1
|
Xu H, Teng H, Zhang B, Liu W, Sui Y, Yan X, Wang Z, Cui H, Zhang H. NtHD9 modulates plant salt tolerance by regulating the formation of glandular trichome heads in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108765. [PMID: 38795550 DOI: 10.1016/j.plaphy.2024.108765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Salt stress is one of the main abiotic factor affecting plant growth. We have previously identified a key gene (NtHD9) in Nicotiana tabacum L. that positively regulates the formation of long glandular trichomes (LGTs). Here, we verified that both abiotic stress (aphids, drought and salt stress) could restore the phenotype lacking LGTs in NtHD9-knockout (NtHD9-KO) plants. The abiotic stress response assays indicated that NtHD9 is highly sensitive to salt stress. Compared with cultivated tobacco "K326" (CK) plants, NtHD9-overexpressing (NtHD9-OE) plants with more LGTs exhibited stronger salt tolerance, whereas NtHD9-KO with no LGTs showed weaker tolerance to salt. The densities and sizes of the glandular heads gradually increased with increasing NaCl concentrations in NtHD9-KO plants. Mineral element determination showed that leaves and trichomes of NtHD9-OE plants accumulated less Na+ but had higher K+ contents under salt stress, thus maintaining ion homeostasis in plants, which could contribute to a robust photosynthetic and antioxidant system under salt stress. Therefore, NtHD9-OE plants maintained a larger leaf area and root length under high-salt conditions than CK and NtHD9-KO plants. We verified that NtHD9 could individually interact with NtHD5, NtHD7, NtHD12, and NtJAZ10 proteins. Salt stress led to an increase in jasmonic acid (JA) levels and activated the expression of NtHDs while inhibiting the expression of NtJAZ. This study suggests that the glandular heads play an important role in plant resistance to salt stress. The activation of JA signaling leading to JAZ protein degradation may be key factors regulating the glandular heads development under salt stress.
Collapse
Affiliation(s)
- Hanchi Xu
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huanyu Teng
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bokai Zhang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wei Liu
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yalin Sui
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoxiao Yan
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhaojun Wang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hong Cui
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Hongying Zhang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Akwu NA, Naidoo Y, Singh M, Dewir YH, Magyar-Tábori K, Lekhooa M, Aremu AO. Development and Biomechanics of Grewia lasiocarpa E. Mey. Ex Harv. Trichomes Exudate. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112198. [PMID: 37299177 DOI: 10.3390/plants12112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Grewia lasiocarpa E. Mey. Ex Harv., Malvaceae (forest raisin) is a tropical small tree or shrub valued for its ecological importance as well as its nutritional, antioxidant, antibacterial, and anti-cancer properties as well as its ecological and ornamental importance. Glandular and non-glandular trichomes are present on the fruits, stem bark and leaves of G. lasiocarpa and these trichomes are the first line of defense. They are important structures that plants use to combat biotic and abiotic stress. The development of G. lasiocarpa trichomes and the biomechanics of the exudates present in the glandular (capitate) trichome were investigated for the first time using advanced microscopy techniques [Scanning electron microscope (SEM) and Transmission electron microscope (TEM)]. The pressurized cuticular striations may play a role in the exudates' biomechanics, i.e., releasing secondary metabolites present in the capitate trichome, which was observed to be multidirectional. The presence of many glandular trichomes on a plant implies an increase in the amount of phytometabolites. A common precursor for the development of trichomes (non-glandular and glandular) was observed to be DNA synthesis associated with a periclinal cell division, thus the final fate of the cell is determined by cell cycle regulation, polarity, and expansion. The glandular trichomes of G. lasiocarpa are multicellular and polyglandular, while the non-glandular (glandless) trichomes are either single-celled or multicellular. Since, trichomes 'house' phytocompounds of medicinal, nutritional, and agronomical benefits; the molecular and genetic study of the glandular trichomes of Grewia lasiocarpa will be beneficial to humanity.
Collapse
Affiliation(s)
- Nneka Augustina Akwu
- Biology Cluster, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2790, South Africa
- Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Yougasphree Naidoo
- Biology Cluster, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Moganavelli Singh
- Biology Cluster, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Katalin Magyar-Tábori
- Research Institute of Nyíregyháza, Institutes for Agricultural Research and Educational Farm (IAREF), University of Debrecen, P.O. Box 12, 4400 Nyíregyháza, Hungary
| | - Makhotso Lekhooa
- Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Adeyemi Oladapo Aremu
- Biology Cluster, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2790, South Africa
| |
Collapse
|
3
|
Legarrea S, Janssen A, Dong L, Glas JJ, van Houten YM, Scala A, Kant MR. Enhanced top-down control of herbivore population growth on plants with impaired defences. Funct Ecol 2022; 36:2859-2872. [PMID: 36632134 PMCID: PMC9826462 DOI: 10.1111/1365-2435.14175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 08/26/2022] [Indexed: 01/14/2023]
Abstract
Herbivore densities can be regulated by bottom-up and top-down forces such as plant defences and natural enemies, respectively. These forces can interact with each other to increase plant protection against herbivores; however, how much complementarity exists between bottom-up and top-down forces still remains to be fully elucidated. Particularly, because plant defences can hinder natural enemies, how these interactions affect herbivore performance and dynamics remains elusive.To address this topic, we performed laboratory and greenhouse bioassays with herbivorous mite pests and predatory mites on mutant tomato plants that lack defensive hairs on stems and leaves. Particularly, we investigated the behaviour and population dynamics of different phytophagous mite species in the absence and presence of predatory mites.We show that predatory mites do not only perform better on tomatoes lacking defensive hairs but also that they can suppress herbivore densities better and faster on these hairless plants. Hence, top-down control of herbivores by natural enemies more than compensated the reduced bottom-up herbivore control by plant defences.Our results lead to the counter-intuitive insight that removing, instead of introducing, plant defence traits can result in superior protection against important pests through biological control. Read the free Plain Language Summary for this article on the Journal blog.
Collapse
Affiliation(s)
- Saioa Legarrea
- Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamAmsterdamThe Netherlands
- Departamento de Agricultura y AlimentaciónUniversidad de la RiojaLogroñoSpain
| | - Arne Janssen
- Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamAmsterdamThe Netherlands
- Department of EntomologyFederal University of ViçosaViçosaBrazil
| | - Lin Dong
- Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamAmsterdamThe Netherlands
| | | | | | - Alessandra Scala
- Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamAmsterdamThe Netherlands
| | - Merijn R. Kant
- Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
4
|
Han G, Li Y, Yang Z, Wang C, Zhang Y, Wang B. Molecular Mechanisms of Plant Trichome Development. FRONTIERS IN PLANT SCIENCE 2022; 13:910228. [PMID: 35720574 PMCID: PMC9198495 DOI: 10.3389/fpls.2022.910228] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 05/25/2023]
Abstract
Plant trichomes, protrusions formed from specialized aboveground epidermal cells, provide protection against various biotic and abiotic stresses. Trichomes can be unicellular, bicellular or multicellular, with multiple branches or no branches at all. Unicellular trichomes are generally not secretory, whereas multicellular trichomes include both secretory and non-secretory hairs. The secretory trichomes release secondary metabolites such as artemisinin, which is valuable as an antimalarial agent. Cotton trichomes, also known as cotton fibers, are an important natural product for the textile industry. In recent years, much progress has been made in unraveling the molecular mechanisms of trichome formation in Arabidopsis thaliana, Gossypium hirsutum, Oryza sativa, Cucumis sativus, Solanum lycopersicum, Nicotiana tabacum, and Artemisia annua. Here, we review current knowledge of the molecular mechanisms underlying fate determination and initiation, elongation, and maturation of unicellular, bicellular and multicellular trichomes in several representative plants. We emphasize the regulatory roles of plant hormones, transcription factors, the cell cycle and epigenetic modifications in different stages of trichome development. Finally, we identify the obstacles and key points for future research on plant trichome development, and speculated the development relationship between the salt glands of halophytes and the trichomes of non-halophytes, which provides a reference for future studying the development of plant epidermal cells.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Dongying Institute, Shandong Normal University, Dongying, China
| | - Yuxia Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chengfeng Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuanyuan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
5
|
Liu X, He X, Liu Z, Wu P, Tang N, Chen Z, Zhang W, Rao S, Cheng S, Luo C, Xu F. Transcriptome mining of genes in Zanthoxylum armatum revealed ZaMYB86 as a negative regulator of prickly development. Genomics 2022; 114:110374. [PMID: 35489616 DOI: 10.1016/j.ygeno.2022.110374] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/23/2022] [Accepted: 04/22/2022] [Indexed: 01/14/2023]
Abstract
Zanthoxylum armatum DC. is an important economic tree species. Prickle is a type of trichome with special morphology, and there are a lot of prickles on the leaves of Z. armatum, which seriously restricts the development of Z. armatum industry. In this study, the leaves of Z. armatum cv. Zhuye (ZY) and its budding variety 'Rongchangwuci' (WC) (A less prickly mutant variety) at different developmental stages were used as materials, and the transcriptome sequencing data were analyzed. A total of 96,931 differentially expressed genes (DEGs) were identified among the samples, among which 1560 were candidate DEGs that might be involved in hormone metabolism. The contents of JA, auxin and CK phytohormones in ZY leaves were significantly higher than those in WC leaves. Combined with weighted gene co-expression network analysis, eight genes (MYC, IAA, ARF, CRE/AHK, PP2C, ARR-A, AOS and LOX) were identified, including 25 transcripts, which might affect the metabolism of the three hormones and indirectly participate in the formation of prickles. Combining with the proteins successfully reported in other plants to regulate trichome formation, ZaMYB86, a transcription factor of R2R3 MYB family, was identified through local Blast and phylogenetic tree analysis, which might regulate prickle formation of Z. armatum. Overexpression of ZaMYB86 in mutant A. thaliana resulted in the reduction of trichomes in A. thaliana leaves, which further verified that ZaMYB86 was involved in the formation of pickles. Yeast two-hybrid results showed that ZaMYB86 interacted with ZaMYB5. Furthermore, ZaMYB5 was highly homologous to AtMYB5, a transcription factor that regulated trichomes development, in MYB DNA binding domain. Taken together, these results indicated that ZaMYB86 and ZaMYB5 act together to regulate the formation of prickles in Z. armatum. Our findings provided a new perspective for revealing the molecular mechanism of prickly formation.
Collapse
Affiliation(s)
- Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiao He
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Zhongbing Liu
- School of Horticulture and Landscape, Wuhan University of Bioengineering, Wuhan, China
| | - Peiyin Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Ning Tang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 400000, China
| | - Zexiong Chen
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 400000, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; Spice Crops Research Institute, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, Hubei, China; National Selenium Rich Product Quality Supervision and Inspection Center, Enshi 445000, Hubei, China
| | - Chengrong Luo
- Sichuan Academy of Forestry, Chengdu 610081, Sichuan, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
6
|
Khan RA, Mohammad, Hurrah IM, Muzafar S, Jan S, Abbas N. Transcriptional regulation of trichome development in plants: an overview. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00017-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Doolabh K, Naidoo Y, Dewir YH, Al-Suhaibani N. Micromorphology, Ultrastructure and Histochemistry of Commelina benghalensis L. Leaves and Stems. PLANTS (BASEL, SWITZERLAND) 2021; 10:512. [PMID: 33803463 PMCID: PMC8000186 DOI: 10.3390/plants10030512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/02/2022]
Abstract
Commelina benghalensis L. is used as a traditional medicine in treating numerous ailments and diseases such as infertility in women, conjunctivitis, gonorrhea, and jaundice. This study used light and electron microscopy coupled with histochemistry to investigate the micromorphology, ultrastructure and histochemical properties of C. benghalensis leaves and stems. Stereo and scanning electron microscopy revealed dense non-glandular trichomes on the leaves and stems and trichome density was greater in emergent leaves than in the young and mature. Three morphologically different non-glandular trichomes were observed including simple multicellular, simple bicellular and simple multicellular hooked. The simple bicellular trichomes were less common than the multicellular and hooked. Transmission electron micrographs showed mitochondria, vesicles and vacuoles in the trichome. The leaf section contained chloroplasts with plastoglobuli and starch grains. Histochemical analysis revealed various pharmacologically important compounds such as phenols, alkaloids, proteins and polysaccharides. The micromorphological and ultrastructural investigations suggest that Commelina benghalensis L. is an economically important medicinal plant due to bioactive compounds present in the leaves and stems.
Collapse
Affiliation(s)
- Kareshma Doolabh
- School of Life Sciences, University of KwaZulu-Natal, Westville, Private Bag X54001, Durban 4000, South Africa; (K.D.); (Y.N.)
| | - Yougasphree Naidoo
- School of Life Sciences, University of KwaZulu-Natal, Westville, Private Bag X54001, Durban 4000, South Africa; (K.D.); (Y.N.)
| | - Yaser Hassan Dewir
- Plant Production Department, PO Box 2460, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Horticulture, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Nasser Al-Suhaibani
- Plant Production Department, PO Box 2460, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
8
|
Schuurink R, Tissier A. Glandular trichomes: micro-organs with model status? THE NEW PHYTOLOGIST 2020; 225:2251-2266. [PMID: 31651036 DOI: 10.1111/nph.16283] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/01/2019] [Indexed: 05/19/2023]
Abstract
Glandular trichomes are epidermal outgrowths that are the site of biosynthesis and storage of large quantities of specialized metabolites. Besides their role in the protection of plants against biotic and abiotic stresses, they have attracted interest owing to the importance of the compounds they produce for human use; for example, as pharmaceuticals, flavor and fragrance ingredients, or pesticides. Here, we review what novel concepts investigations on glandular trichomes have brought to the field of specialized metabolism, particularly with respect to chemical and enzymatic diversity. Furthermore, the next challenges in the field are understanding the metabolic network underlying the high productivity of glandular trichomes and the transport and storage of metabolites. Another emerging area is the development of glandular trichomes. Studies in some model species, essentially tomato, tobacco, and Artemisia, are now providing the first molecular clues, but many open questions remain: How is the distribution and density of different trichome types on the leaf surface controlled? When is the decision for an epidermal cell to differentiate into one type of trichome or another taken? Recent advances in gene editing make it now possible to address these questions and promise exciting discoveries in the near future.
Collapse
Affiliation(s)
- Robert Schuurink
- Swammerdam Institute for Life Sciences, Green Life Science Research Cluster, University of Amsterdam, Postbus 1210, 1000 BE, Amsterdam, the Netherlands
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| |
Collapse
|
9
|
Cao H, Li J, Ye Y, Lin H, Hao Z, Ye N, Yue C. Integrative Transcriptomic and Metabolic Analyses Provide Insights into the Role of Trichomes in Tea Plant ( Camellia Sinensis). Biomolecules 2020; 10:biom10020311. [PMID: 32079100 PMCID: PMC7072466 DOI: 10.3390/biom10020311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/01/2020] [Accepted: 02/12/2020] [Indexed: 12/31/2022] Open
Abstract
Trichomes, which develop from epidermal cells, are regarded as one of the key features that are involved in the evaluation of tea quality and tea germplasm resources. The metabolites from trichomes have been well characterized in tea products. However, little is known regarding the metabolites in fresh tea trichomes and the molecular differences in trichomes and tea leaves per se. In this study, we developed a method to collect trichomes from tea plant tender shoots, and their main secondary metabolites, including catechins, caffeine, amino acids, and aroma compounds, were determined. We found that the majority of these compounds were significantly less abundant in trichomes than in tea leaves. RNA-Seq was used to investigate the differences in the molecular regulatory mechanism between trichomes and leaves to gain further insight into the differences in trichomes and tea leaves. In total, 52.96 Gb of clean data were generated, and 6560 differentially expressed genes (DEGs), including 4471 upregulated and 2089 downregulated genes, were identified in the trichomes vs. leaves comparison. Notably, the structural genes of the major metabolite biosynthesis pathways, transcription factors, and other key DEGs were identified and comparatively analyzed between trichomes and leaves, while trichome-specific genes were also identified. Our results provide new insights into the differences between tea trichomes and leaves at the metabolic and transcriptomic levels, and open up new doors to further recognize and re-evaluate the role of trichomes in tea quality formation and tea plant growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chuan Yue
- Correspondence: ; Tel.: +86-591-83789281
| |
Collapse
|
10
|
Fambrini M, Pugliesi C. The Dynamic Genetic-Hormonal Regulatory Network Controlling the Trichome Development in Leaves. PLANTS (BASEL, SWITZERLAND) 2019; 8:E253. [PMID: 31357744 PMCID: PMC6724107 DOI: 10.3390/plants8080253] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
Abstract
Plant trichomes are outgrowths developed from an epidermal pavement cells of leaves and other organs. Trichomes (also called 'hairs') play well-recognized roles in defense against insect herbivores, forming a physical barrier that obstructs insect movement and mediating chemical defenses. In addition, trichomes can act as a mechanosensory switch, transducing mechanical stimuli (e.g., insect movement) into physiological signals, helping the plant to respond to insect attacks. Hairs can also modulate plant responses to abiotic stresses, such as water loss, an excess of light and temperature, and reflect light to protect plants against UV radiation. The structure of trichomes is species-specific and this trait is generally related to their function. These outgrowths are easily analyzed and their origin represents an outstanding subject to study epidermal cell fate and patterning in plant organs. In leaves, the developmental control of the trichomatous complement has highlighted a regulatory network based on four fundamental elements: (i) genes that activate and/or modify the normal cell cycle of epidermal pavement cells (i.e., endoreduplication cycles); (ii) transcription factors that create an activator/repressor complex with a central role in determining cell fate, initiation, and differentiation of an epidermal cell in trichomes; (iii) evidence that underlines the interplay of the aforesaid complex with different classes of phytohormones; (iv) epigenetic mechanisms involved in trichome development. Here, we reviewed the role of genes in the development of trichomes, as well as the interaction between genes and hormones. Furthermore, we reported basic studies about the regulation of the cell cycle and the complexity of trichomes. Finally, this review focused on the epigenetic factors involved in the initiation and development of hairs, mainly on leaves.
Collapse
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy.
| |
Collapse
|
11
|
Bac-Molenaar JA, Mol S, Verlaan MG, van Elven J, Kim HK, Klinkhamer PGL, Leiss KA, Vrieling K. Trichome Independent Resistance against Western Flower Thrips in Tomato. PLANT & CELL PHYSIOLOGY 2019; 60:1011-1024. [PMID: 30715458 PMCID: PMC6534821 DOI: 10.1093/pcp/pcz018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 01/29/2019] [Indexed: 05/26/2023]
Abstract
Western flower thrips (WFT) are a major pest on many crops, including tomato. Thrips cause yield losses, not only through feeding damage, but also by the transmission of viruses of which the Tomato Spotted Wilt Virus is the most important one. In cultivated tomato, genetic diversity is extremely low, and all commercial lines are susceptible to WFT. Several wild relatives are WFT resistant and these resistances are based on glandular trichome-derived traits. Introgression of these traits in cultivated lines did not lead to WFT resistant commercial varieties so far. In this study, we investigated WFT resistance in cultivated tomato using a F2 population derived from a cross between a WFT susceptible and a WFT resistant cultivated tomato line. We discovered that this WFT resistance is independent of glandular trichome density or trichome-derived volatile profiles and is associated with three QTLs on chromosomes 4, 5 and 10. Foliar metabolic profiles of F3 families with low and high WFT feeding damage were clearly different. We identified α-tomatine and a phenolic compound as potential defensive compounds. Their causality and interaction need further investigation. Because this study is based on cultivated tomato lines, our findings can directly be used in nowadays breeding programs.
Collapse
Affiliation(s)
- Johanna A Bac-Molenaar
- Plant Sciences and Natural Products Lab, Institute of Biology Leiden, Sylviusweg 72, BE Leiden, The Netherlands
- Wageningen University and Research, Violierenweg 1, MV Bleiswijk, The Netherlands
| | - Selena Mol
- Plant Sciences and Natural Products Lab, Institute of Biology Leiden, Sylviusweg 72, BE Leiden, The Netherlands
- Rijk Zwaan Breeding B.V, Burgemeester Crezeelaan 40, KX De Lier, The Netherlands
| | - Maarten G Verlaan
- Rijk Zwaan Breeding B.V, Burgemeester Crezeelaan 40, KX De Lier, The Netherlands
| | - Joke van Elven
- Rijk Zwaan Breeding B.V, Burgemeester Crezeelaan 40, KX De Lier, The Netherlands
| | - Hye Kyong Kim
- Plant Sciences and Natural Products Lab, Institute of Biology Leiden, Sylviusweg 72, BE Leiden, The Netherlands
| | - Peter G L Klinkhamer
- Plant Sciences and Natural Products Lab, Institute of Biology Leiden, Sylviusweg 72, BE Leiden, The Netherlands
| | - Kirsten A Leiss
- Plant Sciences and Natural Products Lab, Institute of Biology Leiden, Sylviusweg 72, BE Leiden, The Netherlands
- Wageningen University and Research, Violierenweg 1, MV Bleiswijk, The Netherlands
| | - Klaas Vrieling
- Plant Sciences and Natural Products Lab, Institute of Biology Leiden, Sylviusweg 72, BE Leiden, The Netherlands
| |
Collapse
|
12
|
Li C, Wang P, Lombi E, Cheng M, Tang C, Howard DL, Menzies NW, Kopittke PM. Absorption of foliar-applied Zn fertilizers by trichomes in soybean and tomato. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2717-2729. [PMID: 29514247 PMCID: PMC5920297 DOI: 10.1093/jxb/ery085] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/22/2018] [Indexed: 05/04/2023]
Abstract
The present study investigated the role of trichomes in absorption of foliar-applied zinc fertilizers in soybean and tomato. Using synchrotron-based X-ray fluorescence microscopy for in situ analyses of hydrated leaves, we found that upon foliar application of ZnSO4, Zn accumulated within 15 min in some non-glandular trichomes in soybean, but not in tomato. However, analyses of cross-sections of soybean leaves did not show any marked accumulation of Zn in tissues surrounding trichomes. Furthermore, when near-isogenic lines of soybean differing 10-fold in trichome density were used to compare Zn absorption, it was found that foliar Zn absorption was not related to trichome density. Therefore, it is suggested that trichomes are not part of the primary pathway through which foliar-applied Zn moves across the leaf surface in soybean and tomato. However, this does not preclude trichomes being important in other plant species, as they are known to be highly diverse. We also compared the absorption of Zn when supplied as either ZnSO4, nano-ZnO, or bulk-ZnO, and found that absorption from ZnSO4 was about 10-fold higher than from nano- and bulk-ZnO, suggesting that it was mainly absorbed as soluble Zn. This study improves our understanding of the absorption of foliar-applied nutrients.
Collapse
Affiliation(s)
- Cui Li
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, Australia
| | - Peng Wang
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, Australia
- Nanjing Agricultural University, College of Resources and Environmental Sciences, Nanjing, China
| | - Enzo Lombi
- University of South Australia, Future Industries Institute, Mawson Lakes, South Australia, Australia
| | - Miaomiao Cheng
- La Trobe University, Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Caixian Tang
- La Trobe University, Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Daryl L Howard
- ANSTO, Australian Synchrotron, Clayton, Victoria, Australia
| | - Neal W Menzies
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, Australia
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, Australia
| |
Collapse
|
13
|
Tian N, Liu F, Wang P, Zhang X, Li X, Wu G. The molecular basis of glandular trichome development and secondary metabolism in plants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Vendemiatti E, Zsögön A, Silva GFFE, de Jesus FA, Cutri L, Figueiredo CRF, Tanaka FAO, Nogueira FTS, Peres LEP. Loss of type-IV glandular trichomes is a heterochronic trait in tomato and can be reverted by promoting juvenility. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:35-47. [PMID: 28483052 DOI: 10.1016/j.plantsci.2017.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/21/2017] [Accepted: 03/01/2017] [Indexed: 05/27/2023]
Abstract
Glandular trichomes are structures with widespread distribution and deep ecological significance. In the Solanum genus, type-IV glandular trichomes provide resistance to insect pests. The occurrence of these structures is, however, poorly described and controversial in cultivated tomato (Solanum lycopersicum). Optical and scanning electron microscopy were used to screen a series of well-known commercial tomato cultivars, revealing the presence of type-IV trichomes on embryonic (cotyledons) and juvenile leaves. A tomato line overexpressing the microRNA miR156, known to promote heterochronic development, and mutants affecting KNOX and CLAVATA3 genes possessed type-IV trichomes in adult leaves. A re-analysis of the Woolly (Wo) mutant, previously described as enhancing glandular trichome density, showed that this effect only occurs at the juvenile phase of vegetative development. Our results suggest the existence of at least two levels of regulation of multicellular trichome formation in tomato: one enhancing different types of trichomes, such as that controlled by the WOOLLY gene, and another dependent on developmental stage, which is fundamental for type-IV trichome formation. Their combined manipulation could represent an avenue for biotechnological engineering of trichome development in plants.
Collapse
Affiliation(s)
- Eloisa Vendemiatti
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Agustin Zsögön
- Departament of Plant Biology, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs s/n, 36570-900, Viçosa, MG, Brazil
| | - Geraldo Felipe Ferreira E Silva
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Frederico Almeida de Jesus
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Lucas Cutri
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Cassia Regina Fernandes Figueiredo
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Francisco André Ossamu Tanaka
- Departament of Phytopathology, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP),Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Fábio Tebaldi Silveira Nogueira
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Lázaro Eustáquio Pereira Peres
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|