1
|
Stirbet A, Guo Y, Lazár D, Govindjee G. From leaf to multiscale models of photosynthesis: applications and challenges for crop improvement. PHOTOSYNTHESIS RESEARCH 2024; 161:21-49. [PMID: 38619700 DOI: 10.1007/s11120-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 04/16/2024]
Abstract
To keep up with the growth of human population and to circumvent deleterious effects of global climate change, it is essential to enhance crop yield to achieve higher production. Here we review mathematical models of oxygenic photosynthesis that are extensively used, and discuss in depth a subset that accounts for diverse approaches providing solutions to our objective. These include models (1) to study different ways to enhance photosynthesis, such as fine-tuning antenna size, photoprotection and electron transport; (2) to bioengineer carbon metabolism; and (3) to evaluate the interactions between the process of photosynthesis and the seasonal crop dynamics, or those that have included statistical whole-genome prediction methods to quantify the impact of photosynthesis traits on the improvement of crop yield. We conclude by emphasizing that the results obtained in these studies clearly demonstrate that mathematical modelling is a key tool to examine different approaches to improve photosynthesis for better productivity, while effective multiscale crop models, especially those that also include remote sensing data, are indispensable to verify different strategies to obtain maximized crop yields.
Collapse
Affiliation(s)
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education Jiangnan University, Wuxi, 214122, China
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký Univesity, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and the Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Vlad D, Zaidem M, Perico C, Sedelnikova O, Bhattacharya S, Langdale JA. The WIP6 transcription factor TOO MANY LATERALS specifies vein type in C 4 and C 3 grass leaves. Curr Biol 2024; 34:1670-1686.e10. [PMID: 38531358 DOI: 10.1016/j.cub.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/04/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Grass leaves are invariantly strap shaped with an elongated distal blade and a proximal sheath that wraps around the stem. Underpinning this shape is a scaffold of leaf veins, most of which extend in parallel along the proximo-distal leaf axis. Differences between species are apparent both in the vein types that develop and in the distance between veins across the medio-lateral leaf axis. A prominent engineering goal is to increase vein density in leaves of C3 photosynthesizing species to facilitate the introduction of the more efficient C4 pathway. Here, we discover that the WIP6 transcription factor TOO MANY LATERALS (TML) specifies vein rank in both maize (C4) and rice (C3). Loss-of-function tml mutations cause large lateral veins to develop in positions normally occupied by smaller intermediate veins, and TML transcript localization in wild-type leaves is consistent with a role in suppressing lateral vein development in procambial cells that form intermediate veins. Attempts to manipulate TML function in rice were unsuccessful because transgene expression was silenced, suggesting that precise TML expression is essential for shoot viability. This finding may reflect the need to prevent the inappropriate activation of downstream targets or, given that transcriptome analysis revealed altered cytokinin and auxin signaling profiles in maize tml mutants, the need to prevent local or general hormonal imbalances. Importantly, rice tml mutants display an increased occupancy of veins in the leaf, providing a step toward an anatomical chassis for C4 engineering. Collectively, a conserved mechanism of vein rank specification in grass leaves has been revealed.
Collapse
Affiliation(s)
- Daniela Vlad
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
| | - Maricris Zaidem
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
| | - Chiara Perico
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
| | - Olga Sedelnikova
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
| | - Samik Bhattacharya
- Resolve BioSciences GmbH, Alfred-Nobel-Straße 10, 40789 Monheim am Rhein, Germany
| | - Jane A Langdale
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK.
| |
Collapse
|
3
|
Slewinski TL. Plant development: Laying the foundation for high-performance photosynthesis. Curr Biol 2024; 34:R326-R328. [PMID: 38653202 DOI: 10.1016/j.cub.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
A new study shows that TOO MANY LATERALS/WIP6 acts as a key regulator of vein specification and development across C3 and C4 photosynthetic grasses.
Collapse
Affiliation(s)
- Thomas L Slewinski
- Lead of Crop Efficiency and Disease Discovery, Bayer Crop Science, Biotechnology Division, 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA; Adjunct Faculty, Department of Plant Science, University of Missouri, Columbia, MO 65201, USA. thomas.slewinski,@,bayer.com
| |
Collapse
|
4
|
Naziębło A, Merlak HM, Wierzbicka MH. The bundle sheath in Zea mays leaves functions as a protective barrier against the toxic effect of lead. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154104. [PMID: 37839393 DOI: 10.1016/j.jplph.2023.154104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Lead is a highly toxic metal. It impairs the metabolism of living organisms. Plants show different sensitivity to the action of this element. One of the plants with relatively high lead tolerance is Zea mays, where even in detached leaves treated with Pb2+ ions, the photosynthesis rate remains very high compared to other plant species. This study set out to determine the mechanism responsible for the high resistance of maize photosynthetic tissue to the toxic effect of this metal. For this purpose, the cut leaves of Z. mays were incubated in Pb(NO3)2 solutions at different concentrations. Regions of lead accumulation in tissues and cells were located using histochemical methods and transmission electron microscopy. The experiments showed a diverse distribution of lead ions in the leaf blade of Z. mays. Most of the accumulated Pb2+ ions were observed in the vascular bundle and the bundle sheath, while minimal traces of metal were transferred to the mesophyll. In Pisum sativum leaves, although Pb(NO3)2 concentration in the solution was two-fold lower, lead accumulated in all the leaf tissues - mainly in the vascular bundle, epidermis, sclerenchyma, and mesophyll. Thus, bundle sheath cells in maize leaves were able to inhibit the flow of Pb2+ ions to the ground tissue. Therefore, the influence of the toxic metal on photosynthesis in mesophyll cells remained minimal. These experiments show that the structure of Z. mays leaf, with a layer of bundle sheath cells (characteristic of C4 plants), contributes to the protecting photosynthetic tissue against the toxic effect of lead.
Collapse
Affiliation(s)
- Aleksandra Naziębło
- Department of Ecotoxicology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warszawa, Poland.
| | - Hanna M Merlak
- Department of Ecotoxicology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warszawa, Poland
| | - Małgorzata H Wierzbicka
- Department of Ecotoxicology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warszawa, Poland
| |
Collapse
|
5
|
Han SY, Kim WY, Kim JS, Hwang I. Comparative transcriptomics reveals the role of altered energy metabolism in the establishment of single-cell C 4 photosynthesis in Bienertia sinuspersici. FRONTIERS IN PLANT SCIENCE 2023; 14:1202521. [PMID: 37476170 PMCID: PMC10354284 DOI: 10.3389/fpls.2023.1202521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023]
Abstract
Single-cell C4 photosynthesis (SCC4) in terrestrial plants without Kranz anatomy involves three steps: initial CO2 fixation in the cytosol, CO2 release in mitochondria, and a second CO2 fixation in central chloroplasts. Here, we investigated how the large number of mechanisms underlying these processes, which occur in three different compartments, are orchestrated in a coordinated manner to establish the C4 pathway in Bienertia sinuspersici, a SCC4 plant. Leaves were subjected to transcriptome analysis at three different developmental stages. Functional enrichment analysis revealed that SCC4 cycle genes are coexpressed with genes regulating cyclic electron flow and amino/organic acid metabolism, two key processes required for the production of energy molecules in C3 plants. Comparative gene expression profiling of B. sinuspersici and three other species (Suaeda aralocaspica, Amaranthus hypochondriacus, and Arabidopsis thaliana) showed that the direction of metabolic flux was determined via an alteration in energy supply in peripheral chloroplasts and mitochondria via regulation of gene expression in the direction of the C4 cycle. Based on these results, we propose that the redox homeostasis of energy molecules via energy metabolism regulation is key to the establishment of the SCC4 pathway in B. sinuspersici.
Collapse
Affiliation(s)
- Sang-Yun Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21+) and Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung Sun Kim
- Genomic Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
6
|
Hughes TE, Sedelnikova O, Thomas M, Langdale JA. Mutations in NAKED-ENDOSPERM IDD genes reveal functional interactions with SCARECROW during leaf patterning in C4 grasses. PLoS Genet 2023; 19:e1010715. [PMID: 37068119 PMCID: PMC10138192 DOI: 10.1371/journal.pgen.1010715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/27/2023] [Accepted: 03/22/2023] [Indexed: 04/18/2023] Open
Abstract
Leaves comprise a number of different cell-types that are patterned in the context of either the epidermal or inner cell layers. In grass leaves, two distinct anatomies develop in the inner leaf tissues depending on whether the leaf carries out C3 or C4 photosynthesis. In both cases a series of parallel veins develops that extends from the leaf base to the tip but in ancestral C3 species veins are separated by a greater number of intervening mesophyll cells than in derived C4 species. We have previously demonstrated that the GRAS transcription factor SCARECROW (SCR) regulates the number of photosynthetic mesophyll cells that form between veins in the leaves of the C4 species maize, whereas it regulates the formation of stomata in the epidermal leaf layer in the C3 species rice. Here we show that SCR is required for inner leaf patterning in the C4 species Setaria viridis but in this species the presumed ancestral stomatal patterning role is also retained. Through a comparative mutant analysis between maize, setaria and rice we further demonstrate that loss of NAKED-ENDOSPERM (NKD) INDETERMINATE DOMAIN (IDD) protein function exacerbates loss of function scr phenotypes in the inner leaf tissues of maize and setaria but not rice. Specifically, in both setaria and maize, scr;nkd mutants exhibit an increased proportion of fused veins with no intervening mesophyll cells. Thus, combined action of SCR and NKD may control how many mesophyll cells are specified between veins in the leaves of C4 but not C3 grasses. Together our results provide insight into the evolution of cell patterning in grass leaves and demonstrate a novel patterning role for IDD genes in C4 leaves.
Collapse
Affiliation(s)
- Thomas E Hughes
- Department of Biology, University of Oxford, Oxford, England
| | | | - Mimi Thomas
- Department of Biology, University of Oxford, Oxford, England
| | - Jane A Langdale
- Department of Biology, University of Oxford, Oxford, England
| |
Collapse
|
7
|
Shaar-Moshe L, Brady SM. SHORT-ROOT and SCARECROW homologs regulate patterning of diverse cell types within and between species. THE NEW PHYTOLOGIST 2023; 237:1542-1549. [PMID: 36457304 DOI: 10.1111/nph.18654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
The roles of SHORT-ROOT (SHR) and SCARECROW (SCR) in ground tissue patterning and differentiation have been well established in the root of Arabidopsis thaliana. Recently, work in additional organs and species revealed the extensive functional diversification of these genes, including regulation of cortical divisions essential for nodule organogenesis in legume roots, bundle sheath specification in the Arabidopsis leaf, patterning of inner leaf cell layers in maize, and stomatal development in rice. The co-option of distinct functions and cell types is attributed to different mechanisms, including paralog retention, spatiotemporal changes in gene expression, and novel protein functions. Elaborating our knowledge of the SHR-SCR module further unravels the developmental regulation that controls diverse forms and functions within and between species.
Collapse
Affiliation(s)
- Lidor Shaar-Moshe
- Department of Plant Biology, University of California, Davis, Davis, CA, 95616, USA
- Genome Center, University of California, Davis, Davis, CA, 95616, USA
| | - Siobhan M Brady
- Department of Plant Biology, University of California, Davis, Davis, CA, 95616, USA
- Genome Center, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
8
|
Yoon EK, Oh J, Lim J. (Don't) Look Up!: Is short-root just a short-root plant? FRONTIERS IN PLANT SCIENCE 2022; 13:1069996. [PMID: 36466291 PMCID: PMC9712719 DOI: 10.3389/fpls.2022.1069996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
SHORT-ROOT (SHR) is a mobile transcription factor that plays important roles in ground tissue patterning, stem cell niche specification and maintenance, and vascular development in Arabidopsis roots. Although mRNA and protein of SHR are also found in hypocotyls, inflorescence stems, and leaves, its role in the above-ground organs has been less explored. In most developmental cases, SHR, together with its partner SCARECROW (SCR), regulates the expression of downstream target genes in controlling formative and proliferative cell divisions. Accumulating evidence on the regulatory role of SHR in shoots suggests that SHR may also play key roles in the above-ground organs. Interestingly, recent work has provided new evidence that SHR is also required for cell elongation in the hypocotyl of the etiolated seedling. This suggests that the novel roles of SHR and SHR-mediated regulatory networks can be found in shoots. Furthermore, comparative research on SHR function in roots and shoots will broaden and deepen our understanding of plant growth and development.
Collapse
|
9
|
Pradhan B, Panda D, Bishi SK, Chakraborty K, Muthusamy SK, Lenka SK. Progress and prospects of C 4 trait engineering in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:920-931. [PMID: 35727191 DOI: 10.1111/plb.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Incorporating C4 photosynthetic traits into C3 crops is a rational approach for sustaining future demands for crop productivity. Using classical plant breeding, engineering this complex trait is unlikely to achieve its target. Therefore, it is critical and timely to implement novel biotechnological crop improvement strategies to accomplish this goal. However, a fundamental understanding of C3 , C4 , and C3 -C4 intermediate metabolism is crucial for the targeted use of biotechnological tools. This review assesses recent progress towards engineering C4 photosynthetic traits in C3 crops. We also discuss lessons learned from successes and failures of recent genetic engineering attempts in C3 crops, highlighting the pros and cons of using rice as a model plant for short-, medium- and long-term goals of genetic engineering. This review provides an integrated approach towards engineering improved photosynthetic efficiency in C3 crops for sustaining food, fibre and fuel production around the globe.
Collapse
Affiliation(s)
- B Pradhan
- Department of Agricultural Biotechnology, Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, India
| | - D Panda
- Department of Biodiversity & Conservation of Natural Resources, Central University of Odisha, Koraput, India
| | - S K Bishi
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - K Chakraborty
- Department of Plant Physiology, ICAR-National Rice Research Institute, Cuttack, India
| | - S K Muthusamy
- Division of Crop Improvement, ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | - S K Lenka
- Department of Plant Biotechnology, Gujarat Biotechnology University, Gujarat, India
| |
Collapse
|
10
|
Regulators of early maize leaf development inferred from transcriptomes of laser capture microdissection (LCM)-isolated embryonic leaf cells. Proc Natl Acad Sci U S A 2022; 119:e2208795119. [PMID: 36001691 PMCID: PMC9436337 DOI: 10.1073/pnas.2208795119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The superior photosynthetic efficiency of C4 leaves over C3 leaves is owing to their unique Kranz anatomy, in which the vein is surrounded by one layer of bundle sheath (BS) cells and one layer of mesophyll (M) cells. Kranz anatomy development starts from three contiguous ground meristem (GM) cells, but its regulators and underlying molecular mechanism are largely unknown. To identify the regulators, we obtained the transcriptomes of 11 maize embryonic leaf cell types from five stages of pre-Kranz cells starting from median GM cells and six stages of pre-M cells starting from undifferentiated cells. Principal component and clustering analyses of transcriptomic data revealed rapid pre-Kranz cell differentiation in the first two stages but slow differentiation in the last three stages, suggesting early Kranz cell fate determination. In contrast, pre-M cells exhibit a more prolonged transcriptional differentiation process. Differential gene expression and coexpression analyses identified gene coexpression modules, one of which included 3 auxin transporter and 18 transcription factor (TF) genes, including known regulators of Kranz anatomy and/or vascular development. In situ hybridization of 11 TF genes validated their expression in early Kranz development. We determined the binding motifs of 15 TFs, predicted TF target gene relationships among the 18 TF and 3 auxin transporter genes, and validated 67 predictions by electrophoresis mobility shift assay. From these data, we constructed a gene regulatory network for Kranz development. Our study sheds light on the regulation of early maize leaf development and provides candidate leaf development regulators for future study.
Collapse
|
11
|
Siadjeu C, Lauterbach M, Kadereit G. Insights into Regulation of C 2 and C 4 Photosynthesis in Amaranthaceae/ Chenopodiaceae Using RNA-Seq. Int J Mol Sci 2021; 22:12120. [PMID: 34830004 PMCID: PMC8624041 DOI: 10.3390/ijms222212120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Amaranthaceae (incl. Chenopodiaceae) shows an immense diversity of C4 syndromes. More than 15 independent origins of C4 photosynthesis, and the largest number of C4 species in eudicots signify the importance of this angiosperm lineage in C4 evolution. Here, we conduct RNA-Seq followed by comparative transcriptome analysis of three species from Camphorosmeae representing related clades with different photosynthetic types: Threlkeldia diffusa (C3), Sedobassia sedoides (C2), and Bassia prostrata (C4). Results show that B. prostrata belongs to the NADP-ME type and core genes encoding for C4 cycle are significantly upregulated when compared with Sed. sedoides and T. diffusa. Sedobassia sedoides and B. prostrata share a number of upregulated C4-related genes; however, two C4 transporters (DIT and TPT) are found significantly upregulated only in Sed. sedoides. Combined analysis of transcription factors (TFs) of the closely related lineages (Camphorosmeae and Salsoleae) revealed that no C3-specific TFs are higher in C2 species compared with C4 species; instead, the C2 species show their own set of upregulated TFs. Taken together, our study indicates that the hypothesis of the C2 photosynthesis as a proxy towards C4 photosynthesis is questionable in Sed. sedoides and more in favour of an independent evolutionary stable state.
Collapse
Affiliation(s)
- Christian Siadjeu
- Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilian University Munich, 80638 Munich, Germany;
| | | | - Gudrun Kadereit
- Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilian University Munich, 80638 Munich, Germany;
| |
Collapse
|
12
|
Abstract
C4 photosynthesis evolved multiple times independently from ancestral C3 photosynthesis in a broad range of flowering land plant families and in both monocots and dicots. The evolution of C4 photosynthesis entails the recruitment of enzyme activities that are not involved in photosynthetic carbon fixation in C3 plants to photosynthesis. This requires a different regulation of gene expression as well as a different regulation of enzyme activities in comparison to the C3 context. Further, C4 photosynthesis relies on a distinct leaf anatomy that differs from that of C3, requiring a differential regulation of leaf development in C4. We summarize recent progress in the understanding of C4-specific features in evolution and metabolic regulation in the context of C4 photosynthesis.
Collapse
Affiliation(s)
- Urte Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; ,
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; ,
| |
Collapse
|
13
|
Hughes TE, Sedelnikova OV, Wu H, Becraft PW, Langdale JA. Redundant SCARECROW genes pattern distinct cell layers in roots and leaves of maize. Development 2019; 146:dev.177543. [PMID: 31235633 PMCID: PMC6679360 DOI: 10.1242/dev.177543] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/13/2019] [Indexed: 01/29/2023]
Abstract
The highly efficient C4 photosynthetic pathway is facilitated by ‘Kranz’ leaf anatomy. In Kranz leaves, closely spaced veins are encircled by concentric layers of photosynthetic bundle sheath (inner) and mesophyll (outer) cells. Here, we demonstrate that, in the C4 monocot maize, Kranz patterning is regulated by redundant function of SCARECROW 1 (ZmSCR1) and a previously uncharacterized homeologue: ZmSCR1h. ZmSCR1 and ZmSCR1h transcripts accumulate in ground meristem cells of developing leaf primordia and in Zmscr1;Zmscr1h mutant leaves, most veins are separated by one rather than two mesophyll cells; many veins have sclerenchyma above and/or below instead of mesophyll cells; and supernumerary bundle sheath cells develop. The mutant defects are unified by compromised mesophyll cell development. In addition to Kranz defects, Zmscr1;Zmscr1h mutants fail to form an organized endodermal layer in the root. Collectively, these data indicate that ZmSCR1 and ZmSCR1h redundantly regulate cell-type patterning in both the leaves and roots of maize. Leaf and root pathways are distinguished, however, by the cell layer in which they operate – mesophyll at a two-cell distance from leaf veins versus endodermis immediately adjacent to root vasculature. Summary: Two duplicated maize SCARECROW genes control the development of the endodermis in roots and the mesophyll in leaves.
Collapse
Affiliation(s)
- Thomas E Hughes
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Olga V Sedelnikova
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Hao Wu
- Genetics, Development, and Cell Biology Department, Iowa State University, Ames, IA 50011, USA
| | - Philip W Becraft
- Genetics, Development, and Cell Biology Department, Iowa State University, Ames, IA 50011, USA
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
14
|
Döring F, Billakurthi K, Gowik U, Sultmanis S, Khoshravesh R, Das Gupta S, Sage TL, Westhoff P. Reporter-based forward genetic screen to identify bundle sheath anatomy mutants in A. thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:984-995. [PMID: 30447112 PMCID: PMC6850095 DOI: 10.1111/tpj.14165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 05/22/2023]
Abstract
The evolution of C4 photosynthesis proceeded stepwise with each small step increasing the fitness of the plant. An important pre-condition for the introduction of a functional C4 cycle is the photosynthetic activation of the C3 bundle sheath by increasing its volume and organelle number. Therefore, to engineer C4 photosynthesis into existing C3 crops, information about genes that control the bundle sheath cell size and organelle content is needed. However, very little information is known about the genes that could be manipulated to create a more C4 -like bundle sheath. To this end, an ethylmethanesulfonate (EMS)-based forward genetic screen was established in the Brassicaceae C3 species Arabidopsis thaliana. To ensure a high-throughput primary screen, the bundle sheath cells of A. thaliana were labeled using a luciferase (LUC68) or by a chloroplast-targeted green fluorescent protein (sGFP) reporter using a bundle sheath specific promoter. The signal strengths of the reporter genes were used as a proxy to search for mutants with altered bundle sheath anatomy. Here, we show that our genetic screen predominantly identified mutants that were primarily affected in the architecture of the vascular bundle, and led to an increase in bundle sheath volume. By using a mapping-by-sequencing approach the genomic segments that contained mutated candidate genes were identified.
Collapse
Affiliation(s)
- Florian Döring
- Institute of Plant Molecular and Developmental BiologyHeinrich‐Heine UniversityUniversitätsstrasse 140225DuesseldorfGermany
| | - Kumari Billakurthi
- Institute of Plant Molecular and Developmental BiologyHeinrich‐Heine UniversityUniversitätsstrasse 140225DuesseldorfGermany
- Cluster of Excellence on Plant Sciences ‘From Complex Traits towards Synthetic Modules’40225 Duesseldorf and50923CologneGermany
| | - Udo Gowik
- Institute of Plant Molecular and Developmental BiologyHeinrich‐Heine UniversityUniversitätsstrasse 140225DuesseldorfGermany
- Department of Biology and Environmental SciencesCarl Von Ossietzky UniversityAmmerlaender Heerstrasse 11426129OldenburgGermany
| | - Stefanie Sultmanis
- Department of Ecology and Evolutionary BiologyThe University of TorontoTorontoONM5S 3B2Canada
| | - Roxana Khoshravesh
- Department of Ecology and Evolutionary BiologyThe University of TorontoTorontoONM5S 3B2Canada
| | - Shipan Das Gupta
- Institute of Plant Molecular and Developmental BiologyHeinrich‐Heine UniversityUniversitätsstrasse 140225DuesseldorfGermany
| | - Tammy L. Sage
- Department of Ecology and Evolutionary BiologyThe University of TorontoTorontoONM5S 3B2Canada
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental BiologyHeinrich‐Heine UniversityUniversitätsstrasse 140225DuesseldorfGermany
- Cluster of Excellence on Plant Sciences ‘From Complex Traits towards Synthetic Modules’40225 Duesseldorf and50923CologneGermany
| |
Collapse
|
15
|
Comparative transcriptomics method to infer gene coexpression networks and its applications to maize and rice leaf transcriptomes. Proc Natl Acad Sci U S A 2019; 116:3091-3099. [PMID: 30718437 DOI: 10.1073/pnas.1817621116] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Time-series transcriptomes of a biological process obtained under different conditions are useful for identifying the regulators of the process and their regulatory networks. However, such data are 3D (gene expression, time, and condition), and there is currently no method that can deal with their full complexity. Here, we developed a method that avoids time-point alignment and normalization between conditions. We applied it to analyze time-series transcriptomes of developing maize leaves under light-dark cycles and under total darkness and obtained eight time-ordered gene coexpression networks (TO-GCNs), which can be used to predict upstream regulators of any genes in the GCNs. One of the eight TO-GCNs is light-independent and likely includes all genes involved in the development of Kranz anatomy, which is a structure crucial for the high efficiency of photosynthesis in C4 plants. Using this TO-GCN, we predicted and experimentally validated a regulatory cascade upstream of SHORTROOT1, a key Kranz anatomy regulator. Moreover, we applied the method to compare transcriptomes from maize and rice leaf segments and identified regulators of maize C4 enzyme genes and RUBISCO SMALL SUBUNIT2 Our study provides not only a powerful method but also novel insights into the regulatory networks underlying Kranz anatomy development and C4 photosynthesis.
Collapse
|
16
|
Kumar D, Kellogg EA. Getting closer: vein density in C 4 leaves. THE NEW PHYTOLOGIST 2019; 221:1260-1267. [PMID: 30368826 DOI: 10.1111/nph.15491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/05/2018] [Indexed: 05/28/2023]
Abstract
Contents Summary 1260 I. Introduction 1260 II. Molecular and genetic mechanisms of C4 leaf venation 1262 III. Conclusions and future perspectives 1266 Acknowledgements 1266 References 1266 SUMMARY: C4 grasses are major contributors to the world's food supply. Their highly efficient method of carbon fixation is a unique adaptation that combines close vein spacing and distinct photosynthetic cell types. Despite its importance, the molecular genetic basis of C4 leaf development is still poorly understood. Here we summarize current knowledge of leaf venation and review recent progress in understanding molecular and genetic regulation of vascular patterning events in C4 plants. Evidence points to the interplay of auxin, brassinosteroids, SHORTROOT/SCARECROW and INDETERMINATE DOMAIN transcription factors. Identification and functional characterization of candidate regulators acting early in vascular development will be essential for further progress in understanding the precise regulation of these processes.
Collapse
Affiliation(s)
- Dhinesh Kumar
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | | |
Collapse
|
17
|
Cui X, Zhang Z, Wang Y, Wu J, Han X, Gu X, Lu T. TWI1 regulates cell-to-cell movement of OSH15 to control leaf cell fate. THE NEW PHYTOLOGIST 2019; 221:326-340. [PMID: 30151833 DOI: 10.1111/nph.15390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
Cell pattern formation in plant leaves has attracted much attention from both plant biologists and breeders. However, in rice, the molecular mechanism remains unclear. Here, we describe the isolation and functional characterization of TWISTED-LEAF1 (TWI1), a critical gene involved in the development of the mestome sheath, vascular bundle sheath, interveinal mesophyll and sclerenchyma in rice leaves. Mutant twi1 plants have twisted leaves which might be caused by the compromised development and disordered patterning of bundle sheath, sclerenchyma and interveinal mesophyll cells. Expression of TWI1 can functionally rescue these mutant phenotypes. TWI1 encodes a transcription factor binding protein that interacts with OSH15, a class I KNOTTED1-like homeobox (KNOX) transcription factor. The cell-to-cell trafficking of OSH15 is restricted through its interaction with TWI1. Knockout or knockdown of OSH15 in twi1 rescues the twisted leaf phenotype. These studies reveal a key factor controlling cell pattern formation in rice leaves.
Collapse
Affiliation(s)
- Xuean Cui
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanwei Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
18
|
Cui X, Cen H, Guan C, Tian D, Liu H, Zhang Y. Photosynthesis capacity diversified by leaf structural and physiological regulation between upland and lowland switchgrass in different growth stages. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 47:38-49. [PMID: 31578165 DOI: 10.1071/fp19086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Understanding and enhancing switchgrass (Panicum virgatum L.) photosynthesis will help to improve yield and quality for bio-industrial applications on cellulosic biofuel production. In the present study, leaf anatomical traits and physiological characteristics related to photosynthetic capacity of both lowland and upland switchgrass were recorded from four varieties across the vegetative, elongation and reproductive growth stages. Compared with the upland varieties, the lowland switchgrass showed 37-59, 22-64 and 27-73% higher performance on height, stem and leaf over all three growth stages. Leaf anatomical traits indicated that the leaves of lowland varieties provided more space for carbon assimilation and transportation caused by enhanced cell proliferation with more bundles sheath cells and larger contact areas between the bundle sheath and mesophyll cells (CAMB), which lead to the 32-72% higher photosynthetic capacity found in the lowland varieties during vegetative and elongation growth. However, photosynthetic capacity became 22-51% higher in the upland varieties during the reproductive stage, which is attributed to more photosynthetic pigment. In conclusion, lowland varieties gain a photosynthetic advantage with enhanced bundle sheath cell proliferation, while the upland varieties preserved more photosynthetic pigments. Our study provides new insights for improving the yield in crops by enhancing photosynthesis with anatomical and physiological strategies.
Collapse
Affiliation(s)
- Xin Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huifang Cen
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Cong Guan
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Danyang Tian
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huayue Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China; and Corresponding author.
| |
Collapse
|
19
|
Sedelnikova OV, Hughes TE, Langdale JA. Understanding the Genetic Basis of C 4 Kranz Anatomy with a View to Engineering C 3 Crops. Annu Rev Genet 2018; 52:249-270. [PMID: 30208293 DOI: 10.1146/annurev-genet-120417-031217] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the most remarkable examples of convergent evolution is the transition from C3 to C4 photosynthesis, an event that occurred on over 60 independent occasions. The evolution of C4 is particularly noteworthy because of the complexity of the developmental and metabolic changes that took place. In most cases, compartmentalized metabolic reactions were facilitated by the development of a distinct leaf anatomy known as Kranz. C4 Kranz anatomy differs from ancestral C3 anatomy with respect to vein spacing patterns across the leaf, cell-type specification around veins, and cell-specific organelle function. Here we review our current understanding of how Kranz anatomy evolved and how it develops, with a focus on studies that are dissecting the underlying genetic mechanisms. This research field has gained prominence in recent years because understanding the genetic regulation of Kranz may enable the C3-to-C4 transition to be engineered, an endeavor that would significantly enhance crop productivity.
Collapse
Affiliation(s)
- Olga V Sedelnikova
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; , ,
| | - Thomas E Hughes
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; , ,
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; , ,
| |
Collapse
|
20
|
Coelho CP, Huang P, Lee DY, Brutnell TP. Making Roots, Shoots, and Seeds: IDD Gene Family Diversification in Plants. TRENDS IN PLANT SCIENCE 2018; 23:66-78. [PMID: 29056440 DOI: 10.1016/j.tplants.2017.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 05/27/2023]
Abstract
The INDETERMINATE DOMAIN (IDD) family of transcriptional regulators controls a diversity of processes in a variety of plant tissues and organs and at different stages of plant development. Several recent reports describe the genetic characterization of IDD family members, including those that are likely to regulate C4 kranz anatomy, with implications for the engineering of C4 traits into C3 crops. In this review we summarize the reported functions of IDD members in the regulation of metabolic sensing and leaf, root, seed, and inflorescence development. We also provide an IDD phylogeny for the grasses and suggest future directions and strategies to define the function of IDDs in C4 photosynthesis and other developmental processes.
Collapse
Affiliation(s)
- Carla P Coelho
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA. http://twitter.com/coelhopcarla%20
| | - Pu Huang
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Dong-Yeon Lee
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Thomas P Brutnell
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA; Laboratory website: https://www.brutnelllab.org/.
| |
Collapse
|
21
|
Huang CF, Yu CP, Wu YH, Lu MYJ, Tu SL, Wu SH, Shiu SH, Ku MSB, Li WH. Elevated auxin biosynthesis and transport underlie high vein density in C 4 leaves. Proc Natl Acad Sci U S A 2017; 114:E6884-E6891. [PMID: 28761000 PMCID: PMC5565467 DOI: 10.1073/pnas.1709171114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
High vein density, a distinctive trait of C4 leaves, is central to both C3-to-C4 evolution and conversion of C3 to C4-like crops. We tested the hypothesis that high vein density in C4 leaves is due to elevated auxin biosynthesis and transport in developing leaves. Up-regulation of genes in auxin biosynthesis pathways and higher auxin content were found in developing C4 leaves compared with developing C3 leaves. The same observation held for maize foliar (C4) and husk (C3) leaf primordia. Moreover, auxin content and vein density were increased in loss-of-function mutants of Arabidopsis MYC2, a suppressor of auxin biosynthesis. Treatment with an auxin biosynthesis inhibitor or an auxin transport inhibitor led to much fewer veins in new leaves. Finally, both Arabidopsis thaliana auxin efflux transporter pin1 and influx transporter lax2 mutants showed reduced vein numbers. Thus, development of high leaf vein density requires elevated auxin biosynthesis and transport.
Collapse
Affiliation(s)
- Chi-Fa Huang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Ping Yu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yeh-Hua Wu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Long Tu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824;
| | - Maurice S B Ku
- Department of Bioagricultural Science, National Chiayi University, Chiayi 600, Taiwan;
- School of Biological Sciences, Washington State University, Pullman, WA 99164
| | - Wen-Hsiung Li
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan;
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637
| |
Collapse
|
22
|
Wang P, Karki S, Biswal AK, Lin HC, Dionora MJ, Rizal G, Yin X, Schuler ML, Hughes T, Fouracre JP, Jamous BA, Sedelnikova O, Lo SF, Bandyopadhyay A, Yu SM, Kelly S, Quick WP, Langdale JA. Candidate regulators of Early Leaf Development in Maize Perturb Hormone Signalling and Secondary Cell Wall Formation When Constitutively Expressed in Rice. Sci Rep 2017; 7:4535. [PMID: 28674432 PMCID: PMC5495811 DOI: 10.1038/s41598-017-04361-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/15/2017] [Indexed: 12/22/2022] Open
Abstract
All grass leaves are strap-shaped with a series of parallel veins running from base to tip, but the distance between each pair of veins, and the cell-types that develop between them, differs depending on whether the plant performs C3 or C4 photosynthesis. As part of a multinational effort to introduce C4 traits into rice to boost crop yield, candidate regulators of C4 leaf anatomy were previously identified through an analysis of maize leaf transcriptomes. Here we tested the potential of 60 of those candidate genes to alter leaf anatomy in rice. In each case, transgenic rice lines were generated in which the maize gene was constitutively expressed. Lines grouped into three phenotypic classes: (1) indistinguishable from wild-type; (2) aberrant shoot and/or root growth indicating possible perturbations to hormone homeostasis; and (3) altered secondary cell wall formation. One of the genes in class 3 defines a novel monocot-specific family. None of the genes were individually sufficient to induce C4-like vein patterning or cell-type differentiation in rice. A better understanding of gene function in C4 plants is now needed to inform more sophisticated engineering attempts to alter leaf anatomy in C3 plants.
Collapse
Affiliation(s)
- Peng Wang
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK
| | - Shanta Karki
- International Rice Research Institute, Los Banos, 4030, Laguna, Philippines.,Ministry of Agricultural Development, Government of Nepal, Singhadurbar, Kathmandu, Nepal
| | - Akshaya K Biswal
- International Rice Research Institute, Los Banos, 4030, Laguna, Philippines.,Department of Biology, University North Carolina, Chapel Hill, NC, 27599, USA
| | - Hsiang-Chun Lin
- International Rice Research Institute, Los Banos, 4030, Laguna, Philippines
| | | | - Govinda Rizal
- International Rice Research Institute, Los Banos, 4030, Laguna, Philippines.,Baniyatar-220, Tokha-12, Kathmandu, Nepal
| | - Xiaojia Yin
- International Rice Research Institute, Los Banos, 4030, Laguna, Philippines
| | - Mara L Schuler
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK.,Department of Biology, Heinrich Heine University, D-40225, Düsseldorf, Germany
| | - Tom Hughes
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK
| | - Jim P Fouracre
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK.,Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Basel Abu Jamous
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK
| | - Olga Sedelnikova
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK
| | - Shuen-Fang Lo
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | | | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK
| | - W Paul Quick
- International Rice Research Institute, Los Banos, 4030, Laguna, Philippines
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK.
| |
Collapse
|
23
|
Sage RF. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of Fame. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4039-4056. [PMID: 28110278 DOI: 10.1093/jxb/erx005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Fifty years ago, the C4 photosynthetic pathway was first characterized. In the subsequent five decades, much has been learned about C4 plants, such that it is now possible to place nearly all C4 species into their respective evolutionary lineages. Sixty-one independent lineages of C4 photosynthesis are identified, with additional, ancillary C4 origins possible in 12 of these principal lineages. The lineages produced ~8100 C4 species (5044 grasses, 1322 sedges, and 1777 eudicots). Using midpoints of stem and crown node dates in their respective phylogenies, the oldest and most speciose C4 lineage is the grass lineage Chloridoideae, estimated to be near 30 million years old. Most C4 lineages are estimated to be younger than 15 million years. Older C4 lineages tend to be more speciose, while those younger than 7 million years have <43 species each. To further highlight C4 photosynthesis for a 50th anniversary snapshot, a Hall of Fame comprised of the 40 most significant C4 species is presented. Over the next 50 years, preservation of the Earth's C4 diversity is a concern, largely because of habitat loss due to elevated CO2 effects, invasive species, and expanded agricultural activities. Ironically, some members of the C4 Hall of Fame are leading threats to the natural C4 flora due to their association with human activities on landscapes where most C4 plants occur.
Collapse
Affiliation(s)
- Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5R3C6
| |
Collapse
|
24
|
Arrivault S, Obata T, Szecówka M, Mengin V, Guenther M, Hoehne M, Fernie AR, Stitt M. Metabolite pools and carbon flow during C4 photosynthesis in maize: 13CO2 labeling kinetics and cell type fractionation. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:283-298. [PMID: 27834209 PMCID: PMC5853532 DOI: 10.1093/jxb/erw414] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/18/2016] [Indexed: 05/17/2023]
Abstract
Worldwide efforts to engineer C4 photosynthesis into C3 crops require a deep understanding of how this complex pathway operates. CO2 is incorporated into four-carbon metabolites in the mesophyll, which move to the bundle sheath where they are decarboxylated to concentrate CO2 around RuBisCO. We performed dynamic 13CO2 labeling in maize to analyze C flow in C4 photosynthesis. The overall labeling kinetics reflected the topology of C4 photosynthesis. Analyses of cell-specific labeling patterns after fractionation to enrich bundle sheath and mesophyll cells revealed concentration gradients to drive intercellular diffusion of malate, but not pyruvate, in the major CO2-concentrating shuttle. They also revealed intercellular concentration gradients of aspartate, alanine, and phosphenolpyruvate to drive a second phosphoenolpyruvate carboxykinase (PEPCK)-type shuttle, which carries 10-14% of the carbon into the bundle sheath. Gradients also exist to drive intercellular exchange of 3-phosphoglycerate and triose-phosphate. There is rapid carbon exchange between the Calvin-Benson cycle and the CO2-concentrating shuttle, equivalent to ~10% of carbon gain. In contrast, very little C leaks from the large pools of metabolites in the C concentration shuttle into respiratory metabolism. We postulate that the presence of multiple shuttles, alongside carbon transfer between them and the Calvin-Benson cycle, confers great flexibility in C4 photosynthesis.
Collapse
Affiliation(s)
- Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Marek Szecówka
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Manuela Guenther
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Melanie Hoehne
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
25
|
Rao X, Dixon RA. The Differences between NAD-ME and NADP-ME Subtypes of C 4 Photosynthesis: More than Decarboxylating Enzymes. FRONTIERS IN PLANT SCIENCE 2016; 7:1525. [PMID: 27790235 PMCID: PMC5061750 DOI: 10.3389/fpls.2016.01525] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/28/2016] [Indexed: 05/03/2023]
Abstract
As an adaptation to changing climatic conditions that caused high rates of photorespiration, C4 plants have evolved to display higher photosynthetic efficiency than C3 plants under elevated temperature, high light intensities, and drought. The C4 plants independently evolved more than 60 times in 19 families of angiosperms to establish similar but not uniform C4 mechanisms to concentrate CO2 around the carboxylating enzyme Rubisco (ribulose bisphosphate carboxylase oxygenase). C4 photosynthesis is divided into at least two basic biochemical subtypes based on the primary decarboxylating enzymes, NAD-dependent malic enzyme (NAD-ME) and NADP-dependent malic enzyme (NADP-ME). The multiple polygenetic origins of these subtypes raise questions about the association of C4 variation between biochemical subtypes and diverse lineages. This review addresses the differences in evolutionary scenario, leaf anatomy, and especially C4 metabolic flow, C4 transporters, and cell-specific function deduced from recently reported cell-specific transcriptomic, proteomic, and metabolic analyses of NAD-ME and NADP-ME subtypes. Current omic analysis has revealed the extent to which component abundances differ between the two biochemical subtypes, leading to a better understanding of C4 photosynthetic mechanisms in NAD-ME and NADP-ME subtypes.
Collapse
Affiliation(s)
- Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North TexasDenton, TX, USA
- BioEnergy Science Center, US Department of EnergyOak Ridge, TN, USA
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North TexasDenton, TX, USA
- BioEnergy Science Center, US Department of EnergyOak Ridge, TN, USA
| |
Collapse
|
26
|
Schuler ML, Mantegazza O, Weber APM. Engineering C4 photosynthesis into C3 chassis in the synthetic biology age. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:51-65. [PMID: 26945781 DOI: 10.1111/tpj.13155] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 05/21/2023]
Abstract
C4 photosynthetic plants outperform C3 plants in hot and arid climates. By concentrating carbon dioxide around Rubisco C4 plants drastically reduce photorespiration. The frequency with which plants evolved C4 photosynthesis independently challenges researchers to unravel the genetic mechanisms underlying this convergent evolutionary switch. The conversion of C3 crops, such as rice, towards C4 photosynthesis is a long-standing goal. Nevertheless, at the present time, in the age of synthetic biology, this still remains a monumental task, partially because the C4 carbon-concentrating biochemical cycle spans two cell types and thus requires specialized anatomy. Here we review the advances in understanding the molecular basis and the evolution of the C4 trait, advances in the last decades that were driven by systems biology methods. In this review we emphasise essential genetic engineering tools needed to translate our theoretical knowledge into engineering approaches. With our current molecular understanding of the biochemical C4 pathway, we propose a simplified rational engineering model exclusively built with known C4 metabolic components. Moreover, we discuss an alternative approach to the progressing international engineering attempts that would combine targeted mutagenesis and directed evolution.
Collapse
Affiliation(s)
- Mara L Schuler
- Institute for Plant Molecular and Developmental Biology, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Otho Mantegazza
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225, Düsseldorf, Germany
| |
Collapse
|
27
|
Sage RF. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of Fame. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4039-56. [PMID: 27053721 DOI: 10.1093/jxb/erw156] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Fifty years ago, the C4 photosynthetic pathway was first characterized. In the subsequent five decades, much has been learned about C4 plants, such that it is now possible to place nearly all C4 species into their respective evolutionary lineages. Sixty-one independent lineages of C4 photosynthesis are identified, with additional, ancillary C4 origins possible in 12 of these principal lineages. The lineages produced ~8100 C4 species (5044 grasses, 1322 sedges, and 1777 eudicots). Using midpoints of stem and crown node dates in their respective phylogenies, the oldest and most speciose C4 lineage is the grass lineage Chloridoideae, estimated to be near 30 million years old. Most C4 lineages are estimated to be younger than 15 million years. Older C4 lineages tend to be more speciose, while those younger than 7 million years have <43 species each. To further highlight C4 photosynthesis for a 50th anniversary snapshot, a Hall of Fame comprised of the 40 most significant C4 species is presented. Over the next 50 years, preservation of the Earth's C4 diversity is a concern, largely because of habitat loss due to elevated CO2 effects, invasive species, and expanded agricultural activities. Ironically, some members of the C4 Hall of Fame are leading threats to the natural C4 flora due to their association with human activities on landscapes where most C4 plants occur.
Collapse
Affiliation(s)
- Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5R3C6
| |
Collapse
|
28
|
Wang P, Vlad D, Langdale JA. Finding the genes to build C4 rice. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:44-50. [PMID: 27055266 DOI: 10.1016/j.pbi.2016.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
Rice, a C3 crop, is a staple food for more than half of the world's population, with most consumers living in developing countries. Engineering C4 photosynthetic traits into rice is increasingly suggested as a way to meet the 50% yield increase that is predicted to be needed by 2050. Advances in genome-wide deep-sequencing, gene discovery and genome editing platforms have brought the possibility of engineering a C3 to C4 conversion closer than ever before. Because C4 plants have evolved independently multiple times from C3 origins, it is probably that key genes and gene regulatory networks that regulate C4 were recruited from C3 ancestors. In the past five years there have been over 20 comparative transcriptomic studies published that aimed to identify these recruited C4 genes and regulatory mechanisms. Here we present an overview of what we have learned so far and preview the efforts still needed to provide a practical blueprint for building C4 rice.
Collapse
Affiliation(s)
- Peng Wang
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | - Daniela Vlad
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
29
|
Bräutigam A, Gowik U. Photorespiration connects C 3and C 4photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2953-62. [PMID: 26912798 DOI: 10.1093/jxb/erw056] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
30
|
Adwy W, Laxa M, Peterhansel C. A simple mechanism for the establishment of C₂-specific gene expression in Brassicaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1231-1238. [PMID: 26603271 DOI: 10.1111/tpj.13084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
The transition of C3 , via C2 towards C4 photosynthesis is an important example of stepwise evolution of a complex genetic trait. A common feature that was gradually emphasized during this trajectory is the evolution of a CO2 concentration mechanism around Rubisco. In C2 plants, this mechanism is based on tissue-specific accumulation of glycine decarboxylase (GDC) in bundle sheath (BS) cells, relative to global expression in the cells of C3 leaves. This limits photorespiratory CO2 release to BS cells. Because BS cells are surrounded by photosynthetically active mesophyll cells, this arrangement enhances the probability of re-fixation of CO2 . The restriction of GDC to BS cells was mainly achieved by confinement of its P-subunit (GLDP). Here, we provide a mechanism for the establishment of C2 -type gene expression by studying the upstream sequences of C3 Gldp genes in Arabidopsis thaliana. Deletion of 59 bp in the upstream region of AtGldp1 restricted expression of a reporter gene to BS cells and the vasculature without affecting diurnal variation. This region was named the 'M box'. Similar results were obtained for the AtGldp2 gene. Fusion of the M box to endogenous or exogenous promoters supported mesophyll expression. Nucleosome densities at the M box were low, suggesting an open chromatin structure facilitating transcription factor binding. In silico analysis defined a possible consensus for the element that was conserved across the Brassicaceae, but not in Moricandia nitens, a C2 plant. Collective results provide evidence that a simple mutation is sufficient for establishment of C2 -specific gene expression in a C3 plant.
Collapse
Affiliation(s)
- Waly Adwy
- Institut für Botanik, Leibniz Universität Hannover, Herrenhäuserstrasse 2, 30419, Hannover, Germany
- Department of Genetics, Cairo University, 13 Gamaa Street, 12619, Giza, Egypt
| | - Miriam Laxa
- Institut für Botanik, Leibniz Universität Hannover, Herrenhäuserstrasse 2, 30419, Hannover, Germany
| | - Christoph Peterhansel
- Institut für Botanik, Leibniz Universität Hannover, Herrenhäuserstrasse 2, 30419, Hannover, Germany
| |
Collapse
|
31
|
Rizal G, Thakur V, Dionora J, Karki S, Wanchana S, Acebron K, Larazo N, Garcia R, Mabilangan A, Montecillo F, Danila F, Mogul R, Pablico P, Leung H, Langdale JA, Sheehy J, Kelly S, Quick WP. Two forward genetic screens for vein density mutants in sorghum converge on a cytochrome P450 gene in the brassinosteroid pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:257-66. [PMID: 26333774 DOI: 10.1111/tpj.13007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/30/2015] [Accepted: 08/11/2015] [Indexed: 05/03/2023]
Abstract
The specification of vascular patterning in plants has interested plant biologists for many years. In the last decade a new context has emerged for this interest. Specifically, recent proposals to engineer C(4) traits into C(3) plants such as rice require an understanding of how the distinctive venation pattern in the leaves of C(4) plants is determined. High vein density with Kranz anatomy, whereby photosynthetic cells are arranged in encircling layers around vascular bundles, is one of the major traits that differentiate C(4) species from C(3) species. To identify genetic factors that specify C(4) leaf anatomy, we generated ethyl methanesulfonate- and γ-ray-mutagenized populations of the C(4) species sorghum (Sorghum bicolor), and screened for lines with reduced vein density. Two mutations were identified that conferred low vein density. Both mutations segregated in backcrossed F(2) populations as homozygous recessive alleles. Bulk segregant analysis using next-generation sequencing revealed that, in both cases, the mutant phenotype was associated with mutations in the CYP90D2 gene, which encodes an enzyme in the brassinosteroid biosynthesis pathway. Lack of complementation in allelism tests confirmed this result. These data indicate that the brassinosteroid pathway promotes high vein density in the sorghum leaf, and suggest that differences between C(4) and C(3) leaf anatomy may arise in part through differential activity of this pathway in the two leaf types.
Collapse
Affiliation(s)
- Govinda Rizal
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Vivek Thakur
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Jacqueline Dionora
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Shanta Karki
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Samart Wanchana
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Kelvin Acebron
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Nikki Larazo
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Richard Garcia
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Abigail Mabilangan
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Florencia Montecillo
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Florence Danila
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Reychelle Mogul
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Paquito Pablico
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Hei Leung
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - John Sheehy
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- 12 Barley Way, Marlow, SL7 2UG, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - William Paul Quick
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Department of Plant and Animal Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
32
|
Burgess SJ, Hibberd JM. Insights into C4 metabolism from comparative deep sequencing. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:138-144. [PMID: 26051034 DOI: 10.1016/j.pbi.2015.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/06/2015] [Accepted: 05/16/2015] [Indexed: 06/04/2023]
Abstract
C4 photosynthesis suppresses the oxygenation activity of Ribulose Bisphosphate Carboxylase Oxygenase and so limits photorespiration. Although highly complex, it is estimated to have evolved in 66 plant lineages, with the vast majority lacking sequenced genomes. Transcriptomics has recently initiated assessments of the degree to which transcript abundance differs between C3 and C4 leaves, identified novel components of C4 metabolism, and also led to mathematical models explaining the repeated evolution of this complex phenotype. Evidence is accumulating that this complex and convergent phenotype is partly underpinned by parallel evolution of structural genes, but also regulatory elements in both cis and trans. Furthermore, it appears that initial events associated with acquisition of C4 traits likely represent evolutionary exaptations related to non-photosynthetic processes.
Collapse
Affiliation(s)
- Steven J Burgess
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
33
|
Transcriptome dynamics of developing maize leaves and genomewide prediction of cis elements and their cognate transcription factors. Proc Natl Acad Sci U S A 2015; 112:E2477-86. [PMID: 25918418 DOI: 10.1073/pnas.1500605112] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Maize is a major crop and a model plant for studying C4 photosynthesis and leaf development. However, a genomewide regulatory network of leaf development is not yet available. This knowledge is useful for developing C3 crops to perform C4 photosynthesis for enhanced yields. Here, using 22 transcriptomes of developing maize leaves from dry seeds to 192 h post imbibition, we studied gene up- and down-regulation and functional transition during leaf development and inferred sets of strongly coexpressed genes. More significantly, we developed a method to predict transcription factor binding sites (TFBSs) and their cognate transcription factors (TFs) using genomic sequence and transcriptomic data. The method requires not only evolutionary conservation of candidate TFBSs and sets of strongly coexpressed genes but also that the genes in a gene set share the same Gene Ontology term so that they are involved in the same biological function. In addition, we developed another method to predict maize TF-TFBS pairs using known TF-TFBS pairs in Arabidopsis or rice. From these efforts, we predicted 1,340 novel TFBSs and 253 new TF-TFBS pairs in the maize genome, far exceeding the 30 TF-TFBS pairs currently known in maize. In most cases studied by both methods, the two methods gave similar predictions. In vitro tests of 12 predicted TF-TFBS interactions showed that our methods perform well. Our study has significantly expanded our knowledge on the regulatory network involved in maize leaf development.
Collapse
|
34
|
Offermann S, Friso G, Doroshenk KA, Sun Q, Sharpe RM, Okita TW, Wimmer D, Edwards GE, van Wijk KJ. Developmental and Subcellular Organization of Single-Cell C₄ Photosynthesis in Bienertia sinuspersici Determined by Large-Scale Proteomics and cDNA Assembly from 454 DNA Sequencing. J Proteome Res 2015; 14:2090-108. [PMID: 25772754 DOI: 10.1021/pr5011907] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Kranz C4 species strictly depend on separation of primary and secondary carbon fixation reactions in different cell types. In contrast, the single-cell C4 (SCC4) species Bienertia sinuspersici utilizes intracellular compartmentation including two physiologically and biochemically different chloroplast types; however, information on identity, localization, and induction of proteins required for this SCC4 system is currently very limited. In this study, we determined the distribution of photosynthesis-related proteins and the induction of the C4 system during development by label-free proteomics of subcellular fractions and leaves of different developmental stages. This was enabled by inferring a protein sequence database from 454 sequencing of Bienertia cDNAs. Large-scale proteome rearrangements were observed as C4 photosynthesis developed during leaf maturation. The proteomes of the two chloroplasts are different with differential accumulation of linear and cyclic electron transport components, primary and secondary carbon fixation reactions, and a triose-phosphate shuttle that is shared between the two chloroplast types. This differential protein distribution pattern suggests the presence of a mRNA or protein-sorting mechanism for nuclear-encoded, chloroplast-targeted proteins in SCC4 species. The combined information was used to provide a comprehensive model for NAD-ME type carbon fixation in SCC4 species.
Collapse
Affiliation(s)
- Sascha Offermann
- †Institute of Botany, Leibniz University, Herrenhaeuser Strasse 2, Hannover 30419, Germany
| | - Giulia Friso
- ‡Department of Plant Biology, Cornell University, 332 Emerson Hall, Ithaca, New York 14853, United States
| | - Kelly A Doroshenk
- §Institute of Biological Chemistry, Washington State University, 299 Clark Hall, Pullman, Washington 99164, United States
| | - Qi Sun
- ∥Computational Biology Service Unit, Cornell University, 618 Rhodes Hall, Ithaca, New York 14853, United States
| | - Richard M Sharpe
- ⊥School of Biological Science, Washington State University, 303 Heald Hall, Pullman, Washington 99164, United States
| | - Thomas W Okita
- §Institute of Biological Chemistry, Washington State University, 299 Clark Hall, Pullman, Washington 99164, United States
| | - Diana Wimmer
- †Institute of Botany, Leibniz University, Herrenhaeuser Strasse 2, Hannover 30419, Germany
| | - Gerald E Edwards
- ⊥School of Biological Science, Washington State University, 303 Heald Hall, Pullman, Washington 99164, United States
| | - Klaas J van Wijk
- ‡Department of Plant Biology, Cornell University, 332 Emerson Hall, Ithaca, New York 14853, United States
| |
Collapse
|
35
|
Sage RF, Khoshravesh R, Sage TL. From proto-Kranz to C4 Kranz: building the bridge to C4 photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3341-56. [PMID: 24803502 DOI: 10.1093/jxb/eru180] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this review, we examine how the specialized "Kranz" anatomy of C4 photosynthesis evolved from C3 ancestors. Kranz anatomy refers to the wreath-like structural traits that compartmentalize the biochemistry of C4 photosynthesis and enables the concentration of CO2 around Rubisco. A simplified version of Kranz anatomy is also present in the species that utilize C2 photosynthesis, where a photorespiratory glycine shuttle concentrates CO2 into an inner bundle-sheath-like compartment surrounding the vascular tissue. C2 Kranz is considered to be an intermediate stage in the evolutionary development of C4 Kranz, based on the intermediate branching position of C2 species in 14 evolutionary lineages of C4 photosynthesis. In the best-supported model of C4 evolution, Kranz anatomy in C2 species evolved from C3 ancestors with enlarged bundle sheath cells and high vein density. Four independent lineages have been identified where C3 sister species of C2 plants exhibit an increase in organelle numbers in the bundle sheath and enlarged bundle sheath cells. Notably, in all of these species, there is a pronounced shift of mitochondria to the inner bundle sheath wall, forming an incipient version of the C2 type of Kranz anatomy. This incipient version of C2 Kranz anatomy is termed proto-Kranz, and is proposed to scavenge photorespiratory CO2. By doing so, it may provide fitness benefits in hot environments, and thus represent a critical first stage of the evolution of both the C2 and C4 forms of Kranz anatomy.
Collapse
Affiliation(s)
- Rowan F Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, On M5S3B2 Canada
| | - Roxana Khoshravesh
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, On M5S3B2 Canada
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, On M5S3B2 Canada
| |
Collapse
|
36
|
Sheth BP, Thaker VS. Plant systems biology: insights, advances and challenges. PLANTA 2014; 240:33-54. [PMID: 24671625 DOI: 10.1007/s00425-014-2059-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/06/2014] [Indexed: 05/20/2023]
Abstract
Plants dwelling at the base of biological food chain are of fundamental significance in providing solutions to some of the most daunting ecological and environmental problems faced by our planet. The reductionist views of molecular biology provide only a partial understanding to the phenotypic knowledge of plants. Systems biology offers a comprehensive view of plant systems, by employing a holistic approach integrating the molecular data at various hierarchical levels. In this review, we discuss the basics of systems biology including the various 'omics' approaches and their integration, the modeling aspects and the tools needed for the plant systems research. A particular emphasis is given to the recent analytical advances, updated published examples of plant systems biology studies and the future trends.
Collapse
Affiliation(s)
- Bhavisha P Sheth
- Department of Biosciences, Centre for Advanced Studies in Plant Biotechnology and Genetic Engineering, Saurashtra University, Rajkot, 360005, Gujarat, India,
| | | |
Collapse
|
37
|
Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu XG, Kellogg E, Van Eck J. Setaria viridis: a model for C4 photosynthesis. THE PLANT CELL 2010; 22:2537-2544. [PMID: 20693355 DOI: 10.1007/978-3-319-45105-3_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
C(4) photosynthesis drives productivity in several major food crops and bioenergy grasses, including maize (Zea mays), sugarcane (Saccharum officinarum), sorghum (Sorghum bicolor), Miscanthus x giganteus, and switchgrass (Panicum virgatum). Gains in productivity associated with C(4) photosynthesis include improved water and nitrogen use efficiencies. Thus, engineering C(4) traits into C(3) crops is an attractive target for crop improvement. However, the lack of a small, rapid cycling genetic model system to study C(4) photosynthesis has limited progress in dissecting the regulatory networks underlying the C(4) syndrome. Setaria viridis is a member of the Panicoideae clade and is a close relative of several major feed, fuel, and bioenergy grasses. It is a true diploid with a relatively small genome of ~510 Mb. Its short stature, simple growth requirements, and rapid life cycle will greatly facilitate genetic studies of the C(4) grasses. Importantly, S. viridis uses an NADP-malic enzyme subtype C(4) photosynthetic system to fix carbon and therefore is a potentially powerful model system for dissecting C(4) photosynthesis. Here, we summarize some of the recent advances that promise greatly to accelerate the use of S. viridis as a genetic system. These include our recent successful efforts at regenerating plants from seed callus, establishing a transient transformation system, and developing stable transformation.
Collapse
Affiliation(s)
- Thomas P Brutnell
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | | | | | | | |
Collapse
|