1
|
Kong D, Li C, Xue W, Wei H, Ding H, Hu G, Zhang X, Zhang G, Zou T, Xian Y, Wang B, Zhao Y, Liu Y, Xie Y, Xu M, Wu H, Liu Q, Wang H. UB2/UB3/TSH4-anchored transcriptional networks regulate early maize inflorescence development in response to simulated shade. THE PLANT CELL 2023; 35:717-737. [PMID: 36472157 PMCID: PMC9940873 DOI: 10.1093/plcell/koac352] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 05/12/2023]
Abstract
Increasing planting density has been adopted as an effective means to increase maize (Zea mays) yield. Competition for light from neighbors can trigger plant shade avoidance syndrome, which includes accelerated flowering. However, the regulatory networks of maize inflorescence development in response to high-density planting remain poorly understood. In this study, we showed that shade-mimicking treatments cause precocious development of the tassels and ears. Comparative transcriptome profiling analyses revealed the enrichment of phytohormone-related genes and transcriptional regulators among the genes co-regulated by developmental progression and simulated shade. Network analysis showed that three homologous Squamosa promoter binding protein (SBP)-like (SPL) transcription factors, Unbranched2 (UB2), Unbranched3 (UB3), and Tasselsheath4 (TSH4), individually exhibited connectivity to over 2,400 genes across the V3-to-V9 stages of tassel development. In addition, we showed that the ub2 ub3 double mutant and tsh4 single mutant were almost insensitive to simulated shade treatments. Moreover, we demonstrated that UB2/UB3/TSH4 could directly regulate the expression of Barren inflorescence2 (BIF2) and Zea mays teosinte branched1/cycloidea/proliferating cell factor30 (ZmTCP30). Furthermore, we functionally verified a role of ZmTCP30 in regulating tassel branching and ear development. Our results reveal a UB2/UB3/TSH4-anchored transcriptional regulatory network of maize inflorescence development and provide valuable targets for breeding shade-tolerant maize cultivars.
Collapse
Affiliation(s)
- Dexin Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Changyu Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weicong Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hongbin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hui Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Guizhen Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Guisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Ting Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yuting Xian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongping Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaoyun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
2
|
The Influence of Exogenous Jasmonic Acid on the Biosynthesis of Steroids and Triterpenoids in Calendula officinalis Plants and Hairy Root Culture. Int J Mol Sci 2022; 23:ijms232012173. [PMID: 36293029 PMCID: PMC9603384 DOI: 10.3390/ijms232012173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 12/03/2022] Open
Abstract
The interplay between steroids and triterpenoids, compounds sharing the same biosynthetic pathway but exerting distinctive functions, is an important part of the defense strategy of plants, and includes metabolic modifications triggered by stress hormones such as jasmonic acid. Two experimental models, Calendula officinalis hairy root cultures and greenhouse cultivated plants (pot plants), were applied for the investigation of the effects of exogenously applied jasmonic acid on the biosynthesis and accumulation of steroids and triterpenoids, characterized by targeted GC-MS (gas chromatography-mass spectroscopy) metabolomic profiling. Jasmonic acid elicitation strongly increased triterpenoid saponin production in hairy root cultures (up to 86-fold) and their release to the medium (up to 533-fold), whereas the effect observed in pot plants was less remarkable (two-fold enhancement of saponin biosynthesis after a single foliar application). In both models, the increase of triterpenoid biosynthesis was coupled with hampering the biomass formation and modifying the sterol content, involving stigmasterol-to-sitosterol ratio, and the proportions between ester and glycoside conjugates. The study revealed that various organs in the same plant can react differently to jasmonic acid elicitation; hairy root cultures are a useful in vitro model to track metabolic changes, and enhanced glycosylation (of both triterpenoids and sterols) seems to be important strategy in plant defense response.
Collapse
|
3
|
Key Genes in the JAZ Signaling Pathway Are Up-Regulated Faster and More Abundantly in Caterpillar-Resistant Maize. J Chem Ecol 2022; 48:179-195. [PMID: 34982368 DOI: 10.1007/s10886-021-01342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Jasmonic acid (JA) and its derivatives, collectively known as jasmonates (JAs), are important signaling hormones for plant responses against chewing herbivores. In JA signaling networks, jasmonate ZIM-domain (JAZ) proteins are transcriptional repressors that regulate JA-modulated downstream herbivore defenses. JAZ repressors are widely presented in land plants, however, there is only limited information about the regulation/function of JAZ proteins in maize. In this study, we performed a comprehensive expression analysis of ZmJAZ genes with other selected genes in the jasmonate pathway in response to feeding by fall armyworm (Spodoptera frugiperda, FAW), mechanical wounding, and exogenous hormone treatments in two maize genotypes differing in FAW resistance. Results showed that transcript levels of JAZ genes and several key genes in JA-signaling and biosynthesis pathways were rapidly and abundantly expressed in both genotypes in response to these various treatments. However, there were key differences between the two genotypes in the expression of ZmJAZ1 and ZmCOI1a, these two genes were expressed significantly rapidly and abundantly in the resistant line which was tightly regulated by endogenous JA level upon feeding. For instance, transcript levels of ZmJAZ1 increase dramatically within 30 min of FAW-fed Mp708 but not Tx601, correlating with the JA accumulation. The results also demonstrated that wounding or JA treatment alone was not as effective as FAW feeding; this suggests that insect-derived factors are required for optimal defense responses.
Collapse
|
4
|
Exogenous Application of Methyl Jasmonate and Salicylic Acid Mitigates Drought-Induced Oxidative Damages in French Bean ( Phaseolus vulgaris L.). PLANTS 2021; 10:plants10102066. [PMID: 34685876 PMCID: PMC8538183 DOI: 10.3390/plants10102066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/02/2022]
Abstract
Drought stress impairs the normal growth and development of plants through various mechanisms including the induction of cellular oxidative stresses. The aim of this study was to evaluate the effect of the exogenous application of methyl jasmonate (MeJA) and salicylic acid (SA) on the growth, physiology, and antioxidant defense system of drought-stressed French bean plants. Application of MeJA (20 μM) or SA (2 mM) alone caused modest reductions in the harmful effects of drought. However, combined application substantially enhanced drought tolerance by improving the physiological activities and antioxidant defense system. The drought-induced generation of O2●− and H2O2, the MDA content, and the LOX activity were significantly lower in leaves when seeds or leaves were pre-treated with a combination of MeJA (10 μM) and SA (1 mM) than with either hormone alone. The combined application of MeJA and SA to drought-stressed plants also significantly increased the activities of the major antioxidant enzymes superoxide dismutase, catalase, peroxidase, glutathione peroxidase, and glutathione-S-transferase as well as the enzymes of the ascorbate–glutathione cycle. Taken together, our results suggest that seed or foliar application of a combination of MeJA and SA restore growth and normal physiological processes by triggering the antioxidant defense system in drought-stressed plants.
Collapse
|
5
|
Tayyab N, Naz R, Yasmin H, Nosheen A, Keyani R, Sajjad M, Hassan MN, Roberts TH. Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize. PLoS One 2020; 15:e0232269. [PMID: 32357181 PMCID: PMC7194409 DOI: 10.1371/journal.pone.0232269] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/12/2020] [Indexed: 01/01/2023] Open
Abstract
Susceptibility of plants to abiotic stresses, including extreme temperatures, salinity and drought, poses an increasing threat to crop productivity worldwide. Here the drought-induced response of maize was modulated by applications of methyl jasmonate (MeJA) and salicylic acid (SA) to seeds prior to sowing and to leaves prior to stress treatment. Pot experiments were conducted to ascertain the effects of exogenous applications of these hormones on maize growth, physiology and biochemistry under drought stress and well-watered (control) conditions. Maize plants were subjected to single as well as combined pre-treatments of MeJA and SA. Drought stress severely affected maize morphology and reduced relative water content, above and below-ground biomass, rates of photosynthesis, and protein content. The prolonged water deficit also led to increased relative membrane permeability and oxidative stress induced by the production of malondialdehyde (from lipid peroxidation), lipoxygenase activity (LOX) and the production of H2O2. The single applications of MeJA and SA were not found to be effective in maize for drought tolerance while the combined pre-treatments with exogenous MeJA+SA mitigated the adverse effects of drought-induced oxidative stress, as reflected in lower levels of lipid peroxidation, LOX activity and H2O2. The same pre-treatment also maintained adequate water status of the plants under drought stress by increasing osmolytes including proline, total carbohydrate content and total soluble sugars. Furthermore, exogenous applications of MeJA+SA approximately doubled the activities of the antioxidant enzymes catalase, peroxidase and superoxide dismutase. Pre-treatment with MeJA alone gave the highest increase in drought-induced production of endogenous abscisic acid (ABA). Pre-treatment with MeJA+SA partially prevented drought-induced oxidative stress by modulating levels of osmolytes and endogenous ABA, as well as the activities of antioxidant enzymes. Taken together, the results show that seed and foliar pre-treatments with exogenous MeJA and/or SA can have positive effects on the responses of maize seedlings to drought.
Collapse
Affiliation(s)
- Nimrah Tayyab
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Rabia Naz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Rumana Keyani
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Thomas H. Roberts
- Plant Breeding Institute, Sydney Institute of Agriculture, University of Sydney, Sydney, Australia
| |
Collapse
|
6
|
Hunter CT, Block AK, Christensen SA, Li QB, Rering C, Alborn HT. Setaria viridis as a model for translational genetic studies of jasmonic acid-related insect defenses in Zea mays. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110329. [PMID: 31928686 DOI: 10.1016/j.plantsci.2019.110329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Little is known regarding insect defense pathways in Setaria viridis (setaria), a model system for panicoid grasses, including Zea mays (maize). It is thus of interest to compare insect herbivory responses of setaria and maize. Here we use metabolic, phylogenetic, and gene expression analyses to measure a subset of jasmonic acid (JA)-related defense responses to leaf-chewing caterpillars. Phylogenetic comparisons of known defense-related maize genes were used to identify putative orthologs in setaria, and candidates were tested by quantitative PCR to determine transcriptional responses to insect challenge. Our findings show that while much of the core JA-related metabolic and genetic responses appear conserved between setaria and maize, production of downstream secondary metabolites such as benzoxazinoids and herbivore-induced plant volatiles are dissimilar. This diversity of chemical defenses and gene families involved in secondary metabolism among grasses presents new opportunities for cross species engineering. The high degree of genetic similarity and ease of orthologous gene identification between setaria and maize make setaria an excellent species for translational genetic studies, but the species specificity of downstream insect defense chemistry makes some pathways unamenable to cross-species comparisons.
Collapse
Affiliation(s)
- Charles T Hunter
- Chemistry Research Unit, USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA.
| | - Anna K Block
- Chemistry Research Unit, USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA
| | - Shawn A Christensen
- Chemistry Research Unit, USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA
| | - Qin-Bao Li
- Chemistry Research Unit, USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA
| | - Caitlin Rering
- Chemistry Research Unit, USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA
| | - Hans T Alborn
- Chemistry Research Unit, USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA
| |
Collapse
|
7
|
Liu Y, Yan J, Wang K, Li D, Han Y, Zhang W. Heteroexpression of Osa- miR319b improved switchgrass biomass yield and feedstock quality by repression of PvPCF5. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:56. [PMID: 32206089 PMCID: PMC7081615 DOI: 10.1186/s13068-020-01693-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/02/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.), a C4 perennial grass, has been recognized as one of the most potentially important lignocellulose biofuel crops. MicroRNA319 (miR319) plays a key role in plant development, abiotic resistance, and cell wall biosynthesis by repressing expression of its target TCP genes. We hypothesized miR319-TCP pathway could play important roles in switchgrass feedstock characteristics for biofuel production, and produced switchgrass transgenic plants overexpressing miR319 (by ectopic expressing Osa-MIR319b gene), blocking miR319 (by overexpressing a target mimicry of miR319/MIM319) and repression of miR319 target gene PvPCF5. Plant phenotype, biomass yield, and feedstock quality of transgenic plants were analyzed. RESULTS Overexpression of miR319 in switchgrass promoted leaf elongation and expansion of transgenic plants, increased plant height, stem diameter, and resulted in a significant increase in plant biomass yield. Transgenic plants overexpressing of miR319 reduced lignin content, showed significantly higher enzymatic hydrolysis efficiency compared to the wild type plant. However, opposite results were observed in the MIM319 plants. Furthermore, suppression of miR319 target gene PvPCF5 activity also reduced lignin content, increased lignin monomer S/G ratio and the proportion of β-O-4 linkages, while significantly improving the sugar production per plant. Quantitative real-time (qRT-PCR) analysis indicated that expression of PvMYB58/63B and PvHCT with predicted TCP binding sites in their promoter regions was negatively regulated by miR319-PvPCF5 module. CONCLUSIONS MiR319-PvPCF5 module plays positive roles in regulating biomass yield and quality of switchgrass. It can be utilized as a candidate molecular tool in regulating biomass yield and feedstock quality. The finding could also be transferred to other grasses for forage quality improvement through genetic manipulation.
Collapse
Affiliation(s)
- Yanrong Liu
- College of Biological Science, China Agricultural University, Beijing, 100193 People’s Republic of China
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Jianping Yan
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Kexin Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Dayong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, 100097 People’s Republic of China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Wanjun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193 People’s Republic of China
- National Energy R &D Center for Biomass (NECB), China Agricultural University, Beijing, 100193 People’s Republic of China
| |
Collapse
|
8
|
Cappellari LDR, Santoro MV, Schmidt A, Gershenzon J, Banchio E. Induction of essential oil production in Mentha x piperita by plant growth promoting bacteria was correlated with an increase in jasmonate and salicylate levels and a higher density of glandular trichomes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:142-153. [PMID: 31163341 DOI: 10.1016/j.plaphy.2019.05.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 05/14/2023]
Abstract
Plant growth promoting bacteria (PGPB) are agriculturally important soil bacteria that increase plant growth. We subjected peppermint to inoculation with three species of PGPB. After inoculation, the plants were sprayed with methyl jasmonate solution (MeJA) or SA (salicylic acid). Then, the plants were harvested and the plant growth parameters, trichome density, EO content and endogenous phytohormones were measured. Shoot fresh weight was reduced in plants inoculated and treated with MeJA whereas EO content varied depending on the MeJA concentration applied. Plants inoculated and treated with MeJA 2 mM showed the maximum increase in EO production, revealing a synergism between PGPB and MeJA. SA treatments also enhanced EO yield. The increased growth and EO production observed upon PGPB application were at least partly due to an increase in the JA and SA concentrations in the plant, as well as to an associated rise in the glandular trichome density.
Collapse
Affiliation(s)
- Lorena Del Rosario Cappellari
- Dpto. Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Campus Universitario, 5800, Río Cuarto, Argentina
| | - Maricel Valeria Santoro
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Erika Banchio
- Dpto. Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Campus Universitario, 5800, Río Cuarto, Argentina.
| |
Collapse
|
9
|
Danilevskaya ON, Yu G, Meng X, Xu J, Stephenson E, Estrada S, Chilakamarri S, Zastrow‐Hayes G, Thatcher S. Developmental and transcriptional responses of maize to drought stress under field conditions. PLANT DIRECT 2019; 3:e00129. [PMID: 31245774 PMCID: PMC6589525 DOI: 10.1002/pld3.129] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 05/23/2023]
Abstract
Drought is a common abiotic stress which significantly limits global crop productivity. Maize is an important staple crop and its yield is determined by successful development of the female inflorescence, the ear. We investigated drought stress responses across several developmental stages of the maize B73 inbred line under field conditions. Drought suppressed plant growth, but had little impact on progression through developmental stages. While ear growth was suppressed by drought, the process of spikelet initiation was not significantly affected. Tassel growth was reduced to a lesser extent compared to the observed reduction in ear growth under stress. Parallel RNA-seq profiling of leaves, ears, and tassels at several developmental stages revealed tissue-specific differences in response to drought stress. High temperature fluctuation was an additional environmental factor that also likely influenced gene expression patterns in the field. Drought induced significant transcriptional changes in leaves and ears but only minor changes in the tassel. Additionally, more genes were drought responsive in ears compared to leaves over the course of drought treatment. Genes that control DNA replication, cell cycle, and cell division were significantly down-regulated in stressed ears, which was consistent with inhibition of ear growth under drought. Inflorescence meristem genes were affected by drought to a lesser degree which was consistent with the minimal impact of drought on spikelet initiation. In contrast, genes that are involved in floret and ovule development were sensitive to stress, which is consistent with the detrimental effect of drought on gynoecium development and kernel set.
Collapse
Affiliation(s)
| | - GongXin Yu
- Iowa Institute of Human GeneticsUniversity of IowaIowa CityIowa
| | | | - John Xu
- Indigo AgricultureCharlestownMassachusetts
| | | | | | | | | | | |
Collapse
|
10
|
Tavallali V, Karimi S. Methyl jasmonate enhances salt tolerance of almond rootstocks by regulating endogenous phytohormones, antioxidant activity and gas-exchange. JOURNAL OF PLANT PHYSIOLOGY 2019; 234-235:98-105. [PMID: 30743088 DOI: 10.1016/j.jplph.2019.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 05/23/2023]
Abstract
The effects of methyl jasmonate (MeJA) foliar application (0, 0.025, 0.050 and 0.075 mM) on the growth and physiological responses of two almond rootstocks (GF677 and bitter almond) exposed to various concentrations of NaCl in irrigation water (0, 50, 100 and 150 mM) were evaluated. 60 days after salt stress exposure, the mitotic index of root apical meristem cells as well as shoot and root growth, activity of main antioxidant enzymes, gas exchange parameters and contents of cytokinins and ABA were determined. Salt stress decreased the plants' growth, particularly at higher levels. Application of MeJA in optimal concentrations of 0.025 to 0.05 mM alleviated the adverse effect of salt stress by increasing the photosynthetic rate, activity of antioxidant enzymes (APX, SOD and POX), root and shoot dry mass, as well as cell membrane integrity. Furthermore, MeJA application brought about a two-fold increase in the concentration of leaf cytokinins. This reposition of cytokinins was due to restriction of both the activity of cytokinin oxidase and gene expression of this enzyme. The MeJA mitigating effect on the growth of salt-stressed plants could be a result of the inhibition of cytokinin decline under salt stress. The results revealed the effective impact of endogenous cytokinins in protective and growth improvement effects of MeJA on almond rootstocks under salt stress.
Collapse
Affiliation(s)
- Vahid Tavallali
- Department of Agriculture, Payame Noor University (PNU), P.O. Box: 19395-3697, Tehran, Iran.
| | - Soheil Karimi
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Mukherjee S. Novel perspectives on the molecular crosstalk mechanisms of serotonin and melatonin in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:33-45. [PMID: 30172851 DOI: 10.1016/j.plaphy.2018.08.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/14/2018] [Accepted: 08/24/2018] [Indexed: 05/03/2023]
Abstract
Current review focuses on the significant role of serotonin and melatonin in various molecular crosstalk mechanisms in plants. In this context phytohormones (like auxin, gibberellins, ethylene or abscisic acid), plant growth regulators, and associated biomolecules like reactive oxygen species, nitric oxide, brassinosteroids and hydrogen sulphide have been discussed in a wider context. Long distance signaling responses of serotonin in association with auxin, jasmonic acid, salicylic acid and ABA have been critically reviewed. Auxin-serotonin crosstalk in relation to PIN protein functioning and root growth regulation appears to be a major advancement in the context of phytoserotonin signaling in plants. Auxin and serotonin share structural similarities which bring possibilities of auxin receptors being surrogated for serotonin transport in plants. The modulation of root apex architecture is highly regulative in terms of serotonin-jasmonic acid crosstalk. Reactive oxygen species (ROS) appears to be a primary mediator of serotonin mediated root growth response. Serotonin induced signaling therefore involve ROS, auxin, JA and ethylene action. Although there exists handful of critical reviews on the role of phytomelatonin in plants, recent advancements on its regulatory role in modulating plant hormones, ROS scavenging enzymes, ROS/RNS and glutathione levels need attention. Melatonin signaling associated with nitrogen metabolism and nitrosative stress are recent developments in plants. Interesting relationship between nitric oxide and melatonin has been established in relation with biotic and abiotic stress tolerance in plants. Developments in hydrogen sulphide-melatonin signaling in plants are still at its nascent stage but exhibits promising scopes for future.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India.
| |
Collapse
|
12
|
Davis JL, Armengaud P, Larson TR, Graham IA, White PJ, Newton AC, Amtmann A. Contrasting nutrient-disease relationships: Potassium gradients in barley leaves have opposite effects on two fungal pathogens with different sensitivities to jasmonic acid. PLANT, CELL & ENVIRONMENT 2018; 41:2357-2372. [PMID: 29851096 PMCID: PMC6175101 DOI: 10.1111/pce.13350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/21/2018] [Indexed: 05/20/2023]
Abstract
Understanding the interactions between mineral nutrition and disease is essential for crop management. Our previous studies with Arabidopsis thaliana demonstrated that potassium (K) deprivation induced the biosynthesis of jasmonic acid (JA) and increased the plant's resistance to herbivorous insects. Here, we addressed the question of how tissue K affects the development of fungal pathogens and whether sensitivity of the pathogens to JA could play a role for the K-disease relationship in barley (Hordeum vulgare cv. Optic). We report that K-deprived barley plants showed increased leaf concentrations of JA and other oxylipins. Furthermore, a natural tip-to-base K-concentration gradient within leaves of K-sufficient plants was quantitatively mirrored by the transcript levels of JA-responsive genes. The local leaf tissue K concentrations affected the development of two economically important fungi in opposite ways, showing a positive correlation with powdery mildew (Blumeria graminis) and a negative correlation with leaf scald (Rhynchosporium commune) disease symptoms. B. graminis induced a JA response in the plant and was sensitive to methyl-JA treatment whereas R. commune initiated no JA response and was JA insensitive. Our study challenges the view that high K generally improves plant health and suggests that JA sensitivity of pathogens could be an important factor in determining the exact K-disease relationship.
Collapse
Affiliation(s)
- Jayne L. Davis
- Plant Science Group, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Ecological SciencesThe James Hutton InstituteDundeeUK
| | - Patrick Armengaud
- Plant Science Group, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Tony R. Larson
- Department of Biology, Centre for Novel Agricultural ProductsUniversity of YorkYorkUK
| | - Ian A. Graham
- Department of Biology, Centre for Novel Agricultural ProductsUniversity of YorkYorkUK
| | | | | | - Anna Amtmann
- Plant Science Group, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
13
|
Li L, Gu W, Li J, Li C, Xie T, Qu D, Meng Y, Li C, Wei S. Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:35-55. [PMID: 29793181 DOI: 10.1016/j.plaphy.2018.05.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 05/21/2023]
Abstract
Drought stress (DS) is a major environmental factor limiting plant growth and crop productivity worldwide. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to DS. The effects of exogenous Spd on plant growth, photosynthetic performance, and chloroplast ultrastructure as well as changes in endogenous polyamines (PAs) and phytohormones were investigate in DS-resistant (Xianyu 335) and DS-sensitive (Fenghe 1) maize seedlings under well-watered and DS treatments. Exogenous Spd alleviated the stress-induced reduction in growth, photosynthetic pigment content, photosynthesis rate (Pn) and photochemical quenching (qP) parameters, including the maximum photochemistry efficiency of photosystem II (PSII) (Fv/Fm), PSII operating efficiency (ФPSII), and qP coefficient. Exogenous Spd further enhanced stress-induced elevation in non-photochemical quenching (NPQ) and the de-epoxidation state of the xanthophyll cycle (DEPS). Microscopic analysis revealed that seedlings displayed a more ordered arrangement of chloroplast ultrastructure upon Spd application during DS. Exogenous Spd increased the endogenous PA concentrations in the stressed plants. Additionally, exogenous Spd increased indoleacetic acid (IAA), zeatin riboside (ZR) and gibberellin A3 (GA3) and decreased salicylic acid (SA) and jasmonate (JA) concentrations under DS. These results indicate that exogenous Spd can alleviate the growth inhibition and damage to the structure and function of the photosynthetic apparatus caused by DS and that this alleviation may be associated with changes in endogenous PAs and phytohormones. This study contributes to advances in the knowledge of Spd-induced drought tolerance.
Collapse
Affiliation(s)
- Lijie Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Wanrong Gu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Jing Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Congfeng Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10081, China
| | - Tenglong Xie
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Danyang Qu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yao Meng
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150038, Heilongjiang, China
| | - Caifeng Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Shi Wei
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| |
Collapse
|
14
|
Abouelsaad I, Renault S. Enhanced oxidative stress in the jasmonic acid-deficient tomato mutant def-1 exposed to NaCl stress. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:136-144. [PMID: 29758378 DOI: 10.1016/j.jplph.2018.04.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 05/29/2023]
Abstract
Jasmonic acid (JA) has been mostly studied in responses to biotic stresses, such as herbivore attack and pathogenic infection. More recently, the involvement of JA in abiotic stresses including salinity was highlighted; yet, its role in salt stress remained unclear. In the current study, we compared the physiological and biochemical responses of wild-type (WT) tomato (Solanum lycopersicum) cv Castlemart and its JA-deficient mutant defenseless-1 (def-1) under salt stress to investigate the role of JA. Plant growth, photosynthetic pigment content, ion accumulation, oxidative stress-related parameters, proline accumulation and total phenolic compounds, in addition to both enzymatic and non-enzymatic antioxidant activities, were measured in both genotypes after 14 days of 100 mM NaCl treatment. Although we observed in both genotypes similar growth pattern and sodium, calcium and potassium levels in leaves under salt stress, def-1 plants exhibited a more pronounced decrease of nitrogen content in both leaves and roots and a slightly higher level of sodium in roots compared to WT plants. In addition, def-1 plants exposed to salt stress showed reactive oxygen species (ROS)-associated injury phenotypes. These oxidative stress symptoms in def-1 were associated with lower activity of both enzymatic antioxidants and non-enzymatic antioxidants. Furthermore, the levels of the non-enzymatic ROS scavengers proline and total phenolic compounds increased in both genotypes exposed to salt stress, with a higher amount of proline in the WT plants. Overall the results of this study suggest that endogenous JA mainly enhanced tomato salt tolerance by maintaining ROS homeostasis.
Collapse
Affiliation(s)
- Ibrahim Abouelsaad
- Department of Biological Science, University of Manitoba, Winnipeg, R3T 2N2 MB, Canada
| | - Sylvie Renault
- Department of Biological Science, University of Manitoba, Winnipeg, R3T 2N2 MB, Canada.
| |
Collapse
|
15
|
Relationship of Melatonin and Salicylic Acid in Biotic/Abiotic Plant Stress Responses. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8040033] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) was discovered in plants in 1995, while salicylic acid was the name given to the active ingredient of willow in 1838. From a physiological point of view, these two molecules present in plants have never been compared, even though they have a great number of similarities, as we shall see in this work. Both molecules have biosynthesis pathways that share a common precursor and both play a relevant role in the physiology of plants, especially in aspects related to biotic and abiotic stress. They have also been described as biostimulants of photosynthetic processes and productivity enhancers in agricultural crops. We review the coincident aspects of both molecules, and propose an action model, by which the relationship between these molecules and other agents and plant hormones can be studied.
Collapse
|
16
|
Arnao MB, Hernández-Ruiz J. Melatonin and its relationship to plant hormones. ANNALS OF BOTANY 2018; 121:195-207. [PMID: 29069281 PMCID: PMC5808790 DOI: 10.1093/aob/mcx114] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/17/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant melatonin appears to be a multi-regulatory molecule, similar to those observed in animals, with many specific functions in plant physiology. In recent years, the number of studies on melatonin in plants has increased significantly. One of the most studied actions of melatonin in plants is its effect on biotic and abiotic stress, such as that produced by drought, extreme temperatures, salinity, chemical pollution and UV radiation, among others. SCOPE This review looks at studies in which some aspects of the relationship between melatonin and the plant hormones auxin, cytokinin, gibberellins, abscisic acid, ethylene, jasmonic acid and salicylic acid are presented. The effects that some melatonin treatments have on endogenous plant hormone levels, their related genes (biosynthesis, catabolism, receptors and transcription factors) and the physiological actions induced by melatonin, mainly in stress conditions, are discussed. CONCLUSIONS Melatonin is an important modulator of gene expression related to plant hormones, e.g. in auxin carrier proteins, as well as in metabolism of indole-3-acetic acid (IAA), gibberellins, cytokinins, abscisic acid and ethylene. Most of the studies performed have dealt with the auxin-like activity of melatonin which, in a similar way to IAA, is able to induce growth in shoots and roots and stimulate root generation, giving rise to new lateral and adventitious roots. Melatonin is also able to delay senescence, protecting photosynthetic systems and related sub-cellular structures and processes. Also, its role in fruit ripening and post-harvest processes as a gene regulator of ethylene-related factors is relevant. Another decisive aspect is its role in the pathogen-plant interaction. Melatonin appears to act as a key molecule in the plant immune response, together with other well-known molecules such as nitric oxide and hormones, such as jasmonic acid and salicylic acid. In this sense, the discovery of elevated levels of melatonin in endophytic organisms associated with plants has thrown light on a possible novel form of communication between beneficial endophytes and host plants via melatonin.
Collapse
Affiliation(s)
- M B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| | - J Hernández-Ruiz
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
17
|
Ning Y, Liu W, Wang GL. Balancing Immunity and Yield in Crop Plants. TRENDS IN PLANT SCIENCE 2017; 22:1069-1079. [PMID: 29037452 DOI: 10.1016/j.tplants.2017.09.010] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 05/03/2023]
Abstract
Crop diseases cause enormous yield losses and threaten global food[ED1] security. The use of highly resistant cultivars can effectively control plant diseases, but in crops, genetic immunity to disease often comes with an unintended reduction in growth and yield. Here, we review recent advances in understanding how nucleotide-binding domain, leucine-rich repeat (NLR) receptors and cell wall-associated kinase (WAK) proteins function in balancing immunity and yield. We also discuss the role of plant hormones and transcription factors in regulating the trade-offs between plant growth and immunity. Finally, we describe how a novel mechanism of translational control of defense proteins can enhance immunity without the reduction in fitness.
Collapse
Affiliation(s)
- Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Garcia-Abellan JO, Albaladejo I, Egea I, Flores FB, Capel C, Capel J, Angosto T, Lozano R, Bolarin MC. The phenotype alterations showed by the res tomato mutant disappear when the plants are grown under semi-arid conditions: Is the res mutant tolerant to multiple stresses? PLANT SIGNALING & BEHAVIOR 2017; 12:e1146847. [PMID: 0 PMCID: PMC5703232 DOI: 10.1080/15592324.2016.1146847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The res (restored cell structure by salinity) mutant, recently identified as the first tomato mutant accumulating jasmonate (JA) without stress, exhibited important morphological alterations when plants were grown under control conditions but these disappeared under salt stress. Since the defense responses against stresses are activated in the res mutant as a consequence of the increased expression of genes from the JA biosynthetic and signaling pathways, the mutant may display a tolerance response not only to salt stress but also to multiple stresses. Here, we show that when res mutant plants are grown under the summer natural conditions of the Mediterranean area, with high temperatures and low relative humidity, the characteristic leaf chlorosis exhibited by the mutant disappears and leaves become dark green over time, with a similar aspect to WT leaves. Moreover, the mutant plants are able to achieve chlorophyll and fluorescence levels similar to those of WT. These results hint that research on res tomato mutant may allow very significant advances in the knowledge of defense responses activated by JA against multiple stresses.
Collapse
Affiliation(s)
| | - Irene Albaladejo
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia, Spain
| | - Isabel Egea
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia, Spain
| | - Francisco B. Flores
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia, Spain
| | - Carmen Capel
- Agro-Food Biotechnology Research Center (BITAL), University of Almería, La Cañada de San Urbano, Almería, Spain
| | - Juan Capel
- Agro-Food Biotechnology Research Center (BITAL), University of Almería, La Cañada de San Urbano, Almería, Spain
| | - Trinidad Angosto
- Agro-Food Biotechnology Research Center (BITAL), University of Almería, La Cañada de San Urbano, Almería, Spain
| | - Rafael Lozano
- Agro-Food Biotechnology Research Center (BITAL), University of Almería, La Cañada de San Urbano, Almería, Spain
| | - Maria C. Bolarin
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia, Spain
- CONTACT Maria C. Bolarin Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia, P.O. Box 164, E-30100, Spain
| |
Collapse
|
19
|
Ballaré CL, Pierik R. The shade-avoidance syndrome: multiple signals and ecological consequences. PLANT, CELL & ENVIRONMENT 2017; 40:2530-2543. [PMID: 28102548 DOI: 10.1111/pce.12914] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 05/18/2023]
Abstract
Plants use photoreceptor proteins to detect the proximity of other plants and to activate adaptive responses. Of these photoreceptors, phytochrome B (phyB), which is sensitive to changes in the red (R) to far-red (FR) ratio of sunlight, is the one that has been studied in greatest detail. The molecular connections between the proximity signal (low R:FR) and a model physiological response (increased elongation growth) have now been mapped in considerable detail in Arabidopsis seedlings. We briefly review our current understanding of these connections and discuss recent progress in establishing the roles of other photoreceptors in regulating growth-related pathways in response to competition cues. We also consider processes other than elongation that are controlled by photoreceptors and contribute to plant fitness under variable light conditions, including photoresponses that optimize the utilization of soil resources. In examining recent advances in the field, we highlight emerging roles of phyB as a major modulator of hormones related to plant immunity, in particular salicylic acid and jasmonic acid (JA). Recent attempts to manipulate connections between light signals and defence in Arabidopsis suggest that it might be possible to improve crop health at high planting densities by targeting links between phyB and JA signalling.
Collapse
Affiliation(s)
- Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- IIB-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
20
|
Moore BD, Johnson SN. Get Tough, Get Toxic, or Get a Bodyguard: Identifying Candidate Traits Conferring Belowground Resistance to Herbivores in Grasses. FRONTIERS IN PLANT SCIENCE 2017; 7:1925. [PMID: 28105030 PMCID: PMC5214545 DOI: 10.3389/fpls.2016.01925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/05/2016] [Indexed: 05/11/2023]
Abstract
Grasses (Poaceae) are the fifth-largest plant family by species and their uses for crops, forage, fiber, and fuel make them the most economically important. In grasslands, which broadly-defined cover 40% of the Earth's terrestrial surface outside of Greenland and Antarctica, 40-60% of net primary productivity and 70-98% of invertebrate biomass occurs belowground, providing extensive scope for interactions between roots and rhizosphere invertebrates. Grasses invest 50-70% of fixed carbon into root construction, which suggests roots are high value tissues that should be defended from herbivores, but we know relatively little about such defenses. In this article, we identify candidate grass root defenses, including physical (tough) and chemical (toxic) resistance traits, together with indirect defenses involving recruitment of root herbivores' natural enemies. We draw on relevant literature to establish whether these defenses are present in grasses, and specifically in grass roots, and which herbivores of grasses are affected by these defenses. Physical defenses could include structural macro-molecules such as lignin, cellulose, suberin, and callose in addition to silica and calcium oxalate. Root hairs and rhizosheaths, a structural adaptation unique to grasses, might also play defensive roles. To date, only lignin and silica have been shown to negatively affect root herbivores. In terms of chemical resistance traits, nitrate, oxalic acid, terpenoids, alkaloids, amino acids, cyanogenic glycosides, benzoxazinoids, phenolics, and proteinase inhibitors have the potential to negatively affect grass root herbivores. Several good examples demonstrate the existence of indirect defenses in grass roots, including maize, which can recruit entomopathogenic nematodes (EPNs) via emission of (E)-β-caryophyllene, and similar defenses are likely to be common. In producing this review, we aimed to equip researchers with candidate root defenses for further research.
Collapse
Affiliation(s)
- Ben D Moore
- Hawkesbury Institute for the Environment, Western Sydney University Richmond, NSW, Australia
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University Richmond, NSW, Australia
| |
Collapse
|
21
|
Acharya BR, Roy Choudhury S, Estelle AB, Vijayakumar A, Zhu C, Hovis L, Pandey S. Optimization of Phenotyping Assays for the Model Monocot Setaria viridis. FRONTIERS IN PLANT SCIENCE 2017; 8:2172. [PMID: 29312412 PMCID: PMC5743732 DOI: 10.3389/fpls.2017.02172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/11/2017] [Indexed: 05/02/2023]
Abstract
Setaria viridis (green foxtail) is an important model plant for the study of C4 photosynthesis in panicoid grasses, and is fast emerging as a system of choice for the study of plant development, domestication, abiotic stress responses and evolution. Basic research findings in Setaria are expected to advance research not only in this species and its close relative S. italica (foxtail millet), but also in other panicoid grasses, many of which are important food or bioenergy crops. Here we report on the standardization of multiple growth and development assays for S. viridis under controlled conditions, and in response to several phytohormones and abiotic stresses. We optimized these assays at three different stages of the plant's life: seed germination and post-germination growth using agar plate-based assays, early seedling growth and development using germination pouch-based assays, and adult plant growth and development under environmentally controlled growth chambers and greenhouses. These assays will be useful for the community to perform large scale phenotyping analyses, mutant screens, comparative physiological analysis, and functional characterization of novel genes of Setaria or other related agricultural crops. Precise description of various growth conditions, effective treatment conditions and description of the resultant phenotypes will help expand the use of S. viridis as an effective model system.
Collapse
|
22
|
Differential fructan accumulation and expression of fructan biosynthesis, invertase and defense genes is induced in Agave tequilana plantlets by sucrose or stress-related elicitors. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.aggene.2016.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Kuluev B, Avalbaev A, Mikhaylova E, Nikonorov Y, Berezhneva Z, Chemeris A. Expression profiles and hormonal regulation of tobacco expansin genes and their involvement in abiotic stress response. JOURNAL OF PLANT PHYSIOLOGY 2016; 206:1-12. [PMID: 27664375 DOI: 10.1016/j.jplph.2016.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
Changes in the expression levels of tobacco expansin genes NtEXPA1, NtEXPA4, NtEXPA5, and NtEXPA6 were studied in different organs of tobacco (Nicotiana tabacum L.) as well as in response to phytohormone and stress treatments. It was shown that NtEXPA1, NtEXPA4 and NtEXPA5 transcripts were predominantly expressed in the shoot apices and young leaves, but almost absent in mature leaves and roots. The NtEXPA6 mRNA was found at high levels in calluses containing a large number of undifferentiated cells, but hardly detectable in the leaves of different ages and roots. In young leaves, expression levels of NtEXPA1, NtEXPA4 and NtEXPA5 genes were induced by cytokinins, auxins and gibberellins. Cytokinins and auxins were also found to increase NtEXPA6 transcripts in young leaves but to the much lower levels than the other expansin mRNAs. Expression analysis demonstrated that brassinosteroid phytohormones were able either to up-regulate or to down-regulate expression of different expansins in leaves of different ages. Furthermore, transcript levels of NtEXPA1, NtEXPA4, and NtEXPA5 genes were increased in response to NaCl, drought, cold, heat, and 10μM abscisic acid (ABA) treatments but reduced in response to more severe stresses, i.e. cadmium, freezing, and 100μM ABA. In contrast, no substantial changes were found in NtEXPA6 transcript level after all stress treatments. In addition, we examined the involvement of tobacco expansins in the regulation of abiotic stress tolerance by transgenic approaches. Transgenic tobacco plants with constitutive expression of NtEXPA1 and NtEXPA5 exhibited improved tolerance to salt stress: these plants showed higher growth indices after NaCl treatment and minimized water loss by reducing stomatal density. In contrast, NtEXPA4-silenced plants were characterized by a considerable growth reduction under salinity and enhanced water loss. Our findings indicate that expression levels of all studied tobacco expansins genes are modulated by plant hormones whereas NtEXPA1, NtEXPA4, and NtEXPA5 expansins may be involved in the regulation of stress tolerance in tobacco plants.
Collapse
Affiliation(s)
- Bulat Kuluev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa 450054, Russia.
| | - Azamat Avalbaev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa 450054, Russia.
| | - Elena Mikhaylova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa 450054, Russia
| | - Yuriy Nikonorov
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa 450054, Russia
| | - Zoya Berezhneva
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa 450054, Russia
| | - Alexey Chemeris
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa 450054, Russia
| |
Collapse
|
24
|
Wingler A, Hennessy D. Limitation of Grassland Productivity by Low Temperature and Seasonality of Growth. FRONTIERS IN PLANT SCIENCE 2016; 7:1130. [PMID: 27512406 PMCID: PMC4962554 DOI: 10.3389/fpls.2016.01130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/15/2016] [Indexed: 06/01/2023]
Abstract
The productivity of temperate grassland is limited by the response of plants to low temperature, affecting winter persistence and seasonal growth rates. During the winter, the growth of perennial grasses is restricted by a combination of low temperature and the lack of available light, but during early spring low ground temperature is the main limiting factor. Once temperature increases, growth is stimulated, resulting in a peak in growth in spring before growth rates decline later in the season. Growth is not primarily limited by the ability to photosynthesize, but controlled by active regulatory processes that, e.g., enable plants to restrict growth and conserve resources for cold acclimation and winter survival. An insufficient ability to cold acclimate can affect winter persistence, thereby also reducing grassland productivity. While some mechanistic knowledge is available that explains how low temperature limits plant growth, the seasonal mechanisms that promote growth in response to increasing spring temperatures but restrict growth later in the season are only partially understood. Here, we assess the available knowledge of the physiological and signaling processes that determine growth, including hormonal effects, on cellular growth and on carbohydrate metabolism. Using data for grass growth in Ireland, we identify environmental factors that limit growth at different times of the year. Ideas are proposed how developmental factors, e.g., epigenetic changes, can lead to seasonality of the growth response to temperature. We also discuss perspectives for modeling grass growth and breeding to improve grassland productivity in a changing climate.
Collapse
Affiliation(s)
- Astrid Wingler
- School of Biological, Earth and Environmental Sciences, University College Cork, CorkIreland
| | - Deirdre Hennessy
- Teagasc-The Agriculture and Food Development Authority, Moorepark Animal & Grassland Research and Innovation CentreFermoy, Ireland
| |
Collapse
|
25
|
Affiliation(s)
- Christine Shyu
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| |
Collapse
|
26
|
Wang H, Wu G, Zhao B, Wang B, Lang Z, Zhang C, Wang H. Regulatory modules controlling early shade avoidance response in maize seedlings. BMC Genomics 2016; 17:269. [PMID: 27030359 PMCID: PMC4815114 DOI: 10.1186/s12864-016-2593-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/16/2016] [Indexed: 11/20/2022] Open
Abstract
Background Optimization of shade avoidance response (SAR) is crucial for enhancing crop yield in high-density planting conditions in modern agriculture, but a comprehensive study of the regulatory network of SAR is still lacking in monocot crops. Results In this study, the genome-wide early responses in maize seedlings to the simulated shade (low red/far-red ratio) and also to far-red light treatment were transcriptionally profiled. The two processes were predominantly mediated by phytochrome B and phytochrome A, respectively. Clustering of differentially transcribed genes (DTGs) along with functional enrichment analysis identified important biological processes regulated in response to both treatments. Co-expression network analysis identified two transcription factor modules as potentially pivotal regulators of SAR and de-etiolation, respectively. A comprehensive cross-species comparison of orthologous DTG pairs between maize and Arabidopsis in SAR was also conducted, with emphasis on regulatory circuits controlling accelerated flowering and elongated growth, two physiological hallmarks of SAR. Moreover, it was found that the genome-wide distribution of DTGs in SAR and de-etiolation both biased toward the maize1 subgenome, and this was associated with differential retention of various cis-elements between the two subgenomes. Conclusions The results provide the first transcriptional picture for the early dynamics of maize phytochrome signaling. Candidate genes with regulatory functions involved in maize shade avoidance response have been identified, offering a starting point for further functional genomics investigation of maize adaptation to heavily shaded field conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2593-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Guangxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Binbin Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhihong Lang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
27
|
Avalbaev A, Yuldashev R, Fedorova K, Somov K, Vysotskaya L, Allagulova C, Shakirova F. Exogenous methyl jasmonate regulates cytokinin content by modulating cytokinin oxidase activity in wheat seedlings under salinity. JOURNAL OF PLANT PHYSIOLOGY 2016; 191:101-10. [PMID: 26748373 DOI: 10.1016/j.jplph.2015.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 05/23/2023]
Abstract
The treatment of 4-days-old wheat seedlings with methyl jasmonate (MeJA) in concentration optimal for their growth (0.1 μM) resulted in a rapid transient almost two-fold increase in the level of cytokinins (CKs). MeJA-induced accumulation of CKs was due to inhibition of both cytokinin oxidase (CKX) (cytokinin oxidase/dehydrogenase, EC 1.5.99.12) gene expression and activity of this enzyme. Pretreatment of wheat seedlings with MeJA decreased the growth-retarding effect of sodium chloride salinity and accelerated growth recovery after withdrawal of NaCl from the incubation medium. We speculate that this protective effect of the hormone might be due to MeJA's ability to prevent the salinity-induced decline in CK concentration that was caused by inhibition of gene expression and activity of CKX in wheat seedlings. The data might indicate an important role for endogenous cytokinins in the implementation of growth-promoting and protective effects of exogenous MeJA application on wheat plants.
Collapse
Affiliation(s)
- Azamat Avalbaev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Ruslan Yuldashev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Kristina Fedorova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Kirill Somov
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Lidiya Vysotskaya
- Ufa Institute of Biology, Russian Academy of Sciences, pr. Octyabrya, 69, Ufa 450054, Russia
| | - Chulpan Allagulova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Farida Shakirova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia.
| |
Collapse
|
28
|
Waqas M, Shahzad R, Khan AL, Asaf S, Kim YH, Kang SM, Bilal S, Hamayun M, Lee IJ. Salvaging effect of triacontanol on plant growth, thermotolerance, macro-nutrient content, amino acid concentration and modulation of defense hormonal levels under heat stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 99:118-125. [PMID: 26744997 DOI: 10.1016/j.plaphy.2015.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
In this study, it was hypothesized that application of triacontanol, a ubiquitous saturated primary alcohol, at different times-before (TBHS), mid (TMHS), and after (TAHS) heat stress-will extend heat stress (HS) protection in mungbean. The effect of triacontanol on the levels of defense hormones abscisic acid (ABA) and jasmonic acid (JA) was investigated along with the plant growth promotion, nutrient and amino acid content with and without heat stress. Heat stress caused a prominent reduction in plant growth attributes, nutrient and amino acid content, which were attributed to the decreased level of ABA and JA. However, application of triacontanol, particularly in the TBHS and TMHS treatments, reversed the deleterious effects of HS by showing increased ABA and JA levels that favored the significant increase in plant growth attributes, enhanced nutrient content, and high amount of amino acid. TAHS, a short-term application of triacontanol, also significantly increased ABA and JA levels and thus revealed important information of its association with hormonal modulation. The growth-promoting effect of triacontanol was also confirmed under normal growth conditions. To the best of our knowledge, this study is the first to demonstrate the beneficial effects of triacontanol, with or without heat stress, on mungbean and its interaction with or regulation of the levels of defense hormones.
Collapse
Affiliation(s)
- Muhammad Waqas
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea; Department of Agriculture Extension, Buner 19290, Pakistan
| | - Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Abdul Latif Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea; UoN Chair of Oman's Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa 616, Oman
| | - Sajjad Asaf
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Yoon-Ha Kim
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea; Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Saqib Bilal
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Muhammad Hamayun
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea; Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
29
|
Arnao MB, Hernández-Ruiz J. Functions of melatonin in plants: a review. J Pineal Res 2015; 59:133-50. [PMID: 26094813 DOI: 10.1111/jpi.12253] [Citation(s) in RCA: 425] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/05/2015] [Indexed: 02/06/2023]
Abstract
The number of studies on melatonin in plants has increased significantly in recent years. This molecule, with a large set of functions in animals, has also shown great potential in plant physiology. This review outlines the main functions of melatonin in the physiology of higher plants. Its role as antistress agent against abiotic stressors, such as drought, salinity, low and high ambient temperatures, UV radiation and toxic chemicals, is analyzed. The latest data on their role in plant-pathogen interactions are also discussed. Both abiotic and biotic stresses produce a significant increase in endogenous melatonin levels, indicating its possible role as effector in these situations. The existence of endogenous circadian rhythms in melatonin levels has been demonstrated in some species, and the data, although limited, suggest a central role of this molecule in the day/night cycles in plants. Finally, another aspect that has led to a large volume of research is the involvement of melatonin in aspects of plant development regulation. Although its role as a plant hormone is still far of from being fully established, its involvement in processes such as growth, rhizogenesis, and photosynthesis seems evident. The multiple changes in gene expression caused by melatonin point to its role as a multiregulatory molecule capable of coordinating many aspects of plant development. This last aspect, together with its role as an alleviating-stressor agent, suggests that melatonin is an excellent prospect for crop improvement.
Collapse
Affiliation(s)
- Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| | - Josefa Hernández-Ruiz
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
30
|
|
31
|
Kurotani KI, Hattori T, Takeda S. Overexpression of a CYP94 family gene CYP94C2b increases internode length and plant height in rice. PLANT SIGNALING & BEHAVIOR 2015; 10:e1046667. [PMID: 26251886 PMCID: PMC4623425 DOI: 10.1080/15592324.2015.1046667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant growth is controlled by intrinsic developmental programmes and environmental cues. Jasmonate (JA) has important roles in both processes, by regulating cell division and differentiation, as well as in defense responses and senescence. We report an increase in rice plant height caused by overexpression of a gene encoding a cytochrome P450 enzyme, CYP94C2b, which promoted deactivation of JA-Ile. The height increase occurred through enhanced elongation of internodes in the absence of concomitant cell elongation, unlike previous findings with coi1 knock-down plants. Thus, modulating JA metabolism can increase the number of elongated cells in an internode. Based on these and previous findings, we discuss the difference in the effects of CYP94C2b overexpression vs. coi1 knock-down.
Collapse
Affiliation(s)
- Ken-Ich Kurotani
- Bioscience and Biotechnology Center; Nagoya University; Nagoya, Japan
| | - Tsukaho Hattori
- Bioscience and Biotechnology Center; Nagoya University; Nagoya, Japan
| | - Shin Takeda
- Bioscience and Biotechnology Center; Nagoya University; Nagoya, Japan
- Correspondence to: Shin Takeda;
| |
Collapse
|