1
|
Liao P, Zeng T, Chen Y, Ding DD, Zhou CY, Zhou Y. Lemon zinc finger protein ClSUP induces accumulation of reactive oxygen species and inhibits citrus yellow vein-clearing virus infection via interactions with ClDOF3.4. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7300-7316. [PMID: 39185708 DOI: 10.1093/jxb/erae361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/24/2024] [Indexed: 08/27/2024]
Abstract
Citrus yellow vein-clearing virus (Potexvirus citriflavivenae; CYVCV) is an increasing threat to citrus cultivation. Notably, the role of zinc finger proteins (ZFPs) in mediating viral resistance in citrus plants is unclear. In this study, we demonstrated that ZFPs ClSUP and ClDOF3.4 enhanced citrus defense responses against CYVCV in Eureka lemon (Citrus limon 'Eureka'). ClSUP interacted with the coat protein (CP) of CYVCV to reduce CP accumulation and inhibited its silencing suppressor function. Overexpression of CISUP triggered reactive oxygen species (ROS) and salicylic acid (SA) pathways, and enhanced resistance to CYVCV infection. In contrast, ClSUP silencing resulted in increased CP accumulation and down-regulated ROS and SA-related genes. ClDOF3.4 interacted with ClSUP to facilitate its interactions with CP. Furthermore, ClDOF3.4 synergistically regulated the accumulation of ROS and SA with ClSUP and accelerated down-regulation of CP accumulation. Transgenic plants co-expressing ClSUP and ClDOF3.4 significantly decreased the CYVCV. These findings provide a new reference for understanding the interaction mechanism between the host and CYVCV.
Collapse
Affiliation(s)
- Ping Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/ National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, P.R. China
| | - Ting Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/ National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, P.R. China
| | - Yuan Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/ National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, P.R. China
| | - Dong-Dong Ding
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/ National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, P.R. China
| | - Chang-Yong Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/ National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, P.R. China
| | - Yan Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/ National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, P.R. China
| |
Collapse
|
2
|
Chen W, Xu J, Chen J, Wang JF, Zhang S, Pei ZM. Acidic Stress Induces Cytosolic Free Calcium Oscillation, and an Appropriate Low pH Helps Maintain the Circadian Clock in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:3107. [PMID: 39520026 PMCID: PMC11548685 DOI: 10.3390/plants13213107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Acidic stress is a formidable environmental factor that exerts adverse effects on plant growth and development, ultimately leading to a potential reduction in agricultural productivity. A low pH triggers Ca2+ influx across the plasma membrane (PM), eliciting distinct responses under various acidic pH levels. However, the underlying mechanisms by which Arabidopsis plant cells generate stimulus-specific Ca2+ signals in response to acidic stress remain largely unexplored. The experimentally induced stimulus may elicit spikes in cytosolic free Ca2+ concentration ([Ca2+]i) spikes or complex [Ca2+]i oscillations that persist for 20 min over a long-term of 24 h or even several days within the plant cytosol and chloroplast. This study investigated the increase in [Ca2+]i under a gradient of low pH stress ranging from pH 3.0 to 6.0. Notably, the peak of [Ca2+]i elevation was lower at pH 4.0 than at pH 3.0 during the initial 8 h, while other pH levels did not significantly increase [Ca2+]i compared to low acidic stress conditions. Lanthanum chloride (LaCl3) can effectively suppress the influx of [Ca2+]i from the apoplastic to the cytoplasm in plants under acid stress, with no discernible difference in intracellular calcium levels observed in Arabidopsis. Following 8 h of acid treatment in the darkness, the intracellular baseline Ca2+ levels in Arabidopsis were significantly elevated when exposed to low pH stress. A moderately low pH, specifically 4.0, may function as a spatial-temporal input into the circadian clock system. These findings suggest that acid stimulation can exert a continuous influence on intracellular calcium levels, as well as plant growth and development.
Collapse
Affiliation(s)
- Wei Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
- Center on Plant Environmental Sensing, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jing Xu
- Center on Plant Environmental Sensing, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jia Chen
- Center on Plant Environmental Sensing, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jun-Feng Wang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shu Zhang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhen-Ming Pei
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
3
|
Wei H, Wang Z, Wang J, Mao X, He W, Hu W, Tang M, Chen H. Mycorrhizal and non-mycorrhizal perennial ryegrass roots exhibit differential regulation of lipid and Ca 2+ signaling pathways in response to low and high temperature stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109099. [PMID: 39260265 DOI: 10.1016/j.plaphy.2024.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Lipids and Ca2+ are involved as intermediate messengers in temperature-sensing signaling pathways. Arbuscular mycorrhizal (AM) symbiosis is a mutualistic symbiosis between fungi and terrestrial plants that helps host plants cope with adverse environmental conditions. Nonetheless, the regulatory mechanisms of lipid- and Ca2+-mediated signaling pathways in mycorrhizal plants under cold and heat stress have not been determined. The present work focused on investigating the lipid- and Ca2+-mediated signaling pathways in arbuscular mycorrhizal (AM) and non-mycorrhizal (NM) roots under temperature stress and determining the role of Ca2+ levels in AM symbiosis and temperature stress tolerance in perennial ryegrass (Lolium perenne L.) Compared with NM plants, AM symbiosis increased phosphatidic acid (PA) and Ca2+ signaling in the roots of perennial ryegrass, increasing the expression of genes associated with low temperature (LT) stress, including LpICE1, LpCBF3, LpCOR27, LpCOR47, LpIRI, and LpAFP, and high temperature (HT) stress, including LpHSFC1b, LpHSFC2b, LpsHSP17.8, LpHSP22, LpHSP70, and LpHSP90, under LT and HT conditions. These effects result in modulated antioxidant enzyme activities, reduced lipid peroxidation, and suppressed growth inhibition caused by LT and HT stresses. Furthermore, exogenous Ca2+ application enhanced AM symbiosis, leading to the upregulation of Ca2+ signaling pathway genes in roots and ultimately promoting the growth of perennial ryegrass under LT and HT stresses. These findings shed light on lipid and Ca2+ signal transduction in AM-associated plants under LT and HT stresses, emphasizing that Ca2+ enhances cold and heat tolerance in mycorrhizal plants.
Collapse
Affiliation(s)
- Hongjian Wei
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihao Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiajin Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xinjie Mao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyuan He
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Mishra S, Spaccarotella K, Gido J, Samanta I, Chowdhary G. Effects of Heat Stress on Plant-Nutrient Relations: An Update on Nutrient Uptake, Transport, and Assimilation. Int J Mol Sci 2023; 24:15670. [PMID: 37958654 PMCID: PMC10649217 DOI: 10.3390/ijms242115670] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
As a consequence of global climate change, the frequency, severity, and duration of heat stress are increasing, impacting plant growth, development, and reproduction. While several studies have focused on the physiological and molecular aspects of heat stress, there is growing concern that crop quality, particularly nutritional content and phytochemicals important for human health, is also negatively impacted. This comprehensive review aims to provide profound insights into the multifaceted effects of heat stress on plant-nutrient relationships, with a particular emphasis on tissue nutrient concentration, the pivotal nutrient-uptake proteins unique to both macro- and micronutrients, and the effects on dietary phytochemicals. Finally, we propose a new approach to investigate the response of plants to heat stress by exploring the possible role of plant peroxisomes in the context of heat stress and nutrient mobilization. Understanding these complex mechanisms is crucial for developing strategies to improve plant nutrition and resilience during heat stress.
Collapse
Affiliation(s)
- Sasmita Mishra
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Kim Spaccarotella
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Jaclyn Gido
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Ishita Samanta
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT—Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India (G.C.)
| | - Gopal Chowdhary
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT—Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India (G.C.)
| |
Collapse
|
5
|
Corti F, Festa M, Stein F, Stevanato P, Siroka J, Navazio L, Vothknecht UC, Alboresi A, Novák O, Formentin E, Szabò I. Comparative analysis of wild-type and chloroplast MCU-deficient plants reveals multiple consequences of chloroplast calcium handling under drought stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1228060. [PMID: 37692417 PMCID: PMC10485843 DOI: 10.3389/fpls.2023.1228060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023]
Abstract
Introduction Chloroplast calcium homeostasis plays an important role in modulating the response of plants to abiotic and biotic stresses. One of the greatest challenges is to understand how chloroplast calcium-permeable pathways and sensors are regulated in a concerted manner to translate specific information into a calcium signature and to elucidate the downstream effects of specific chloroplast calcium dynamics. One of the six homologs of the mitochondrial calcium uniporter (MCU) was found to be located in chloroplasts in the leaves and to crucially contribute to drought- and oxidative stress-triggered uptake of calcium into this organelle. Methods In the present study we integrated comparative proteomic analysis with biochemical, genetic, cellular, ionomic and hormone analysis in order to gain an insight into how chloroplast calcium channels are integrated into signaling circuits under watered condition and under drought stress. Results Altogether, our results indicate for the first time a link between chloroplast calcium channels and hormone levels, showing an enhanced ABA level in the cmcu mutant already in well-watered condition. Furthermore, we show that the lack of cMCU results in an upregulation of the calcium sensor CAS and of enzymes of chlorophyll synthesis, which are also involved in retrograde signaling upon drought stress, in two independent KO lines generated in Col-0 and Col-4 ecotypes. Conclusions These observations point to chloroplasts as important signaling hubs linked to their calcium dynamics. Our results obtained in the model plant Arabidopsis thaliana are discussed also in light of our limited knowledge regarding organellar calcium signaling in crops and raise the possibility of an involvement of such signaling in response to drought stress also in crops.
Collapse
Affiliation(s)
| | | | - Frank Stein
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Jitka Siroka
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Olomouc, Czechia
| | | | - Ute C. Vothknecht
- Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | | | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Olomouc, Czechia
| | | | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
6
|
Munns R, Millar AH. Seven plant capacities to adapt to abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4308-4323. [PMID: 37220077 PMCID: PMC10433935 DOI: 10.1093/jxb/erad179] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/11/2023] [Indexed: 05/25/2023]
Abstract
Abiotic stresses such as drought and heat continue to impact crop production in a warming world. This review distinguishes seven inherent capacities that enable plants to respond to abiotic stresses and continue growing, although at a reduced rate, to achieve a productive yield. These are the capacities to selectively take up essential resources, store them and supply them to different plant parts, generate the energy required for cellular functions, conduct repairs to maintain plant tissues, communicate between plant parts, manage existing structural assets in the face of changed circumstances, and shape-shift through development to be efficient in different environments. By illustration, we show how all seven plant capacities are important for reproductive success of major crop species during drought, salinity, temperature extremes, flooding, and nutrient stress. Confusion about the term 'oxidative stress' is explained. This allows us to focus on the strategies that enhance plant adaptation by identifying key responses that can be targets for plant breeding.
Collapse
Affiliation(s)
- Rana Munns
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
7
|
Cuypers A, Vanbuel I, Iven V, Kunnen K, Vandionant S, Huybrechts M, Hendrix S. Cadmium-induced oxidative stress responses and acclimation in plants require fine-tuning of redox biology at subcellular level. Free Radic Biol Med 2023; 199:81-96. [PMID: 36775109 DOI: 10.1016/j.freeradbiomed.2023.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Cadmium (Cd) is one of the most toxic compounds released into our environment and is harmful to human health, urging the need to remediate Cd-polluted soils. To this end, it is important to increase our insight into the molecular mechanisms underlying Cd stress responses in plants, ultimately leading to acclimation, and to develop novel strategies for economic validation of these soils. Albeit its non-redox-active nature, Cd causes a cellular oxidative challenge, which is a crucial determinant in the onset of diverse signalling cascades required for long-term acclimation and survival of Cd-exposed plants. Although it is well known that Cd affects reactive oxygen species (ROS) production and scavenging, the contribution of individual organelles to Cd-induced oxidative stress responses is less well studied. Here, we provide an overview of the current information on Cd-induced organellar responses with special attention to redox biology. We propose that an integration of organellar ROS signals with other signalling pathways is essential to finetune plant acclimation to Cd stress.
Collapse
Affiliation(s)
- Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium.
| | - Isabeau Vanbuel
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Verena Iven
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Kris Kunnen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Stéphanie Vandionant
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Michiel Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| |
Collapse
|
8
|
Nikolić I, Samardžić J, Stevanović S, Miljuš-Đukić J, Milisavljević M, Timotijević G. CRISPR/Cas9-Targeted Disruption of Two Highly Homologous Arabidopsis thaliana DSS1 Genes with Roles in Development and the Oxidative Stress Response. Int J Mol Sci 2023; 24:ijms24032442. [PMID: 36768765 PMCID: PMC9916663 DOI: 10.3390/ijms24032442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023] Open
Abstract
Global climate change has a detrimental effect on plant growth and health, causing serious losses in agriculture. Investigation of the molecular mechanisms of plant responses to various environmental pressures and the generation of plants tolerant to abiotic stress are imperative to modern plant science. In this paper, we focus on the application of the well-established technology CRISPR/Cas9 genome editing to better understand the functioning of the intrinsically disordered protein DSS1 in plant response to oxidative stress. The Arabidopsis genome contains two highly homologous DSS1 genes, AtDSS1(I) and AtDSS1(V). This study was designed to identify the functional differences between AtDSS1s, focusing on their potential roles in oxidative stress. We generated single dss1(I) and dss1(V) mutant lines of both Arabidopsis DSS1 genes using CRISPR/Cas9 technology. The homozygous mutant lines with large indels (dss1(I)del25 and dss1(V)ins18) were phenotypically characterized during plant development and their sensitivity to oxidative stress was analyzed. The characterization of mutant lines revealed differences in root and stem lengths, and rosette area size. Plants with a disrupted AtDSS1(V) gene exhibited lower survival rates and increased levels of oxidized proteins in comparison to WT plants exposed to oxidative stress induced by hydrogen peroxide. In this work, the dss1 double mutant was not obtained due to embryonic lethality. These results suggest that the DSS1(V) protein could be an important molecular component in plant abiotic stress response.
Collapse
|
9
|
He C, Berkowitz O, Hu S, Zhao Y, Qian K, Shou H, Whelan J, Wang Y. Co-regulation of mitochondrial and chloroplast function: Molecular components and mechanisms. PLANT COMMUNICATIONS 2023; 4:100496. [PMID: 36435968 PMCID: PMC9860188 DOI: 10.1016/j.xplc.2022.100496] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
The metabolic interdependence, interactions, and coordination of functions between chloroplasts and mitochondria are established and intensively studied. However, less is known about the regulatory components that control these interactions and their responses to external stimuli. Here, we outline how chloroplastic and mitochondrial activities are coordinated via common components involved in signal transduction pathways, gene regulatory events, and post-transcriptional processes. The endoplasmic reticulum emerges as a point of convergence for both transcriptional and post-transcriptional pathways that coordinate chloroplast and mitochondrial functions. Although the identification of molecular components and mechanisms of chloroplast and mitochondrial signaling increasingly suggests common players, this raises the question of how these allow for distinct organelle-specific downstream pathways. Outstanding questions with respect to the regulation of post-transcriptional pathways and the cell and/or tissue specificity of organelle signaling are crucial for understanding how these pathways are integrated at a whole-plant level to optimize plant growth and its response to changing environmental conditions.
Collapse
Affiliation(s)
- Cunman He
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Shanshan Hu
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, P.R. China
| | - Yang Zhao
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kun Qian
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Huixia Shou
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, P.R. China
| | - James Whelan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia; International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, P.R. China
| | - Yan Wang
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
10
|
Wang Y, Wang Y, Chen W, Dong Y, Zhang G, Deng H, Liu X, Lu X, Wang F, Chen G, Xiao Y, Tang W. Comparative transcriptome analysis of the mechanism difference in heat stress response between indica rice cultivar "IR64" and japonica cultivar "Koshihikari" at the seedling stage. Front Genet 2023; 14:1135577. [PMID: 37153001 PMCID: PMC10160441 DOI: 10.3389/fgene.2023.1135577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Heat stress (HS) has become a major abiotic stress in rice, considering the frequency and intensity of extreme hot weather. There is an urgent need to explore the differences in molecular mechanisms of HS tolerance in different cultivars, especially in indica and japonica. In this study, we investigated the transcriptome information of IR64 (indica, IR) and Koshihikari (japonica, Kos) in response to HS at the seedling stage. From the differentially expressed genes (DEGs) consistently expressed at six time points, 599 DEGs were identified that were co-expressed in both cultivars, as well as 945 and 1,180 DEGs that were specifically expressed in IR and Kos, respectively. The results of GO and KEGG analysis showed two different HS response pathways for IR and Kos. IR specifically expressed DEGs were mainly enriched in chloroplast-related pathways, whereas Kos specifically expressed DEGs were mainly enriched in endoplasmic reticulum and mitochondria-related pathways. Meanwhile, we highlighted the importance of NO biosynthesis genes, especially nitrate reductase genes, in the HS response of IR based on protein-protein interaction networks. In addition, we found that heat shock proteins and heat shock factors play very important roles in both cultivars. This study not only provides new insights into the differences in HS responses between different subspecies of rice, but also lays the foundation for future research on molecular mechanisms and breeding of heat-tolerant cultivars.
Collapse
Affiliation(s)
- Yingfeng Wang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yubo Wang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Wenjuan Chen
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yating Dong
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Guilian Zhang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Huabing Deng
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Xiong Liu
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Xuedan Lu
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Feng Wang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Guihua Chen
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yunhua Xiao
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
- *Correspondence: Yunhua Xiao, ; Wenbang Tang,
| | - Wenbang Tang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- *Correspondence: Yunhua Xiao, ; Wenbang Tang,
| |
Collapse
|
11
|
Feng C, Gao H, Zhou Y, Jing Y, Li S, Yan Z, Xu K, Zhou F, Zhang W, Yang X, Hussain MA, Li H. Unfolding molecular switches for salt stress resilience in soybean: recent advances and prospects for salt-tolerant smart plant production. FRONTIERS IN PLANT SCIENCE 2023; 14:1162014. [PMID: 37152141 PMCID: PMC10154572 DOI: 10.3389/fpls.2023.1162014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
The increasing sodium salts (NaCl, NaHCO3, NaSO4 etc.) in agricultural soil is a serious global concern for sustainable agricultural production and food security. Soybean is an important food crop, and their cultivation is severely challenged by high salt concentration in soils. Classical transgenic and innovative breeding technologies are immediately needed to engineer salt tolerant soybean plants. Additionally, unfolding the molecular switches and the key components of the soybean salt tolerance network are crucial for soybean salt tolerance improvement. Here we review our understandings of the core salt stress response mechanism in soybean. Recent findings described that salt stress sensing, signalling, ionic homeostasis (Na+/K+) and osmotic stress adjustment might be important in regulating the soybean salinity stress response. We also evaluated the importance of antiporters and transporters such as Arabidopsis K+ Transporter 1 (AKT1) potassium channel and the impact of epigenetic modification on soybean salt tolerance. We also review key phytohormones, and osmo-protectants and their role in salt tolerance in soybean. In addition, we discuss the progress of omics technologies for identifying salt stress responsive molecular switches and their targeted engineering for salt tolerance in soybean. This review summarizes recent progress in soybean salt stress functional genomics and way forward for molecular breeding for developing salt-tolerant soybean plant.
Collapse
Affiliation(s)
- Chen Feng
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Hongtao Gao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yonggang Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yan Jing
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Senquan Li
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zhao Yan
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Keheng Xu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Fangxue Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Wenping Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Xinquan Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Muhammad Azhar Hussain
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Muhammad Azhar Hussain, ; Haiyan Li,
| | - Haiyan Li
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Muhammad Azhar Hussain, ; Haiyan Li,
| |
Collapse
|
12
|
Bittner A, Cieśla A, Gruden K, Lukan T, Mahmud S, Teige M, Vothknecht UC, Wurzinger B. Organelles and phytohormones: a network of interactions in plant stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7165-7181. [PMID: 36169618 PMCID: PMC9675595 DOI: 10.1093/jxb/erac384] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/26/2022] [Indexed: 06/08/2023]
Abstract
Phytohormones are major signaling components that contribute to nearly all aspects of plant life. They constitute an interconnected communication network to fine-tune growth and development in response to the ever-changing environment. To this end, they have to coordinate with other signaling components, such as reactive oxygen species and calcium signals. On the one hand, the two endosymbiotic organelles, plastids and mitochondria, control various aspects of phytohormone signaling and harbor important steps of hormone precursor biosynthesis. On the other hand, phytohormones have feedback actions on organellar functions. In addition, organelles and phytohormones often act in parallel in a coordinated matter to regulate cellular functions. Therefore, linking organelle functions with increasing knowledge of phytohormone biosynthesis, perception, and signaling will reveal new aspects of plant stress tolerance. In this review, we highlight recent work on organelle-phytohormone interactions focusing on the major stress-related hormones abscisic acid, jasmonates, salicylic acid, and ethylene.
Collapse
|
13
|
Teige M, Jones M, Toledo-Ortiz G. Plant organellar signalling-back and forth and intertwined with cellular signalling. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7103-7104. [PMID: 36402134 PMCID: PMC9675588 DOI: 10.1093/jxb/erac383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
14
|
Wang Y, Zhou Y, Liang J. Characterization of Organellar-Specific ABA Responses during Environmental Stresses in Tobacco Cells and Arabidopsis Plants. Cells 2022; 11:2039. [PMID: 35805123 PMCID: PMC9265483 DOI: 10.3390/cells11132039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Abscisic acid (ABA) is a critical phytohormone involved in multifaceted processes in plant metabolism and growth under both stressed and nonstressed conditions. Its accumulation in various tissues and cells has long been established as a biomarker for plant stress responses. To date, a comprehensive understanding of ABA distribution and dynamics at subcellular resolution in response to environmental cues is still lacking. Here, we modified the previously developed ABA sensor ABAleon2.1_Tao3 (Tao3) and targeted it to different organelles including the endoplasmic reticulum (ER), chloroplast/plastid, and nucleus through the addition of corresponding signal peptides. Together with the cytosolic Tao3, we show distinct ABA distribution patterns in different tobacco cells with the chloroplast showing a lower level of ABA in both cell types. In a tobacco mesophyll cell, organellar ABA displayed specific alterations depending on osmotic stimulus, with ABA levels being generally enhanced under a lower and higher concentration of salt and mannitol treatment, respectively. In Arabidopsis roots, cells from both the meristem and elongation zone accumulated ABA considerably in the cytoplasm upon mannitol treatment, while the plastid and nuclear ABA was generally reduced dependent upon specific cell types. In Arabidopsis leaf tissue, subcellular ABA seemed to be less responsive when stressed, with notable increases of ER ABA in epidermal cells and a reduction of nuclear ABA in guard cells. Together, our results present a detailed characterization of stimulus-dependent cell type-specific organellar ABA responses in tobacco and Arabidopsis plants, supporting a highly coordinated regulatory network for mediating subcellular ABA homeostasis during plant adaptation processes.
Collapse
Affiliation(s)
- Yuzhu Wang
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China;
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yeling Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiansheng Liang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
15
|
Ahmad M, Imtiaz M, Shoib Nawaz M, Mubeen F, Imran A. What Did We Learn From Current Progress in Heat Stress Tolerance in Plants? Can Microbes Be a Solution? FRONTIERS IN PLANT SCIENCE 2022; 13:794782. [PMID: 35677244 PMCID: PMC9168681 DOI: 10.3389/fpls.2022.794782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/21/2022] [Indexed: 05/16/2023]
Abstract
Temperature is a significant parameter in agriculture since it controls seed germination and plant growth. Global warming has resulted in an irregular rise in temperature posing a serious threat to the agricultural production around the world. A slight increase in temperature acts as stress and exert an overall negative impact on different developmental stages including plant phenology, development, cellular activities, gene expression, anatomical features, the functional and structural orientation of leaves, twigs, roots, and shoots. These impacts ultimately decrease the biomass, affect reproductive process, decrease flowering and fruiting and significant yield losses. Plants have inherent mechanisms to cope with different stressors including heat which may vary depending upon the type of plant species, duration and degree of the heat stress. Plants initially adapt avoidance and then tolerance strategies to combat heat stress. The tolerance pathway involves ion transporter, osmoprotectants, antioxidants, heat shock protein which help the plants to survive under heat stress. To develop heat-tolerant plants using above-mentioned strategies requires a lot of time, expertise, and resources. On contrary, plant growth-promoting rhizobacteria (PGPRs) is a cost-effective, time-saving, and user-friendly approach to support and enhance agricultural production under a range of environmental conditions including stresses. PGPR produce and regulate various phytohormones, enzymes, and metabolites that help plant to maintain growth under heat stress. They form biofilm, decrease abscisic acid, stimulate root development, enhance heat shock proteins, deamination of ACC enzyme, and nutrient availability especially nitrogen and phosphorous. Despite extensive work done on plant heat stress tolerance in general, very few comprehensive reviews are available on the subject especially the role of microbes for plant heat tolerance. This article reviews the current studies on the retaliation, adaptation, and tolerance to heat stress at the cellular, organellar, and whole plant levels, explains different approaches, and sheds light on how microbes can help to induce heat stress tolerance in plants.
Collapse
Affiliation(s)
| | - Muhammad Imtiaz
- Microbial Ecology Lab, Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | | | | | - Asma Imran
- Microbial Ecology Lab, Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| |
Collapse
|
16
|
Lukan T, Coll A. Intertwined Roles of Reactive Oxygen Species and Salicylic Acid Signaling Are Crucial for the Plant Response to Biotic Stress. Int J Mol Sci 2022; 23:5568. [PMID: 35628379 PMCID: PMC9147500 DOI: 10.3390/ijms23105568] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
One of the earliest hallmarks of plant immune response is production of reactive oxygen species (ROS) in different subcellular compartments, which regulate plant immunity. A suitable equilibrium, which is crucial to prevent ROS overaccumulation leading to oxidative stress, is maintained by salicylic acid (SA), a chief regulator of ROS. However, ROS not only act downstream of SA signaling, but are also proposed to be a central component of a self-amplifying loop that regulates SA signaling as well as the interaction balance between different phytohormones. The exact role of this crosstalk, the position where SA interferes with ROS signaling and ROS interferes with SA signaling and the outcome of this regulation, depend on the origin of ROS but also on the pathosystem. The precise spatiotemporal regulation of organelle-specific ROS and SA levels determine the effectiveness of pathogen arrest and is therefore crucial for a successful immune response. However, the regulatory interplay behind still remains poorly understood, as up until now, the role of organelle-specific ROS and SA in hypersensitive response (HR)-conferred resistance has mostly been studied by altering the level of a single component. In order to address these aspects, a sophisticated combination of research methods for monitoring the spatiotemporal dynamics of key players and transcriptional activity in plants is needed and will most probably consist of biosensors and precision transcriptomics.
Collapse
Affiliation(s)
- Tjaša Lukan
- National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia;
| | | |
Collapse
|
17
|
Wang D, Huang F, Yan P, Nie Y, Chen L, Luo J, Zhao H, Wang Y, Han S. Cytosolic and Nucleosolic Calcium-Regulated Molecular Networks in Response to Long-Term Treatment with Abscisic Acid and Methyl Jasmonate in Arabidopsis thaliana. Genes (Basel) 2022; 13:genes13030524. [PMID: 35328077 PMCID: PMC8950999 DOI: 10.3390/genes13030524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
Calcium acts as a universal secondary messenger that transfers developmental cues and stress signals for gene expression and adaptive growth. A prior study showed that abiotic stresses induce mutually independent cytosolic Ca2+ ([Ca2+]cyt) and nucleosolic Ca2+ ([Ca2+]nuc) increases in Arabidopsis thaliana root cells. However, gene expression networks deciphering [Ca2+]cyt and [Ca2+]nuc signalling pathways remain elusive. Here, using transgenic A. thaliana to selectively impair abscisic acid (ABA)- or methyl jasmonate (MeJA)-induced [Ca2+]cyt and [Ca2+]nuc increases, we identified [Ca2+]cyt- and [Ca2+]nuc-regulated ABA- or MeJA-responsive genes with a genome oligo-array. Gene co-expression network analysis revealed four Ca2+ signal-decoding genes, CAM1, CIPK8, GAD1, and CPN20, as hub genes co-expressed with Ca2+-regulated hormone-responsive genes and hormone signalling genes. Luciferase complementation imaging assays showed interactions among CAM1, CIPK8, and GAD1; they also showed interactions with several proteins encoded by Ca2+-regulated hormone-responsive genes. Furthermore, CAM1 and CIPK8 were required for MeJA-induced stomatal closure; they were associated with ABA-inhibited seed germination. Quantitative reverse transcription polymerase chain reaction analysis showed the unique expression pattern of [Ca2+]-regulated hormone-responsive genes in cam1, cipk8, and gad1. This comprehensive understanding of distinct Ca2+ and hormonal signalling will allow the application of approaches to uncover novel molecular foundations for responses to developmental and stress signals in plants.
Collapse
Affiliation(s)
- Doudou Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Feifei Huang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Pengcheng Yan
- Department of Computational Biology, Beijing Computing Center, Beijing 100094, China;
| | - Yanli Nie
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Lvli Chen
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Jin Luo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
- Correspondence:
| |
Collapse
|
18
|
Li H, Nian J, Fang S, Guo M, Huang X, Zhang F, Wang Q, Zhang J, Bai J, Dong G, Xin P, Xie X, Chen F, Wang G, Wang Y, Qian Q, Zuo J, Chu J, Ma X. Regulation of nitrogen starvation responses by the alarmone (p)ppGpp in rice. J Genet Genomics 2022; 49:469-480. [DOI: 10.1016/j.jgg.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/20/2022]
|
19
|
Kim HJ, Kato N, Ndathe R, Thyssen GN, Jones DC, Ratnayaka HH. Evidence for thermosensitivity of the cotton (Gossypium hirsutum L.) immature fiber (im) mutant via hypersensitive stomatal activity. PLoS One 2021; 16:e0259562. [PMID: 34898615 PMCID: PMC8668099 DOI: 10.1371/journal.pone.0259562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
Thickness of cotton fiber, referred to as fiber maturity, is a key determinant of fiber quality, lint yield, and textile performance. The cotton immature fiber (im) mutant has been used to study fiber maturity since its fiber is thinner than the wild type near isogeneic line (NIL), Texas Marker-1 (TM-1). The im phenotype is caused by a single recessive mutation of a pentatricopeptide repeat (PPR) gene that reduces the activity of mitochondrial complex I and up-regulates stress responsive genes. However, the mechanisms altering the stress responses in im mutant are not well understood. Thus, we characterized growth and gas exchange in im and TM-1 under no stress and also investigated their stress responses by comparing gas exchange and transcriptomic profiles under high temperature. Phenotypic differences were detected between the NILs in non-fiber tissues although less pronounced than the variation in fibers. At near optimum temperature (28±3°C), im maintained the same photosynthetic performance as TM-1 by means of greater stomatal conductance. In contrast, under high temperature stress (>34°C), im leaves reduced photosynthesis by decreasing the stomatal conductance disproportionately more than TM-1. Transcriptomic analyses showed that the genes involved in heat stress responses were differentially expressed between the NIL leaves. These results indicate that the im mutant previously reported to have low activity of mitochondrial complex I displays increased thermosensitivity by impacting stomatal conductance. They also support a notion that mitochondrial complex I activity is required for maintenance of optimal photosynthetic performance and acclimation of plants to high temperature stress. These findings may be useful in the future efforts to understand how physiological mechanisms play a role in determining cotton fiber maturity and may influence stress responses in other crops.
Collapse
Affiliation(s)
- Hee Jin Kim
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, United States of America
- * E-mail: (HJK); (HHR)
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Ruth Ndathe
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Gregory N. Thyssen
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, United States of America
| | - Don C. Jones
- Cotton Incorporated, Cary, NC, United States of America
| | - Harish H. Ratnayaka
- Department of Biology, Xavier University of Louisiana, New Orleans, LA, United States of America
- * E-mail: (HJK); (HHR)
| |
Collapse
|
20
|
Mazur R, Maszkowska J, Anielska-Mazur A, Garstka M, Polkowska-Kowalczyk L, Czajkowska A, Zmienko A, Dobrowolska G, Kulik A. The SnRK2.10 kinase mitigates the adverse effects of salinity by protecting photosynthetic machinery. PLANT PHYSIOLOGY 2021; 187:2785-2802. [PMID: 34632500 PMCID: PMC8644180 DOI: 10.1093/plphys/kiab438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/13/2021] [Indexed: 05/25/2023]
Abstract
SNF1-Related protein kinases Type 2 (SnRK2) are plant-specific enzymes widely distributed across the plant kingdom. They are key players controlling abscisic acid (ABA)-dependent and ABA-independent signaling pathways in the plant response to osmotic stress. Here we established that SnRK2.4 and SnRK2.10, ABA-nonactivated kinases, are activated in Arabidopsis thaliana rosettes during the early response to salt stress and contribute to leaf growth retardation under prolonged salinity but act by maintaining different salt-triggered mechanisms. Under salinity, snrk2.10 insertion mutants were impaired in the reconstruction and rearrangement of damaged core and antenna protein complexes in photosystem II (PSII), which led to stronger non-photochemical quenching, lower maximal quantum yield of PSII, and lower adaptation of the photosynthetic apparatus to high light intensity. The observed effects were likely caused by disturbed accumulation and phosphorylation status of the main PSII core and antenna proteins. Finally, we found a higher accumulation of reactive oxygen species (ROS) in the snrk2.10 mutant leaves under a few-day-long exposure to salinity which also could contribute to the stronger damage of the photosynthetic apparatus and cause other deleterious effects affecting plant growth. We found that the snrk2.4 mutant plants did not display substantial changes in photosynthesis. Overall, our results indicate that SnRK2.10 is activated in leaves shortly after plant exposure to salinity and contributes to salt stress tolerance by maintaining efficient photosynthesis and preventing oxidative damage.
Collapse
Affiliation(s)
- Radosław Mazur
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Justyna Maszkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Anna Anielska-Mazur
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Maciej Garstka
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Lidia Polkowska-Kowalczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Anna Czajkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
- Warsaw University of Life Sciences – SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland
| | - Agnieszka Zmienko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Grazyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
21
|
Ayash M, Abukhalaf M, Thieme D, Proksch C, Heilmann M, Schattat MH, Hoehenwarter W. LC-MS Based Draft Map of the Arabidopsis thaliana Nuclear Proteome and Protein Import in Pattern Triggered Immunity. FRONTIERS IN PLANT SCIENCE 2021; 12:744103. [PMID: 34858452 PMCID: PMC8630587 DOI: 10.3389/fpls.2021.744103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Despite its central role as the ark of genetic information and gene expression the plant nucleus is surprisingly understudied. We isolated nuclei from the Arabidopsis thaliana dark grown cell culture left untreated and treated with flg22 and nlp20, two elicitors of pattern triggered immunity (PTI) in plants, respectively. An liquid chromatography mass spectrometry (LC-MS) based discovery proteomics approach was used to measure the nuclear proteome fractions. An enrichment score based on the relative abundance of cytoplasmic, mitochondrial and Golgi markers in the nuclear protein fraction allowed us to curate the nuclear proteome producing high quality catalogs of around 3,000 nuclear proteins under untreated and both PTI conditions. The measurements also covered low abundant proteins including more than 100 transcription factors and transcriptional co-activators. We disclose a list of several hundred potentially dual targeted proteins including proteins not yet found before for further study. Protein import into the nucleus in plant immunity is known. Here we sought to gain a broader impression of this phenomenon employing our proteomics data and found 157 and 73 proteins to possibly be imported into the nucleus upon stimulus with flg22 and nlp20, respectively. Furthermore, the abundance of 93 proteins changed significantly in the nucleus following elicitation of immunity. These results suggest promiscuous ribosome assembly and a role of prohibitins and cytochrome C in the nucleus in PTI.
Collapse
Affiliation(s)
- Mohamed Ayash
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Mohammad Abukhalaf
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Domenika Thieme
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Carsten Proksch
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Mareike Heilmann
- Institute for Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | | | - Wolfgang Hoehenwarter
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| |
Collapse
|
22
|
Karia P, Yoshioka K, Moeder W. Multiple phosphorylation events of the mitochondrial membrane protein TTM1 regulate cell death during senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:766-780. [PMID: 34409658 DOI: 10.1111/tpj.15470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The role of mitochondria in programmed cell death (PCD) during animal growth and development is well documented, but much less is known for plants. We previously showed that the Arabidopsis thaliana triphosphate tunnel metalloenzyme (TTM) proteins TTM1 and TTM2 are tail-anchored proteins that localize in the mitochondrial outer membrane and participate in PCD during senescence and immunity, respectively. Here, we show that TTM1 is specifically involved in senescence induced by abscisic acid (ABA). Moreover, phosphorylation of TTM1 by multiple mitogen-activated protein (MAP) kinases regulates its function and turnover. A combination of proteomics and in vitro kinase assays revealed three major phosphorylation sites of TTM1 (Ser10, Ser437, and Ser490). Ser437, which is phosphorylated upon perception of senescence cues such as ABA and prolonged darkness, is phosphorylated by the MAP kinases MPK3 and MPK4, and Ser437 phosphorylation is essential for TTM1 function in senescence. These MPKs, together with three additional MAP kinases (MPK1, MPK7, and MPK6), also phosphorylate Ser10 and Ser490, marking TTM1 for protein turnover, which likely prevents uncontrolled cell death. Taken together, our results show that multiple MPKs regulate the function and turnover of the mitochondrial protein TTM1 during senescence-associated cell death, revealing a novel link between mitochondria and PCD.
Collapse
Affiliation(s)
- Purva Karia
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
23
|
O’Rourke JA, Morrisey MJ, Merry R, Espina MJ, Lorenz AJ, Stupar RM, Graham MA. Mining Fiskeby III and Mandarin (Ottawa) Expression Profiles to Understand Iron Stress Tolerant Responses in Soybean. Int J Mol Sci 2021; 22:11032. [PMID: 34681702 PMCID: PMC8537376 DOI: 10.3390/ijms222011032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022] Open
Abstract
The soybean (Glycine max L. merr) genotype Fiskeby III is highly resistant to a multitude of abiotic stresses, including iron deficiency, incurring only mild yield loss during stress conditions. Conversely, Mandarin (Ottawa) is highly susceptible to disease and suffers severe phenotypic damage and yield loss when exposed to abiotic stresses such as iron deficiency, a major challenge to soybean production in the northern Midwestern United States. Using RNA-seq, we characterize the transcriptional response to iron deficiency in both Fiskeby III and Mandarin (Ottawa) to better understand abiotic stress tolerance. Previous work by our group identified a quantitative trait locus (QTL) on chromosome 5 associated with Fiskeby III iron efficiency, indicating Fiskeby III utilizes iron deficiency stress mechanisms not previously characterized in soybean. We targeted 10 of the potential candidate genes in the Williams 82 genome sequence associated with the QTL using virus-induced gene silencing. Coupling virus-induced gene silencing with RNA-seq, we identified a single high priority candidate gene with a significant impact on iron deficiency response pathways. Characterization of the Fiskeby III responses to iron stress and the genes underlying the chromosome 5 QTL provides novel targets for improved abiotic stress tolerance in soybean.
Collapse
Affiliation(s)
| | | | - Ryan Merry
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Mary Jane Espina
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Aaron J. Lorenz
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Robert M. Stupar
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | | |
Collapse
|
24
|
Ravi B, Kanwar P, Sanyal SK, Bheri M, Pandey GK. VDACs: An Outlook on Biochemical Regulation and Function in Animal and Plant Systems. Front Physiol 2021; 12:683920. [PMID: 34421635 PMCID: PMC8375762 DOI: 10.3389/fphys.2021.683920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The voltage-dependent anion channels (VDACs) are the most abundant proteins present on the outer mitochondrial membrane. They serve a myriad of functions ranging from energy and metabolite exchange to highly debatable roles in apoptosis. Their role in molecular transport puts them on the center stage as communicators between cytoplasmic and mitochondrial signaling events. Beyond their general role as interchangeable pores, members of this family may exhibit specific functions. Even after nearly five decades of their discovery, their role in plant systems is still a new and rapidly emerging field. The information on biochemical regulation of VDACs is limited. Various interacting proteins and post-translational modifications (PTMs) modulate VDAC functions, amongst these, phosphorylation is quite noticeable. In this review, we have tried to give a glimpse of the recent advancements in the biochemical/interactional regulation of plant VDACs. We also cover a critical analysis on the importance of PTMs in the functional regulation of VDACs. Besides, the review also encompasses numerous studies which can identify VDACs as a connecting link between Ca2+ and reactive oxygen species signaling in special reference to the plant systems.
Collapse
Affiliation(s)
| | | | | | | | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
25
|
Espinoza-Corral R, Schwenkert S, Lundquist PK. Molecular changes of Arabidopsis thaliana plastoglobules facilitate thylakoid membrane remodeling under high light stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1571-1587. [PMID: 33783866 DOI: 10.1111/tpj.15253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 05/21/2023]
Abstract
Plants require rapid responses to adapt to environmental stresses. This includes dramatic changes in the size and number of plastoglobule lipid droplets within chloroplasts. Although the morphological changes of plastoglobules are well documented, little is known about the corresponding molecular changes. To address this gap, we have compared the quantitative proteome, oligomeric state, prenyl-lipid content and kinase activities of Arabidopsis thaliana plastoglobules under unstressed and 5-day light-stressed conditions. Our results show a specific recruitment of proteins related to leaf senescence and jasmonic acid biosynthesis under light stress, and identify nearly half of the plastoglobule proteins in high native molecular weight masses. Additionally, a specific increase in plastoglobule carotenoid abundance under the light stress was consistent with enhanced thylakoid disassembly and leaf senescence, supporting a specific role for plastoglobules in senescence and thylakoid remodeling as an intermediate storage site for photosynthetic pigments. In vitro kinase assays of isolated plastoglobules demonstrated kinase activity towards multiple target proteins, which was more pronounced in the plastoglobules of unstressed than light-stressed leaf tissue, and which was diminished in plastoglobules of the abc1k1/abc1k3 double-mutant. These results strongly suggest that plastoglobule-localized ABC1 kinases hold endogenous kinase activity, as these were the only known or putative kinases identified in the isolated plastoglobules by deep bottom-up proteomics. Collectively, our study reveals targeted changes to the protein and prenyl-lipid composition of plastoglobules under light stress that present strategies by which plastoglobules appear to facilitate stress adaptation within chloroplasts.
Collapse
Affiliation(s)
- Roberto Espinoza-Corral
- Department of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Serena Schwenkert
- Department I, Plant Biochemistry, Ludwig Maximilians University Munich, Großhadernerstr. 2-4, Planegg-Martinsried, 82152, Germany
| | - Peter K Lundquist
- Department of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
26
|
Luo X, Dai Y, Zheng C, Yang Y, Chen W, Wang Q, Chandrasekaran U, Du J, Liu W, Shu K. The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress. THE NEW PHYTOLOGIST 2021; 229:950-962. [PMID: 32916762 DOI: 10.1111/nph.16921] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/25/2020] [Indexed: 05/18/2023]
Abstract
Salinity stress enhances reactive oxygen species (ROS) accumulation by activating the transcription of NADPH oxidase genes such as RbohD, thus mediating plant developmental processes, including seed germination. However, how salinity triggers the expression of ROS-metabolism-related genes and represses seed germination has not yet been fully addressed. In this study, we show that Abscisic Acid-Insensitive 4 (ABI4), a key component in abscisic acid (ABA) signaling, directly combines with RbohD and Vitamin C Defective 2 (VTC2), the key genes involved in ROS production and scavenging, to modulate ROS metabolism during seed germination under salinity stress. Salinity-induced ABI4 enhances RbohD expression by physically interacting with its promoter, and subsequently promotes ROS accumulation, thus resulting in cell membrane damage and a decrease in seed vigor. Additional genetic evidence indicated that the rbohd mutant largely rescues the salt-hypersensitive phenotype of ABI4 overexpression seeds. Consistently, the abi4/vtc2 double mutant showed the salt-sensitive phenotype, similar to the vtc2 mutant, suggesting that both RbohD and VTC2 are epistatic to ABI4 genetically. Altogether, these results suggest that the salt-induced RbohD transcription and ROS accumulation is dependent on ABI4, and that the ABI4-RbohD/VTC2 regulatory module integrates both ROS metabolism and cell membrane integrity, ultimately repressing seed germination under salinity stress.
Collapse
Affiliation(s)
- Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yujia Dai
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chuan Zheng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yingzeng Yang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Qichao Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | | | - Junbo Du
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weiguo Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| |
Collapse
|
27
|
Bayer RG, Stael S, Teige M. Chloroplast Isolation and Enrichment of Low-Abundance Proteins by Affinity Chromatography for Identification in Complex Proteomes. Methods Mol Biol 2021; 2261:535-547. [PMID: 33421013 DOI: 10.1007/978-1-0716-1186-9_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Comprehensive knowledge of the proteome is a crucial prerequisite to understand dynamic changes in biological systems. Particularly low-abundance proteins are of high relevance in these processes as these are often proteins involved in signal transduction and acclimation responses. Although technological advances resulted in a tremendous increase in protein identification sensitivity by mass spectrometry (MS), the dynamic range in protein abundance is still the most limiting problem for the detection of low-abundance proteins in complex proteomes. These proteins will typically escape detection in shotgun MS experiments due to the presence of high-abundance proteins. Therefore, specific enrichment strategies are still required to overcome this technical limitation of MS-based protein discovery. We have searched for novel signal transduction proteins, more specifically kinases and calcium-binding proteins, and here we describe different approaches for enrichment of these low-abundance proteins from isolated chloroplasts from pea and Arabidopsis for subsequent proteomic analysis by MS. These approaches could be extended to include other signal transduction proteins and target different organelles.
Collapse
Affiliation(s)
- Roman G Bayer
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Simon Stael
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- VIB Department of Plant Systems Biology, Ghent University, Ghent, Belgium
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria.
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Chen C, Meng Y, Shopan J, Whelan J, Hu Z, Yang J, Zhang M. Identification and characterization of Arabidopsis thaliana mitochondrial F 1F 0-ATPase inhibitor factor 1. JOURNAL OF PLANT PHYSIOLOGY 2020; 254:153264. [PMID: 33032063 DOI: 10.1016/j.jplph.2020.153264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Mitochondrial F1F0-ATP synthase (F1F0-ATPase) inhibitor factor 1 (IF1) has been extensively characterized as an endogenous inhibitor that prevents the hydrolysis of adenosine-5'-triphosphate (ATP) by mitochondrial ATPases in mammals and yeasts; however, IF1's functions in plants remain unclear. Here, a comprehensive bioinformatic analysis was performed to identify plant mitochondrial F1F0-ATPase IF1 orthologs. Plant IF1s contain a conserved F1F0-ATPase inhibitory domain, but lack the antiparallel α-helical coiled-coil structure compared with mammalian IF1s. A subcellular localization analysis in Arabidopsis thaliana revealed that AtIF1-green fluorescent protein was present only in mitochondria. Additionally, AtIF1 was widely expressed in diverse organs and intense β-glucuronidase staining was observed in reproductive tissues and germinating seeds. Compared with the wild-type and p35S:AtIF1-if1 etiolated seedlings, the ATP/ADP ratio was significantly lower in the AtIF1 T-DNA knockout seedlings (if1 mutant) growing under dark conditions, suggesting that AtIF1 can influence the energy state of cells. A significant reduction in seed yield and strong growth retardation under dark conditions were observed in the if1 mutant line. Furthermore, if1 plants exhibited a substantially decreased sensitivity to abscisic acid. Thus, the A. thaliana mitochondrial IF1, which is a conserved F1F0-ATPase inhibitor, is crucial for plant growth and responses to abscisic acid.
Collapse
Affiliation(s)
- Cuiting Chen
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Yiqing Meng
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Jannat Shopan
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - James Whelan
- Department of Animal, Plant and Soil Science, School of Life Science, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
29
|
Negi P, Pandey M, Dorn KM, Nikam AA, Devarumath RM, Srivastava AK, Suprasanna P. Transcriptional reprogramming and enhanced photosynthesis drive inducible salt tolerance in sugarcane mutant line M4209. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6159-6173. [PMID: 32687570 DOI: 10.1093/jxb/eraa339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Sugarcane (Saccharum officinarum) is a globally cultivated cash crop whose yield is negatively affected by soil salinity. In this study, we investigated the molecular basis of inducible salt tolerance in M4209, a sugarcane mutant line generated through radiation-induced mutagenesis. Under salt-contaminated field conditions, M4209 exhibited 32% higher cane yield as compared with its salt-sensitive parent, Co86032. In pot experiments, post-sprouting phenotyping indicated that M4209 had significantly greater leaf biomass compared with Co86032 under treatment with 50 mM and 200 mM NaCl. This was concomitant with M4209 having 1.9-fold and 1.6-fold higher K+/Na+ ratios, and 4-fold and 40-fold higher glutathione reductase activities in 50 mM and 200 mM NaCl, respectively, which suggested that it had better ionic and redox homeostasis than Co86032. Transcriptome profiling using RNA-seq indicated an extensive reprograming of stress-responsive modules associated with photosynthesis, transmembrane transport, and metabolic processes in M4209 under 50 mM NaCl stress. Using ranking analysis, we identified Phenylalanine Ammonia Lyase (PAL), Acyl-Transferase Like (ATL), and Salt-Activated Transcriptional Activator (SATA) as the genes most associated with salt tolerance in M4209. M4209 also exhibited photosynthetic rates that were 3-4-fold higher than those of Co86032 under NaCl stress conditions. Our results highlight the significance of transcriptional reprogramming coupled with improved photosynthetic efficiency in determining salt tolerance in sugarcane.
Collapse
Affiliation(s)
- Pooja Negi
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Manish Pandey
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Kevin M Dorn
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, USA
| | - Ashok A Nikam
- Vasantdada Sugar Institute, Manjari Bk, Pune, Maharashtra, India
| | | | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
30
|
Zheng M, Zhu C, Yang T, Qian J, Hsu YF. GSM2, a transaldolase, contributes to reactive oxygen species homeostasis in Arabidopsis. PLANT MOLECULAR BIOLOGY 2020; 104:39-53. [PMID: 32564178 DOI: 10.1007/s11103-020-01022-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Plants are exposed to various environmental cues that lead to reactive oxygen species (ROS) accumulation. ROS production and detoxification are tightly regulated to maintain balance. Although studies of glucose (Glc) are always accompanied by ROS in animals, the role of Glc in respect of ROS in plants is unclear. We isolated gsm2 (Glc-hypersensitive mutant 2), a mutant with a notably chlorotic-cotyledon phenotype. The chloroplast-localized GSM2 was characterized as a transaldolase in the pentose phosphate pathway. With 3% Glc treatment, fewer or no thylakoids were observed in gsm2 cotyledon chloroplasts than in wild-type cotyledon chloroplasts, suggesting that GSM2 is required for chloroplast protection under stress. gsm2 also showed evaluated accumulation of ROS with 3% Glc treatment and was more sensitive to exogenous H2O2 than the wild type. Gene expression analysis of the antioxidant enzymes in gsm2 revealed that chloroplast damage to gsm2 cotyledons results from the accumulation of excessive ROS in response to Glc. Moreover, the addition of diphenyleneiodonium chloride or phenylalanine can rescue Glc-induced chlorosis in gsm2 cotyledons. This work suggests that GSM2 functions to maintain ROS balance in response to Glc during early seedling growth and sheds light on the relationship between Glc, the pentose phosphate pathway and ROS.
Collapse
Affiliation(s)
- Min Zheng
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Chunyan Zhu
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Tingting Yang
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Jie Qian
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Yi-Feng Hsu
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
31
|
Mielecki J, Gawroński P, Karpiński S. Retrograde Signaling: Understanding the Communication between Organelles. Int J Mol Sci 2020; 21:E6173. [PMID: 32859110 PMCID: PMC7503960 DOI: 10.3390/ijms21176173] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding how cell organelles and compartments communicate with each other has always been an important field of knowledge widely explored by many researchers. However, despite years of investigations, one point-and perhaps the only point that many agree on-is that our knowledge about cellular-signaling pathways still requires expanding. Chloroplasts and mitochondria (because of their primary functions in energy conversion) are important cellular sensors of environmental fluctuations and feedback they provide back to the nucleus is important for acclimatory responses. Under stressful conditions, it is important to manage cellular resources more efficiently in order to maintain a proper balance between development, growth and stress responses. For example, it can be achieved through regulation of nuclear and organellar gene expression. If plants are unable to adapt to stressful conditions, they will be unable to efficiently produce energy for growth and development-and ultimately die. In this review, we show the importance of retrograde signaling in stress responses, including the induction of cell death and in organelle biogenesis. The complexity of these pathways demonstrates how challenging it is to expand the existing knowledge. However, understanding this sophisticated communication may be important to develop new strategies of how to improve adaptability of plants in rapidly changing environments.
Collapse
Affiliation(s)
| | | | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.M.); (P.G.)
| |
Collapse
|
32
|
Emami H, Kumar A, Kempken F. Transcriptomic analysis of poco1, a mitochondrial pentatricopeptide repeat protein mutant in Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:209. [PMID: 32397956 PMCID: PMC7216612 DOI: 10.1186/s12870-020-02418-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Flowering is a crucial stage during plant development. Plants may respond to unfavorable conditions by accelerating reproductive processes like flowering. In a recent study, we showed that PRECOCIOUS1 (POCO1) is a mitochondrial pentatricopeptide repeat (PPR) protein involved in flowering time and abscisic acid (ABA) signaling in Arabidopsis thaliana. Here, we use RNA-seq data to investigate global gene expression alteration in the poco1 mutant. RESULTS RNA-seq analysis was performed during different developmental stages for wild-type and poco1 plants. The most profound differences in gene expression were found when wild-type and poco1 plants of the same developmental stage were compared. Coverage analysis confirmed the T-DNA insertion in POCO1, which was concomitant with truncated transcripts. Many biological processes were found to be enriched. Several flowering-related genes such as FLOWERING LOCUS T (FT), which may be involved in the early-flowering phenotype of poco1, were differentially regulated. Numerous ABA-associated genes, including the core components of ABA signaling such as ABA receptors, protein phosphatases, protein kinases, and ABA-responsive element (ABRE) binding proteins (AREBs)/ABRE-binding factors (ABFs) as well as important genes for stomatal function, were mostly down-regulated in poco1. Drought and oxidative stress-related genes, including ABA-induced stress genes, were differentially regulated. RNA-seq analysis also uncovered differentially regulated genes encoding various classes of transcription factors and genes involved in cellular signaling. Furthermore, the expression of stress-associated nuclear genes encoding mitochondrial proteins (NGEMPs) was found to be altered in poco1. Redox-related genes were affected, suggesting that the redox state in poco1 might be altered. CONCLUSION The identification of various enriched biological processes indicates that complex regulatory mechanisms underlie poco1 development. Differentially regulated genes associated with flowering may contribute to the early-flowering phenotype of poco1. Our data suggest the involvement of POCO1 in the early ABA signaling process. The down-regulation of many ABA-related genes suggests an association of poco1 mutation with the ABA signaling deficiency. This condition further affects the expression of many stress-related, especially drought-associated genes in poco1, consistent with the drought sensitivity of poco1. poco1 mutation also affects the expression of genes associated with the cellular regulation, redox, and mitochondrial perturbation.
Collapse
Affiliation(s)
- Hossein Emami
- Department of Botany, Christian-Albrechts-University, Olshausenstr. 40, 24098, Kiel, Germany
| | - Abhishek Kumar
- Present address: Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Present address: Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Frank Kempken
- Department of Botany, Christian-Albrechts-University, Olshausenstr. 40, 24098, Kiel, Germany.
| |
Collapse
|
33
|
Pfannschmidt T, Terry MJ, Van Aken O, Quiros PM. Retrograde signals from endosymbiotic organelles: a common control principle in eukaryotic cells. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190396. [PMID: 32362267 DOI: 10.1098/rstb.2019.0396] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Endosymbiotic organelles of eukaryotic cells, the plastids, including chloroplasts and mitochondria, are highly integrated into cellular signalling networks. In both heterotrophic and autotrophic organisms, plastids and/or mitochondria require extensive organelle-to-nucleus communication in order to establish a coordinated expression of their own genomes with the nuclear genome, which encodes the majority of the components of these organelles. This goal is achieved by the use of a variety of signals that inform the cell nucleus about the number and developmental status of the organelles and their reaction to changing external environments. Such signals have been identified in both photosynthetic and non-photosynthetic eukaryotes (known as retrograde signalling and retrograde response, respectively) and, therefore, appear to be universal mechanisms acting in eukaryotes of all kingdoms. In particular, chloroplasts and mitochondria both harbour crucial redox reactions that are the basis of eukaryotic life and are, therefore, especially susceptible to stress from the environment, which they signal to the rest of the cell. These signals are crucial for cell survival, lifespan and environmental adjustment, and regulate quality control and targeted degradation of dysfunctional organelles, metabolic adjustments, and developmental signalling, as well as induction of apoptosis. The functional similarities between retrograde signalling pathways in autotrophic and non-autotrophic organisms are striking, suggesting the existence of common principles in signalling mechanisms or similarities in their evolution. Here, we provide a survey for the newcomers to this field of research and discuss the importance of retrograde signalling in the context of eukaryotic evolution. Furthermore, we discuss commonalities and differences in retrograde signalling mechanisms and propose retrograde signalling as a general signalling mechanism in eukaryotic cells that will be also of interest for the specialist. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Thomas Pfannschmidt
- Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Matthew J Terry
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | | |
Collapse
|
34
|
Wang Y, Selinski J, Mao C, Zhu Y, Berkowitz O, Whelan J. Linking mitochondrial and chloroplast retrograde signalling in plants. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190410. [PMID: 32362265 PMCID: PMC7209950 DOI: 10.1098/rstb.2019.0410] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retrograde signalling refers to the regulation of nuclear gene expression in response to functional changes in organelles. In plants, the two energy-converting organelles, mitochondria and chloroplasts, are tightly coordinated to balance their activities. Although our understanding of components involved in retrograde signalling has greatly increased in the last decade, studies on the regulation of the two organelle signalling pathways have been largely independent. Thus, the mechanism of how mitochondrial and chloroplastic retrograde signals are integrated is largely unknown. Here, we summarize recent findings on the function of mitochondrial signalling components and their links to chloroplast retrograde responses. From this, a picture emerges showing that the major regulators are integrators of both organellar retrograde signalling pathways. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Yan Wang
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Jennifer Selinski
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Chunli Mao
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.,Department of Animal Science and Technology, Grassland Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yanqiao Zhu
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.,Department of Animal Science and Technology, Grassland Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
35
|
Chardon F, Cueff G, Delannoy E, Aubé F, Lornac A, Bedu M, Gilard F, Pateyron S, Rogniaux H, Gargaros A, Mireau H, Rajjou L, Martin-Magniette ML, Budar F. The Consequences of a Disruption in Cyto-Nuclear Coadaptation on the Molecular Response to a Nitrate Starvation in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E573. [PMID: 32369924 PMCID: PMC7285260 DOI: 10.3390/plants9050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/04/2022]
Abstract
Mitochondria and chloroplasts are important actors in the plant nutritional efficiency. So, it could be expected that a disruption of the coadaptation between nuclear and organellar genomes impact plant response to nutrient stresses. We addressed this issue using two Arabidopsis accessions, namely Ct1 and Jea, and their reciprocal cytolines possessing the nuclear genome from one parent and the organellar genomes of the other one. We measured gene expression, and quantified proteins and metabolites under N starvation and non-limiting conditions. We observed a typical response to N starvation at the phenotype and molecular levels. The phenotypical response to N starvation was similar in the cytolines compared to the parents. However, we observed an effect of the disruption of genomic coadaptation at the molecular levels, distinct from the previously described responses to organellar stresses. Strikingly, genes differentially expressed in cytolines compared to parents were mainly repressed in the cytolines. These genes encoded more mitochondrial and nuclear proteins than randomly expected, while N starvation responsive ones were enriched in genes for chloroplast and nuclear proteins. In cytolines, the non-coadapted cytonuclear genomic combination tends to modulate the response to N starvation observed in the parental lines on various biological processes.
Collapse
Affiliation(s)
- Fabien Chardon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Gwendal Cueff
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Fabien Aubé
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Aurélia Lornac
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Magali Bedu
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Stéphanie Pateyron
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Hélène Rogniaux
- INRAE, UR BIA, F-44316 Nantes, France; (H.R.); (A.G.)
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - Audrey Gargaros
- INRAE, UR BIA, F-44316 Nantes, France; (H.R.); (A.G.)
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
| | - Françoise Budar
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| |
Collapse
|
36
|
Hu S, Ding Y, Zhu C. Sensitivity and Responses of Chloroplasts to Heat Stress in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:375. [PMID: 32300353 PMCID: PMC7142257 DOI: 10.3389/fpls.2020.00375] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Increased temperatures caused by global warming threaten agricultural production, as warmer conditions can inhibit plant growth and development or even destroy crops in extreme circumstances. Extensive research over the past several decades has revealed that chloroplasts, the photosynthetic organelles of plants, are highly sensitive to heat stress, which affects a variety of photosynthetic processes including chlorophyll biosynthesis, photochemical reactions, electron transport, and CO2 assimilation. Important mechanisms by which plant cells respond to heat stress to protect these photosynthetic organelles have been identified and analyzed. More recent studies have made it clear that chloroplasts play an important role in inducing the expression of nuclear heat-response genes during the heat stress response. In this review, we summarize these important advances in plant-based research and discuss how the sensitivity, responses, and signaling roles of chloroplasts contribute to plant heat sensitivity and tolerance.
Collapse
Affiliation(s)
| | | | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
37
|
Navazio L, Formentin E, Cendron L, Szabò I. Chloroplast Calcium Signaling in the Spotlight. FRONTIERS IN PLANT SCIENCE 2020; 11:186. [PMID: 32226434 PMCID: PMC7081724 DOI: 10.3389/fpls.2020.00186] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 05/22/2023]
Abstract
Calcium has long been known to regulate the metabolism of chloroplasts, concerning both light and carbon reactions of photosynthesis, as well as additional non photosynthesis-related processes. In addition to undergo Ca2+ regulation, chloroplasts can also influence the overall Ca2+ signaling pathways of the plant cell. Compelling evidence indicate that chloroplasts can generate specific stromal Ca2+ signals and contribute to the fine tuning of cytoplasmic Ca2+ signaling in response to different environmental stimuli. The recent set up of a toolkit of genetically encoded Ca2+ indicators, targeted to different chloroplast subcompartments (envelope, stroma, thylakoids) has helped to unravel the participation of chloroplasts in intracellular Ca2+ handling in resting conditions and during signal transduction. Intra-chloroplast Ca2+ signals have been demonstrated to occur in response to specific environmental stimuli, suggesting a role for these plant-unique organelles in transducing Ca2+-mediated stress signals. In this mini-review we present current knowledge of stimulus-specific intra-chloroplast Ca2+ transients, as well as recent advances in the identification and characterization of Ca2+-permeable channels/transporters localized at chloroplast membranes. In particular, the potential role played by cMCU, a chloroplast-localized member of the mitochondrial calcium uniporter (MCU) family, as component of plant environmental sensing is discussed in detail, taking into account some specific structural features of cMCU. In summary, the recent molecular identification of some players of chloroplast Ca2+ signaling has opened new avenues in this rapidly developing field and will hopefully allow a deeper understanding of the role of chloroplasts in shaping physiological responses in plants.
Collapse
Affiliation(s)
- Lorella Navazio
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
| | - Elide Formentin
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
- *Correspondence: Ildikò Szabò,
| |
Collapse
|
38
|
Liu Y, Lu S, Liu K, Wang S, Huang L, Guo L. Proteomics: a powerful tool to study plant responses to biotic stress. PLANT METHODS 2019; 15:135. [PMID: 31832077 PMCID: PMC6859632 DOI: 10.1186/s13007-019-0515-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/29/2019] [Indexed: 05/08/2023]
Abstract
In recent years, mass spectrometry-based proteomics has provided scientists with the tremendous capability to study plants more precisely than previously possible. Currently, proteomics has been transformed from an isolated field into a comprehensive tool for biological research that can be used to explain biological functions. Several studies have successfully used the power of proteomics as a discovery tool to uncover plant resistance mechanisms. There is growing evidence that indicates that the spatial proteome and post-translational modifications (PTMs) of proteins directly participate in the plant immune response. Therefore, understanding the subcellular localization and PTMs of proteins is crucial for a comprehensive understanding of plant responses to biotic stress. In this review, we discuss current approaches to plant proteomics that use mass spectrometry, with particular emphasis on the application of spatial proteomics and PTMs. The purpose of this paper is to investigate the current status of the field, discuss recent research challenges, and encourage the application of proteomics techniques to further research.
Collapse
Affiliation(s)
- Yahui Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- National Institute of Metrology, Beijing, China
| | - Song Lu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kefu Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Sheng Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
39
|
Bychkov I, Kudryakova N, Andreeva A, Pojidaeva E, Kusnetsov V. Melatonin modifies the expression of the genes for nuclear- and plastid-encoded chloroplast proteins in detached Arabidopsis leaves exposed to photooxidative stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:404-412. [PMID: 31629225 DOI: 10.1016/j.plaphy.2019.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Melatonin, a potent regulator during plant development and stress responses, affects diverse plastid-related processes. However, its role in the regulation of plastid gene expression is largely unknown. In this study, exogenous melatonin was shown to reduce the negative influence of excess light by increasing the efficiency of the photosystems and rearranging the expression of chloroplast- and nuclear-encoded genes in detached Arabidopsis leaves. The positive effects of melatonin predominantly occurred at lower concentrations, while high doses had an inhibitory effect. The impact of melatonin was not straightforward. It mainly influenced the expression of the genes encoding the chloroplast transcription machinery and housekeeping genes involved in maintaining transcriptional activity and the functional state of chloroplasts. Despite the fact that melatonin treatment improved photosynthetic parameters, the levels of photosynthesis gene transcripts and photosynthetic proteins remained practically unaltered suggesting that melatonin impact on photosynthetic apparatus which would allow the balancing of chloroplast functions with stress responses is highly complicated.
Collapse
Affiliation(s)
- Ivan Bychkov
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| | - Natalia Kudryakova
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| | - Aleksandra Andreeva
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| | - Elena Pojidaeva
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| | - Victor Kusnetsov
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| |
Collapse
|
40
|
Emami H, Kempken F. PRECOCIOUS1 (POCO1), a mitochondrial pentatricopeptide repeat protein affects flowering time in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:265-278. [PMID: 31219634 DOI: 10.1111/tpj.14441] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 05/24/2023]
Abstract
Flowering is a vital developmental shift in plants from vegetative to reproductive phase. The timing of this shift is regulated by various linked genetic pathways including environmental cues and internal regulation. Here we report a role for an Arabidopsis gene, AT1G15480, which encodes a P-class pentatricopeptide repeat (PPR) protein, affecting flowering time. We show that AT1G15480 is localized to mitochondria. An AT1G15480 T-DNA insertion line exhibits an early-flowering phenotype, which is quite a rare phenotype among PPR mutants. The early-flowering phenotype was observed under both long and short days compared with wild type plants. Genetic complementation confirmed the observed phenotype. We therefore named the PPR protein PRECOCIOUS1 (POCO1). poco1 plants showed lower respiration, ATP content and higher accumulation of superoxide. Importantly, the quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that the expression of FLOWERING LOCUS C (FLC), which is a key floral repressor, was strongly downregulated in the poco1. Likewise, the expression level of the FLC positive regulator ABSCISIC ACID-INSENSITIVE 5 (ABI5) was reduced in the poco1. Consistent with the qRT-PCR results, poco1 plants showed reduced sensitivity to abscisic acid compared with wild type with respect to primary root growth and days to flowering. Furthermore, the poco1 mutation enhances the sensitivity to drought stress. Further analysis showed that POCO1 affects mitochondrial RNA editing. Taken together, our data demonstrate a remarkable function of POCO1 in flowering time and the abscisic acid signalling pathway.
Collapse
Affiliation(s)
- Hossein Emami
- Department of Botany, Christian Albrechts University, Olshausenstr. 40, 24098, Kiel, Germany
| | - Frank Kempken
- Department of Botany, Christian Albrechts University, Olshausenstr. 40, 24098, Kiel, Germany
| |
Collapse
|
41
|
Alber NA, Vanlerberghe GC. Signaling interactions between mitochondria and chloroplasts in Nicotiana tabacum leaf. PHYSIOLOGIA PLANTARUM 2019; 167:188-204. [PMID: 30467859 DOI: 10.1111/ppl.12879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Research has begun to elucidate the signal transduction pathway(s) that control cellular responses to changes in mitochondrial status. Important tools in such studies are chemical inhibitors used to initiate mitochondrial dysfunction. This study compares the effect of different inhibitors and treatment conditions on the transcript amount of nuclear genes specifically responsive to mitochondrial dysfunction in leaf of Nicotiana tabacum L. cv. Petit Havana. The Complex III inhibitors antimycin A (AA) and myxothiazol (MYXO), and the Complex V inhibitor oligomycin (OLIGO), each increased the transcript amount of the mitochondrial dysfunction genes. Transcript responses to OLIGO were greater during treatment in the dark than in the light, and the dark treatment resulted in cell death. In the dark, transcript responses to AA and MYXO were similar to one another, despite MYXO leading to cell death. In the light, transcript responses to AA and MYXO diverged, despite cell viability remaining high with either inhibitor. This divergent response may be due to differential signaling from the chloroplast because only AA also inhibited cyclic electron transport, resulting in a strong acceptor-side limitation in photosystem I. In the light, chemical inhibition of chloroplast electron transport reduced transcript responses to AA, while having no effect on the response to MYXO, and increasing the response to OLIGO. Hence, when studying mitochondrial dysfunction signaling, different inhibitor and treatment combinations differentially affect linked processes (e.g. chloroplast function and cell fate) that then contribute to measured responses. Therefore, inhibitor and treatment conditions should be chosen to align with specific study goals.
Collapse
Affiliation(s)
- Nicole A Alber
- Department of Biological Sciences, Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Greg C Vanlerberghe
- Department of Biological Sciences, Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
42
|
Farooq MA, Niazi AK, Akhtar J, Farooq M, Souri Z, Karimi N, Rengel Z. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:353-369. [PMID: 31207496 DOI: 10.1016/j.plaphy.2019.04.039] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) - the byproducts of aerobic metabolism - influence numerous aspects of the plant life cycle and environmental response mechanisms. In plants, ROS act like a double-edged sword; they play multiple beneficial roles at low concentrations, whereas at high concentrations ROS and related redox-active compounds cause cellular damage through oxidative stress. To examine the dual role of ROS as harmful oxidants and/or crucial cellular signals, this review elaborates that (i) how plants sense and respond to ROS in various subcellular organelles and (ii) the dynamics of subsequent ROS-induced signaling processes. The recent understanding of crosstalk between various cellular compartments in mediating their redox state spatially and temporally is discussed. Emphasis on the beneficial effects of ROS in maintaining cellular energy homeostasis, regulating diverse cellular functions, and activating acclimation responses in plants exposed to abiotic and biotic stresses are described. The comprehensive view of cellular ROS dynamics covering the breadth and versatility of ROS will contribute to understanding the complexity of apparently contradictory ROS roles in plant physiological responses in less than optimum environments.
Collapse
Affiliation(s)
- Muhammad Ansar Farooq
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Adnan Khan Niazi
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Javaid Akhtar
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Oman
| | - Zahra Souri
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Naser Karimi
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Zed Rengel
- School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
43
|
Corpas FJ, Del Río LA, Palma JM. Plant peroxisomes at the crossroad of NO and H 2 O 2 metabolism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:803-816. [PMID: 30609289 DOI: 10.1111/jipb.12772] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Plant peroxisomes are subcellular compartments involved in many biochemical pathways during the life cycle of a plant but also in the mechanism of response against adverse environmental conditions. These organelles have an active nitro-oxidative metabolism under physiological conditions but this could be exacerbated under stress situations. Furthermore, peroxisomes have the capacity to proliferate and also undergo biochemical adaptations depending on the surrounding cellular status. An important characteristic of peroxisomes is that they have a dynamic metabolism of reactive nitrogen and oxygen species (RNS and ROS) which generates two key molecules, nitric oxide (NO) and hydrogen peroxide (H2 O2 ). These molecules can exert signaling functions by means of post-translational modifications that affect the functionality of target molecules like proteins, peptides or fatty acids. This review provides an overview of the endogenous metabolism of ROS and RNS in peroxisomes with special emphasis on polyamine and uric acid metabolism as well as the possibility that these organelles could be a source of signal molecules involved in the functional interconnection with other subcellular compartments.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| |
Collapse
|
44
|
Teardo E, Carraretto L, Moscatiello R, Cortese E, Vicario M, Festa M, Maso L, De Bortoli S, Calì T, Vothknecht UC, Formentin E, Cendron L, Navazio L, Szabo I. A chloroplast-localized mitochondrial calcium uniporter transduces osmotic stress in Arabidopsis. NATURE PLANTS 2019; 5:581-588. [PMID: 31182842 DOI: 10.1038/s41477-019-0434-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 04/23/2019] [Indexed: 05/18/2023]
Abstract
Chloroplasts are integral to sensing biotic and abiotic stress in plants, but their role in transducing Ca2+-mediated stress signals remains poorly understood1,2. Here we identify cMCU, a member of the mitochondrial calcium uniporter (MCU) family, as an ion channel mediating Ca2+ flux into chloroplasts in vivo. Using a toolkit of aequorin reporters targeted to chloroplast stroma and the cytosol in cMCU wild-type and knockout lines, we provide evidence that stress-stimulus-specific Ca2+ dynamics in the chloroplast stroma correlate with expression of the channel. Fast downstream signalling events triggered by osmotic stress, involving activation of the mitogen-activated protein kinases (MAPK) MAPK3 and MAPK6, and the transcription factors MYB60 and ethylene-response factor 6 (ERF6), are influenced by cMCU activity. Relative to wild-type plants, cMCU knockouts display increased resistance to long-term water deficit and improved recovery on rewatering. Modulation of stromal Ca2+ in specific processing of stress signals identifies cMCU as a component of plant environmental sensing.
Collapse
Affiliation(s)
- Enrico Teardo
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Enrico Cortese
- Department of Biology, University of Padova, Padova, Italy
| | - Mattia Vicario
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lorenzo Maso
- Department of Biology, University of Padova, Padova, Italy
| | | | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Elide Formentin
- Department of Biology, University of Padova, Padova, Italy.
- Botanical Garden, University of Padova, Padova, Italy.
| | - Laura Cendron
- Department of Biology, University of Padova, Padova, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, Padova, Italy.
- Botanical Garden, University of Padova, Padova, Italy.
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.
- Botanical Garden, University of Padova, Padova, Italy.
| |
Collapse
|
45
|
A novel Ca 2+-binding protein influences photosynthetic electron transport in Anabaena sp. PCC 7120. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:519-532. [PMID: 31034800 DOI: 10.1016/j.bbabio.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 12/25/2022]
Abstract
Ca2+ is a potent signalling molecule that regulates many cellular processes. In cyanobacteria, Ca2+ has been linked to cell growth, stress response and photosynthesis, and to the development of specialist heterocyst cells in certain nitrogen-fixing species. Despite this, the pathways of Ca2+ signal transduction in cyanobacteria are poorly understood, and very few protein components are known. The current study describes a previously unreported Ca2+-binding protein which was called the Ca2+ Sensor EF-hand (CSE), which is conserved in filamentous, nitrogen-fixing cyanobacteria. CSE is shown to bind Ca2+, which induces a conformational change in the protein structure. Poor growth of a strain of Anabaena sp. PCC 7120 overexpressing CSE was attributed to diminished photosynthetic performance. Transcriptomics, biophysics and proteomics analyses revealed modifications in the light-harvesting phycobilisome and photosynthetic reaction centre protein complexes.
Collapse
|
46
|
Leister D. Piecing the Puzzle Together: The Central Role of Reactive Oxygen Species and Redox Hubs in Chloroplast Retrograde Signaling. Antioxid Redox Signal 2019; 30:1206-1219. [PMID: 29092621 DOI: 10.1089/ars.2017.7392] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) and redox regulation are established components of chloroplast-nucleus retrograde signaling. Recent Advances: In recent years, a complex array of putative retrograde signaling molecules and novel signaling pathways have emerged, including various metabolites, chloroplast translation, mobile transcription factors, calcium, and links to the unfolded protein response. This critical mass of information now permits us to fit individual pieces into a larger picture and outline a few important stimuli and pathways. CRITICAL ISSUES In this review, we summarize how ROS and redox hubs directly (e.g., via hydrogen peroxide [H2O2]) and indirectly (e.g., by triggering the production of signaling metabolites) regulate chloroplast retrograde signaling. Indeed, evidence is accumulating that most of the presumptive signaling metabolites so far identified are produced directly by ROS (such as β-cyclocitral) or indirectly by redox- or ROS-mediated regulation of key enzymes in metabolic pathways, ultimately leading to the accumulation of certain precursors (e.g., methylerythritol cyclodiphosphate and 3'-phosphoadenosine 5'-phosphate) with signal function. Of the ROS generated in the chloroplast, only H2O2 is likely to leave the organelle, and recent results suggest that efficient and specific transfer of information via H2O2 occurs through physical association of chloroplasts with the nucleus. FUTURE DIRECTIONS The impact of ROS and redox regulation on chloroplast-nucleus communication is even greater than previously thought, and it can be expected that further instances of control of retrograde signaling by ROS/redox regulation will be revealed in future, perhaps including the basis for the enigmatic GUN response and translation-dependent signals.
Collapse
Affiliation(s)
- Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich (LMU), Planegg-Martinsried, Germany
| |
Collapse
|
47
|
Lenzoni G, Knight MR. Increases in Absolute Temperature Stimulate Free Calcium Concentration Elevations in the Chloroplast. PLANT & CELL PHYSIOLOGY 2019; 60:538-548. [PMID: 30517735 DOI: 10.1093/pcp/pcy227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/21/2018] [Indexed: 05/18/2023]
Abstract
Plants need to sense increases in temperature to be able to adapt their physiology and development to survive; however, the mechanisms of heat perception are currently relatively poorly understood. Here we demonstrate that in response to elevated temperature, the free calcium concentration of the stroma of chloroplasts increases. This response is specific to the chloroplast, as no corresponding increase in calcium is seen in the cytosol. The chloroplast calcium response is dose dependent above a threshold. The magnitude of this calcium response is dependent upon absolute temperature, not the rate of heating. This response is dynamic: repeated stimulation leads to rapid attenuation of the response, which can be overcome by sensitization at a higher temperature. More long-term acclimation to different temperatures resets the basal sensitivity of the system, such that plants acclimated to lower temperatures are more sensitive than those acclimated to higher temperatures. The heat-induced chloroplast calcium response was partially dependent upon the calcium-sensing receptor CAS which has been shown previously to regulate other chloroplast calcium signaling responses. Taken together, our data demonstrate the ability of chloroplasts to sense absolute high temperature and produce commensurately quantitative stromal calcium response, the magnitude of which is a function of both current temperature and stress history.
Collapse
Affiliation(s)
- Gioia Lenzoni
- Department of Biosciences, Durham University, South Road, Durham, UK
| | - Marc R Knight
- Department of Biosciences, Durham University, South Road, Durham, UK
| |
Collapse
|
48
|
Teige M. Chloroplasts Use Calcium Signals to Call for Help under Heat Stress. PLANT & CELL PHYSIOLOGY 2019; 60:492-493. [PMID: 30796458 PMCID: PMC6400106 DOI: 10.1093/pcp/pcz039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 05/25/2023]
Affiliation(s)
- Markus Teige
- Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna A-1090, Austria
| |
Collapse
|
49
|
De Domenico S, Taurino M, Gallo A, Poltronieri P, Pastor V, Flors V, Santino A. Oxylipin dynamics in Medicago truncatula in response to salt and wounding stresses. PHYSIOLOGIA PLANTARUM 2019; 165:198-208. [PMID: 30051613 DOI: 10.1111/ppl.12810] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Multiple stresses are becoming common challenges in modern agriculture due to environmental changes. A large set of phytochemicals collectively known as oxylipins play a key role in responses to several stresses. Understanding the fine-tuned plant responses to multiple and simultaneous stresses could open new perspectives for developing more tolerant varieties. We carried out the molecular and biochemical profiling of genes, proteins and active compounds involved in oxylipin metabolism in response to single/combined salt and wounding stresses on Medicago truncatula. Two new members belonging to the CYP74 gene family were identified. Gene expression profiling of each of the six CYP74 members indicated a tissue- and time-specific expression pattern for each member in response to single/combined salt and wounding stresses. Notably, hormonal profiling pointed to an attenuated systemic response upon combined salt and leaf wounding stresses. Combined, these results confirm the important role of jasmonates in legume adaptation to abiotic stresses and point to the existence of a complex molecular cross-talk among signals generated by multiple stresses.
Collapse
Affiliation(s)
- Stefania De Domenico
- Institute of Sciences of Food Production C.N.R. Unit of Lecce, Lecce, 73100, Italy
| | - Marco Taurino
- Institute of Sciences of Food Production C.N.R. Unit of Lecce, Lecce, 73100, Italy
| | - Antonia Gallo
- Institute of Sciences of Food Production C.N.R. Unit of Lecce, Lecce, 73100, Italy
| | - Palmiro Poltronieri
- Institute of Sciences of Food Production C.N.R. Unit of Lecce, Lecce, 73100, Italy
| | - Victoria Pastor
- Department de Ciènces Agràries I del Medi Natural, Universitat Jaume I, Castellon, Spain
| | - Victor Flors
- Department de Ciènces Agràries I del Medi Natural, Universitat Jaume I, Castellon, Spain
| | - Angelo Santino
- Institute of Sciences of Food Production C.N.R. Unit of Lecce, Lecce, 73100, Italy
| |
Collapse
|
50
|
Wu W, Yan Y. Chloroplast proteome analysis of Nicotiana tabacum overexpressing TERF1 under drought stress condition. BOTANICAL STUDIES 2018; 59:26. [PMID: 30374844 PMCID: PMC6206318 DOI: 10.1186/s40529-018-0239-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/17/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Chloroplast is indispensable for plant response to environmental stresses, growth and development, whose function is regulated by different plant hormones. The chloroplast proteome is encoded by chloroplast genome and nuclear genome, which play essential roles in plant photosynthesis, metabolism and other biological processes. Ethylene response factors (ERFs) are key transcription factors in activating the ethylene signaling pathway and plant response to abiotic stress. But we know little about how ethylene regulates plastid function under drought stress condition. In this study we utilized tobacco overexpressing tomato ethylene responsive factor 1 (TERF1), an ERF transcription factor isolated from tomato, to investigate its effects on the plastid proteome under drought stress condition by method of iTRAQ technology. RESULTS Results show that TERF1 represses the genes encoding the photosynthetic apparatus at both transcriptional and translational level, but the genes involved in carbon fixation are significantly induced by TERF1. TERF1 regulates multiple retrograde signaling pathways, providing a new mechanism for regulating nuclear gene expression. TERF1 also regulates plant utilization of phosphorus (Pi) and nitrogen (N). We find that several metabolic and signaling pathways related with Pi are significantly repressed and gene expression analysis shows that TERF1 significantly represses the Pi transport from root to shoot. However, the N metabolism is upregulated by TERF1 as shown by the activation of different amino acids biosynthesis pathways due to the induction of glutamine synthetase and stabilization of nitrate reductase although the root-to-shoot N transport is also reduced. TERF1 also regulates other core metabolic pathways and secondary metabolic pathways that are important for plant growth, development and response to environmental stresses. Gene set linkage analysis was applied for the upregulated proteins by TERF1, showing some new potential for regulating plant response to drought stress by TERF1. CONCLUSIONS Our research reveals effects of ethylene signaling on plastid proteome related with two key biological processes, including photosynthesis and nutrition utilization. We also provide a new mechanism to regulate nuclear gene expression by ERF1 transcription factor through retrograde signals in chloroplast. These results can enrich our knowledge about ERF1 transcription factor and function of ethylene signaling pathway.
Collapse
Affiliation(s)
- Wei Wu
- Graduate School of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, 100081 People’s Republic of China
| | - Yanchun Yan
- Graduate School of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, 100081 People’s Republic of China
| |
Collapse
|