1
|
Deng Y, Deng X, Zhao J, Ning S, Gu A, Chen Q, Qu Y. Revealing the Complete Bispecific Phosphatase Genes (DUSPs) across the Genome and Investigating the Expression Patterns of GH_A11G3500 Resistance against Verticillium wilt. Int J Mol Sci 2024; 25:4500. [PMID: 38674085 PMCID: PMC11050305 DOI: 10.3390/ijms25084500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
DUSPs, a diverse group of protein phosphatases, play a pivotal role in orchestrating cellular growth and development through intricate signaling pathways. Notably, they actively participate in the MAPK pathway, which governs crucial aspects of plant physiology, including growth regulation, disease resistance, pest resistance, and stress response. DUSP is a key enzyme, and it is the enzyme that limits the rate of cell metabolism. At present, complete understanding of the DUSP gene family in cotton and its specific roles in resistance to Verticillium wilt (VW) remains elusive. To address this knowledge gap, we conducted a comprehensive identification and analysis of four key cotton species: Gossypium arboreum, Gossypium barbadense, Gossypium hirsutum, and Gossypium raimondii. The results revealed the identification of a total of 120 DUSP genes in the four cotton varieties, which were categorized into six subgroups and randomly distributed at both ends of 26 chromosomes, predominantly localized within the nucleus. Our analysis demonstrated that closely related DUSP genes exhibited similarities in terms of the conserved motif composition and gene structure. A promoter analysis performed on the GhDUSP gene promoter revealed the presence of several cis-acting elements, which are associated with abiotic and biotic stress responses, as well as hormone signaling. A tissue expression pattern analysis demonstrated significant variations in GhDUSP gene expression under different stress conditions, with roots exhibiting the highest levels, followed by stems and leaves. In terms of tissue-specific detection, petals, leaves, stems, stamens, and receptacles exhibited higher expression levels of the GhDUSP gene. The gene expression analysis results for GhDUSPs under stress suggest that DUSP genes may have a crucial role in the cotton response to stress in cotton. Through Virus-Induced Gene Silencing (VIGS) experiments, the silencing of the target gene significantly reduced the resistance efficiency of disease-resistant varieties against Verticillium wilt (VW). Consequently, we conclude that GH_A11G3500-mediated bispecific phosphorylated genes may serve as key regulators in the resistance of G. hirsutum to Verticillium wilt (VW). This study presents a comprehensive structure designed to provide an in-depth understanding of the potential biological functions of cotton, providing a strong foundation for further research into molecular breeding and resistance to plant pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanying Qu
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Y.D.); (X.D.); (J.Z.); (S.N.); (A.G.); (Q.C.)
| |
Collapse
|
2
|
Yu H, Teng Z, Liu B, Lv J, Chen Y, Qin Z, Peng Y, Meng S, He Y, Duan M, Zhang J, Ye N. Transcription factor OsMYB30 increases trehalose content to inhibit α-amylase and seed germination at low temperature. PLANT PHYSIOLOGY 2024; 194:1815-1833. [PMID: 38057158 DOI: 10.1093/plphys/kiad650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023]
Abstract
Low-temperature germination (LTG) is an important agronomic trait for direct-seeding cultivation of rice (Oryza sativa). Both OsMYB30 and OsTPP1 regulate the cold stress response in rice, but the function of OsMYB30 and OsTPP1 in regulating LTG and the underlying molecular mechanism remains unknown. Employing transcriptomics and functional studies revealed a sugar signaling pathway that regulates seed germination in response to low temperature (LT). Expression of OsMYB30 and OsTPP1 was induced by LT during seed germination, and overexpressing either OsMYB30 or OsTPP1 delayed seed germination and increased sensitivity to LT during seed germination. Transcriptomics and qPCR revealed that expression of OsTPP1 was upregulated in OsMYB30-overexpressing lines but downregulated in OsMYB30-knockout lines. In vitro and in vivo experiments revealed that OsMYB30 bound to the promoter of OsTPP1 and regulated the abundance of OsTPP1 transcripts. Overaccumulation of trehalose (Tre) was found in both OsMYB30- and OsTPP1-overexpressing lines, resulting in inhibition of α-amylase 1a (OsAMY1a) gene during seed germination. Both LT and exogenous Tre treatments suppressed the expression of OsAMY1a, and the osamy1a mutant was not sensitive to exogenous Tre during seed germination. Overall, we concluded that OsMYB30 expression was induced by LT to activate the expression of OsTPP1 and increase Tre content, which thus inhibited α-amylase activity and seed germination. This study identified a phytohormone-independent pathway that integrates environmental cues with internal factors to control seed germination.
Collapse
Affiliation(s)
- Huihui Yu
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhenning Teng
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Bohan Liu
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Jiahan Lv
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yinke Chen
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhonge Qin
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yan Peng
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shuan Meng
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yuchi He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430000, China
| | - Meijuan Duan
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Nenghui Ye
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
3
|
Ko CS, Kim JB, Kim DY, Seo YW, Hong MJ. Unveiling differential expression profiles of the wheat DOG1 gene family and functional analysis of the association between TaDOG1-1 and heat stress tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108325. [PMID: 38176188 DOI: 10.1016/j.plaphy.2023.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
High temperatures can significantly impact wheat growth and grain yields during the grain-filling stage. In this study, we identified genes that respond to high-temperature stress during the grain-filling stage. We also identified and characterized 24 novel genes of the DOG1 gene family in hexaploid wheat. Motif analysis and conserved domain search revealed substantial similarities among TaDOG1 family members. Phylogenetic analysis demonstrated the evolutionary conservation of the TaDOG1 family across various plant species. Tissue-specific expression profiling indicated consistent patterns, with TaDOG1 genes predominantly expressed in stem tissues. Only TaDOG1-1 exhibited enhanced expression, particularly during hard dough and ripening stages. TaDOG1-1 and TaDOG1-7 exhibited increased expression under heat stress during the grain-filling stage, indicating their heat-responsive nature. Cis-element analysis revealed potential regulatory motifs, suggesting the involvement of TaDOG1-1 and TaDOG1-7 in stress tolerance mechanisms. Yeast two-hybrid screening revealed interacting proteins, including stress-responsive and grain development-associated proteins. To understand the biological function, we overexpressed TaDOG1-1 in Arabidopsis plants and observed enhanced thermotolerance under basal heat stress. Under heat stress, the transgenic plants exhibited increased biomass and elevated expression levels of heat-responsive genes. Furthermore, TaDOG1-1-overexpressing plants showed improved survival rates under soil heat stress, along with a greater accumulation of antioxidant enzymes in leaves. In this study, the identification and functions of the DOG1 gene family provide valuable insights for developing genetic engineering strategies aimed at improving wheat yield under high-temperature stress.
Collapse
Affiliation(s)
- Chan Seop Ko
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea
| | - Dae Yeon Kim
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, 54 Daehak-ro, Yesan, 32439, Republic of Korea
| | - Yong Weon Seo
- Ojeong Plant Breeding Research Center, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Department of Plant Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea.
| |
Collapse
|
4
|
Hann CT, Ramage SF, Negi H, Bequette CJ, Vasquez PA, Stratmann JW. Dephosphorylation of the MAP kinases MPK6 and MPK3 fine-tunes responses to wounding and herbivory in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111962. [PMID: 38103696 DOI: 10.1016/j.plantsci.2023.111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
The Arabidopsis MAP Kinases (MAPKs) MPK6 and MPK3 and orthologs in other plants function as major stress signaling hubs. MAPKs are activated by phosphorylation and are negatively regulated by MAPK-inactivating phosphatases (MIPPs), which alter the intensity and duration of MAPK signaling via dephosphorylation. Unlike in other plant species, jasmonic acid (JA) accumulation in Arabidopsis is apparently not MPK6- and MPK3-dependent, so their role in JA-mediated defenses against herbivorous insects is unclear. Here we explore whether changes in MPK6/3 phosphorylation kinetics in Arabidopsis MIPP mutants lead to changes in hormone synthesis and resistance against herbivores. The MIPPs MKP1, DsPTP1, PP2C5, and AP2C1 have been implicated in responses to infection, drought, and osmotic stress, which all impinge on JA-mediated defenses. In loss-of-function mutants, we found that the four MIPPs alter wound-induced MPK6/3 phosphorylation kinetics and affect the accumulation of the defense hormones JA, abscisic acid, and salicylic acid, as compared to wild type plants (Col-0). Moreover, MPK6/3 misregulation in MIPP or MAPK mutant plants resulted in slight changes in the resistance to Trichoplusia ni and Spodoptera exigua larvae as compared to Col-0. Our data indicate that MPK6/3 and the four MIPPs moderately contribute to wound signaling and defense against herbivorous insects in Arabidopsis.
Collapse
Affiliation(s)
- Claire T Hann
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, United States
| | - Sophia F Ramage
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, United States
| | - Harshita Negi
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, United States
| | - Carlton J Bequette
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, United States
| | - Paula A Vasquez
- Department of Mathematics, University of South Carolina, Columbia, SC 29208, United States
| | - Johannes W Stratmann
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, United States.
| |
Collapse
|
5
|
Ye N, Wang Y, Yu H, Qin Z, Zhang J, Duan M, Liu L. Abscisic Acid Enhances Trehalose Content via OsTPP3 to Improve Salt Tolerance in Rice Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:2665. [PMID: 37514279 PMCID: PMC10383865 DOI: 10.3390/plants12142665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Salt stress is one of the major environmental stresses that imposes constraints to plant growth and production. Abscisic acid (ABA) has been well-proven to function as a central integrator in plant under salt stress, and trehalose (Tre) has emerged as an excellent osmolyte to induce salt tolerance. However, the interacting mechanism between ABA and Tre in rice seedlings under salt stress is still obscure. Here, we found that the application of exogenous Tre significantly promoted the salt tolerance of rice seedlings by enhancing the activities of antioxidant enzymes. In addition, the expression of OsNCED3 was significantly induced by salt stress. The overexpression of the OsNCED3 gene enhanced the salt tolerance, while the knockout of OsNCED3 reduced the salt tolerance of the rice seedlings. Metabolite analysis revealed that the Tre content was increased in the OsNCED3-overexpressing seedlings and reduced in the nced3 mutant. The application of both ABA and Tre improved the salt tolerance of the nced3 mutant when compared with the WT seedling. OsTPP3 was found to be induced by both the ABA and salt treatments. Consistent with the OsNCED3 gene, the overexpression of OsTPP3 enhanced salt tolerance while the knockout of OsTPP3 reduced the salt tolerance of the rice seedlings. In addition, the Tre content was also higher in the OsTPP3-overexpressing seedling and lower in the tpp3 mutant seedling than the WT plant. The application of exogenous Tre also enhanced the salt tolerance of the tpp3 mutant plant. Overall, our results demonstrate that salt-increased ABA activated the expression of OsTPP3, which resulted in elevated Tre content and thus an improvement in the salt tolerance of rice seedlings.
Collapse
Affiliation(s)
- Nenghui Ye
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Crop Physiology and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Yuxing Wang
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Huihui Yu
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhonge Qin
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong 999077, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Meijuan Duan
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Crop Physiology and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Ling Liu
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Crop Physiology and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
Zeeshan M, Hu YX, Guo XH, Sun CY, Salam A, Ahmad S, Muhammad I, Nasar J, Jahan MS, Fahad S, Zhou XB. Physiological and transcriptomic study reveal SeNPs-mediated AsIII stress detoxification mechanisms involved modulation of antioxidants, metal transporters, and transcription factors in Glycine max L. (Merr.) roots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120637. [PMID: 36400144 DOI: 10.1016/j.envpol.2022.120637] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Physiological changes and genome-wide alteration in gene expression were performed in soybean (Glycine max [L.] Merr.) roots exposed to AsⅢ (25 μmol/L) alone and supplemented with selenium nanoparticles (SeNPs) at the concentration of 10 and 25 μmol/L at the V2 growth stage. Excessive arsenic in the root zone poses a potential threat to soybean yield, particularly to roots, due to the limited translocation of AsIII from root to shoot in the case of soybean. We hypothesized that SeNPs can relieve AsⅢ toxicity to soybean root by reducing the AsⅢ uptake and regulating the internal tolerance mechanism of the plants. Results accomplished that SeNPs had positive impact on soybean dry weight and roots parameters under AsⅢ stress. Then, we further evaluated physiological indexes, whole genome transcriptomic analysis and quantitative real-time PCR to elucidate the underlying mechanism of AsⅢ tolerance under SeNPs supplementation. Under the condition of AsⅢ-stress, SeNPs exposure significantly reduced the electrolyte leakage, O2-•, H2O2 and MDA accumulation while increasing the antioxidants level. The RNA-seq dataset revealed total of 5819 up and 7231 down expressed DEGs across all libraries. The number of exclusively regulated genes were higher under As + SeNP10 (4909) treatment than in the AsⅢ-alone (4830) and As + SeNP25 (3311) treatments. The KEGG and GO analyses revealed that stress responsive DEGs such as glutathione S-transferase, glutathione peroxidase, ascorbate, glutaredoxin, thioredoxin, and phytochelatins synthase are responsible for AsⅢ tolerance under the SeNPs supplementation. Similarly, sulfate transporter, and ABC transporters (ATP-binding cassettes) expression were induced, and aquaporin channels related DEGs expression were reduced under SeNPs application in AsⅢ exposure condition. Furthermore, the expression of molecular chaperones (HSP) and transcription factors (MYB, bZIP, bHLH, and HSFs) were increased in SeNPs treatment groups. These results provide vital information of AsⅢ tolerance mechanism in response to SeNPs in soybean. We suggest that functional characterization of these genes will help us learn more about the SeNPs responsive arsenic tolerance mechanism in soybean.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China; Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Yu Xin Hu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiao Hong Guo
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, China
| | - Chen Yu Sun
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Abdul Salam
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shakeel Ahmad
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ihsan Muhammad
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jamal Nasar
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Mohammad Shah Jahan
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Xun Bo Zhou
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
7
|
Saini LK, Bheri M, Pandey GK. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:307-370. [PMID: 36858740 DOI: 10.1016/bs.apcsb.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Protein phosphorylation is a vital reversible post-translational modification. This process is established by two classes of enzymes: protein kinases and protein phosphatases. Protein kinases phosphorylate proteins while protein phosphatases dephosphorylate phosphorylated proteins, thus, functioning as 'critical regulators' in signaling pathways. The eukaryotic protein phosphatases are classified as phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine (Ser)/threonine (Thr) specific phosphatases (STPs) that dephosphorylate Ser and Thr residues. The PTP family dephosphorylates Tyr residues while dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. The composition of these enzymes as well as their substrate specificity are important determinants of their functional significance in a number of cellular processes and stress responses. Their role in animal systems is well-understood and characterized. The functional characterization of protein phosphatases has been extensively covered in plants, although the comprehension of their mechanistic basis is an ongoing pursuit. The nature of their interactions with other key players in the signaling process is vital to our understanding. The substrates or targets determine their potential as well as magnitude of the impact they have on signaling pathways. In this article, we exclusively overview the various substrates of protein phosphatases in plant signaling pathways, which are a critical determinant of the outcome of various developmental and stress stimuli.
Collapse
Affiliation(s)
- Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
8
|
Song W, Hu L, Ma Z, Yang L, Li J. Importance of Tyrosine Phosphorylation in Hormone-Regulated Plant Growth and Development. Int J Mol Sci 2022; 23:ijms23126603. [PMID: 35743047 PMCID: PMC9224382 DOI: 10.3390/ijms23126603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 02/01/2023] Open
Abstract
Protein phosphorylation is the most frequent post-translational modification (PTM) that plays important regulatory roles in a wide range of biological processes. Phosphorylation mainly occurs on serine (Ser), threonine (Thr), and tyrosine (Tyr) residues, with the phosphorylated Tyr sites accounting for ~1–2% of all phosphorylated residues. Tyr phosphorylation was initially believed to be less common in plants compared to animals; however, recent investigation indicates otherwise. Although they lack typical protein Tyr kinases, plants possess many dual-specificity protein kinases that were implicated in diverse cellular processes by phosphorylating Ser, Thr, and Tyr residues. Analyses of sequenced plant genomes also identified protein Tyr phosphatases and dual-specificity protein phosphatases. Recent studies have revealed important regulatory roles of Tyr phosphorylation in many different aspects of plant growth and development and plant interactions with the environment. This short review summarizes studies that implicated the Tyr phosphorylation in biosynthesis and signaling of plant hormones.
Collapse
Affiliation(s)
- Weimeng Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Li Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhihui Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Lei Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
9
|
Wang L, Li H, Suo Y, Han W, Diao S, Mai Y, Wang Y, Yuan J, Ye L, Pu T, Zhang Q, Sun P, Li F, Fu J. Effects of Different Chemicals on Sexual Regulation in Persimmon ( Diospyros kaki Thunb.) Flowers. FRONTIERS IN PLANT SCIENCE 2022; 13:876086. [PMID: 35693185 PMCID: PMC9179176 DOI: 10.3389/fpls.2022.876086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/28/2022] [Indexed: 06/02/2023]
Abstract
Research on crop sexuality is important for establishing systems for germplasm innovation and cultivating improved varieties. In this study, androecious persimmon trees were treated with various concentrations of ethrel (100, 500, and 1,000 mg/L) and zeatin (1, 5, and 10 mg/L) to investigate the morphological, physiological, and molecular characteristics of persimmon. Ethrel at 1,000 mg/L and zeatin at 10 mg/L both significantly reduced the stamen length and pollen grain diameter in androecious trees. Ethrel treatment also led to reduced stamen development with degenerated cellular contents; zeatin treatment promoted the development of arrested pistils via maintaining relatively normal mitochondrial morphology. Both treatments altered carbohydrate, amino acid, and endogenous phytohormone contents, as well as genes associated with hormone production and floral organ development. Thereafter, we explored the combined effects of four chemicals, including ethrel and zeatin, as well as zebularine and 5-azacytidine, both of which are DNA methylation inhibitors, on androecious persimmon flower development. Morphological comparisons showed that stamen length, pollen viability, and pollen grain diameter were significantly inhibited after combined treatment. Large numbers of genes involving in carbohydrate metabolic, mitogen-activated protein kinase (MAPK) signaling, and ribosome pathways, and metabolites including uridine monophosphate (UMP) and cyclamic acid were identified in response to the treatment, indicating complex regulatory mechanisms. An association analysis of transcriptomic and metabolomic data indicated that ribosomal genes have distinct effects on UMP and cyclamic acid metabolites, explaining how male floral buds of androecious persimmon trees respond to these exogenous chemicals. These findings extend the knowledge concerning sexual differentiation in persimmon; they also provide a theoretical basis for molecular breeding, high-yield cultivation, and quality improvement in persimmon.
Collapse
|
10
|
Du Y, Xie S, Wang Y, Ma Y, Jia B, Liu X, Rong J, Li R, Zhu X, Song CP, Tao WA, Wang P. Low molecular weight protein phosphatase APH mediates tyrosine dephosphorylation and ABA response in Arabidopsis. STRESS BIOLOGY 2022; 2:23. [PMID: 35935594 PMCID: PMC9345830 DOI: 10.1007/s44154-022-00041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/17/2022] [Indexed: 02/02/2023]
Abstract
Low molecular weight protein tyrosine phosphatase (LWM-PTP), also known as acid phosphatase, is a highly conserved tyrosine phosphatase in living organisms. However, the function of LWM-PTP homolog has not been reported yet in plants. Here, we revealed a homolog of acid phosphatase, APH, in Arabidopsis plants, is a functional protein tyrosine phosphatase. The aph mutants are hyposensitive to ABA in post-germination growth. We performed an anti-phosphotyrosine antibody-based quantitative phosphoproteomics in wild-type and aph mutant and identified hundreds of putative targets of APH, including multiple splicing factors and other transcriptional regulators. Consistently, RNA-seq analysis revealed that the expression of ABA-highly-responsive genes is suppressed in aph mutants. Thus, APH regulates the ABA-responsive gene expressions by regulating the tyrosine phosphorylation of multiple splicing factors and other post-transcriptional regulators. We also revealed that Tyr383 in RAF9, a member of B2 and B3 RAF kinases that phosphorylate and activate SnRK2s in the ABA signaling pathway, is a direct target site of APH. Phosphorylation of Tyr383 is essential for RAF9 activity. Our results uncovered a crucial function of APH in ABA-induced tyrosine phosphorylation in Arabidopsis. Supplementary Information The online version contains supplementary material available at 10.1007/s44154-022-00041-6.
Collapse
Affiliation(s)
- Yanyan Du
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN 47907 USA
| | - Yubei Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yu Ma
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Bei Jia
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Xue Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Jingkai Rong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Rongxia Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Xiaohong Zhu
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - W. Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Pengcheng Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004 China
| |
Collapse
|
11
|
Qi WY, Li Q, Chen H, Liu J, Xing SF, Xu M, Yan Z, Song C, Wang SG. Selenium nanoparticles ameliorate Brassica napus L. cadmium toxicity by inhibiting the respiratory burst and scavenging reactive oxygen species. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125900. [PMID: 33975164 DOI: 10.1016/j.jhazmat.2021.125900] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 05/10/2023]
Abstract
Cadmium (Cd) is a widely distributed soil contaminant which induces oxidative damage and is therefore toxic to plants. Although selenium oxyanions such as selenite (SeO32-) and selenate (SeO42-) can alleviate Cd stress to plants, it is not known whether selenium nanoparticles (SeNPs) are able to do the same. The present study demonstrated the positive impact of both SeNPs and SeO32- on Brassica napus L. growth under conditions of Cd stress. Underlying mechanisms were elucidated using an oxidative stress detection assay, whole-genome RNA sequencing, and RT-qPCR. Application of selenium, especially in the form of SeNPs, decreased Cd-induced reactive oxygen species production by inhibiting the expression of NADPH oxidases (BnaRBOHC, BnaRBOHD1, and BnaRBOHF1) and glycolate oxidase (BnaGLO), thereby decreasing oxidative protein and membrane lipid damage. In addition, SeNPs improved resistance to Cd stress by decreasing Cd accumulation, maintaining intracellular calcium homeostasis, promoting disulfide bond formation, and restoring the waxy outer layer of the leaf surface. Although both forms of selenium decreased Cd toxicity, the beneficial concentration range was more extensive for SeNPs than for SeO32-.
Collapse
Affiliation(s)
- Wen-Yu Qi
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qiang Li
- College of Agriculture and Forestry Science, Linyi University, Linyi 276002, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hui Chen
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jun Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Su-Fang Xing
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Meng Xu
- College of Agriculture and Forestry Science, Linyi University, Linyi 276002, China
| | - Zhen Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
12
|
Xin J, Li C, Ning K, Qin Y, Shang JX, Sun Y. AtPFA-DSP3, an atypical dual-specificity protein tyrosine phosphatase, affects salt stress response by modulating MPK3 and MPK6 activity. PLANT, CELL & ENVIRONMENT 2021; 44:1534-1548. [PMID: 33464564 DOI: 10.1111/pce.14002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Protein phosphorylation, especially serine/threonine and tyrosine phosphorylation, plays significant roles in signalling during plant growth and development as well as plant responses to biotic or abiotic stresses. Dual-specificity protein tyrosine phosphatases dephosphorylate components of these signalling pathways. Here, we report that an atypical dual-specificity protein tyrosine phosphatase, AtPFA-DSP3 (DSP3), negatively affects the response of plants to high-salt conditions. A DSP3 loss-of-function mutant showed reduced sensitivity to salt treatment. DSP3 was primarily localized in nuclei and was degraded during salt treatment. Compared to wild type, the level of ROS was lower in the dsp3 mutant and higher in plants ectopically expressing DSP3, indicating that higher DSP3 level was associated with increased ROS production. DSP3 interacted with and dephosphorylated MPK3 and MPK6. Genetic analyses of a dsp3mpk3 double mutant revealed that DSP3's effect on salt stress depends on MPK3. Moreover, the phosphatase activity of DSP3 was required for its role in salt signalling. These results indicate that DSP3 is a negative regulator of salt responses in Arabidopsis by directly modulating the accumulation of phosphorylated MPK3 and MPK6.
Collapse
Affiliation(s)
- Jing Xin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chuanling Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Kexin Ning
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yuan Qin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jian-Xiu Shang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yu Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
13
|
Elucidating Drought Stress Tolerance in European Oaks Through Cross-Species Transcriptomics. G3-GENES GENOMES GENETICS 2019; 9:3181-3199. [PMID: 31395652 PMCID: PMC6778798 DOI: 10.1534/g3.119.400456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The impact of climate change that comes with a dramatic increase of long periods of extreme summer drought associated with heat is a fundamental challenge for European forests. As a result, forests are expected to shift their distribution patterns toward north-east, which may lead to a dramatic loss in value of European forest land. Consequently, unraveling key processes that underlie drought stress tolerance is not only of great scientific but also of utmost economic importance for forests to withstand future heat and drought wave scenarios. To reveal drought stress-related molecular patterns we applied cross-species comparative transcriptomics of three major European oak species: the less tolerant deciduous pedunculate oak (Quercus robur), the deciduous but quite tolerant pubescent oak (Q. pubescens), and the very tolerant evergreen holm oak (Q. ilex). We found 415, 79, and 222 differentially expressed genes during drought stress in Q. robur, Q. pubescens, and Q. ilex, respectively, indicating species-specific response mechanisms. Further, by comparative orthologous gene family analysis, 517 orthologous genes could be characterized that may play an important role in drought stress adaptation on the genus level. New regulatory candidate pathways and genes in the context of drought stress response were identified, highlighting the importance of the antioxidant capacity, the mitochondrial respiration machinery, the lignification of the water transport system, and the suppression of drought-induced senescence - providing a valuable knowledge base that could be integrated in breeding programs in the face of climate change.
Collapse
|
14
|
Mu C, Zhou L, Shan L, Li F, Li Z. Phosphatase GhDsPTP3a interacts with annexin protein GhANN8b to reversely regulate salt tolerance in cotton (Gossypium spp.). THE NEW PHYTOLOGIST 2019; 223:1856-1872. [PMID: 30985940 DOI: 10.1111/nph.15850] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/08/2019] [Indexed: 05/25/2023]
Abstract
Salinity is among the major factors limiting crop production worldwide. Despite having moderate salt-tolerance, cotton (Gossypium spp.) suffers severe yield losses to salinity stresses, largely due to being grown on saline-alkali and dry lands. To identify genetic determinants conferring salinity tolerance in cotton, we deployed a functional genomic screen using a cotton cDNA library in a virus-induced gene silencing (VIGS) vector. We have revealed that silencing of GhDsPTP3a, which encodes a protein phosphatase, increases cotton tolerance to salt stress. Yeast two-hybrid screens indicated that GhDsPTP3a interacts with GhANN8b, an annexin protein, which plays a positive role in regulating cotton response to salinity stress. Salt stress induces GhANN8b phosphorylation, which is subsequently dephosphorylated by GhDsPTP3a. Ectopic expression of GhDsPTP3a and GhANN8b oppositely regulates plant salt tolerance and calcium influx. In addition, we have revealed that silencing of GhDsPTP3a or GhANN8b exerts opposing roles in regulating GhSOS1 transcript levels, and ectopic expression of GhANN8b elevates Na+ efflux in Arabidopsis under salinity stress. Our study demonstrates that a cotton phosphatase GhDsPTP3a and an annexin protein GhANN8b interact and reversely modulate Ca2+ and Na+ fluxes in cotton salinity responses.
Collapse
Affiliation(s)
- Chun Mu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Lin Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Fangjun Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
15
|
Yang L, Wang X, Chang N, Nan W, Wang S, Ruan M, Sun L, Li S, Bi Y. Cytosolic Glucose-6-Phosphate Dehydrogenase Is Involved in Seed Germination and Root Growth Under Salinity in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:182. [PMID: 30873191 PMCID: PMC6401624 DOI: 10.3389/fpls.2019.00182] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/05/2019] [Indexed: 05/27/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH or G6PD) is the key regulatory enzyme in the oxidative pentose phosphate pathway (OPPP). The cytosolic isoforms including G6PD5 and G6PD6 account for the major part of the G6PD total activity in plant cells. Here, we characterized the Arabidopsis single null mutant g6pd5 and g6pd6 and double mutant g6pd5/6. Compared to wild type, the mutant seeds showed a reduced germination rate and root elongation under salt stress. The seeds and seedlings lacking G6PD5 and G6PD6 accumulate more reactive oxygen species (ROS) than the wild type under salt stress. Cytosolic G6PD (cy-G6PD) affected the expression of NADPH oxidases and the G6PD enzymatic activities in the mutant atrbohD/F, in which the NADPH oxidases genes are disrupted by T-DNA insertion and generation of ROS is inhibited, were lower than that in the wild type. The NADPH level in mutants was decreased under salt stress. In addition, we found that G6PD5 and G6PD6 affected the activities and transcript levels of various antioxidant enzymes in response to salt stress, especially the ascorbate peroxidase and glutathione reductase. Exogenous application of ascorbate acid and glutathione rescued the seed and root phenotype of g6pd5/6 under salt stress. Interestingly, the cytosolic G6PD negatively modulated the NaCl-blocked primary root growth under salt stress in the root meristem and elongation zone.
Collapse
Affiliation(s)
- Lei Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaomin Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Ning Chang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wenbin Nan
- Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Shengwang Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mengjiao Ruan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lili Sun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Sufang Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yurong Bi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Yang L, Wang S, Sun L, Ruan M, Li S, He R, Zhang W, Liang C, Wang X, Bi Y. Involvement of G6PD5 in ABA response during seed germination and root growth in Arabidopsis. BMC PLANT BIOLOGY 2019; 19:44. [PMID: 30700259 PMCID: PMC6354342 DOI: 10.1186/s12870-019-1647-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/11/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PDH or G6PD) functions in supply of NADPH, which is required for plant defense responses to stresses. However, whether G6PD functions in the abscisic acid (ABA) signaling pathway remains to be elucidated. In this study, we investigated the involvement of the cytosolic G6PD5 in the ABA signaling pathway in Arabidopsis. RESULTS We characterized the Arabidopsis single null mutant g6pd5. Phenotypic analysis showed that the mutant is more sensitive to ABA during seed germination and root growth, whereas G6PD5-overexpressing plants are less sensitive to ABA compared to wild type (WT). Furthermore, ABA induces excessive accumulation of reactive oxygen species (ROS) in mutant seeds and seedlings. G6PD5 participates in the reduction of H2O2 to H2O in the ascorbate-glutathione cycle. In addition, we found that G6PD5 suppressed the expression of Abscisic Acid Insensitive 5 (ABI5), the major ABA signaling component in dormancy control. When G6PD5 was overexpressed, the ABA signaling pathway was inactivated. Consistently, G6PD5 negatively modulates ABA-blocked primary root growth in the meristem and elongation zones. Of note, the suppression of root elongation by ABA is triggered by the cell cycle B-type cyclin CYCB1. CONCLUSIONS This study showed that G6PD5 is involved in the ABA-mediated seed germination and root growth by suppressing ABI5.
Collapse
Affiliation(s)
- Lei Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000 People’s Republic of China
| | - Shengwang Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000 People’s Republic of China
| | - Lili Sun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000 People’s Republic of China
| | - Mengjiao Ruan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000 People’s Republic of China
| | - Sufang Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000 People’s Republic of China
| | - Rui He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000 People’s Republic of China
| | - Wenya Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000 People’s Republic of China
| | - Cuifang Liang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000 People’s Republic of China
| | - Xiaomin Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000 People’s Republic of China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016 People’s Republic of China
| | - Yurong Bi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000 People’s Republic of China
| |
Collapse
|
17
|
Cifuentes‐Esquivel N, Celiz‐Balboa J, Henriquez‐Valencia C, Mitina I, Arraño‐Salinas P, Moreno AA, Meneses C, Blanco‐Herrera F, Orellana A. bZIP17 regulates the expression of genes related to seed storage and germination, reducing seed susceptibility to osmotic stress. J Cell Biochem 2018; 119:6857-6868. [DOI: 10.1002/jcb.26882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/21/2018] [Indexed: 02/02/2023]
Affiliation(s)
| | - Jonathan Celiz‐Balboa
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
| | | | - Irina Mitina
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
| | - Paulina Arraño‐Salinas
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
| | - Adrián A. Moreno
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
- FONDAP Center for Genome RegulationCentro de Biotecnología VegetalUniversidad Andres BelloSantiagoChile
| | - Claudio Meneses
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
- FONDAP Center for Genome RegulationCentro de Biotecnología VegetalUniversidad Andres BelloSantiagoChile
| | - Francisca Blanco‐Herrera
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
- Millennium Institute for Integrative Systems and Synthetic Biology (MIISSB)SantiagoChile
| | - Ariel Orellana
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
- FONDAP Center for Genome RegulationCentro de Biotecnología VegetalUniversidad Andres BelloSantiagoChile
| |
Collapse
|
18
|
Xie F, Yuan JL, Li YX, Wang CJ, Tang HY, Xia JH, Yang QY, Wan ZJ. Transcriptome Analysis Reveals Candidate Genes Associated with Leaf Etiolation of a Cytoplasmic Male Sterility Line in Chinese Cabbage (Brassica Rapa L. ssp. Pekinensis). Int J Mol Sci 2018; 19:E922. [PMID: 29561749 PMCID: PMC5979472 DOI: 10.3390/ijms19040922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/26/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is universally utilized in cruciferous vegetables. However, the Chinese cabbage hau CMS lines, obtained by interspecific hybridization and multiple backcrosses of the Brassica juncea (B. juncea) CMS line and Chinese cabbage, show obvious leaf etiolation, and the molecular mechanism of etiolation remains elusive. Here, the ultrastructural and phenotypic features of leaves from the Chinese cabbage CMS line 1409A and maintainer line 1409B are analyzed. The results show that chloroplasts of 1409A exhibit abnormal morphology and distribution. Next, RNA-sequencing (RNA-Seq) is used to identify 485 differentially expressed genes (DEGs) between 1409A and 1409B, and 189 up-regulated genes and 296 down-regulated genes are found. Genes that affect chloroplasts development, such as GLK1 and GLK2, and chlorophyll biosynthesis, such as PORB, are included in the down-regulated DEGs. Quantitative real-time PCR (qRT-PCR) analysis validate that the expression levels of these genes are significantly lower in 1409A than in 1409B. Taken together, these results demonstrate that leaf etiolation is markedly affected by chloroplast development and pigment biosynthesis. This study provides an effective foundation for research on the molecular mechanisms of leaf etiolation of the hau CMS line in Chinese cabbage (Brassica rapa L. ssp. pekinensis).
Collapse
Affiliation(s)
- Fei Xie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jia-Lan Yuan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yi-Xiao Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Can-Jie Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hong-Yu Tang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jun-Hui Xia
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qing-Yong Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zheng-Jie Wan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
19
|
Jiang L, Chen Y, Luo L, Peck SC. Central Roles and Regulatory Mechanisms of Dual-Specificity MAPK Phosphatases in Developmental and Stress Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:1697. [PMID: 30515185 PMCID: PMC6255987 DOI: 10.3389/fpls.2018.01697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/31/2018] [Indexed: 05/09/2023]
Abstract
Mitogen-Activated Protein Kinase (MAPK) cascades are conserved signaling modules that integrate multiple signaling pathways. One level of control on the activity of MAPKs is through their negative regulators, MAPK phosphatases (MKPs). Therefore, MKPs also play an integrative role for plants responding to diverse environmental stimulus; but the mechanism(s) by which these phosphatases contribute to specific signals remains largely unknown. In this review, we summarize recent advances in characterizing the biological functions of a sub-class of MKPs, dual-specificity phosphatases (DSPs), ranging from controlling plant growth and development to modulating stress adaptation. We also discuss putative regulatory mechanisms of DSP-type MKPs, which plants may use to control the correct level of responses at the right place and time. We highlight insights into potential regulation of cross-talk between different signaling pathways, facilitating the development of strategies for targeting such cross-talk and to help improve plant resistance against adverse environmental conditions without affecting the growth and development.
Collapse
Affiliation(s)
- Lingyan Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- *Correspondence: Lingyan Jiang
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Lijuan Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Scott C. Peck
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
- Scott C. Peck
| |
Collapse
|
20
|
Hwang SG, Park HM, Han AR, Jang CS. Molecular characterization of Oryza sativa arsenic-induced RING E3 ligase 1 (OsAIR1): Expression patterns, localization, functional interaction, and heterogeneous overexpression. JOURNAL OF PLANT PHYSIOLOGY 2016; 191:140-8. [PMID: 26788958 DOI: 10.1016/j.jplph.2015.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/31/2015] [Accepted: 12/31/2015] [Indexed: 05/25/2023]
Abstract
High levels of arsenic (As) in plants are a serious threat to human health, and arsenic accumulation affects plant metabolism and ultimately photosynthesis, growth, and development. We attempted to isolate As-responsive Really Interesting New Gene (RING) E3 ubiquitin ligase genes from rice, and we have designated one such gene Oryza sativa arsenic-induced RING E3 ligase 1 (OsAIR1). OsAIR1 expression was induced under abiotic stress conditions, including drought, salt, heat, and As exposure. Results from an in vitro ubiquitination assay showed that OsAIR1 possesses E3 ligase activity. Within the cell, the expression of this gene was found to be localized to the vacuole. In a network-based analysis, we found significantly enriched gene ontology (GO) functions, which included ribonucleoprotein complexes such as ribosomes, suggesting that the function of OsAIR1 are related to translation. Differences in the proportion of seedlings with expanded cotyledons and root lengths, and the lack of differences in germination rates between OsAIR1-overexpressing lines and control plants under AsV stress, suggest that OsAIR1 may positively regulate post-germination plant growth under stress conditions.
Collapse
Affiliation(s)
- Sun-Goo Hwang
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea
| | - Hyeon Mi Park
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea
| | - A-Reum Han
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea.
| |
Collapse
|
21
|
Shankar A, Agrawal N, Sharma M, Pandey A, Pandey GK. Role of Protein Tyrosine Phosphatases in Plants. Curr Genomics 2015; 16:224-36. [PMID: 26962298 PMCID: PMC4765517 DOI: 10.2174/1389202916666150424234300] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/19/2015] [Accepted: 04/24/2015] [Indexed: 01/01/2023] Open
Abstract
Reversible protein phosphorylation is a crucial regulatory mechanism that controls many biological processes in eukaryotes. In plants, phosphorylation events primarily occur on serine (Ser) and threonine (Thr) residues, while in certain cases, it was also discovered on tyrosine (Tyr) residues. In contrary to plants, extensive reports on Tyr phosphorylation regulating a large numbers of biological processes exist in animals. Despite of such prodigious function in animals, Tyr phosphorylation is a least studied mechanism of protein regulation in plants. Recently, various chemical analytical procedures have strengthened the view that Tyr phosphorylation is equally prevalent in plants as in animals. However, regardless of Tyr phosphorylation events occuring in plants, no evidence could be found for the existence of gene encoding for Tyr phosphorylation i.e. the typical Tyr kinases. Various methodologies have suggested that plant responses to stress signals and developmental processes involved modifications in protein Tyr phosphorylation. Correspondingly, various reports have established the role of PTPs (Protein Tyrosine Phosphatases) in the dephosphorylation and inactivation of mitogen activated protein kinases (MAPKs) hence, in the regulation of MAPK signaling cascade. Besides this, many dual specificity protein phosphatases (DSPs) are also known to bind starch and regulate starch metabolism through reversible phosphorylation. Here, we are emphasizing the significant progress on protein Tyr phosphatases to understand the role of these enzymes in the regulation of post-translational modification in plant physiology and development.
Collapse
Affiliation(s)
| | | | | | | | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| |
Collapse
|