1
|
Chua LC, Lau OS. Stomatal development in the changing climate. Development 2024; 151:dev202681. [PMID: 39431330 PMCID: PMC11528219 DOI: 10.1242/dev.202681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Stomata, microscopic pores flanked by symmetrical guard cells, are vital regulators of gas exchange that link plant processes with environmental dynamics. The formation of stomata involves the multi-step progression of a specialized cell lineage. Remarkably, this process is heavily influenced by environmental factors, allowing plants to adjust stomatal production to local conditions. With global warming set to alter our climate at an unprecedented pace, understanding how environmental factors impact stomatal development and plant fitness is becoming increasingly important. In this Review, we focus on the effects of carbon dioxide, high temperature and drought - three environmental factors tightly linked to global warming - on stomatal development. We summarize the stomatal response of a variety of plant species and highlight the existence of species-specific adaptations. Using the model plant Arabidopsis, we also provide an update on the molecular mechanisms involved in mediating the plasticity of stomatal development. Finally, we explore how knowledge on stomatal development is being applied to generate crop varieties with optimized stomatal traits that enhance their resilience against climate change and maintain agricultural productivity.
Collapse
Affiliation(s)
- Li Cong Chua
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - On Sun Lau
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| |
Collapse
|
2
|
Hu W, Loka DA, Yang Y, Wu Z, Wang J, Liu L, Wang S, Zhou Z. Partial root-zone drying irrigation improves intrinsic water-use efficiency and maintains high photosynthesis by uncoupling stomatal and mesophyll conductance in cotton leaves. PLANT, CELL & ENVIRONMENT 2024; 47:3147-3165. [PMID: 38693776 DOI: 10.1111/pce.14932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Partial root-zone drying irrigation (PRD) can improve water-use efficiency (WUE) without reductions in photosynthesis; however, the mechanism by which this is attained is unclear. To amend that, PRD conditions were simulated by polyethylene glycol 6000 in a root-splitting system and the effects of PRD on cotton growth were studied. Results showed that PRD decreased stomatal conductance (gs) but increased mesophyll conductance (gm). Due to the contrasting effects on gs and gm, net photosynthetic rate (AN) remained unaffected, while the enhanced gm/gs ratio facilitated a larger intrinsic WUE. Further analyses indicated that PRD-induced reduction of gs was related to decreased stomatal size and stomatal pore area in adaxial and abaxial surface which was ascribed to lower pore length and width. PRD-induced variation of gm was ascribed to the reduced liquid-phase resistance, due to increases in chloroplast area facing to intercellular airspaces and the ratio of chloroplast surface area to total mesophyll cell area exposed to intercellular airspaces, as well as to decreases in the distance between cell wall and chloroplast, and between adjacent chloroplasts. The above results demonstrate that PRD, through alterations to stomatal and mesophyll structures, decoupled gs and gm responses, which ultimately increased intrinsic WUE and maintained AN.
Collapse
Affiliation(s)
- Wei Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Dimitra A Loka
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization, Larisa, Greece
| | - Yuanli Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Ziqing Wu
- College of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jun Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Lin Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Shanshan Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Aksoy E, Yavuz C, Yagiz AK, Unel NM, Baloğlu MC. Genome-wide characterization and expression analysis of GATA transcription factors under combination of light wavelengths and drought stress in potato. PLANT DIRECT 2024; 8:e569. [PMID: 38659972 PMCID: PMC11042883 DOI: 10.1002/pld3.569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 04/26/2024]
Abstract
GATA is one of the prominent transcription factor families conserved among many organisms in eukaryotes and has different biological roles in many pathways, particularly in light regulation in plants. Although GATA transcription factors (TFs) have been identified in different crop species, their roles in abiotic stress tolerance have not been studied in potato. In this study, we identified 32 GATA TFs in potato (Solanum tuberosum) by in silico analyses, and expression levels of selected six genes were investigated in drought-tolerant (Sante) and sensitive (Agria) cultivars under light, drought, and combined (light + drought) stress conditions. According to the phylogenetic results, StGATA TFs were divided into four main groups (I, II, III, and IV) and different sub-groups in I and II (eight and five, respectively). StGATA genes were uniformly localized to each chromosome with a conserved exon/intron structure. The presence of cis-elements within the StGATA family further supported the possible involvement in abiotic stress tolerance and light response, tissue-specific expression, and hormonal regulation. Additional PPI investigations showed that these networks, especially for Groups I, II, and IV, play a significant role in response to light and drought stress. Six StGATAs were chosen from these groups for expressional profiling, and their expression in both Sante and Agria was mainly downregulated under purple and red lights, drought, and combined stress (blue + drought and purple + drought). The interactomes of selected StGATAs, StGATA3, StGATA24, and StGATA29 were analyzed, and the accessions with GATA motifs were checked for expression. The results showed that the target proteins, cyclin-P3-1, SPX domain-containing protein 1, mitochondrial calcium uniporter protein 2, mitogen-activated protein kinase kinase kinase YODA, and splicing factor 3 B subunit 4-like, mainly play a role in phytochrome-mediated stomatal patterning, development, and activity. Understanding the interactions between drought stress and the light response mechanisms in potato plants is essential. It will eventually be possible to enhance potato resilience to climate change by manipulating the TFs that play a role in these pathways.
Collapse
Affiliation(s)
- Emre Aksoy
- Faculty of Arts and Sciences, Department of BiologyMiddle East Technical UniversityAnkaraTürkiye
| | - Caner Yavuz
- Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic EngineeringNiğde Ömer Halisdemir UniversityNiğdeTürkiye
| | - Ayten Kübra Yagiz
- Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic EngineeringNiğde Ömer Halisdemir UniversityNiğdeTürkiye
| | - Necdet Mehmet Unel
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and ArchitectureKastamonu UniversityKastamonuTürkiye
- Research and Application CenterKastamonu UniversityKastamonuTürkiye
| | - Mehmet Cengiz Baloğlu
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and ArchitectureKastamonu UniversityKastamonuTürkiye
- Sabancı University Nanotechnology Research and Application Center (SUNUM)Sabancı UniversityTuzlaTürkiye
| |
Collapse
|
4
|
Xia Y, Han Q, Shu J, Jiang S, Kang X. Stomatal density suppressor PagSDD1 is a "generalist" gene that promotes plant growth and improves water use efficiency. Int J Biol Macromol 2024; 262:129721. [PMID: 38296132 DOI: 10.1016/j.ijbiomac.2024.129721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
Abstract
The serine protease SDD1 regulates stomatal density, but its potential impact on plant vegetative growth is unclear. Our study reveals a substantial upregulation of SDD1 in triploid poplar apical buds and leaves, suggesting its possible role in their growth regulation. We cloned PagSDD1 from poplar 84 K (Populus alba × P. glandulosa) and found that overexpression in poplar, soybean, and lettuce led to decreased leaf stomatal density. Furthermore, PagSDD1 represses PagEPF1, PagEPF2, PagEPFL9, PagSPCH, PagMUTE, and PagFAMA expression. In contrast, PagSDD1 promotes the expression of its receptors, PagTMM and PagERECTA. PagSDD1-OE poplars showed stronger drought tolerance than wild-type poplars. Simultaneously, PagSDD1-OE poplar, soybean, and lettuce had vegetative growth advantages. RNA sequencing revealed a significant upregulation of genes PagLHCB2.1 and PagGRF5, correlating positively with photosynthetic rate, and PagCYCA3;4 and PagEXPA8 linked to cell division and differentiation in PagSDD1-OE poplars. This increase promoted leaf photosynthesis, boosted auxin and cytokinin accumulation, and enhanced vegetative growth. SDD1 overexpression can increase the biomass of poplar, soybean, and lettuce by approximately 70, 176, and 155 %, respectively, and increase the water use efficiency of poplar leaves by over 52 %, which is of great value for the molecular design and breeding of plants with growth and water-saving target traits.
Collapse
Affiliation(s)
- Yufei Xia
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Han
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Jianghai Shu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Shenxiu Jiang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Xiangyang Kang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Chen X, Zhao C, Yun P, Yu M, Zhou M, Chen ZH, Shabala S. Climate-resilient crops: Lessons from xerophytes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1815-1835. [PMID: 37967090 DOI: 10.1111/tpj.16549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023]
Abstract
Developing climate-resilient crops is critical for future food security and sustainable agriculture under current climate scenarios. Of specific importance are drought and soil salinity. Tolerance traits to these stresses are highly complex, and the progress in improving crop tolerance is too slow to cope with the growing demand in food production unless a major paradigm shift in crop breeding occurs. In this work, we combined bioinformatics and physiological approaches to compare some of the key traits that may differentiate between xerophytes (naturally drought-tolerant plants) and mesophytes (to which the majority of the crops belong). We show that both xerophytes and salt-tolerant mesophytes have a much larger number of copies in key gene families conferring some of the key traits related to plant osmotic adjustment, abscisic acid (ABA) sensing and signalling, and stomata development. We show that drought and salt-tolerant species have (i) higher reliance on Na for osmotic adjustment via more diversified and efficient operation of Na+ /H+ tonoplast exchangers (NHXs) and vacuolar H+ - pyrophosphatase (VPPases); (ii) fewer and faster stomata; (iii) intrinsically lower ABA content; (iv) altered structure of pyrabactin resistance/pyrabactin resistance-like (PYR/PYL) ABA receptors; and (v) higher number of gene copies for protein phosphatase 2C (PP2C) and sucrose non-fermenting 1 (SNF1)-related protein kinase 2/open stomata 1 (SnRK2/OST1) ABA signalling components. We also show that the past trends in crop breeding for Na+ exclusion to improve salinity stress tolerance are counterproductive and compromise their drought tolerance. Incorporating these genetic insights into breeding practices could pave the way for more drought-tolerant and salt-resistant crops, securing agricultural yields in an era of climate unpredictability.
Collapse
Affiliation(s)
- Xi Chen
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, Tasmania, 7250, Australia
| | - Ping Yun
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, Tasmania, 7250, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, New South Wales, 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
6
|
Licaj I, Germinario C, Di Meo MC, Varricchio E, Rocco M. The physiology and anatomy study in leaves of Saragolla and Svevo wheat cultivars under polyethylene glycol-simulated drought stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23151. [PMID: 38326232 DOI: 10.1071/fp23151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Drought stress is increasing in frequency and severity with the progression of global climate change, thereby becoming a major concern for the growth and yield of crop plants, including wheat. The current challenge is to explore different ways of developing wheat genotypes with increased tolerance to drought. Therefore, we renewed interest in 'ancient' varieties expected to be more tolerant to environmental stress than the few elite varieties nowadays cultivated. This study aimed to perform comparative analysis of the effect of drought-simulating polyethylene glycol (PEG-6000) treatment on morpho-anatomical and physiological foliar traits of two durum wheat seedlings cultivars, Saragolla and Svevo, as these can reflect the adaptability of the plant to the environment to a certain extent. Results demonstrated that drought-stressed Saragolla leaves exhibited a greater reduction of stomatal density, a minor reduction of stomatal pore width, a wider xylem vessel mean area, greater compactness of mesophyll cells, a minor loss of chlorophyll content, as well as better photosynthetic and growth performance compared to the other variety. From such behaviours, we consider the Saragolla cultivar more drought tolerant than Svevo and therefore probably very promising for cultivation in dry areas.
Collapse
Affiliation(s)
- Ilva Licaj
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - Chiara Germinario
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - Maria Chiara Di Meo
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - Ettore Varricchio
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - Mariapina Rocco
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| |
Collapse
|
7
|
Driesen E, De Proft M, Saeys W. Drought stress triggers alterations of adaxial and abaxial stomatal development in basil leaves increasing water-use efficiency. HORTICULTURE RESEARCH 2023; 10:uhad075. [PMID: 37303614 PMCID: PMC10251137 DOI: 10.1093/hr/uhad075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/10/2023] [Indexed: 06/13/2023]
Abstract
The physiological control of stomatal opening by which plants adjust for water availability has been extensively researched. However, the impact of water availability on stomatal development has not received as much attention, especially for amphistomatic plants. Therefore, the acclimation of stomatal development in basil (Ocimum basilicum L.) leaves was investigated. Our results show that leaves developed under water-deficit conditions possess higher stomatal densities and decreased stomatal length for both the adaxial and abaxial leaf sides. Although the stomatal developmental reaction to water deficit was similar for the two leaf surfaces, it was proven that adaxial stomata are more sensitive to water stress than abaxial stomata, with more closed adaxial stomata under water-deficit conditions. Furthermore, plants with leaves containing smaller stomata at higher densities possessed a higher water use efficiency. Our findings highlight the importance of stomatal development as a tool for long-term acclimation to limit water loss, with minimal reduction in biomass production. This highlights the central role that stomata play in both the short (opening) and long-term (development) reaction of plants to water availability, making them key tools for efficient resource use and anticipation of future environmental changes.
Collapse
Affiliation(s)
| | - Maurice De Proft
- Department of Biosystems, KU Leuven, Willem De Croylaan 42, 3001 Leuven, Belgium
| | - Wouter Saeys
- Department of Biosystems, KU Leuven, Willem De Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
8
|
Guo Z, Gao Y, Yuan X, Yuan M, Huang L, Wang S, Liu C, Duan C. Effects of Heavy Metals on Stomata in Plants: A Review. Int J Mol Sci 2023; 24:9302. [PMID: 37298252 PMCID: PMC10252879 DOI: 10.3390/ijms24119302] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Stomata are one of the important structures for plants to alleviate metal stress and improve plant resistance. Therefore, a study on the effects and mechanisms of heavy metal toxicity to stomata is indispensable in clarifying the adaptation mechanism of plants to heavy metals. With the rapid pace of industrialization and urbanization, heavy metal pollution has been an environmental issue of global concern. Stomata, a special physiological structure of plants, play an important role in maintaining plant physiological and ecological functions. Recent studies have shown that heavy metals can affect the structure and function of stomata, leading to changes in plant physiology and ecology. However, although the scientific community has accumulated some data on the effects of heavy metals on plant stomata, the systematic understanding of the effects of heavy metals on plant stomata remains limited. Therefore, in this review, we present the sources and migration pathways of heavy metals in plant stomata, analyze systematically the physiological and ecological responses of stomata on heavy metal exposure, and summarize the current mechanisms of heavy metal toxicity on stomata. Finally, the future research perspectives of the effects of heavy metals on plant stomata are identified. This paper can serve as a reference for the ecological assessment of heavy metals and the protection of plant resources.
Collapse
Affiliation(s)
- Zhaolai Guo
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; (Z.G.); (Y.G.); (X.Y.); (M.Y.); (L.H.); (S.W.); (C.L.)
- Yunnan Key Laboratory of Plateau Ecology and Degraded Environment Restoration, Kunming 650000, China
| | - Yuhan Gao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; (Z.G.); (Y.G.); (X.Y.); (M.Y.); (L.H.); (S.W.); (C.L.)
- Yunnan Key Laboratory of Plateau Ecology and Degraded Environment Restoration, Kunming 650000, China
| | - Xinqi Yuan
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; (Z.G.); (Y.G.); (X.Y.); (M.Y.); (L.H.); (S.W.); (C.L.)
- Yunnan Key Laboratory of Plateau Ecology and Degraded Environment Restoration, Kunming 650000, China
| | - Mengxiang Yuan
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; (Z.G.); (Y.G.); (X.Y.); (M.Y.); (L.H.); (S.W.); (C.L.)
- Yunnan Key Laboratory of Plateau Ecology and Degraded Environment Restoration, Kunming 650000, China
| | - Lv Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; (Z.G.); (Y.G.); (X.Y.); (M.Y.); (L.H.); (S.W.); (C.L.)
- Yunnan Key Laboratory of Plateau Ecology and Degraded Environment Restoration, Kunming 650000, China
| | - Sichen Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; (Z.G.); (Y.G.); (X.Y.); (M.Y.); (L.H.); (S.W.); (C.L.)
- Yunnan Key Laboratory of Plateau Ecology and Degraded Environment Restoration, Kunming 650000, China
| | - Chang’e Liu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; (Z.G.); (Y.G.); (X.Y.); (M.Y.); (L.H.); (S.W.); (C.L.)
- Yunnan Key Laboratory of Plateau Ecology and Degraded Environment Restoration, Kunming 650000, China
| | - Changqun Duan
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; (Z.G.); (Y.G.); (X.Y.); (M.Y.); (L.H.); (S.W.); (C.L.)
- Yunnan Key Laboratory of Plateau Ecology and Degraded Environment Restoration, Kunming 650000, China
| |
Collapse
|
9
|
Iqbal A, Huiping G, Qiang D, Xiangru W, Hengheng Z, Xiling Z, Meizhen S. Differential responses of contrasting low phosphorus tolerant cotton genotypes under low phosphorus and drought stress. BMC PLANT BIOLOGY 2023; 23:168. [PMID: 36997867 PMCID: PMC10061777 DOI: 10.1186/s12870-023-04171-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Drought is one of the main reasons for low phosphorus (P) solubility and availability. AIMS The use of low P tolerant cotton genotypes might be a possible option to grow in drought conditions. METHODS This study investigates the tolerance to drought stress in contrasting low P-tolerant cotton genotypes (Jimian169; strong tolerant to low P and DES926; weak tolerant to low P). In hydroponic culture, the drought was artificially induced with 10% PEG in both cotton genotypes followed by low (0.01 mM KH2PO4) and normal (1 mM KH2PO4) P application. RESULTS The results showed that under low P, PEG-induced drought greatly inhibited growth, dry matter production, photosynthesis, P use efficiency, and led to oxidative stress from excessive malondialdehyde (MDA) and higher accumulation of reactive oxygen species (ROS), and these effects were more in DES926 than Jimian169. Moreover, Jimian169 alleviated oxidative damage by improving the antioxidant system, photosynthetic activities, and an increase in the levels of osmoprotectants like free amino acids, total soluble proteins, total soluble sugars, and proline. CONCLUSIONS The present study suggests that the low P-tolerant cotton genotype can tolerate drought conditions through high photosynthesis, antioxidant capacity, and osmotic adjustment.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China
- Department of Agriculture, Hazara University, Khyber Pakhtunkhwa, Mansehra, 21120, Pakistan
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China
| | - Dong Qiang
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China.
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China.
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China.
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China.
| |
Collapse
|
10
|
Responses to Drought Stress in Poplar: What Do We Know and What Can We Learn? Life (Basel) 2023; 13:life13020533. [PMID: 36836891 PMCID: PMC9962866 DOI: 10.3390/life13020533] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Poplar (Populus spp.) is a high-value crop for wood and biomass production and a model organism for tree physiology and genomics. The early release, in 2006, of the complete genome sequence of P. trichocarpa was followed by a wealth of studies that significantly enriched our knowledge of complex pathways inherent to woody plants, such as lignin biosynthesis and secondary cell wall deposition. Recently, in the attempt to cope with the challenges posed by ongoing climate change, fundamental studies and breeding programs with poplar have gradually shifted their focus to address the responses to abiotic stresses, particularly drought. Taking advantage from a set of modern genomic and phenotyping tools, these studies are now shedding light on important processes, including embolism formation (the entry and expansion of air bubbles in the xylem) and repair, the impact of drought stress on biomass yield and quality, and the long-term effects of drought events. In this review, we summarize the status of the research on the molecular bases of the responses to drought in poplar. We highlight how this knowledge can be exploited to select more tolerant genotypes and how it can be translated to other tree species to improve our understanding of forest dynamics under rapidly changing environmental conditions.
Collapse
|
11
|
Hasanuzzaman M, Zhou M, Shabala S. How Does Stomatal Density and Residual Transpiration Contribute to Osmotic Stress Tolerance? PLANTS (BASEL, SWITZERLAND) 2023; 12:494. [PMID: 36771579 PMCID: PMC9919688 DOI: 10.3390/plants12030494] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Osmotic stress that is induced by salinity and drought affects plant growth and development, resulting in significant losses to global crop production. Consequently, there is a strong need to develop stress-tolerant crops with a higher water use efficiency through breeding programs. Water use efficiency could be improved by decreasing stomatal transpiration without causing a reduction in CO2 uptake under osmotic stress conditions. The genetic manipulation of stomatal density could be one of the most promising strategies for breeders to achieve this goal. On the other hand, a substantial amount of water loss occurs across the cuticle without any contribution to carbon gain when the stomata are closed and under osmotic stress. The minimization of cuticular (otherwise known as residual) transpiration also determines the fitness and survival capacity of the plant under the conditions of a water deficit. The deposition of cuticular wax on the leaf epidermis acts as a limiting barrier for residual transpiration. However, the causal relationship between the frequency of stomatal density and plant osmotic stress tolerance and the link between residual transpiration and cuticular wax is not always straightforward, with controversial reports available in the literature. In this review, we focus on these controversies and explore the potential physiological and molecular aspects of controlling stomatal and residual transpiration water loss for improving water use efficiency under osmotic stress conditions via a comparative analysis of the performance of domesticated crops and their wild relatives.
Collapse
Affiliation(s)
- Md. Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- School of Biological Science, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
12
|
Robertson SM, Sakariyahu SK, Bolaji A, Belmonte MF, Wilkins O. Growth-limiting drought stress induces time-of-day-dependent transcriptome and physiological responses in hybrid poplar. AOB PLANTS 2022; 14:plac040. [PMID: 36196395 PMCID: PMC9521483 DOI: 10.1093/aobpla/plac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Drought stress negatively impacts the health of long-lived trees. Understanding the genetic mechanisms that underpin response to drought stress is requisite for selecting or enhancing climate change resilience. We aimed to determine how hybrid poplars respond to prolonged and uniform exposure to drought; how responses to moderate and more severe growth-limiting drought stresses differed; and how drought responses change throughout the day. We established hybrid poplar trees (Populus × 'Okanese') from unrooted stem cutting with abundant soil moisture for 6 weeks. We then withheld water to establish well-watered, moderate and severe growth-limiting drought conditions. These conditions were maintained for 3 weeks during which growth was monitored. We then measured photosynthetic rates and transcriptomes of leaves that had developed during the drought treatments at two times of day. The moderate and severe drought treatments elicited distinct changes in growth and development, photosynthetic rates and global transcriptome profiles. Notably, the time of day of sampling produced the strongest effect in the transcriptome data. The moderate drought treatment elicited global transcriptome changes that were intermediate to the severe and well-watered treatments in the early evening but did not elicit a strong drought response in the morning. Stable drought conditions that are sufficient to limit plant growth elicit distinct transcriptional profiles depending on the degree of water limitation and on the time of day at which they are measured. There appears to be a limited number of genes and functional gene categories that are responsive to all of the tested drought conditions in this study emphasizing the complex nature of drought regulation in long-lived trees.
Collapse
Affiliation(s)
- Sean M Robertson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Ayooluwa Bolaji
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
13
|
Acevedo-Siaca LG, Głowacka K, Driever SM, Salesse-Smith CE, Lugassi N, Granot D, Long SP, Kromdijk J. Guard-cell-targeted overexpression of Arabidopsis Hexokinase 1 can improve water use efficiency in field-grown tobacco plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5745-5757. [PMID: 35595294 PMCID: PMC9467653 DOI: 10.1093/jxb/erac218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Water deficit currently acts as one of the largest limiting factors for agricultural productivity worldwide. Additionally, limitation by water scarcity is projected to continue in the future with the further onset of effects of global climate change. As a result, it is critical to develop or breed for crops that have increased water use efficiency and that are more capable of coping with water scarce conditions. However, increased intrinsic water use efficiency (iWUE) typically brings a trade-off with CO2 assimilation as all gas exchange is mediated by stomata, through which CO2 enters the leaf while water vapor exits. Previously, promising results were shown using guard-cell-targeted overexpression of hexokinase to increase iWUE without incurring a penalty in photosynthetic rates or biomass production. Here, two homozygous transgenic tobacco (Nicotiana tabacum) lines expressing Arabidopsis Hexokinase 1 (AtHXK1) constitutively (35SHXK2 and 35SHXK5) and a line that had guard-cell-targeted overexpression of AtHXK1 (GCHXK2) were evaluated relative to wild type for traits related to photosynthesis and yield. In this study, iWUE was significantly higher in GCHXK2 compared with wild type without negatively impacting CO2 assimilation, although results were dependent upon leaf age and proximity of precipitation event to gas exchange measurement.
Collapse
Affiliation(s)
- Liana G Acevedo-Siaca
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Katarzyna Głowacka
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Steven M Driever
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Coralie E Salesse-Smith
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nitsan Lugassi
- Institute of Plant Sciences, Agricultural Research Organisation, The Volcani Center, Bet Dagan, Israel
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organisation, The Volcani Center, Bet Dagan, Israel
| | - Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Lancaster Environment Centre, University of Lancaster, Lancaster, UK
| | - Johannes Kromdijk
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Zhao YY, Lyu MA, Miao F, Chen G, Zhu XG. The evolution of stomatal traits along the trajectory toward C4 photosynthesis. PLANT PHYSIOLOGY 2022; 190:441-458. [PMID: 35652758 PMCID: PMC9434244 DOI: 10.1093/plphys/kiac252] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/21/2022] [Indexed: 05/03/2023]
Abstract
C4 photosynthesis optimizes plant carbon and water relations, allowing high photosynthetic rates with low stomatal conductance. Stomata have long been considered a part of the C4 syndrome. However, it remains unclear how stomatal traits evolved along the path from C3 to C4. Here, we examined stomata in the Flaveria genus, a model used for C4 evolutionary study. Comparative, transgenic, and semi-in vitro experiments were performed to study the molecular basis that underlies the changes of stomatal traits in C4 evolution. The evolution from C3 to C4 species is accompanied by a gradual rather than an abrupt change in stomatal traits. The initial change appears near the Type I intermediate stage. Co-evolution of the photosynthetic pathway and stomatal traits is supported. On the road to C4, stomata tend to be fewer in number but larger in size and stomatal density dominates changes in anatomical maximum stomatal conductance (gsmax). Reduction of FSTOMAGEN expression underlies decreased gsmax in Flaveria and likely occurs in other C4 lineages. Decreased gsmax contributes to the increase in intrinsic water-use efficiency in C4 evolution. This work highlights the stomatal traits in the current C4 evolutionary model. Our study provides insights into the pattern, mechanism, and role of stomatal evolution along the road toward C4.
Collapse
Affiliation(s)
- Yong-Yao Zhao
- State Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingju Amy Lyu
- State Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - FenFen Miao
- State Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Genyun Chen
- State Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
15
|
Yang F, Han Y, Zhu QH, Zhang X, Xue F, Li Y, Luo H, Qin J, Sun J, Liu F. Impact of water deficiency on leaf cuticle lipids and gene expression networks in cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2022; 22:404. [PMID: 35978290 PMCID: PMC9382817 DOI: 10.1186/s12870-022-03788-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Water deficit (WD) has serious effect on the productivity of crops. Formation of cuticular layer with increased content of wax and cutin on leaf surfaces is closely related to drought tolerance. Identification of drought tolerance associated wax components and cutin monomers and the genes responsible for their biosynthesis is essential for understanding the physiological and genetic mechanisms underlying drought tolerance and improving crop drought resistance. RESULT In this study, we conducted comparative phenotypic and transcriptomic analyses of two Gossypium hirsutum varieties that are tolerant (XL22) or sensitive (XL17) to drought stress. XL17 consumed more water than XL22, particularly under the WD conditions. WD significantly induced accumulation of most major wax components (C29 and C31 alkanes) and cutin monomers (palmitic acid and stearic acid) in leaves of both XL22 and XL17, although accumulation of the major cutin monomers, i.e., polyunsaturated linolenic acid (C18:3n-3) and linoleic acid (C18:2n-6), were significantly repressed by WD in both XL22 and XL17. According to the results of transcriptome analysis, although many genes and their related pathways were commonly induced or repressed by WD in both XL22 and XL17, WD-induced differentially expressed genes specific to XL22 or XL17 were also evident. Among the genes that were commonly induced by WD were the GhCER1 genes involved in biosynthesis of alkanes, consistent with the observation of enhanced accumulation of alkanes in cotton leaves under the WD conditions. Interestingly, under the WD conditions, several GhCYP86 genes, which encode enzymes catalyzing the omega-hydroxylation of fatty acids and were identified to be the hub genes of one of the co-expression gene modules, showed a different expression pattern between XL22 and XL17 that was in agreement with the WD-induced changes of the content of hydroxyacids or fatty alcohols in these two varieties. CONCLUSION The results contribute to our comprehending the physiological and genetic mechanisms underlying drought tolerance and provide possible solutions for the difference of drought resistance of different cotton varieties.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yongchao Han
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australia
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yanjun Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Honghai Luo
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Jianghong Qin
- Shihezi Academy of Agricultural Sciences, Shihezi, 832000, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
16
|
Pitaloka MK, Caine RS, Hepworth C, Harrison EL, Sloan J, Chutteang C, Phunthong C, Nongngok R, Toojinda T, Ruengphayak S, Arikit S, Gray JE, Vanavichit A. Induced Genetic Variations in Stomatal Density and Size of Rice Strongly Affects Water Use Efficiency and Responses to Drought Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:801706. [PMID: 35693177 PMCID: PMC9174926 DOI: 10.3389/fpls.2022.801706] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/28/2022] [Indexed: 05/31/2023]
Abstract
Rice (Oryza sativa L.) is an important food crop relied upon by billions of people worldwide. However, with increasing pressure from climate change and rapid population growth, cultivation is very water-intensive. Therefore, it is critical to produce rice that is high-yielding and genetically more water-use efficient. Here, using the stabilized fast-neutron mutagenized population of Jao Hom Nin (JHN) - a popular purple rice cultivar - we microscopically examined hundreds of flag leaves to identify four stomatal model mutants with either high density (HD) or low density (LD) stomata, and small-sized (SS) or large-sized (LS) stomata. With similar genetic background and uniformity, the stomatal model mutants were used to understand the role of stomatal variants on physiological responses to abiotic stress. Our results show that SS and HD respond better to increasing CO2 concentration and HD has higher stomatal conductance (gs) compared to the other stomatal model mutants, although the effects on gas exchange or overall plant performance were small under greenhouse conditions. In addition, the results of our drought experiments suggest that LD and SS can better adapt to restricted water conditions, and LD showed higher water use efficiency (WUE) and biomass/plant than other stomatal model mutants under long-term restricted water treatment. Finally, our study suggests that reducing stomata density and size may play a promising role for further work on developing a climate-ready rice variety to adapt to drought and heat stress. We propose that low stomata density and small size have high potential as genetic donors for improving WUE in climate-ready rice.
Collapse
Affiliation(s)
- Mutiara K. Pitaloka
- Faculty of Agriculture Kamphangsaen, Kasetsart University, Nakhon Pathom, Thailand
| | - Robert S. Caine
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Christopher Hepworth
- Department of Agronomy, Faculty of Agriculture Kamphangsaen, Kasetsart University, Nakhon Pathom, Thailand
| | - Emily L. Harrison
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Jennifer Sloan
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Cattleya Chutteang
- Department of Agronomy, Faculty of Agriculture Kamphangsaen, Kasetsart University, Nakhon Pathom, Thailand
| | | | - Rangsan Nongngok
- Rice Science Center, Kasetsart University, Nakhon Pathom, Thailand
| | - Theerayut Toojinda
- National Center of Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Thailand
| | | | - Siwaret Arikit
- Department of Agronomy, Faculty of Agriculture Kamphangsaen, Kasetsart University, Nakhon Pathom, Thailand
- Rice Science Center, Kasetsart University, Nakhon Pathom, Thailand
| | - Julie E. Gray
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Apichart Vanavichit
- Department of Agronomy, Faculty of Agriculture Kamphangsaen, Kasetsart University, Nakhon Pathom, Thailand
- Rice Science Center, Kasetsart University, Nakhon Pathom, Thailand
- National Center of Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Thailand
| |
Collapse
|
17
|
Swift J, Greenham K, Ecker JR, Coruzzi GM, McClung CR. The biology of time: dynamic responses of cell types to developmental, circadian and environmental cues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:764-778. [PMID: 34797944 PMCID: PMC9215356 DOI: 10.1111/tpj.15589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 05/26/2023]
Abstract
As sessile organisms, plants are finely tuned to respond dynamically to developmental, circadian and environmental cues. Genome-wide studies investigating these types of cues have uncovered the intrinsically different ways they can impact gene expression over time. Recent advances in single-cell sequencing and time-based bioinformatic algorithms are now beginning to reveal the dynamics of these time-based responses within individual cells and plant tissues. Here, we review what these techniques have revealed about the spatiotemporal nature of gene regulation, paying particular attention to the three distinct ways in which plant tissues are time sensitive. (i) First, we discuss how studying plant cell identity can reveal developmental trajectories hidden in pseudotime. (ii) Next, we present evidence that indicates that plant cell types keep their own local time through tissue-specific regulation of the circadian clock. (iii) Finally, we review what determines the speed of environmental signaling responses, and how they can be contingent on developmental and circadian time. By these means, this review sheds light on how these different scales of time-based responses can act with tissue and cell-type specificity to elicit changes in whole plant systems.
Collapse
Affiliation(s)
- Joseph Swift
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kathleen Greenham
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN 55108, USA
| | - Joseph R. Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Gloria M. Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, NY, USA
| | | |
Collapse
|
18
|
Jia MZ, Liu LY, Geng C, Jiang J. Activation of 1-Aminocyclopropane-1-Carboxylic Acid Synthases Sets Stomatal Density and Clustered Ratio on Leaf Epidermis of Arabidopsis in Response to Drought. FRONTIERS IN PLANT SCIENCE 2021; 12:758785. [PMID: 34938306 PMCID: PMC8685546 DOI: 10.3389/fpls.2021.758785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
The adjustment of stomatal density and clustered ratio on the epidermis is the important strategy for plants to respond to drought, because the stoma-based water loss is directly related to plant growth and survival under drought conditions. But the relevant adjustment mechanism still needs to be explored. 1-Aminocyclopropane-1-carboxylate (ACC) is disclosed to promote stomatal development, while in vivo ACC levels depend on activation of ACC synthase (ACS) family members. Based on the findings of ACS expression involving in drought response and several ACS activity inhibitors reducing stomatal density and cluster in drought response, here we examined how ACS activation is involved in the establishment of stomatal density and cluster on the epidermis under drought conditions. Preliminary data indicated that activation of ACS2 and/or ACS6 (ACS2/6) increased stomatal density and clustered ratio on the Arabidopsis leaf epidermis by accumulating ACC under moderate drought, and raised the survival risk of seedlings under escalated drought. Further exploration indicated that, in Arabidopsis seedlings stressed by drought, the transcription factor SPEECHLESS (SPCH), the initiator of stomatal development, activates ACS2/6 expression and ACC production; and that ACC accumulation induces Ca2+ deficiency in stomatal lineage; this deficiency inactivates a subtilisin-like protease STOMATAL DENSITY AND DISTRIBUTION 1 (SDD1) by stabilizing the inhibition of the transcription factor GT-2 Like 1 (GTL1) on SDD1 expression, resulting in an increases of stomatal density and cluster ratio on the leaf epidermis. This work provides a novel evidence that ACS2/6 activation plays a key role in the establishment of stomatal density and cluster on the leaf epidermis of Arabidopsis in response to drought.
Collapse
|
19
|
Ferguson JN, Fernandes SB, Monier B, Miller ND, Allen D, Dmitrieva A, Schmuker P, Lozano R, Valluru R, Buckler ES, Gore MA, Brown PJ, Spalding EP, Leakey ADB. Machine learning-enabled phenotyping for GWAS and TWAS of WUE traits in 869 field-grown sorghum accessions. PLANT PHYSIOLOGY 2021; 187:1481-1500. [PMID: 34618065 PMCID: PMC9040483 DOI: 10.1093/plphys/kiab346] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/29/2021] [Indexed: 05/04/2023]
Abstract
Sorghum (Sorghum bicolor) is a model C4 crop made experimentally tractable by extensive genomic and genetic resources. Biomass sorghum is studied as a feedstock for biofuel and forage. Mechanistic modeling suggests that reducing stomatal conductance (gs) could improve sorghum intrinsic water use efficiency (iWUE) and biomass production. Phenotyping to discover genotype-to-phenotype associations remains a bottleneck in understanding the mechanistic basis for natural variation in gs and iWUE. This study addressed multiple methodological limitations. Optical tomography and a machine learning tool were combined to measure stomatal density (SD). This was combined with rapid measurements of leaf photosynthetic gas exchange and specific leaf area (SLA). These traits were the subject of genome-wide association study and transcriptome-wide association study across 869 field-grown biomass sorghum accessions. The ratio of intracellular to ambient CO2 was genetically correlated with SD, SLA, gs, and biomass production. Plasticity in SD and SLA was interrelated with each other and with productivity across wet and dry growing seasons. Moderate-to-high heritability of traits studied across the large mapping population validated associations between DNA sequence variation or RNA transcript abundance and trait variation. A total of 394 unique genes underpinning variation in WUE-related traits are described with higher confidence because they were identified in multiple independent tests. This list was enriched in genes whose Arabidopsis (Arabidopsis thaliana) putative orthologs have functions related to stomatal or leaf development and leaf gas exchange, as well as genes with nonsynonymous/missense variants. These advances in methodology and knowledge will facilitate improving C4 crop WUE.
Collapse
Affiliation(s)
- John N Ferguson
- Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Samuel B Fernandes
- Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Brandon Monier
- Institute for Genomic Diversity, Cornell University, Ithaca, New
York 14853, USA
| | - Nathan D Miller
- Department of Botany, University of Wisconsin, Madison, Wisconsin
53706, USA
| | - Dylan Allen
- Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Anna Dmitrieva
- Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Peter Schmuker
- Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Roberto Lozano
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, New York 14853, USA
| | - Ravi Valluru
- Institute for Genomic Diversity, Cornell University, Ithaca, New
York 14853, USA
- Present address: Lincoln Institute for Agri-Food Technology,
University of Lincoln, Lincoln LN2 2LG, UK
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, New
York 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, New York 14853, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, New York 14853, USA
| | - Patrick J Brown
- Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61901, USA
- Present address: Section of Agricultural Plant Biology,
Department of Plant Sciences, University of California Davis, California 95616,
USA
| | - Edgar P Spalding
- Department of Botany, University of Wisconsin, Madison, Wisconsin
53706, USA
| | - Andrew D B Leakey
- Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61901, USA
- Department of Crop Sciences, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61901, USA
- Department of Plant Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61901, USA
- Author for communication: ,
Present address: Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA,
UK
| |
Collapse
|
20
|
Ferguson JN, Fernandes SB, Monier B, Miller ND, Allen D, Dmitrieva A, Schmuker P, Lozano R, Valluru R, Buckler ES, Gore MA, Brown PJ, Spalding EP, Leakey ADB. Machine learning-enabled phenotyping for GWAS and TWAS of WUE traits in 869 field-grown sorghum accessions. PLANT PHYSIOLOGY 2021; 187:1481-1500. [PMID: 34618065 DOI: 10.1093/plphys/kiab34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/29/2021] [Indexed: 05/27/2023]
Abstract
Sorghum (Sorghum bicolor) is a model C4 crop made experimentally tractable by extensive genomic and genetic resources. Biomass sorghum is studied as a feedstock for biofuel and forage. Mechanistic modeling suggests that reducing stomatal conductance (gs) could improve sorghum intrinsic water use efficiency (iWUE) and biomass production. Phenotyping to discover genotype-to-phenotype associations remains a bottleneck in understanding the mechanistic basis for natural variation in gs and iWUE. This study addressed multiple methodological limitations. Optical tomography and a machine learning tool were combined to measure stomatal density (SD). This was combined with rapid measurements of leaf photosynthetic gas exchange and specific leaf area (SLA). These traits were the subject of genome-wide association study and transcriptome-wide association study across 869 field-grown biomass sorghum accessions. The ratio of intracellular to ambient CO2 was genetically correlated with SD, SLA, gs, and biomass production. Plasticity in SD and SLA was interrelated with each other and with productivity across wet and dry growing seasons. Moderate-to-high heritability of traits studied across the large mapping population validated associations between DNA sequence variation or RNA transcript abundance and trait variation. A total of 394 unique genes underpinning variation in WUE-related traits are described with higher confidence because they were identified in multiple independent tests. This list was enriched in genes whose Arabidopsis (Arabidopsis thaliana) putative orthologs have functions related to stomatal or leaf development and leaf gas exchange, as well as genes with nonsynonymous/missense variants. These advances in methodology and knowledge will facilitate improving C4 crop WUE.
Collapse
Affiliation(s)
- John N Ferguson
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Samuel B Fernandes
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Brandon Monier
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
| | - Nathan D Miller
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Dylan Allen
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Anna Dmitrieva
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Peter Schmuker
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Roberto Lozano
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Ravi Valluru
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Patrick J Brown
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Edgar P Spalding
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Andrew D B Leakey
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61901, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61901, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61901, USA
| |
Collapse
|
21
|
Sow MD, Le Gac AL, Fichot R, Lanciano S, Delaunay A, Le Jan I, Lesage-Descauses MC, Citerne S, Caius J, Brunaud V, Soubigou-Taconnat L, Cochard H, Segura V, Chaparro C, Grunau C, Daviaud C, Tost J, Brignolas F, Strauss SH, Mirouze M, Maury S. RNAi suppression of DNA methylation affects the drought stress response and genome integrity in transgenic poplar. THE NEW PHYTOLOGIST 2021; 232:80-97. [PMID: 34128549 DOI: 10.1111/nph.17555] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/08/2021] [Indexed: 05/27/2023]
Abstract
Trees are long-lived organisms that continuously adapt to their environments, a process in which epigenetic mechanisms are likely to play a key role. Via downregulation of the chromatin remodeler DECREASED IN DNA METHYLATION 1 (DDM1) in poplar (Populus tremula × Populus alba) RNAi lines, we examined how DNA methylation coordinates genomic and physiological responses to moderate water deficit. We compared the growth and drought response of two RNAi-ddm1 lines to wild-type (WT) trees under well-watered and water deficit/rewatering conditions, and analyzed their methylomes, transcriptomes, mobilomes and phytohormone contents in the shoot apical meristem. The RNAi-ddm1 lines were more tolerant to drought-induced cavitation but did not differ in height or stem diameter growth. About 5000 differentially methylated regions were consistently detected in both RNAi-ddm1 lines, colocalizing with 910 genes and 89 active transposable elements. Under water deficit conditions, 136 differentially expressed genes were found, including many involved in phytohormone pathways; changes in phytohormone concentrations were also detected. Finally, the combination of hypomethylation and drought led to the mobility of two transposable elements. Our findings suggest major roles for DNA methylation in regulation of genes involved in hormone-related stress responses, and the maintenance of genome integrity through repression of transposable elements.
Collapse
Affiliation(s)
- Mamadou D Sow
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Anne-Laure Le Gac
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Régis Fichot
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Sophie Lanciano
- IRD, UMR 232 DIADE, Université de Montpellier, Montpellier, 34090, France
- Laboratory of Plant Genome and Development, Université de Perpignan, Perpignan, 66860, France
| | - Alain Delaunay
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Isabelle Le Jan
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | | | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Jose Caius
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Orsay, 91405, France
| | - Véronique Brunaud
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Orsay, 91405, France
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Orsay, 91405, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, 63000, France
| | - Vincent Segura
- BioForA, INRAE, ONF, UMR 0588, Orléans, 45075, France
- UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Montpellier SupAgro, UMR 1334, Montpellier, F-34398, France
| | | | - Christoph Grunau
- UMR 5244, IHPE, Université de Perpignan, Perpignan, 66100, France
| | - Christian Daviaud
- Laboratory for Epigenetics and Environment Centre National de Recherche en Génomique Humaine, CEA- Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, 91057, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment Centre National de Recherche en Génomique Humaine, CEA- Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, 91057, France
| | - Franck Brignolas
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5752, USA
| | - Marie Mirouze
- IRD, UMR 232 DIADE, Université de Montpellier, Montpellier, 34090, France
- Laboratory of Plant Genome and Development, Université de Perpignan, Perpignan, 66860, France
| | - Stéphane Maury
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| |
Collapse
|
22
|
Bayliss SLJ, Mueller LO, Ware IM, Schweitzer JA, Bailey JK. Plant genetic variation drives geographic differences in atmosphere-plant-ecosystem feedbacks. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2020; 1:166-180. [PMID: 37284209 PMCID: PMC10168077 DOI: 10.1002/pei3.10031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/20/2020] [Accepted: 08/25/2020] [Indexed: 06/08/2023]
Abstract
The objective of this study was to understand how genetic variation in a riparian species, Populus angustifolia, affects mass and energy exchange between the land and atmosphere across ~1,700 km of latitude of the western United States. To examine the potential for large-scale land-atmosphere feedbacks in hydrologic processes driven by geographic differences in plant population traits, we use a physical hydrology model, paired field, and greenhouse observations of plant traits, and stable isotope compositions of soil, stem, and leaf water of P. angustifolia populations. Populations show patterns of local adaptation in traits related to landscape hydrologic functioning-a 47% difference in stomatal density in greenhouse conditions and a 74% difference in stomatal ratio in the field. Trait and stable isotope differences reveal that populations use water differently which is related to historical landscape hydrologic functioning (evapotranspiration and streamflow). Overall, results suggest that populations from landscapes with different hydrologic histories will differ in their ability to maintain favorable water balance with changing atmospheric demands for water, with ecosystem consequences.
Collapse
Affiliation(s)
| | - Liam O. Mueller
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTNUSA
| | - Ian M. Ware
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTNUSA
- USDA Forest ServicePacific Southwest Research StationInstitute of Pacific Islands ForestryHiloHIUSA
| | | | - Joseph K. Bailey
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
23
|
Iqbal A, Dong Q, Wang X, Gui H, Zhang H, Zhang X, Song M. High Nitrogen Enhance Drought Tolerance in Cotton through Antioxidant Enzymatic Activities, Nitrogen Metabolism and Osmotic Adjustment. PLANTS (BASEL, SWITZERLAND) 2020; 9:E178. [PMID: 32024197 PMCID: PMC7076502 DOI: 10.3390/plants9020178] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/19/2022]
Abstract
Drought is one of the most important abiotic stresses and hampers many plant physiological processes under suboptimal nitrogen (N) concentration. Seedling tolerance to drought stress is very important for optimum growth and development, however, the enhancement of plant stress tolerance through N application in cotton is not fully understood. Therefore, this study investigates the role of high N concentration in enhancing drought stress tolerance in cotton. A hydroponic experiment supplying low (0.25 mM) and high (5 mM) N concentrations, followed by 150 g L-1 polyethylene glycol (PEG)-induced stress was conducted in a growth chamber. PEG-induced drought stress inhibited seedling growth, led to oxidative stress from excessive malondialdehyde (MDA) generation, and reduced N metabolism. High N concentrations alleviated oxidative damage and stomatal limitation by increasing antioxidant enzymatic activities, leaf relative water content, and photosynthesis in cotton seedlings under drought stress. The results revealed that the ameliorative effects of high N concentration may be ascribed to the enhancement of N metabolizing enzymes and an increase in the amounts of osmoprotectants like free amino acids and total soluble protein. The present data suggest that relatively high N concentrations may contribute to drought stress tolerance in cotton through N metabolism, antioxidant capacity, and osmotic adjustment.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiling Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (A.I.); (Q.D.); (X.W.); (H.G.); (H.Z.)
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (A.I.); (Q.D.); (X.W.); (H.G.); (H.Z.)
| |
Collapse
|
24
|
Scharwies JD, Dinneny JR. Water transport, perception, and response in plants. JOURNAL OF PLANT RESEARCH 2019; 132:311-324. [PMID: 30747327 DOI: 10.1007/s10265-019-01089-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/16/2019] [Indexed: 05/09/2023]
Abstract
Sufficient water availability in the environment is critical for plant survival. Perception of water by plants is necessary to balance water uptake and water loss and to control plant growth. Plant physiology and soil science research have contributed greatly to our understanding of how water moves through soil, is taken up by roots, and moves to leaves where it is lost to the atmosphere by transpiration. Water uptake from the soil is affected by soil texture itself and soil water content. Hydraulic resistances for water flow through soil can be a major limitation for plant water uptake. Changes in water supply and water loss affect water potential gradients inside plants. Likewise, growth creates water potential gradients. It is known that plants respond to changes in these gradients. Water flow and loss are controlled through stomata and regulation of hydraulic conductance via aquaporins. When water availability declines, water loss is limited through stomatal closure and by adjusting hydraulic conductance to maintain cell turgor. Plants also adapt to changes in water supply by growing their roots towards water and through refinements to their root system architecture. Mechanosensitive ion channels, aquaporins, proteins that sense the cell wall and cell membrane environment, and proteins that change conformation in response to osmotic or turgor changes could serve as putative sensors. Future research is required to better understand processes in the rhizosphere during soil drying and how plants respond to spatial differences in water availability. It remains to be investigated how changes in water availability and water loss affect different tissues and cells in plants and how these biophysical signals are translated into chemical signals that feed into signaling pathways like abscisic acid response or organ development.
Collapse
Affiliation(s)
- Johannes Daniel Scharwies
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
| | - José R Dinneny
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA.
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA.
| |
Collapse
|
25
|
Polle A, Chen SL, Eckert C, Harfouche A. Engineering Drought Resistance in Forest Trees. FRONTIERS IN PLANT SCIENCE 2019; 9:1875. [PMID: 30671067 DOI: 10.3389/fpls.2018.0187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/04/2018] [Indexed: 05/27/2023]
Abstract
Climatic stresses limit plant growth and productivity. In the past decade, tree improvement programs were mainly focused on yield but it is obvious that enhanced stress resistance is also required. In this review we highlight important drought avoidance and tolerance mechanisms in forest trees. Genomes of economically important trees species with divergent resistance mechanisms can now be exploited to uncover the mechanistic basis of long-term drought adaptation at the whole plant level. Molecular tree physiology indicates that osmotic adjustment, antioxidative defense and increased water use efficiency are important targets for enhanced drought tolerance at the cellular and tissue level. Recent biotechnological approaches focused on overexpression of genes involved in stress sensing and signaling, such as the abscisic acid core pathway, and down-stream transcription factors. By this strategy, a suite of defense systems was recruited, generally enhancing drought and salt stress tolerance under laboratory conditions. However, field studies are still scarce. Under field conditions trees are exposed to combinations of stresses that vary in duration and magnitude. Variable stresses may overrule the positive effect achieved by engineering an individual defense pathway. To assess the usability of distinct modifications, large-scale experimental field studies in different environments are necessary. To optimize the balance between growth and defense, the use of stress-inducible promoters may be useful. Future improvement programs for drought resistance will benefit from a better understanding of the intricate networks that ameliorate molecular and ecological traits of forest trees.
Collapse
Affiliation(s)
- Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Goettingen, Göttingen, Germany
| | - Shao Liang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Christian Eckert
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Antoine Harfouche
- Department for Innovation in Biological, Agrofood and Forest systems, University of Tuscia, Viterbo, Italy
| |
Collapse
|
26
|
Polle A, Chen SL, Eckert C, Harfouche A. Engineering Drought Resistance in Forest Trees. FRONTIERS IN PLANT SCIENCE 2019; 9:1875. [PMID: 30671067 PMCID: PMC6331418 DOI: 10.3389/fpls.2018.01875] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/04/2018] [Indexed: 05/03/2023]
Abstract
Climatic stresses limit plant growth and productivity. In the past decade, tree improvement programs were mainly focused on yield but it is obvious that enhanced stress resistance is also required. In this review we highlight important drought avoidance and tolerance mechanisms in forest trees. Genomes of economically important trees species with divergent resistance mechanisms can now be exploited to uncover the mechanistic basis of long-term drought adaptation at the whole plant level. Molecular tree physiology indicates that osmotic adjustment, antioxidative defense and increased water use efficiency are important targets for enhanced drought tolerance at the cellular and tissue level. Recent biotechnological approaches focused on overexpression of genes involved in stress sensing and signaling, such as the abscisic acid core pathway, and down-stream transcription factors. By this strategy, a suite of defense systems was recruited, generally enhancing drought and salt stress tolerance under laboratory conditions. However, field studies are still scarce. Under field conditions trees are exposed to combinations of stresses that vary in duration and magnitude. Variable stresses may overrule the positive effect achieved by engineering an individual defense pathway. To assess the usability of distinct modifications, large-scale experimental field studies in different environments are necessary. To optimize the balance between growth and defense, the use of stress-inducible promoters may be useful. Future improvement programs for drought resistance will benefit from a better understanding of the intricate networks that ameliorate molecular and ecological traits of forest trees.
Collapse
Affiliation(s)
- Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Goettingen, Göttingen, Germany
| | - Shao Liang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Christian Eckert
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Antoine Harfouche
- Department for Innovation in Biological, Agrofood and Forest systems, University of Tuscia, Viterbo, Italy
| |
Collapse
|
27
|
A-L LG, C LP, A D, S M. Developmental, genetic and environmental variations of global DNA methylation in the first leaves emerging from the shoot apical meristem in poplar trees. PLANT SIGNALING & BEHAVIOR 2019; 14:1596717. [PMID: 30915897 PMCID: PMC6546136 DOI: 10.1080/15592324.2019.1596717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In the context of climate changes, clarifying the causes underlying tree phenotypic plasticity and adaptation is crucial. Studies suggest a role of epigenetic mechanisms in response to external stimuli, raising the question whether such processes can promote acclimation of trees exposed to adverse climate conditions. Recently, we revealed an environmental epigenetic footprint in the shoot apical meristem (SAM) which could partially be transmitted mitotically, for several months, up until the winter-dormant bud in field conditions. Here, we extended our previous analysis to the leaves of the same P. deltoides×P. nigra clones. We aimed at estimating the range of developmentally, genetically, and environmentally induced variations on DNA methylation. We showed that only the first leaves emerging from the SAM displayed variations of DNA methylation under changing water conditions. We also found that these variations are genotype- and pedoclimatic site-dependent. Altogether, our data raised questions and perspectives on the direct acquisition, the maintenance of environmentally induced DNA methylation changes, and their mitotic transmission from the SAM to the first emerging leaves.
Collapse
Affiliation(s)
- Le Gac A-L
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC 1328 INRA, Université d’Orléans, Orléans, France
- Institute for Biology III, University of Freiburg, Freiburg, Germany
- CONTACT Maury S Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC 1328 INRA, Université d’Orléans, Orléans 45067, France
| | - Lafon-Placette C
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC 1328 INRA, Université d’Orléans, Orléans, France
- Department of Botany, Charles University, Prague, Czech Republic
| | - Delaunay A
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC 1328 INRA, Université d’Orléans, Orléans, France
| | - Maury S
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC 1328 INRA, Université d’Orléans, Orléans, France
| |
Collapse
|
28
|
Galdon‐Armero J, Fullana‐Pericas M, Mulet PA, Conesa MA, Martin C, Galmes J. The ratio of trichomes to stomata is associated with water use efficiency in Solanum lycopersicum (tomato). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:607-619. [PMID: 30066411 PMCID: PMC6321981 DOI: 10.1111/tpj.14055] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 05/20/2023]
Abstract
Trichomes are specialised structures that originate from the aerial epidermis of plants, and play key roles in the interaction between the plant and the environment. In this study we investigated the trichome phenotypes of four lines selected from the Solanum lycopersicum × Solanum pennellii introgression line (IL) population for differences in trichome density, and their impact on plant performance under water-deficit conditions. We performed comparative analyses at morphological and photosynthetic levels of plants grown under well-watered (WW) and also under water-deficit (WD) conditions in the field. Under WD conditions, we observed higher trichome density in ILs 11-3 and 4-1, and lower stomatal size in IL 4-1 compared with plants grown under WW conditions. The intrinsic water use efficiency (WUEi ) was higher under WD conditions in IL 11-3, and the plant-level water use efficiency (WUEb ) was also higher in IL 11-3 and in M82 for WD plants. The ratio of trichomes to stomata (T/S) was positively correlated with WUEi and WUEb , indicating an important role for both trichomes and stomata in drought tolerance in tomato, and offering a promising way to select for improved water use efficiency of major crops.
Collapse
Affiliation(s)
| | - Mateu Fullana‐Pericas
- Research Group on Plant Biology under Mediterranean Conditions – INAGEAUniversitat de les Illes BalearsCarretera de Valldemossa km 7.507122PalmaSpain
| | - Pere A. Mulet
- Research Group on Plant Biology under Mediterranean Conditions – INAGEAUniversitat de les Illes BalearsCarretera de Valldemossa km 7.507122PalmaSpain
| | - Miquel A. Conesa
- Research Group on Plant Biology under Mediterranean Conditions – INAGEAUniversitat de les Illes BalearsCarretera de Valldemossa km 7.507122PalmaSpain
| | - Cathie Martin
- Department of Metabolic BiologyJohn Innes CentreColney LaneNorwichNR4 7UHUK
| | - Jeroni Galmes
- Research Group on Plant Biology under Mediterranean Conditions – INAGEAUniversitat de les Illes BalearsCarretera de Valldemossa km 7.507122PalmaSpain
| |
Collapse
|
29
|
Badhan S, Kole P, Ball A, Mantri N. RNA sequencing of leaf tissues from two contrasting chickpea genotypes reveals mechanisms for drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:295-304. [PMID: 29913357 DOI: 10.1016/j.plaphy.2018.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 05/02/2023]
Abstract
Chickpea (Cicer arietinum L.) is the second most important winter crop which is consumed globally due to its high nutritional value. Chickpea as one of the leguminous crop is important in crop rotation with cereal crops like wheat and barley. The main constraints for chickpea production are abiotic stresses such as drought, salinity, and heat. Among these, drought is a major cause of the decline in chickpea production in worldwide. Studies conducted so far have provided a limited insight into different genetic pathways associated with drought tolerance/response. In this study, the leaf tissue from shoots apical meristem stage of drought tolerant (ICC8261) and drought sensitive (ICC283) genotypes were analysed using RNA sequencing to identify genes/pathways associated with drought tolerance/sensitivity in both genotypes. It was observed that genes related to ethylene response, MYB-related protein, xyloglucan endotransglycosylase, alkane hydroxylase MAH-like, BON-1 associated, peroxidase 3, cysteine-rich and transmembrane domain, vignain and mitochondrial uncoupling were specifically up-regulated in the tolerant genotype whereas, same genes were down-regulated in sensitive genotype. The crosstalk between the different hormones and transcriptional factors involved in drought tolerance and sensitivity in both genotypes make them great candidates for future research.
Collapse
Affiliation(s)
- Sapna Badhan
- The Pangenomics Group, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Pravas Kole
- The Pangenomics Group, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Andrew Ball
- The Pangenomics Group, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Nitin Mantri
- The Pangenomics Group, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
30
|
Garavillon-Tournayre M, Gousset-Dupont A, Gautier F, Benoit P, Conchon P, Souchal R, Lopez D, Petel G, Venisse JS, Bastien C, Label P, Fumanal B. Integrated drought responses of black poplar: how important is phenotypic plasticity? PHYSIOLOGIA PLANTARUM 2018; 163:30-44. [PMID: 28940533 DOI: 10.1111/ppl.12646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/24/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Climate change is expected to increase drought frequency and intensity which will threaten plant growth and survival. In such fluctuating environments, perennial plants respond with hydraulic and biomass adjustments, resulting in either tolerant or avoidant strategies. Plants' response to stress relies on their phenotypic plasticity. The goal of this study was to explore physiology of young Populus nigra in the context of a time-limited and progressive water deficit in regard to their growth and stress response strategies. Fourteen French 1-year-old black poplar genotypes, geographically contrasted, were subjected to withholding water during 8 days until severe water stress. Water fluxes (i.e. leaf water potentials and stomatal conductance) were analyzed together with growth (i.e. radial and longitudinal branch growth, leaf senescence and leaf production). Phenotypic plasticity was calculated for each trait and response strategies to drought were deciphered for each genotype. Black poplar genotypes permanently were dealing with a continuum of adjusted water fluxes and growth between two extreme strategies, tolerance and avoidance. Branch growth, leaf number and leaf hydraulic potential traits had contrasted plasticities, allowing genotype characterization. The most tolerant genotype to water deficit, which maintained growth, had the lowest global phenotypic plasticity. Conversely, the most sensitive and avoidant genotype ceased growth until the season's end, had the highest plasticity level. All the remaining black poplar genotypes were close to avoidance with average levels of traits plasticity. These results underpinned the role of plasticity in black poplar response to drought and calls for its wider use into research on plants' responses to stress.
Collapse
Affiliation(s)
| | | | | | - Pierrick Benoit
- Université Clermont Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
| | - Pierre Conchon
- Université Clermont Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
| | - Romain Souchal
- Université Clermont Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
| | - David Lopez
- Université Clermont Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
| | - Gilles Petel
- Université Clermont Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
| | | | | | - Philippe Label
- Université Clermont Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
| | - Boris Fumanal
- Université Clermont Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
31
|
Hepworth C, Caine RS, Harrison EL, Sloan J, Gray JE. Stomatal development: focusing on the grasses. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:1-7. [PMID: 28826033 DOI: 10.1016/j.pbi.2017.07.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 05/02/2023]
Abstract
The development and patterning of stomata in the plant epidermis has emerged as an ideal system for studying fundamental plant developmental processes. Over the past twenty years most studies of stomata have used the model dicotyledonous plant Arabidopsis thaliana. However, cultivated monocotyledonous grass (or Gramineae) varieties provide the majority of human nutrition, and future research into grass stomata could be of critical importance for improving food security. Recent studies using Brachypodium distachyon, Hordeum vulgare (barley) and Oryza sativa (rice) have led to the identification of the core transcriptional regulators essential for stomatal initiation and progression in grasses, and begun to unravel the role of secretory signaling peptides in controlling stomatal developmental. This review revisits how stomatal developmental unfolds in grasses, and identifies key ontogenetic steps for which knowledge of the underpinning molecular mechanisms remains outstanding.
Collapse
Affiliation(s)
| | - Robert S Caine
- Department of Molecular Biology and Biotechnology, University of Sheffield, S10 2TN, UK
| | - Emily L Harrison
- Department of Molecular Biology and Biotechnology, University of Sheffield, S10 2TN, UK
| | - Jennifer Sloan
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, UK; Department of Molecular Biology and Biotechnology, University of Sheffield, S10 2TN, UK
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, S10 2TN, UK
| |
Collapse
|
32
|
Lafon-Placette C, Le Gac AL, Chauveau D, Segura V, Delaunay A, Lesage-Descauses MC, Hummel I, Cohen D, Jesson B, Le Thiec D, Bogeat-Triboulot MB, Brignolas F, Maury S. Changes in the epigenome and transcriptome of the poplar shoot apical meristem in response to water availability affect preferentially hormone pathways. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:537-551. [PMID: 29211860 DOI: 10.1093/jxb/erx409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/25/2017] [Indexed: 05/04/2023]
Abstract
The adaptive capacity of long-lived organisms such as trees to the predicted climate changes, including severe and successive drought episodes, will depend on the presence of genetic diversity and phenotypic plasticity. Here, the involvement of epigenetic mechanisms in phenotypic plasticity toward soil water availability was examined in Populus×euramericana. This work aimed at characterizing (i) the transcriptome plasticity, (ii) the genome-wide plasticity of DNA methylation, and (iii) the function of genes affected by a drought-rewatering cycle in the shoot apical meristem. Using microarray chips, differentially expressed genes (DEGs) and differentially methylated regions (DMRs) were identified for each water regime. The rewatering condition was associated with the highest variations of both gene expression and DNA methylation. Changes in methylation were observed particularly in the body of expressed genes and to a lesser extent in transposable elements. Together, DEGs and DMRs were significantly enriched in genes related to phytohormone metabolism or signaling pathways. Altogether, shoot apical meristem responses to changes in water availability involved coordinated variations in DNA methylation, as well as in gene expression, with a specific targeting of genes involved in hormone pathways, a factor that may enable phenotypic plasticity.
Collapse
Affiliation(s)
| | | | | | | | - Alain Delaunay
- LBLGC EA 1207, INRA, Université d'Orléans, USC 1328, France
| | | | - Irène Hummel
- EEF, INRA Grand-Est-Nancy, Université de Lorraine, UMR 1137, France
| | - David Cohen
- EEF, INRA Grand-Est-Nancy, Université de Lorraine, UMR 1137, France
| | | | - Didier Le Thiec
- EEF, INRA Grand-Est-Nancy, Université de Lorraine, UMR 1137, France
| | | | | | - Stéphane Maury
- LBLGC EA 1207, INRA, Université d'Orléans, USC 1328, France
| |
Collapse
|
33
|
Morales-Navarro S, Pérez-Díaz R, Ortega A, de Marcos A, Mena M, Fenoll C, González-Villanueva E, Ruiz-Lara S. Overexpression of a SDD1-Like Gene From Wild Tomato Decreases Stomatal Density and Enhances Dehydration Avoidance in Arabidopsis and Cultivated Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:940. [PMID: 30022991 PMCID: PMC6039981 DOI: 10.3389/fpls.2018.00940] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/12/2018] [Indexed: 05/20/2023]
Abstract
Stomata are microscopic valves formed by two guard cells flanking a pore, which are located on the epidermis of most aerial plant organs and are used for water and gas exchange between the plant and the atmosphere. The number, size and distribution of stomata are set during development in response to changing environmental conditions, allowing plants to minimize the impact of a stressful environment. In Arabidopsis, STOMATAL DENSITY AND DISTRIBUTION 1 (AtSDD1) negatively regulates stomatal density and optimizes transpiration and water use efficiency (WUE). Despite this, little is known about the function of AtSDD1 orthologs in crop species and their wild stress-tolerant relatives. In this study, SDD1-like from the stress-tolerant wild tomato Solanum chilense (SchSDD1-like) was identified through its close sequence relationship with SDD1-like from Solanum lycopersicum and AtSDD1. Both Solanum SDD1-like transcripts accumulated in high levels in young leaves, suggesting that they play a role in early leaf development. Arabidopsis sdd1-3 plants transformed with SchSDD1-like under a constitutive promoter showed a significant reduction in stomatal leaf density compared with untransformed sdd1-3 plants. Additionally, a leaf dehydration shock test demonstrated that the reduction in stomatal abundance of transgenic plants was sufficient to slow down dehydration. Overexpression of SchSDD1-like in cultivated tomato plants decreased the stomatal index and density of the cotyledons and leaves, and resulted in higher dehydration avoidance. Taken together, these results indicate that SchSDD1-like functions in a similar manner to AtSDD1 and suggest that Arabidopsis and tomatoes share this component of the stomatal development pathway that impinges on water status.
Collapse
Affiliation(s)
| | | | - Alfonso Ortega
- Facultad de Ciencias Ambientales Y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Alberto de Marcos
- Facultad de Ciencias Ambientales Y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Montaña Mena
- Facultad de Ciencias Ambientales Y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales Y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | | | - Simón Ruiz-Lara
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- *Correspondence: Simón Ruiz-Lara,
| |
Collapse
|
34
|
Ouyang W, Struik PC, Yin X, Yang J. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5191-5205. [PMID: 28992130 PMCID: PMC5853379 DOI: 10.1093/jxb/erx314] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/09/2017] [Indexed: 05/18/2023]
Abstract
Increasing leaf transpiration efficiency (TE) may provide leads for growing rice like dryland cereals such as wheat (Triticum aestivum). To explore avenues for improving TE in rice, variations in stomatal conductance (gs) and mesophyll conductance (gm) and their anatomical determinants were evaluated in two cultivars from each of lowland, aerobic, and upland groups of Oryza sativa, one cultivar of O. glaberrima, and two cultivars of T. aestivum, under three water regimes. The TE of upland rice, O. glaberrima, and wheat was more responsive to the gm/gs ratio than that of lowland and aerobic rice. Overall, the explanatory power of the particular anatomical trait varied among species. Low stomatal density mostly explained the low gs in drought-tolerant rice, whereas rice genotypes with smaller stomata generally responded more strongly to drought. Compared with rice, wheat had a higher gm, which was associated with thicker mesophyll tissue, mesophyll and chloroplasts more exposed to intercellular spaces, and thinner cell walls. Upland rice, O. glaberrima, and wheat cultivars minimized the decrease in gm under drought by maintaining high ratios of chloroplasts to exposed mesophyll cell walls. Rice TE could be improved by increasing the gm/gs ratio via modifying anatomical traits.
Collapse
Affiliation(s)
- Wenjing Ouyang
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, AK Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, AK Wageningen, The Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, AK Wageningen, The Netherlands
| | - Jianchang Yang
- College of Agriculture, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
35
|
Functional Characterization of Cotton GaMYB62L, a Novel R2R3 TF in Transgenic Arabidopsis. PLoS One 2017; 12:e0170578. [PMID: 28125637 PMCID: PMC5268478 DOI: 10.1371/journal.pone.0170578] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/06/2017] [Indexed: 11/19/2022] Open
Abstract
Drought stress can trigger the production of ABA in plants, in response to adverse conditions, which induces the transcript of stress-related marker genes. The R2R3 MYB TFs are implicated in regulation of various plants developmental, metabolic and multiple environmental stress responses. Here, a R2R3-MYB cloned gene, GaMYB62L, was transformed in Arabidopsis and was functionally characterized. The GaMYB62L protein contains two SANT domains with a conserved R2R3 imperfect repeats. The GaMYB62L cDNA is 1,017 bp with a CDS of 879, encodes a 292-residue polypeptide with MW of 38.78 kD and a pI value of 8.91. Overexpressed GaMYB62L transgenic Arabidopsis have increased proline and chlorophyll content, superior seed germination rate under salt and osmotic stress, less water loss rate with reduced stomatal apertures, high drought avoidance as compared to WT on water deprivation and also significant plant survival rates at low temperature. In addition, overexpressed GaMYB62L lines were more sensitive to ABA mediated germination and root elongation assay. Moreover, ABA induced GaMYB62L overexpression, enhanced the expression of ABA stress related marker genes like RD22, COR15A, ADH1, and RD29A. Together, overexpression of GaMYB62L suggested having developed better drought, salt and cold tolerance in transgenic Arabidopsis and thus presented it as a prospective candidate gene to achieve better abiotic stress tolerance in cotton crop.
Collapse
|
36
|
Viger M, Smith HK, Cohen D, Dewoody J, Trewin H, Steenackers M, Bastien C, Taylor G. Adaptive mechanisms and genomic plasticity for drought tolerance identified in European black poplar (Populus nigra L.). TREE PHYSIOLOGY 2016; 36:909-28. [PMID: 27174702 PMCID: PMC4969554 DOI: 10.1093/treephys/tpw017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/14/2016] [Indexed: 05/17/2023]
Abstract
Summer droughts are likely to increase in frequency and intensity across Europe, yet long-lived trees may have a limited ability to tolerate drought. It is therefore critical that we improve our understanding of phenotypic plasticity to drought in natural populations for ecologically and economically important trees such as Populus nigra L. A common garden experiment was conducted using ∼500 wild P. nigra trees, collected from 11 river populations across Europe. Phenotypic variation was found across the collection, with southern genotypes from Spain and France characterized by small leaves and limited biomass production. To examine the relationship between phenotypic variation and drought tolerance, six genotypes with contrasting leaf morphologies were subjected to a water deficit experiment. 'North eastern' genotypes were collected at wet sites and responded to water deficit with reduced biomass growth, slow stomatal closure and reduced water use efficiency (WUE) assessed by Δ(13)C. In contrast, 'southern' genotypes originating from arid sites showed rapid stomatal closure, improved WUE and limited leaf loss. Transcriptome analyses of a genotype from Spain (Sp2, originating from an arid site) and another from northern Italy (Ita, originating from a wet site) revealed dramatic differences in gene expression response to water deficit. Transcripts controlling leaf development and stomatal patterning, including SPCH, ANT, ER, AS1, AS2, PHB, CLV1, ERL1-3 and TMM, were down-regulated in Ita but not in Sp2 in response to drought.
Collapse
Affiliation(s)
- Maud Viger
- Centre for Biological Sciences, University of Southampton, Life Sciences Building, Southampton SO17 1BJ, UK
| | - Hazel K Smith
- Centre for Biological Sciences, University of Southampton, Life Sciences Building, Southampton SO17 1BJ, UK
| | - David Cohen
- UMR Ecologie et Ecophysiologie Forestières, INRA NANCY-Lorraine, 54280 Champenoux, France UMR Ecologie et Ecophysiologie Forestière, Université de Lorraine, BP 239, F-54506 Vandoeuvre, France
| | - Jennifer Dewoody
- Centre for Biological Sciences, University of Southampton, Life Sciences Building, Southampton SO17 1BJ, UK Present address: USDA Forest Service, National Forest Genetics Lab, 2480 Carson Road, Placerville, CA 95667, USA
| | - Harriet Trewin
- Centre for Biological Sciences, University of Southampton, Life Sciences Building, Southampton SO17 1BJ, UK
| | - Marijke Steenackers
- Ministry of the Flemish Community, Research Institute for Nature and Forest (INBO), Geraardsbergen B-9500, Belgium
| | - Catherine Bastien
- INRA, Unité de Recherche Amélioration Génétique et Physiologie Forestières, 2163 avenue de la Pomme de Pin, CS 40001 Ardon, 45075 Orléans Cedex 2, France
| | - Gail Taylor
- Centre for Biological Sciences, University of Southampton, Life Sciences Building, Southampton SO17 1BJ, UK
| |
Collapse
|
37
|
Tripathi P, Rabara RC, Reese RN, Miller MA, Rohila JS, Subramanian S, Shen QJ, Morandi D, Bücking H, Shulaev V, Rushton PJ. A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes. BMC Genomics 2016; 17:102. [PMID: 26861168 PMCID: PMC4746818 DOI: 10.1186/s12864-016-2420-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/26/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The purpose of this project was to identify metabolites, proteins, genes, and promoters associated with water stress responses in soybean. A number of these may serve as new targets for the biotechnological improvement of drought responses in soybean (Glycine max). RESULTS We identified metabolites, proteins, and genes that are strongly up or down regulated during rapid water stress following removal from a hydroponics system. 163 metabolites showed significant changes during water stress in roots and 93 in leaves. The largest change was a root-specific 160-fold increase in the coumestan coumestrol making it a potential biomarker for drought and a promising target for improving drought responses. Previous reports suggest that coumestrol stimulates mycorrhizal colonization and under certain conditions mycorrhizal plants have improved drought tolerance. This suggests that coumestrol may be part of a call for help to the rhizobiome during stress. About 3,000 genes were strongly up-regulated by drought and we identified regulators such as ERF, MYB, NAC, bHLH, and WRKY transcription factors, receptor-like kinases, and calcium signaling components as potential targets for soybean improvement as well as the jasmonate and abscisic acid biosynthetic genes JMT, LOX1, and ABA1. Drought stressed soybean leaves show reduced mRNA levels of stomatal development genes including FAMA-like, MUTE-like and SPEECHLESS-like bHLH transcription factors and leaves formed after drought stress had a reduction in stomatal density of 22.34 % and stomatal index of 17.56 %. This suggests that reducing stomatal density may improve drought tolerance. MEME analyses suggest that ABRE (CACGT/CG), CRT/DRE (CCGAC) and a novel GTGCnTGC/G element play roles in transcriptional activation and these could form components of synthetic promoters to drive expression of transgenes. Using transformed hairy roots, we validated the increase in promoter activity of GmWRKY17 and GmWRKY67 during dehydration and after 20 μM ABA treatment. CONCLUSIONS Our toolbox provides new targets and strategies for improving soybean drought tolerance and includes the coumestan coumestrol, transcription factors that regulate stomatal density, water stress-responsive WRKY gene promoters and a novel DNA element that appears to be enriched in water stress responsive promoters.
Collapse
Affiliation(s)
- Prateek Tripathi
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD57007, USA.
- Current address, Molecular and Computational Biology, Dana & David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Roel C Rabara
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD57007, USA.
- Current address: Texas A&M AgriLife Research and Extension Center, Dallas, TX, 75252, USA.
| | - R Neil Reese
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD57007, USA.
| | - Marissa A Miller
- Texas A&M AgriLife Research and Extension Center, Dallas, TX, 75252, USA.
| | - Jai S Rohila
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD57007, USA.
| | - Senthil Subramanian
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD57007, USA.
| | - Qingxi J Shen
- School of Life Sciences, University of Nevada, Las Vegas, 89154, USA.
| | - Dominique Morandi
- INRA, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon, CEDEX, France.
| | - Heike Bücking
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD57007, USA.
| | - Vladimir Shulaev
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA.
| | - Paul J Rushton
- Texas A&M AgriLife Research and Extension Center, Dallas, TX, 75252, USA.
- Current address, 22nd Century Group Inc., 9530 Main Street Clarence, New York, 14031, USA.
| |
Collapse
|
38
|
Hronková M, Wiesnerová D, Šimková M, Skůpa P, Dewitte W, Vráblová M, Zažímalová E, Šantrůček J. Light-induced STOMAGEN-mediated stomatal development in Arabidopsis leaves. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4621-30. [PMID: 26002974 DOI: 10.1093/jxb/erv233] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The initiation of stomata, microscopic valves in the epidermis of higher plants that control of gas exchange, requires a co-ordinated sequence of asymmetric and symmetric divisions, which is under tight environmental and developmental control. Arabidopsis leaves grown under elevated photosynthetic photon flux density have a higher density of stomata. STOMAGEN encodes an epidermal patterning factor produced in the mesophyll, and our observations indicated that elevated photosynthetic irradiation stimulates STOMAGEN expression. Our analysis of gain and loss of function of STOMAGEN further detailed its function as a positive regulator of stomatal formation on both sides of the leaf, not only in terms of stomatal density across the leaf surface but also in terms of their stomatal index. STOMAGEN function was rate limiting for the light response of the stomatal lineage in the adaxial epidermis. Mutants in pathways that regulate stomatal spacing in the epidermis and have elevated stomatal density, such as stomatal density and distribution (sdd1) and too many mouth alleles, displayed elevated STOMAGEN expression, suggesting that STOMAGEN is either under the direct control of these pathways or is indirectly affected by stomatal patterning, suggestive of a feedback mechanism. These observations support a model in which changes in levels of light irradiation are perceived in the mesophyll and control the production of stomata in the epidermis by mesophyll-produced STOMAGEN, and whereby, conversely, stomatal patterning, either directly or indirectly, influences STOMAGEN levels.
Collapse
Affiliation(s)
- Marie Hronková
- Institute of Plant Molecular Biology, The Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic
| | - Dana Wiesnerová
- Institute of Plant Molecular Biology, The Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Marie Šimková
- Institute of Plant Molecular Biology, The Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Petr Skůpa
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Walter Dewitte
- Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Martina Vráblová
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic
| | - Eva Zažímalová
- Institute of Plant Molecular Biology, The Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Jiří Šantrůček
- Institute of Plant Molecular Biology, The Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic
| |
Collapse
|
39
|
Bizet F, Bogeat-Triboulot MB, Montpied P, Christophe A, Ningre N, Cohen D, Hummel I. Phenotypic plasticity toward water regime: response of leaf growth and underlying candidate genes in Populus. PHYSIOLOGIA PLANTARUM 2015; 154:39-53. [PMID: 25185760 DOI: 10.1111/ppl.12271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/10/2014] [Accepted: 07/23/2014] [Indexed: 06/03/2023]
Abstract
Phenotypic plasticity is considered as an important mechanism for plants to cope with environmental challenges. Leaf growth is one of the first macroscopic processes to be impacted by modification of soil water availability. In this study, we intended to analyze and compare plasticity at different scales. We examined the differential effect of water regime (optimal, moderate water deprivation and recovery) on growth and on the expression of candidate genes in leaves of different growth stages. Candidates were selected to assess components of growth response: abscisic acid signaling, water transport, cell wall modification and stomatal development signaling network. At the tree scale, the four studied poplar hybrids responded similarly to water regime. Meanwhile, leaf growth response was under genotype × environment interaction. Patterns of candidate gene expression enriched our knowledge about their functionality in poplars. For most candidates, transcript levels were strongly structured according to leaf growth performance while response to water regime was clearly dependent on genotype. The use of an index of plasticity revealed that the magnitude of the response was higher for gene expression than for macroscopic traits. In addition, the ranking of poplar genotypes for macroscopic traits well paralleled the one for gene expression.
Collapse
Affiliation(s)
- François Bizet
- INRA, UMR Ecologie et Ecophysiologie Forestières, FR-54280, Champenoux, France; Université de Lorraine, UMR Ecologie et Ecophysiologie Forestières, Faculté des Sciences et Technologies, FR-54506, Vandœuvre-lès-Nancy Cedex, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Harfouche A, Meilan R, Altman A. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. TREE PHYSIOLOGY 2014; 34:1181-98. [PMID: 24695726 DOI: 10.1093/treephys/tpu012] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Abiotic stresses, such as drought, salinity and cold, are the major environmental stresses that adversely affect tree growth and, thus, forest productivity, and play a major role in determining the geographic distribution of tree species. Tree responses and tolerance to abiotic stress are complex biological processes that are best analyzed at a systems level using genetic, genomic, metabolomic and phenomic approaches. This will expedite the dissection of stress-sensing and signaling networks to further support efficient genetic improvement programs. Enormous genetic diversity for stress tolerance exists within some forest-tree species, and due to advances in sequencing technologies the molecular genetic basis for this diversity has been rapidly unfolding in recent years. In addition, the use of emerging phenotyping technologies extends the suite of traits that can be measured and will provide us with a better understanding of stress tolerance. The elucidation of abiotic stress-tolerance mechanisms will allow for effective pyramiding of multiple tolerances in a single tree through genetic engineering. Here we review recent progress in the dissection of the molecular basis of abiotic stress tolerance in forest trees, with special emphasis on Populus, Pinus, Picea, Eucalyptus and Quercus spp. We also outline practices that will enable the deployment of trees engineered for abiotic stress tolerance to land owners. Finally, recommendations for future work are discussed.
Collapse
Affiliation(s)
- Antoine Harfouche
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy
| | - Richard Meilan
- Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN 47907-2061, USA
| | - Arie Altman
- Faculty of Agricultural, Food and Environmental Quality Sciences, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| |
Collapse
|
41
|
Lang T, Yin K, Liu J, Cao K, Cannon CH, Du FK. Protein domain analysis of genomic sequence data reveals regulation of LRR related domains in plant transpiration in Ficus. PLoS One 2014; 9:e108719. [PMID: 25269070 PMCID: PMC4182558 DOI: 10.1371/journal.pone.0108719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 09/03/2014] [Indexed: 11/25/2022] Open
Abstract
Predicting protein domains is essential for understanding a protein’s function at the molecular level. However, up till now, there has been no direct and straightforward method for predicting protein domains in species without a reference genome sequence. In this study, we developed a functionality with a set of programs that can predict protein domains directly from genomic sequence data without a reference genome. Using whole genome sequence data, the programming functionality mainly comprised DNA assembly in combination with next-generation sequencing (NGS) assembly methods and traditional methods, peptide prediction and protein domain prediction. The proposed new functionality avoids problems associated with de novo assembly due to micro reads and small single repeats. Furthermore, we applied our functionality for the prediction of leucine rich repeat (LRR) domains in four species of Ficus with no reference genome, based on NGS genomic data. We found that the LRRNT_2 and LRR_8 domains are related to plant transpiration efficiency, as indicated by the stomata index, in the four species of Ficus. The programming functionality established in this study provides new insights for protein domain prediction, which is particularly timely in the current age of NGS data expansion.
Collapse
Affiliation(s)
- Tiange Lang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan Province, China
| | - Kangquan Yin
- College of Forestry, Beijing Forestry University, Beijing, China
- School of Life Science, Tsinghua University, Beijing, China
| | - Jinyu Liu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan Province, China
| | - Kunfang Cao
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan Province, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, and College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Charles H. Cannon
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan Province, China
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Fang K. Du
- College of Forestry, Beijing Forestry University, Beijing, China
- * E-mail:
| |
Collapse
|
42
|
Rabara RC, Tripathi P, Rushton PJ. The potential of transcription factor-based genetic engineering in improving crop tolerance to drought. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:601-14. [PMID: 25118806 DOI: 10.1089/omi.2013.0177] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Drought is one of the major constraints in crop production and has an effect on a global scale. In order to improve crop production, it is necessary to understand how plants respond to stress. A good understanding of regulatory mechanisms involved in plant responses during drought will enable researchers to explore and manipulate key regulatory points in order to enhance stress tolerance in crops. Transcription factors (TFs) have played an important role in crop improvement from the dawn of agriculture. TFs are therefore good candidates for genetic engineering to improve crop tolerance to drought because of their role as master regulators of clusters of genes. Many families of TFs, such as CCAAT, homeodomain, bHLH, NAC, AP2/ERF, bZIP, and WRKY have members that may have the potential to be tools for improving crop tolerance to drought. In this review, the roles of TFs as tools to improve drought tolerance in crops are discussed. The review also focuses on current strategies in the use of TFs, with emphasis on several major TF families in improving drought tolerance of major crops. Finally, many promising transgenic lines that may have improved drought responses have been poorly characterized and consequently their usefulness in the field is uncertain. New advances in high-throughput phenotyping, both greenhouse and field based, should facilitate improved phenomics of transgenic lines. Systems biology approaches should then define the underlying changes that result in higher yields under water stress conditions. These new technologies should help show whether manipulating TFs can have effects on yield under field conditions.
Collapse
Affiliation(s)
- Roel C Rabara
- 1 Texas A&M AgriLife Research and Extension Center , Dallas, Texas
| | | | | |
Collapse
|
43
|
Su LT, Li JW, Liu DQ, Zhai Y, Zhang HJ, Li XW, Zhang QL, Wang Y, Wang QY. A novel MYB transcription factor, GmMYBJ1, from soybean confers drought and cold tolerance in Arabidopsis thaliana. Gene 2014; 538:46-55. [PMID: 24440241 DOI: 10.1016/j.gene.2014.01.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 12/23/2013] [Accepted: 01/02/2014] [Indexed: 11/18/2022]
Abstract
MYB transcription factors play important roles in the regulation of plant growth, developmental metabolism and stress responses. In this study, a new MYB transcription factor gene, GmMYBJ1, was isolated from soybean [Glycine max (L.)]. The GmMYBJ1 cDNA is 1296bp in length with an open reading frame (ORF) of 816 bp encoding for 271 amino acids. The amino acid sequence displays similarities to the typical R2R3 MYB proteins reported in other plants. Transient expression analysis using the GmMYBJ1-GFP fusion gene in onion epidermal cells revealed that the GmMYBJ1 protein is targeted to the nucleus. Quantitative RT-PCR analysis demonstrated that GmMYBJ1 expression was induced by abiotic stresses, such as drought, cold, salt and exogenous abscisic acid (ABA). Compared to wild-type (WT) plants, transgenic Arabidopsis overexpressing GmMYBJ1 exhibited an enhanced tolerance to drought and cold stresses. These results indicate that GmMYBJ1 has the potential to be utilized in transgenic breeding lines to improve abiotic stress tolerance.
Collapse
Affiliation(s)
- Lian-Tai Su
- Jilin Key Laboratory for Crop Genetic Engineering, College of Plant Science, Jilin University, Changchun 130062, Jilin, China
| | - Jing-Wen Li
- Jilin Key Laboratory for Crop Genetic Engineering, College of Plant Science, Jilin University, Changchun 130062, Jilin, China
| | - De-Quan Liu
- Jilin Key Laboratory for Crop Genetic Engineering, College of Plant Science, Jilin University, Changchun 130062, Jilin, China
| | - Ying Zhai
- College of Life Science and Agroforestry, Qiqihaer University, Qiqihaer 161006, Heilongjiang, China
| | - Hai-Jun Zhang
- Jilin Key Laboratory for Crop Genetic Engineering, College of Plant Science, Jilin University, Changchun 130062, Jilin, China
| | - Xiao-Wei Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, Jilin, China
| | - Qing-Lin Zhang
- Jilin Key Laboratory for Crop Genetic Engineering, College of Plant Science, Jilin University, Changchun 130062, Jilin, China
| | - Ying Wang
- Jilin Key Laboratory for Crop Genetic Engineering, College of Plant Science, Jilin University, Changchun 130062, Jilin, China.
| | - Qing-Yu Wang
- Jilin Key Laboratory for Crop Genetic Engineering, College of Plant Science, Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
44
|
Richardson LGL, Torii KU. Take a deep breath: peptide signalling in stomatal patterning and differentiation. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5243-5251. [PMID: 23997204 DOI: 10.1093/jxb/ert246] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Stomata are pores in the leaf surface that open and close to regulate gas exchange and minimize water loss. In Arabidopsis, a pair of guard cells surrounds each stoma and they are derived from precursors distributed in an organized pattern on the epidermis. Stomatal differentiation follows a well-defined developmental programme, regulated by stomatal lineage-specific basic helix-loop-helix transcription factors, and stomata are consistently separated by at least one epidermal cell (referred to as the 'one-cell-spacing rule') to allow for proper opening and closure of the stomatal aperture. Peptide signalling is involved in regulating stomatal differentiation and in enforcing the one-cell-spacing rule. The cysteine-rich peptides EPIDERMAL PATTERNING FACTOR 1 (EPF1) and EPF2 negatively regulate stomatal differentiation in cells adjacent to stomatal precursors, while STOMAGEN/EPFL9 is expressed in the mesophyll of developing leaves and positively regulates stomatal development. These peptides work co-ordinately with the ERECTA family of leucine-rich repeat (LRR) receptor-like kinases and the LRR receptor-like protein TOO MANY MOUTHS. Recently, specific ligand-receptor pairs were identified that function at two different stages of stomatal development to restrict entry into the stomatal lineage, and later to orient precursor division away from existing stomata. These studies have provided the groundwork to begin to understand the molecular mechanisms involved in cell-cell communication during stomatal development.
Collapse
|
45
|
Pillitteri LJ, Dong J. Stomatal development in Arabidopsis. THE ARABIDOPSIS BOOK 2013; 11:e0162. [PMID: 23864836 PMCID: PMC3711358 DOI: 10.1199/tab.0162] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stomata consist of two guard cells that function as turgor-operated valves that regulate gas exchange in plants. In Arabidopsis, a dedicated cell lineage is initiated and undergoes a series of cell divisions and cell-state transitions to produce a stoma. A set of basic helix-loop-helix (bHLH) transcription factors regulates the transition and differentiation events through the lineage, while the placement of stomata relative to each other is controlled by intercellular signaling via peptide ligands, transmembrane receptors, and mitogen-activated protein kinase (MAPK) modules. Some genes involved in regulating stomatal differentiation or density are also involved in hormonal and environmental stress responses, which may provide a link between modulation of stomatal development or function in response to changes in the environment. Premitotic polarlylocalized proteins provide an added layer of regulation, which can be addressed more thoroughly with the identification of additional proteins in this pathway. Linking the networks that control stomatal development promises to bring advances to our understanding of signal transduction, cell polarity, and cell-fate specification in plants.
Collapse
Affiliation(s)
- Lynn Jo Pillitteri
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
- Address correspondence to
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| |
Collapse
|