse
Affiliation(s)
- Hui-Ming Zhang
- School of Environmental and Life Sciences, University of Newcastle, Newcastle NSW, Australia
| | - Luke B Devine
- School of Environmental and Life Sciences, University of Newcastle, Newcastle NSW, Australia
| | - Xue Xia
- School of Environmental and Life Sciences, University of Newcastle, Newcastle NSW, Australia
| | - Christina E Offler
- School of Environmental and Life Sciences, University of Newcastle, Newcastle NSW, Australia
- Correspondence: or
| | - John W Patrick
- School of Environmental and Life Sciences, University of Newcastle, Newcastle NSW, Australia
- Correspondence: or
| |
Collapse
|
8
|
Wang W, Chen D, Zhang X, Liu D, Cheng Y, Shen F. Role of plant respiratory burst oxidase homologs in stress responses. Free Radic Res 2018; 52:826-839. [DOI: 10.1080/10715762.2018.1473572] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Dongdong Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Dan Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Yingying Cheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| |
Collapse
|
9
|
Wu Y, Hou J, Yu F, Nguyen STT, McCurdy DW. Transcript Profiling Identifies NAC-Domain Genes Involved in Regulating Wall Ingrowth Deposition in Phloem Parenchyma Transfer Cells of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:341. [PMID: 29599795 PMCID: PMC5862824 DOI: 10.3389/fpls.2018.00341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/28/2018] [Indexed: 05/29/2023]
Abstract
Transfer cells (TCs) play important roles in facilitating enhanced rates of nutrient transport at key apoplasmic/symplasmic junctions along the nutrient acquisition and transport pathways in plants. TCs achieve this capacity by developing elaborate wall ingrowth networks which serve to increase plasma membrane surface area thus increasing the cell's surface area-to-volume ratio to achieve increased flux of nutrients across the plasma membrane. Phloem parenchyma (PP) cells of Arabidopsis leaf veins trans-differentiate to become PP TCs which likely function in a two-step phloem loading mechanism by facilitating unloading of photoassimilates into the apoplasm for subsequent energy-dependent uptake into the sieve element/companion cell (SE/CC) complex. We are using PP TCs in Arabidopsis as a genetic model to identify transcription factors involved in coordinating deposition of the wall ingrowth network. Confocal imaging of pseudo-Schiff propidium iodide-stained tissue revealed different profiles of temporal development of wall ingrowth deposition across maturing cotyledons and juvenile leaves, and a basipetal gradient of deposition across mature adult leaves. RNA-Seq analysis was undertaken to identify differentially expressed genes common to these three different profiles of wall ingrowth deposition. This analysis identified 68 transcription factors up-regulated two-fold or more in at least two of the three experimental comparisons, with six of these transcription factors belonging to Clade III of the NAC-domain family. Phenotypic analysis of these NAC genes using insertional mutants revealed significant reductions in levels of wall ingrowth deposition, particularly in a double mutant of NAC056 and NAC018, as well as compromised sucrose-dependent root growth, indicating impaired capacity for phloem loading. Collectively, these results support the proposition that Clade III members of the NAC-domain family in Arabidopsis play important roles in regulating wall ingrowth deposition in PP TCs.
Collapse
Affiliation(s)
- Yuzhou Wu
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Jiexi Hou
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Fen Yu
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Suong T. T. Nguyen
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- Department of Biological Sciences, Faculty of Science, Nong Lam University, Ho Chi Minh City, Vietnam
| | - David W. McCurdy
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
10
|
Xia X, Zhang HM, Offler CE, Patrick JW. A Structurally Specialized Uniform Wall Layer is Essential for Constructing Wall Ingrowth Papillae in Transfer Cells. FRONTIERS IN PLANT SCIENCE 2017; 8:2035. [PMID: 29259611 PMCID: PMC5723425 DOI: 10.3389/fpls.2017.02035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 11/14/2017] [Indexed: 05/29/2023]
Abstract
Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans-differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta. Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated.
Collapse
|
11
|
Zhang HM, Wheeler SL, Xia X, Colyvas K, Offler CE, Patrick JW. Transcript Profiling Identifies Gene Cohorts Controlled by Each Signal Regulating Trans-Differentiation of Epidermal Cells of Vicia faba Cotyledons to a Transfer Cell Phenotype. FRONTIERS IN PLANT SCIENCE 2017; 8:2021. [PMID: 29234338 PMCID: PMC5712318 DOI: 10.3389/fpls.2017.02021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/14/2017] [Indexed: 05/29/2023]
Abstract
Transfer cells (TCs) support high rates of membrane transport of nutrients conferred by a plasma membrane area amplified by lining a wall labyrinth comprised of an uniform wall layer (UWL) upon which intricate wall ingrowth (WI) papillae are deposited. A signal cascade of auxin, ethylene, extracellular hydrogen peroxide (H2O2) and cytosolic Ca2+ regulates wall labyrinth assembly. To identify gene cohorts regulated by each signal, a RNA- sequencing study was undertaken using Vicia faba cotyledons. When cotyledons are placed in culture, their adaxial epidermal cells spontaneously undergo trans-differentiation to epidermal TCs (ETCs). Expressed genes encoding proteins central to wall labyrinth formation (signaling, intracellular organization, cell wall) and TC function of nutrient transport were assembled. Transcriptional profiles identified 9,742 annotated ETC-specific differentially expressed genes (DEGs; Log2fold change > 1; FDR p ≤ 0.05) of which 1,371 belonged to signaling (50%), intracellular organization (27%), cell wall (15%) and nutrient transporters (9%) functional categories. Expression levels of 941 ETC-specific DEGs were found to be sensitive to the known signals regulating ETC trans-differentiation. Significantly, signals acting alone, or in various combinations, impacted similar numbers of ETC-specific DEGs across the four functional gene categories. Amongst the signals acting alone, H2O2 exerted most influence affecting expression levels of 56% of the ETC-specific DEGs followed by Ca2+ (21%), auxin (18%) and ethylene (5%). The dominance by H2O2 was evident across all functional categories, but became more attenuated once trans-differentiation transitioned into WI papillae formation. Amongst the eleven signal combinations, H2O2/Ca2+ elicited the greatest impact across all functional categories accounting for 20% of the ETC-specific DEG cohort. The relative influence of the other signals acting alone, or in various combinations, varied across the four functional categories and two phases of wall labyrinth construction. These transcriptome data provide a powerful information platform from which to examine signal transduction pathways and how these regulate expression of genes encoding proteins engaged in intracellular organization, cell wall construction and nutrient transport.
Collapse
Affiliation(s)
- Hui-Ming Zhang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Simon L. Wheeler
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Xue Xia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Kim Colyvas
- School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Christina E. Offler
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - John W. Patrick
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
12
|
Zhang HM, Colyvas K, Patrick JW, Offler CE. A Ca2+-dependent remodelled actin network directs vesicle trafficking to build wall ingrowth papillae in transfer cells. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4749-4764. [PMID: 29048561 PMCID: PMC5853249 DOI: 10.1093/jxb/erx315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/02/2017] [Indexed: 05/18/2023]
Abstract
The transport function of transfer cells is conferred by an enlarged plasma membrane area, enriched in nutrient transporters, that is supported on a scaffold of wall ingrowth (WI) papillae. Polarized plumes of elevated cytosolic Ca2+ define loci at which WI papillae form in developing adaxial epidermal transfer cells of Vicia faba cotyledons that are induced to trans-differentiate when the cotyledons are placed on culture medium. We evaluated the hypothesis that vesicle trafficking along a Ca2+-regulated remodelled actin network is the mechanism that underpins this outcome. Polarized to the outer periclinal cytoplasm, a Ca2+-dependent remodelling of long actin bundles into short, thin bundles was found to be essential for assembling WI papillae but not the underlying uniform wall layer. The remodelled actin network directed polarized vesicle trafficking to sites of WI papillae construction, and a pharmacological study indicated that both exo- and endocytosis contributed to assembly of the papillae. Potential candidates responsible for the Ca2+-dependent actin remodelling, along with those underpinning polarized exo- and endocyotosis, were identified in a transcriptome RNAseq database generated from the trans-differentiating epidermal cells. Of most significance, endocytosis was controlled by up-regulated expression of a dynamin-like isoform. How a cycle of localized exo- and endocytosis, regulated by Ca2+-dependent actin remodelling, assembles WI papillae is discussed.
Collapse
Affiliation(s)
| | - Kim Colyvas
- School of Mathematical and Physical Sciences, The University of Newcastle, Newcastle NSW, Australia
| | - John W Patrick
- School of Environmental and Life Sciences
- Correspondence: or
| | | |
Collapse
|
13
|
Genetic and epigenetic control of transfer cell development in plants. J Genet Genomics 2016; 43:533-539. [PMID: 27618166 DOI: 10.1016/j.jgg.2016.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/26/2016] [Accepted: 08/16/2016] [Indexed: 11/22/2022]
Abstract
The inter-cellular translocation of nutrients in plant is mediated by highly specialized transfer cells (TCs). TCs share similar functional and structural features across a wide range of plant species, including location at plant exchange surfaces, rich in secondary wall ingrowths, facilitation of nutrient flow, and passage of select molecules. The fate of endosperm TCs is determined in the TC fate acquisition stage (TCF), before the structure features are formed in the TC differentiation stage (TCD). At present, the molecular basis of TC development in plants remains largely unknown. In this review, we summarize the important roles of the signaling molecules in different development phases, such as sugars in TCF and phytohormones in TCD, and discuss the genetic and epigenetic factors, including TC-specific genes and endogenous plant peptides, and their crosstalk with these signaling molecules as a complex regulatory network in regulation of TC development in plants.
Collapse
|
14
|
Arun-Chinnappa KS, McCurdy DW. Identification of Candidate Transcriptional Regulators of Epidermal Transfer Cell Development in Vicia faba Cotyledons. FRONTIERS IN PLANT SCIENCE 2016; 7:717. [PMID: 27252730 PMCID: PMC4879131 DOI: 10.3389/fpls.2016.00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/10/2016] [Indexed: 05/08/2023]
Abstract
Transfer cells (TCs) are anatomically-specialized cells formed at apoplasmic-symplasmic bottlenecks in nutrient transport pathways in plants. TCs form invaginated wall ingrowths which provide a scaffold to amplify plasma membrane surface area and thus increase the density of nutrient transporters required to achieve enhanced nutrient flow across these bottlenecks. Despite their importance to nutrient transport in plants, little is known of the transcriptional regulation of wall ingrowth formation. Here, we used RNA-Seq to identify transcription factors putatively involved in regulating epidermal TC development in cotyledons of Vicia faba. Comparing cotyledons cultured for 0, 3, 9, and 24 h to induce trans-differentiation of epidermal TCs identified 43 transcription factors that showed either epidermal-specific or epidermal-enhanced expression, and 10 that showed epidermal-specific down regulation. Members of the WRKY and ethylene-responsive families were prominent in the cohort of transcription factors showing epidermal-specific or epidermal-enhanced expression, consistent with the initiation of TC development often representing a response to stress. Members of the MYB family were also prominent in these categories, including orthologs of MYB genes involved in localized secondary wall deposition in Arabidopsis thaliana. Among the group of transcription factors showing down regulation were various homeobox genes and members of the MADs-box and zinc-finger families of poorly defined functions. Collectively, this study identified several transcription factors showing expression characteristics and orthologous functions that indicate likely participation in transcriptional regulation of epidermal TC development in V. faba cotyledons.
Collapse
Affiliation(s)
| | - David W. McCurdy
- Centre for Plant Science, School of Environmental and Life Sciences, The University of NewcastleCallaghan, NSW, Australia
| |
Collapse
|
15
|
Zhang HM, van Helden DF, McCurdy DW, Offler CE, Patrick JW. Plasma Membrane Ca2+-Permeable Channels are Differentially Regulated by Ethylene and Hydrogen Peroxide to Generate Persistent Plumes of Elevated Cytosolic Ca2+ During Transfer Cell Trans-Differentiation. PLANT & CELL PHYSIOLOGY 2015; 56:1711-20. [PMID: 26139237 DOI: 10.1093/pcp/pcv100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/25/2015] [Indexed: 05/24/2023]
Abstract
The enhanced transport capability of transfer cells (TCs) arises from their ingrowth wall architecture comprised of a uniform wall on which wall ingrowths are deposited. The wall ingrowth papillae provide scaffolds to amplify plasma membranes that are enriched in nutrient transporters. Using Vicia faba cotyledons, whose adaxial epidermal cells spontaneously and rapidly (hours) undergo a synchronous TC trans-differentiation upon transfer to culture, has led to the discovery of a cascade of inductive signals orchestrating deposition of ingrowth wall papillae. Auxin-induced ethylene biosynthesis initiates the cascade. This in turn drives a burst in extracellular H2O2 production that triggers uniform wall deposition. Thereafter, a persistent and elevated cytosolic Ca(2+) concentration, resulting from Ca(2+) influx through plasma membrane Ca(2+)-permeable channels, generates a Ca(2+) signal that directs formation of wall ingrowth papillae to specific loci. We now report how these Ca(2+)-permeable channels are regulated using the proportionate responses in cytosolic Ca(2+) concentration as a proxy measure of their transport activity. Culturing cotyledons on various combinations of pharmacological agents allowed the regulatory influence of each upstream signal on Ca(2+) channel activity to be evaluated. The findings demonstrated that Ca(2+)-permeable channel activity was insensitive to auxin, but up-regulated by ethylene through two independent routes. In one route ethylene acts directly on Ca(2+)-permeable channel activity at the transcriptional and post-translational levels, through an ethylene receptor-dependent pathway. The other route is mediated by an ethylene-induced production of extracellular H2O2 which then acts translationally and post-translationally to up-regulate Ca(2+)-permeable channel activity. A model describing the differential regulation of Ca(2+)-permeable channel activity is presented.
Collapse
Affiliation(s)
- Hui-ming Zhang
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Dirk F van Helden
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308 Australia
| | - David W McCurdy
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Christina E Offler
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308 Australia
| | - John W Patrick
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308 Australia
| |
Collapse
|
16
|
Nguyen STT, McCurdy DW. High-resolution confocal imaging of wall ingrowth deposition in plant transfer cells: Semi-quantitative analysis of phloem parenchyma transfer cell development in leaf minor veins of Arabidopsis. BMC PLANT BIOLOGY 2015; 15:109. [PMID: 25899055 PMCID: PMC4416241 DOI: 10.1186/s12870-015-0483-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/30/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Transfer cells (TCs) are trans-differentiated versions of existing cell types designed to facilitate enhanced membrane transport of nutrients at symplasmic/apoplasmic interfaces. This transport capacity is conferred by intricate wall ingrowths deposited secondarily on the inner face of the primary cell wall, hence promoting the potential trans-membrane flux of solutes and consequently assigning TCs as having key roles in plant growth and productivity. However, TCs are typically positioned deep within tissues and have been studied mostly by electron microscopy. Recent advances in fluorophore labelling of plant cell walls using a modified pseudo-Schiff-propidium iodide (mPS-PI) staining procedure in combination with high-resolution confocal microscopy have allowed visualization of cellular details of individual tissue layers in whole mounts, hence enabling study of tissue and cellular architecture without the need for tissue sectioning. Here we apply a simplified version of the mPS-PI procedure for confocal imaging of cellulose-enriched wall ingrowths in vascular TCs at the whole tissue level. RESULTS The simplified mPS-PI staining procedure produced high-resolution three-dimensional images of individual cell types in vascular bundles and, importantly, wall ingrowths in phloem parenchyma (PP) TCs in minor veins of Arabidopsis leaves and companion cell TCs in pea. More efficient staining of tissues was obtained by replacing complex clearing procedures with a simple post-fixation bleaching step. We used this modified procedure to survey the presence of PP TCs in other tissues of Arabidopsis including cotyledons, cauline leaves and sepals. This high-resolution imaging enabled us to classify different stages of wall ingrowth development in Arabidopsis leaves, hence enabling semi-quantitative assessment of the extent of wall ingrowth deposition in PP TCs at the whole leaf level. Finally, we conducted a defoliation experiment as an example of using this approach to statistically analyze responses of PP TC development to leaf ablation. CONCLUSIONS Use of a modified mPS-PI staining technique resulted in high-resolution confocal imaging of polarized wall ingrowth deposition in TCs. This technique can be used in place of conventional electron microscopy and opens new possibilities to study mechanisms determining polarized deposition of wall ingrowths and use reverse genetics to identify regulatory genes controlling TC trans-differentiation.
Collapse
Affiliation(s)
- Suong T T Nguyen
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW, 2308, Australia.
| | - David W McCurdy
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW, 2308, Australia.
| |
Collapse
|
17
|
Zhang HM, Wheeler S, Xia X, Radchuk R, Weber H, Offler CE, Patrick JW. Differential transcriptional networks associated with key phases of ingrowth wall construction in trans-differentiating epidermal transfer cells of Vicia faba cotyledons. BMC PLANT BIOLOGY 2015; 15:103. [PMID: 25887034 PMCID: PMC4437447 DOI: 10.1186/s12870-015-0486-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/01/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Transfer cells are characterized by intricate ingrowth walls, comprising an uniform wall upon which wall ingrowths are deposited. The ingrowth wall forms a scaffold to support an amplified plasma membrane surface area enriched in membrane transporters that collectively confers transfer cells with an enhanced capacity for membrane transport at bottlenecks for apo-/symplasmic exchange of nutrients. However, the underlying molecular mechanisms regulating polarized construction of the ingrowth wall and membrane transporter profile are poorly understood. RESULTS An RNAseq study of an inducible epidermal transfer cell system in cultured Vicia faba cotyledons identified transfer cell specific transcriptomes associated with uniform wall and wall ingrowth deposition. All functional groups of genes examined were expressed before and following transition to a transfer cell fate. What changed were the isoform profiles of expressed genes within functional groups. Genes encoding ethylene and Ca(2+) signal generation and transduction pathways were enriched during uniform wall construction. Auxin-and reactive oxygen species-related genes dominated during wall ingrowth formation and ABA genes were evenly expressed across ingrowth wall construction. Expression of genes encoding kinesins, formins and villins was consistent with reorganization of cytoskeletal components. Uniform wall and wall ingrowth specific expression of exocyst complex components and SNAREs suggested specific patterns of exocytosis while dynamin mediated endocytotic activity was consistent with establishing wall ingrowth loci. Key regulatory genes of biosynthetic pathways for sphingolipids and sterols were expressed across ingrowth wall construction. Transfer cell specific expression of cellulose synthases was absent. Rather xyloglucan, xylan and pectin biosynthetic genes were selectively expressed during uniform wall construction. More striking was expression of genes encoding enzymes for re-modelling/degradation of cellulose, xyloglucans, pectins and callose. Extensins dominated the cohort of expressed wall structural proteins and particularly so across wall ingrowth development. Ion transporters were selectively expressed throughout ingrowth wall development along with organic nitrogen transporters and a large group of ABC transporters. Sugar transporters were less represented. CONCLUSIONS Pathways regulating signalling and intracellular organization were fine tuned whilst cell wall construction and membrane transporter profiles were altered substantially upon transiting to a transfer cell fate. Each phase of ingrowth wall construction was linked with unique cohorts of expressed genes.
Collapse
Affiliation(s)
- Hui-Ming Zhang
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Simon Wheeler
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Xue Xia
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ruslana Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Gatersleben, Germany.
| | - Hans Weber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Gatersleben, Germany.
| | - Christina E Offler
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - John W Patrick
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
18
|
Arun-Chinnappa KS, McCurdy DW. De novo assembly of a genome-wide transcriptome map of Vicia faba (L.) for transfer cell research. FRONTIERS IN PLANT SCIENCE 2015; 6:217. [PMID: 25914703 PMCID: PMC4391045 DOI: 10.3389/fpls.2015.00217] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/17/2015] [Indexed: 05/20/2023]
Abstract
Vicia faba (L.) is an important cool-season grain legume species used widely in agriculture but also in plant physiology research, particularly as an experimental model to study transfer cell (TC) development. TCs are specialized nutrient transport cells in plants, characterized by invaginated wall ingrowths with amplified plasma membrane surface area enriched with transporter proteins that facilitate nutrient transfer. Many TCs are formed by trans-differentiation from differentiated cells at apoplasmic/symplasmic boundaries in nutrient transport. Adaxial epidermal cells of isolated cotyledons can be induced to form functional TCs, thus providing a valuable experimental system to investigate genetic regulation of TC trans-differentiation. The genome of V. faba is exceedingly large (ca. 13 Gb), however, and limited genomic information is available for this species. To provide a resource for future transcript profiling of epidermal TC differentiation, we have undertaken de novo assembly of a genome-wide transcriptome map for V. faba. Illumina paired-end sequencing of total RNA pooled from different tissues and different stages, including isolated cotyledons induced to form epidermal TCs, generated 69.5 M reads, of which 65.8 M were used for assembly following trimming and quality control. Assembly using a De-Bruijn graph-based approach generated 21,297 contigs, of which 80.6% were successfully annotated against GO terms. The assembly was validated against known V. faba cDNAs held in GenBank, including transcripts previously identified as being specifically expressed in epidermal cells across TC trans-differentiation. This genome-wide transcriptome map therefore provides a valuable tool for future transcript profiling of epidermal TC trans-differentiation, and also enriches the genetic resources available for this important legume crop species.
Collapse
Affiliation(s)
| | - David W. McCurdy
- Centre for Plant Science, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
| |
Collapse
|
19
|
Zhang HM, Imtiaz MS, Laver DR, McCurdy DW, Offler CE, van Helden DF, Patrick JW. Polarized and persistent Ca²⁺ plumes define loci for formation of wall ingrowth papillae in transfer cells. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1179-90. [PMID: 25504137 PMCID: PMC4339585 DOI: 10.1093/jxb/eru460] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Transfer cell morphology is characterized by a polarized ingrowth wall comprising a uniform wall upon which wall ingrowth papillae develop at right angles into the cytoplasm. The hypothesis that positional information directing construction of wall ingrowth papillae is mediated by Ca(2+) signals generated by spatiotemporal alterations in cytosolic Ca(2+) ([Ca(2+)]cyt) of cells trans-differentiating to a transfer cell morphology was tested. This hypothesis was examined using Vicia faba cotyledons. On transferring cotyledons to culture, their adaxial epidermal cells synchronously trans-differentiate to epidermal transfer cells. A polarized and persistent Ca(2+) signal, generated during epidermal cell trans-differentiation, was found to co-localize with the site of ingrowth wall formation. Dampening Ca(2+) signal intensity, by withdrawing extracellular Ca(2+) or blocking Ca(2+) channel activity, inhibited formation of wall ingrowth papillae. Maintenance of Ca(2+) signal polarity and persistence depended upon a rapid turnover (minutes) of cytosolic Ca(2+) by co-operative functioning of plasma membrane Ca(2+)-permeable channels and Ca(2+)-ATPases. Viewed paradermally, and proximal to the cytosol-plasma membrane interface, the Ca(2+) signal was organized into discrete patches that aligned spatially with clusters of Ca(2+)-permeable channels. Mathematical modelling demonstrated that these patches of cytosolic Ca(2+) were consistent with inward-directed plumes of elevated [Ca(2+)]cyt. Plume formation depended upon an alternating distribution of Ca(2+)-permeable channels and Ca(2+)-ATPase clusters. On further inward diffusion, the Ca(2+) plumes coalesced into a uniform Ca(2+) signal. Blocking or dispersing the Ca(2+) plumes inhibited deposition of wall ingrowth papillae, while uniform wall formation remained unaltered. A working model envisages that cytosolic Ca(2+) plumes define the loci at which wall ingrowth papillae are deposited.
Collapse
Affiliation(s)
- Hui-Ming Zhang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mohammad S Imtiaz
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Derek R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - David W McCurdy
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Christina E Offler
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Dirk F van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - John W Patrick
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
20
|
Huang G, Wang L, Sun Z, Li X, Zhou Q, Huang X. Combined effects of Lanthanum(III) and elevated Ultraviolet-B radiation on root nitrogen nutrient in soybean seedlings. Biol Trace Elem Res 2015; 163:224-34. [PMID: 25398543 DOI: 10.1007/s12011-014-0174-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/02/2014] [Indexed: 12/26/2022]
Abstract
Rare earth element pollution and elevated ultraviolet-B (UV-B) radiation occur simultaneously in some regions, but the combined effects of these two factors on plants have not attracted enough attention. Nitrogen nutrient is vital to plant growth. In this study, the combined effects of lanthanum(III) and elevated UV-B radiation on nitrate reduction and ammonia assimilation in soybean (Glycine max L.) roots were investigated. Treatment with 0.08 mmol L(-1) La(III) did not change the effects of elevated UV-B radiation on nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), nitrate, ammonium, amino acids, or soluble protein in the roots. Treatment with 0.24 mmol L(-1) La(III) and elevated UV-B radiation synergistically decreased the NR, NiR, GS, and GOGAT activities as well as the nitrate, amino acid, and soluble protein levels, except for the GDH activity and ammonium content. Combined treatment with 1.20 mmol L(-1) La(III) and elevated UV-B radiation produced severely deleterious effects on all test indices, and these effects were stronger than those induced by La(III) or elevated UV-B radiation treatment alone. Following the withdrawal of La(III) and elevated UV-B radiation, all test indices for the combined treatments with 0.08/0.24 mmol L(-1) La(III) and elevated UV-B radiation recovered to a certain extent, but they could not recover for treatments with 1.20 mmol L(-1) La(III) and elevated UV-B radiation. In summary, combined treatment with La(III) and elevated UV-B radiation seriously affected nitrogen nutrition in soybean roots through the inhibition of nitrate reduction and ammonia assimilation.
Collapse
Affiliation(s)
- Guangrong Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | | | | | | | | | | |
Collapse
|
21
|
Radchuk V, Borisjuk L. Physical, metabolic and developmental functions of the seed coat. FRONTIERS IN PLANT SCIENCE 2014; 5:510. [PMID: 25346737 PMCID: PMC4193196 DOI: 10.3389/fpls.2014.00510] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/11/2014] [Indexed: 05/04/2023]
Abstract
The conventional understanding of the role of the seed coat is that it provides a protective layer for the developing zygote. Recent data show that the picture is more nuanced. The seed coat certainly represents a first line of defense against adverse external factors, but it also acts as channel for transmitting environmental cues to the interior of the seed. The latter function primes the seed to adjust its metabolism in response to changes in its external environment. The purpose of this review is to provide the reader with a comprehensive view of the structure and functionality of the seed coat, and to expose its hidden interaction with both the endosperm and embryo. Any breeding and/or biotechnology intervention seeking to increase seed size or modify seed features will have to consider the implications on this tripartite interaction.
Collapse
Affiliation(s)
| | - Ljudmilla Borisjuk
- Heterosis, Molecular Genetics, Leibniz-Institut für Pflanzengenetik und KulturpflanzenforschungGatersleben, Germany
| |
Collapse
|
22
|
Peukert M, Thiel J, Peshev D, Weschke W, Van den Ende W, Mock HP, Matros A. Spatio-temporal dynamics of fructan metabolism in developing barley grains. THE PLANT CELL 2014; 26:3728-44. [PMID: 25271242 PMCID: PMC4213166 DOI: 10.1105/tpc.114.130211] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/26/2014] [Accepted: 09/08/2014] [Indexed: 05/19/2023]
Abstract
Barley (Hordeum vulgare) grain development follows a series of defined morphological and physiological stages and depends on the supply of assimilates (mainly sucrose) from the mother plant. Here, spatio-temporal patterns of sugar distributions were investigated by mass spectrometric imaging, targeted metabolite analyses, and transcript profiling of microdissected grain tissues. Distinct spatio-temporal sugar balances were observed, which may relate to differentiation and grain filling processes. Notably, various types of oligofructans showed specific distribution patterns. Levan- and graminan-type oligofructans were synthesized in the cellularized endosperm prior to the commencement of starch biosynthesis, while during the storage phase, inulin-type oligofructans accumulated to a high concentration in and around the nascent endosperm cavity. In the shrunken endosperm mutant seg8, with a decreased sucrose flux toward the endosperm, fructan accumulation was impaired. The tight partitioning of oligofructan biosynthesis hints at distinct functions of the various fructan types in the young endosperm prior to starch accumulation and in the endosperm transfer cells that accomplish the assimilate supply toward the endosperm at the storage phase.
Collapse
Affiliation(s)
- Manuela Peukert
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland, OT Gatersleben, Germany
| | - Johannes Thiel
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland, OT Gatersleben, Germany
| | - Darin Peshev
- Lab of Molecular Plant Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee (2434), Belgium
| | - Winfriede Weschke
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland, OT Gatersleben, Germany
| | - Wim Van den Ende
- Lab of Molecular Plant Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee (2434), Belgium
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland, OT Gatersleben, Germany
| | - Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland, OT Gatersleben, Germany
| |
Collapse
|
23
|
Kaur G, Sharma A, Guruprasad K, Pati PK. Versatile roles of plant NADPH oxidases and emerging concepts. Biotechnol Adv 2014; 32:551-63. [PMID: 24561450 DOI: 10.1016/j.biotechadv.2014.02.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/24/2014] [Accepted: 02/07/2014] [Indexed: 02/01/2023]
Abstract
NADPH oxidase (NOX) is a key player in the network of reactive oxygen species (ROS) producing enzymes. It catalyzes the production of superoxide (O2(-)), that in turn regulates a wide range of biological functions in a broad range of organisms. Plant Noxes are known as respiratory burst oxidase homologs (Rbohs) and are homologs of catalytic subunit of mammalian phagocyte gp91(phox). They are unique among other ROS producing mechanisms in plants as they integrate different signal transduction pathways in plants. In recent years, there has been addition of knowledge on various aspects related to its structure, regulatory components and associated mechanisms, and its plethora of biological functions. This update highlights some of the recent developments in the field with particular reference to important members of the plant kingdom.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India.
| | - Ashutosh Sharma
- Department of Biotechnology, Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India.
| | - Kunchur Guruprasad
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500007, Andhra Pradesh, India.
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India.
| |
Collapse
|
24
|
Cabrera J, Barcala M, Fenoll C, Escobar C. Transcriptomic signatures of transfer cells in early developing nematode feeding cells of Arabidopsis focused on auxin and ethylene signaling. FRONTIERS IN PLANT SCIENCE 2014; 5:107. [PMID: 24715895 PMCID: PMC3970009 DOI: 10.3389/fpls.2014.00107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/06/2014] [Indexed: 05/20/2023]
Abstract
Phyto-endoparasitic nematodes induce specialized feeding cells (NFCs) in their hosts, termed syncytia and giant cells (GCs) for cyst and root-knot nematodes (RKNs), respectively. They differ in their ontogeny and global transcriptional signatures, but both develop cell wall ingrowths (CIs) to facilitate high rates of apoplastic/symplastic solute exchange showing transfer cell (TC) characteristics. Regulatory signals for TC differentiation are not still well-known. The two-component signaling system (2CS) and reactive oxygen species are proposed as inductors of TC identity, while, 2CSs-related genes are not major contributors to differential gene expression in early developing NFCs. Transcriptomic and functional studies have assigned a major role to auxin and ethylene as regulatory signals on early developing TCs. Genes encoding proteins with similar functions expressed in both early developing NFCs and typical TCs are putatively involved in upstream or downstream responses mediated by auxin and ethylene. Yet, no function directly associated to the TCs identity of NFCs, such as the formation of CIs is described for most of them. Thus, we reviewed similarities between transcriptional changes observed during the early stages of NFCs formation and those described during differentiation of TCs to hypothesize about putative signals leading to TC-like differentiation of NFCs with particular emphasis on auxin an ethylene.
Collapse
Affiliation(s)
| | | | | | - Carolina Escobar
- *Correspondence: Carolina Escobar, Laboratory of Plant Physiology, Department of Environmental Sciences, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Avenida de Carlos III s/n, 45071 Toledo, Spain e-mail:
| |
Collapse
|
25
|
Adams III WW, Cohu CM, Amiard V, Demmig-Adams B. Associations between the acclimation of phloem-cell wall ingrowths in minor veins and maximal photosynthesis rate. FRONTIERS IN PLANT SCIENCE 2014; 5:24. [PMID: 24567735 PMCID: PMC3915099 DOI: 10.3389/fpls.2014.00024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/21/2014] [Indexed: 05/22/2023]
Abstract
The companion cells (CCs) and/or phloem parenchyma cells (PCs) in foliar minor veins of some species exhibit invaginations that are amplified when plants develop in high light (HL) compared to low light (LL). Leaves of plants that develop under HL also exhibit greater maximal rates of photosynthesis compared to those that develop under LL, suggesting that the increased membrane area of CCs and PCs of HL-acclimated leaves may provide for greater levels of transport proteins facilitating enhanced sugar export. Furthermore, the degree of wall invagination in PCs (Arabidopsis thaliana) or CCs (pea) of fully expanded LL-acclimated leaves increased to the same level as that present in HL-acclimated leaves 7 days following transfer to HL, and maximal photosynthesis rates of transferred leaves of both species likewise increased to the same level as in HL-acclimated leaves. In contrast, transfer of Senecio vulgaris from LL to HL resulted in increased wall invagination in CCs, but not PCs, and such leaves furthermore exhibited only partial upregulation of photosynthetic capacity following LL to HL transfer. Moreover, a significant linear relationship existed between the level of cell wall ingrowths and maximal photosynthesis rates across all three species and growth light regimes. A positive linear relationship between these two parameters was also present for two ecotypes (Sweden, Italy) of the winter annual A. thaliana in response to growth at different temperatures, with significantly greater levels of PC wall ingrowths and higher rates of photosynthesis in leaves that developed at cooler versus warmer temperatures. Treatment of LL-acclimated plants with the stress hormone methyl jasmonate also resulted in increased levels of wall ingrowths in PCs of A. thaliana and S. vulgaris but not in CCs of pea and S. vulgaris. The possible role of PC wall ingrowths in sugar export versus as physical barriers to the movement of pathogens warrants further attention.
Collapse
Affiliation(s)
- William W. Adams III
- Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA
- *Correspondence: William W. Adams III, Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA e-mail:
| | - Christopher M. Cohu
- Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA
| | - Véronique Amiard
- Genomics and Bioinformatics Unit, Agriaquaculture Nutritional Genomic CenterTemuco, Chile
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA
| |
Collapse
|
26
|
Andriunas FA, Zhang HM, Xia X, Patrick JW, Offler CE. Intersection of transfer cells with phloem biology-broad evolutionary trends, function, and induction. FRONTIERS IN PLANT SCIENCE 2013; 4:221. [PMID: 23847631 PMCID: PMC3696738 DOI: 10.3389/fpls.2013.00221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/07/2013] [Indexed: 05/18/2023]
Abstract
Transfer cells (TCs) are ubiquitous throughout the plant kingdom. Their unique ingrowth wall labyrinths, supporting a plasma membrane enriched in transporter proteins, provides these cells with an enhanced membrane transport capacity for resources. In certain plant species, TCs have been shown to function to facilitate phloem loading and/or unloading at cellular sites of intense resource exchange between symplasmic/apoplasmic compartments. Within the phloem, the key cellular locations of TCs are leaf minor veins of collection phloem and stem nodes of transport phloem. In these locations, companion and phloem parenchyma cells trans-differentiate to a TC morphology consistent with facilitating loading and re-distribution of resources, respectively. At a species level, occurrence of TCs is significantly higher in transport than in collection phloem. TCs are absent from release phloem, but occur within post-sieve element unloading pathways and particularly at interfaces between generations of developing Angiosperm seeds. Experimental accessibility of seed TCs has provided opportunities to investigate their inductive signaling, regulation of ingrowth wall formation and membrane transport function. This review uses this information base to explore current knowledge of phloem transport function and inductive signaling for phloem-associated TCs. The functional role of collection phloem and seed TCs is supported by definitive evidence, but no such information is available for stem node TCs that present an almost intractable experimental challenge. There is an emerging understanding of inductive signals and signaling pathways responsible for initiating trans-differentiation to a TC morphology in developing seeds. However, scant information is available to comment on a potential role for inductive signals (auxin, ethylene and reactive oxygen species) that induce seed TCs, in regulating induction of phloem-associated TCs. Biotic phloem invaders have been used as a model to speculate on involvement of these signals.
Collapse
Affiliation(s)
| | | | | | | | - Christina E. Offler
- Department of Biological Sciences, School of Environmental and Life Sciences, The University of NewcastleCallaghan, NSW, Australia
| |
Collapse
|
27
|
Arun Chinnappa KS, Nguyen TTS, Hou J, Wu Y, McCurdy DW. Phloem parenchyma transfer cells in Arabidopsis - an experimental system to identify transcriptional regulators of wall ingrowth formation. FRONTIERS IN PLANT SCIENCE 2013; 4:102. [PMID: 23630536 PMCID: PMC3634129 DOI: 10.3389/fpls.2013.00102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/03/2013] [Indexed: 05/18/2023]
Abstract
In species performing apoplasmic loading, phloem cells adjacent to sieve elements often develop into transfer cells (TCs) with wall ingrowths. The highly invaginated wall ingrowths serve to amplify plasma membrane surface area to achieve increased rates of apoplasmic transport, and may also serve as physical barriers to deter pathogen invasion. Wall ingrowth formation in TCs therefore plays an important role in phloem biology, however, the transcriptional switches regulating the deposition of this unique example of highly localized wall building remain unknown. Phloem parenchyma (PP) TCs in Arabidopsis veins provide an experimental system to identify such switches. The extent of ingrowth deposition responds to various abiotic and applied stresses, enabling bioinformatics to identify candidate regulatory genes. Furthermore, simple fluorescence staining of PP TCs in leaves enables phenotypic analysis of relevant mutants. Combining these approaches resulted in the identification of GIGANTEA as a regulatory component in the pathway controlling wall ingrowth development in PP TCs. Further utilization of this approach has identified two NAC (NAM, ATAF1/2 and CUC2)-domain and two MYB-related genes as putative transcriptional switches regulating wall ingrowth deposition in these cells.
Collapse
Affiliation(s)
| | | | | | | | - David W. McCurdy
- *Correspondence: David W. McCurdy, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia. e-mail:
| |
Collapse
|
28
|
Liu YH, Offler CE, Ruan YL. Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. FRONTIERS IN PLANT SCIENCE 2013; 4:282. [PMID: 23914195 PMCID: PMC3729977 DOI: 10.3389/fpls.2013.00282] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/10/2013] [Indexed: 05/21/2023]
Abstract
A large body of evidence shows that sugars function both as nutrients and signals to regulate fruit and seed set under normal and stress conditions including heat and drought. Inadequate sucrose import to, and its degradation within, reproductive organs cause fruit and seed abortion under heat and drought. As nutrients, sucrose-derived hexoses provide carbon skeletons and energy for growth and development of fruits and seeds. Sugar metabolism can also alleviate the impact of stress on fruit and seed through facilitating biosynthesis of heat shock proteins (Hsps) and non-enzymic antioxidants (e.g., glutathione, ascorbic acid), which collectively maintain the integrity of membranes and prevent programmed cell death (PCD) through protecting proteins and scavenging reactive oxygen species (ROS). In parallel, sugars (sucrose, glucose, and fructose), also exert signaling roles through cross-talk with hormone and ROS signaling pathways and by mediating cell division and PCD. At the same time, emerging data indicate that sugar-derived signaling systems, including trehalose-6 phosphate (T6P), sucrose non-fermenting related kinase-1 (SnRK), and the target of rapamycin (TOR) kinase complex also play important roles in regulating plant development through modulating nutrient and energy signaling and metabolic processes, especially under abiotic stresses where sugar availability is low. This review aims to evaluate recent progress of research on abiotic stress responses of reproductive organs focusing on roles of sugar metabolism and signaling and addressing the possible biochemical and molecular mechanism by which sugars regulate fruit and seed set under heat and drought.
Collapse
Affiliation(s)
- Yong-Hua Liu
- Department of Biology, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Christina E. Offler
- Department of Biology, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
| | - Yong-Ling Ruan
- Department of Biology, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
- *Correspondence: Yong-Ling Ruan, Department of Biology, School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW, Australia e-mail:
| |
Collapse
|
29
|
Xia X, Zhang HM, Andriunas FA, Offler CE, Patrick JW. Extracellular hydrogen peroxide, produced through a respiratory burst oxidase/superoxide dismutase pathway, directs ingrowth wall formation in epidermal transfer cells of Vicia faba cotyledons. PLANT SIGNALING & BEHAVIOR 2012; 7:1125-8. [PMID: 22899058 PMCID: PMC3489643 DOI: 10.4161/psb.21320] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The intricate, and often polarized, ingrowth walls of transfer cells (TCs) amplify their plasma membrane surface areas to confer a transport function of supporting high rates of nutrient exchange across apo-/symplasmic interfaces. The TC ingrowth wall comprises a uniform wall layer on which wall ingrowths are deposited. Signals and signal cascades inducing trans-differentiation events leading to formation of TC ingrowth walls are poorly understood. Vicia faba cotyledons offer a robust experimental model to examine TC induction as, when placed into culture, their adaxial epidermal cells rapidly (h) and synchronously form polarized ingrowth walls accessible for experimental observations. Using this model, we recently reported findings consistent with extracellular hydrogen peroxide, produced through a respiratory burst oxidase homolog/superoxide dismutase pathway, initiating cell wall biosynthetic activity and providing directional information guiding deposition of the polarized uniform wall. Our conclusions rested on observations derived from pharmacological manipulations of hydrogen peroxide production and correlative gene expression data sets. A series of additional studies were undertaken, the results of which verify that extracellular hydrogen peroxide contributes to regulating ingrowth wall formation and is generated by a respiratory burst oxidase homolog/superoxide dismutase pathway.
Collapse
|
30
|
Thiel J, Riewe D, Rutten T, Melzer M, Friedel S, Bollenbeck F, Weschke W, Weber H. Differentiation of endosperm transfer cells of barley: a comprehensive analysis at the micro-scale. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:639-55. [PMID: 22487146 DOI: 10.1111/j.1365-313x.2012.05018.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Barley endosperm cells differentiate into transfer cells (ETCs) opposite the nucellar projection. To comprehensively analyse ETC differentiation, laser microdissection-based transcript and metabolite profiles were obtained from laser microdissected tissues and cell morphology was analysed. Flange-like secondary-wall ingrowths appeared between 5 and 7 days after pollination within the three outermost cell layers. Gene expression analysis indicated that ethylene-signalling pathways initiate ETC morphology. This is accompanied by gene activity related to cell shape control and vesicle transport, with abundant mitochondria and endomembrane structures. Gene expression analyses indicate predominant formation of hemicelluloses, glucuronoxylans and arabinoxylans, and transient formation of callose, together with proline and 4-hydroxyproline biosynthesis. Activation of the methylation cycle is probably required for biosynthesis of phospholipids, pectins and ethylene. Membrane microdomains involving sterols/sphingolipids and remorins are potentially involved in ETC development. The transcriptional activity of assimilate and micronutrient transporters suggests ETCs as the main uptake organs of solutes into the endosperm. Accordingly, the endosperm grows maximally after ETCs are fully developed. Up-regulated gene expression related to amino acid catabolism, C:N balances, carbohydrate oxidation, mitochondrial activity and starch degradation meets high demands for respiratory energy and carbohydrates, required for cell proliferation and wall synthesis. At 10 days after pollination, ETCs undergo further differentiation, potentially initiated by abscisic acid, and metabolism is reprogrammed as shown by activated storage and stress-related processes. Overall, the data provide a comprehensive view of barley ETC differentiation and development, and identify candidate genes and associated pathways.
Collapse
Affiliation(s)
- Johannes Thiel
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), D-06466 Gatersleben, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Siddique S, Sobczak M, Tenhaken R, Grundler FMW, Bohlmann H. Cell wall ingrowths in nematode induced syncytia require UGD2 and UGD3. PLoS One 2012; 7:e41515. [PMID: 22848518 PMCID: PMC3406070 DOI: 10.1371/journal.pone.0041515] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/21/2012] [Indexed: 12/15/2022] Open
Abstract
The cyst nematode Heterodera schachtii infects roots of Arabidopsis plants and establishes feeding sites called syncytia, which are the only nutrient source for nematodes. Development of syncytia is accompanied by changes in cell wall structures including the development of cell wall ingrowths. UDP-glucuronic acid is a precursor of several cell wall polysaccharides and can be produced by UDP-glucose dehydrogenase through oxidation of UDP-glucose. Four genes in Arabidopsis encode this enzyme. Promoter::GUS analysis revealed that UGD2 and UGD3 were expressed in syncytia as early as 1 dpi while expression of UGD1 and UGD4 could only be detected starting at 2 dpi. Infection assays showed no differences between Δugd1 and Δugd4 single mutants and wild type plants concerning numbers of males and females and the size of syncytia and cysts. On single mutants of Δugd2 and Δugd3, however, less and smaller females, and smaller syncytia formed compared to wild type plants. The double mutant ΔΔugd23 had a stronger effect than the single mutants. These data indicate that UGD2 and UGD3 but not UGD1 and UGD4 are important for syncytium development. We therefore studied the ultrastructure of syncytia in the ΔΔugd23 double mutant. Syncytia contained an electron translucent cytoplasm with degenerated cellular organelles and numerous small vacuoles instead of the dense cytoplasm as in syncytia developing in wild type roots. Typical cell wall ingrowths were missing in the ΔΔugd23 double mutant. Therefore we conclude that UGD2 and UGD3 are needed for the production of cell wall ingrowths in syncytia and that their lack leads to a reduced host suitability for H. schachtii resulting in smaller syncytia, lower number of developing nematodes, and smaller females.
Collapse
Affiliation(s)
- Shahid Siddique
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Miroslaw Sobczak
- Department of Botany, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Raimund Tenhaken
- Division of Plant Physiology, University of Salzburg, Salzburg, Austria
| | - Florian M. W. Grundler
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
- * E-mail:
| |
Collapse
|