1
|
Yoon HS, Fujino K, Liu S, Takano T, Tsugama D. Characterizing the role of PP2A B'' family subunits in mechanical stress response and plant development through calcium and ABA signaling in Arabidopsis thaliana. PLoS One 2024; 19:e0313590. [PMID: 39541304 PMCID: PMC11563394 DOI: 10.1371/journal.pone.0313590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Protein phosphatase 2AB'' (PP2A B'') family subunits have calcium-binding EF-hand motifs, facilitating interaction with PP2A substrates. In Arabidopsis thaliana, the PP2A B'' family subunits consist of six members, AtB''α-ε and FASS. These subunits can interact with a basic leucine zipper transcription factor, VIP1, and its close homologs. Mechanical stress triggers PP2A-mediated dephosphorylation of VIP1 and its close homologs, leading to nuclear localization and gene upregulation to alleviate touch-induced root bending and leaf damage. However, the physiological roles of PP2A B'' family subunits in the mechanical stress response in Arabidopsis remain unclear. This study aims to characterize such roles. A quadruple knockout mutant with T-DNA insertions in AtB''α, AtB''β, AtB''γ, and AtB''δ was generated. atb''αβγδ mutants exhibited no significant damage upon brushing or touch-induced root bending compared to the wild type. Transcriptome analysis showed a significant decrease in the expression of CYP707A3, a gene potentially targeted by VIP1 that regulates abscisic acid (ABA) catabolism, in the atb''αβγδ mutant compared to wild type leaves. However, other genes, including XTH23, EXLA1, and CYP707A1, also VIP1 targets, exhibited similar induction in both brushed atb''αβγδ mutants and wild type leaves. We observed an enrichment of the CAMTA motif, CGCG(C/T) in the promoters of genes showing downregulated expression levels in brushed atb''αβγδ leaves compared to brushed wild type leaves. These findings suggest that PP2A B'' family subunits exhibit functional redundancy in the VIP1-dependent pathway but influence CAMTA-dependent gene expression under mechanical stress. Under calcium-deficient and ABA-supplemented conditions, growth of atb''αβγδ seedlings was retarded when compared to wild type and single knockout mutants, atb''γ and atb''δ, indicating a crucial role in plant development by modulating calcium or ABA signaling.
Collapse
Affiliation(s)
- Hyuk Sung Yoon
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
- Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo-shi, Hokkaido, Japan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Hangzhou, China
| | - Tetsuo Takano
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| | - Daisuke Tsugama
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| |
Collapse
|
2
|
Li F, Wang J, Wang P, Li L. Dephosphorylation of bZIP59 by PP2A ensures appropriate shade avoidance response in Arabidopsis. Dev Cell 2024:S1534-5807(24)00633-6. [PMID: 39536759 DOI: 10.1016/j.devcel.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/26/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Changes in light quality and quantity experienced by many shade-intolerant plants grown in close proximity lead to transcriptional reprogramming and shade avoidance syndrome (SAS). Despite the importance of phosphorylation-dependent signaling in cellular physiology, phosphorylation events during SAS are largely unknown. Here, we examined shade-regulated phosphorylation events in Arabidopsis using quantitative phosphoproteomics. We confirmed shade-induced dephosphorylation of bZIP59, a basic region/leucine zipper motif (bZIP) transcription factor. Shade treatment promotes the nuclear localization of bZIP59, which can be mimicked by mutation of the phosphorylation sites on bZIP59. Phenotypic analysis identified that bZIP59 negatively regulated shade-induced hypocotyl elongation. bZIP59 repressed the shade-induced activation of certain growth-related genes, while shade increased the DNA binding of bZIP59. Furthermore, the protein phosphatase 2A (PP2A) mediated dephosphorylation of bZIP59. Our study characterized a previously unidentified mechanism by which the phytochrome B (phyB)-PP2A-bZIP59 regulatory module integrates shade signals and transcriptomes, broadening our knowledge of phosphorylation strategies for rapid adaptation to shade.
Collapse
Affiliation(s)
- Fengquan Li
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Jiayu Wang
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Lin Li
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
3
|
Zhu X, Gao T, Bian K, Meng C, Tang X, Mao Y. Genome-wide analysis and expression profile of the bZIP gene family in Neopyropia yezoensis. FRONTIERS IN PLANT SCIENCE 2024; 15:1461922. [PMID: 39498397 PMCID: PMC11533322 DOI: 10.3389/fpls.2024.1461922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024]
Abstract
The basic leucine zipper (bZIP) family consists of conserved transcription factors which are widely present in eukaryotes and play important regulatory roles in plant growth, development, and stress responses. Neopyropia yezoensis is a red marine macroalga of significant economic importance; however, their bZIP family members and functions have not been systematically identified and analyzed. In the present study, the bZIP gene family in Ny. yezoensis was characterized by investigating gene structures, conserved motifs, phylogenetic relationships, chromosomal localizations, gene duplication events, cis-regulatory elements, and expression profiles. Twenty-three Ny. yezoensis bZIP (NyybZIP) genes were identified and sorted into 13 out of 30 groups, which were classified based on the bZIPs of Ny. yezoensis and 15 other red algae species. Phylogenetic analysis revealed that bZIP genes may have a complex evolutionary pattern in red algae. Cross-species collinearity analysis indicated that the bZIP genes in Ny. yezoensis, Neoporphyra haitanensis, and Porphyra umbilicalis are highly evolutionarily conserved. In addition, we identified four main categories of cis-elements, including development-related, light-responsive, phytohormone-responsive and stress-responsive promoter sequences in NyybZIP genes. Finally, RNA sequencing data and quantitative real-time PCR (qRT-PCR) showed that NyybZIP genes exhibited different expression patterns depending on the life stage. NyybZIP genes were also found to be involved in the nitrogen stress response. We thought that bZIP genes may be involved in Ny. yezoensis growth and development, and play a significant role in nitrogen deficiency response. Taken together, our findings provide new insights into the roles of the bZIP gene family and provide a basis for additional research into its evolutionary history and biological functions.
Collapse
Affiliation(s)
| | | | | | | | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | | |
Collapse
|
4
|
Yoon HS, Fujino K, Liu S, Takano T, Tsugama D. VIP1 and its close homologs confer mechanical stress tolerance in Arabidopsis leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109021. [PMID: 39137679 DOI: 10.1016/j.plaphy.2024.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
VIP1, an Arabidopsis thaliana basic leucine zipper transcription factor, and its close homologs are imported from the cytoplasm to the nucleus when cells are exposed to mechanical stress. They bind to AGCTG (G/T) and regulate mechanical stress responses in roots. However, their role in leaves is unclear. To clarify this, mutant lines (QM1 and QM2) that lack the functions of VIP1 and its close homologs (bZIP29, bZIP30 and PosF21) were generated. Brushing more severely damaged QM1 and QM2 leaves than wild-type leaves. Genes regulating stress responses and cell wall properties were downregulated in brushed QM2 leaves and upregulated in brushed VIP1-GFP-overexpressing (VIP1-GFPox) leaves compared to wild-type leaves in a transcriptome analysis. The VIP1-binding sequence AGCTG (G/T) was enriched in the promoters of genes downregulated in brushed QM2 leaves compared to wild-type leaves and in those upregulated in brushed VIP1-GFPox leaves. Calmodulin-binding transcription activators (CAMTAs) are known regulators of mechanical stress responses, and the CAMTA-binding sequence CGCGT was enriched in the promoters of genes upregulated in the brushed QM2 leaves and in those downregulated in the brushed VIP1-GFPox leaves. These findings suggest that VIP1 and its homologs upregulate genes via AGCTG (G/T) and influence CAMTA-dependent gene expression to enhance mechanical stress tolerance in leaves.
Collapse
Affiliation(s)
- Hyuk Sung Yoon
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-ku, Sapporo-shi, Hokkaido, 060-8589, Japan.
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou, 311300, PR China.
| | - Tetsuo Takano
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| | - Daisuke Tsugama
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| |
Collapse
|
5
|
Fan L, Zhang B, Ning M, Quan S, Guo C, Cui K, Chen L, Yan M, Ren X. Responses of transcriptome and metabolome in peanut leaves to dibutyl phthalate during whole growth period. FRONTIERS IN PLANT SCIENCE 2024; 15:1448971. [PMID: 39372850 PMCID: PMC11452913 DOI: 10.3389/fpls.2024.1448971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024]
Abstract
Introduction The application of agricultural film mulching technology has significantly contributed to increasing crop yield and income, but the pollution caused by residual film has seriously affected agricultural production and the natural environment. Agricultural film is commonly employed to enhance the yield of peanuts; its use may lead to excessive dibutyl phthalate (DBP) residues in peanut kernels. But, limited investigations have been conducted on the regulatory mechanism of peanut leaves in response to DBP exposure throughout the entire growth period. Methods To bridge this knowledge gap, we investigated the differences in transcriptome and metabolome of peanut leaves under DBP stress. Results According to visual observations, the results of morphological response showed that the growth of peanut plants was significantly inhibited from seedling to pod stage under DBP treatment. Transcriptomic analysis results showed that the genes AH19G05510 (LRR receptor-like serine threonine-protein kinase) and AH20G31870 (disease resistance), belonging to the FAR1 family and bZIP family respectively, may be key genes involved in the resistance to DBP stress throughout its growth stages. Metabolomic analysis results showed that during the initial stage of DBP stress, the key metabolites in peanut leaves response to stress were carboxylic acids and derivatives, as well as fatty acyls. As peanut growth progressed, flavonoids gradually became more prominent in the resistance to DBP stress. By integrating metabolomics and transcriptomics analysis, we have identified that purine metabolism during seedling and flowering stages, as well as the flavone and flavonol biosynthesis pathways during pod and maturity stages, played a crucial role in response to DBP stress. Discussion These findings not only provide valuable key gene and metabolic information for studying anti-plasticizer pollution throughout the entire growth period of peanuts, but also offer reference for enhancing crop resistance to plasticizer pollution through genetic modification and metabolic regulation.
Collapse
Affiliation(s)
- Lixia Fan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Bingchun Zhang
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Mingxiao Ning
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | | | - Changying Guo
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Kai Cui
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Lu Chen
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Xianfeng Ren
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| |
Collapse
|
6
|
Coomey JH, MacKinnon KJM, McCahill IW, Khahani B, Handakumbura PP, Trabucco GM, Mazzola J, Leblanc NA, Kheam R, Hernandez-Romero M, Barry K, Liu L, Lee JE, Vogel JP, O’Malley RC, Chambers JJ, Hazen SP. Mechanically induced localisation of SECONDARY WALL INTERACTING bZIP is associated with thigmomorphogenic and secondary cell wall gene expression. QUANTITATIVE PLANT BIOLOGY 2024; 5:e5. [PMID: 38774130 PMCID: PMC11106548 DOI: 10.1017/qpb.2024.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 05/24/2024]
Abstract
Plant growth requires the integration of internal and external cues, perceived and transduced into a developmental programme of cell division, elongation and wall thickening. Mechanical forces contribute to this regulation, and thigmomorphogenesis typically includes reducing stem height, increasing stem diameter, and a canonical transcriptomic response. We present data on a bZIP transcription factor involved in this process in grasses. Brachypodium distachyon SECONDARY WALL INTERACTING bZIP (SWIZ) protein translocated into the nucleus following mechanostimulation. Classical touch-responsive genes were upregulated in B. distachyon roots following touch, including significant induction of the glycoside hydrolase 17 family, which may be unique to grass thigmomorphogenesis. SWIZ protein binding to an E-box variant in exons and introns was associated with immediate activation followed by repression of gene expression. SWIZ overexpression resulted in plants with reduced stem and root elongation. These data further define plant touch-responsive transcriptomics and physiology, offering insights into grass mechanotranduction dynamics.
Collapse
Affiliation(s)
- Joshua H. Coomey
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Kirk J.-M. MacKinnon
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Ian W. McCahill
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Bahman Khahani
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Pubudu P. Handakumbura
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Gina M. Trabucco
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Jessica Mazzola
- Biology Department, University of Massachusetts, Amherst, MA, USA
| | | | - Rithany Kheam
- Biology Department, University of Massachusetts, Amherst, MA, USA
| | - Miriam Hernandez-Romero
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lifeng Liu
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ji E. Lee
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John P. Vogel
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ronan C. O’Malley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - James J. Chambers
- Institute for Applied Life Science, University of Massachusetts, Amherst, MA, USA
| | - Samuel P. Hazen
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
7
|
Huang X, Zhou Y, Shi X, Wen J, Sun Y, Chen S, Hu T, Li R, Wang J, Jia X. PfbZIP85 Transcription Factor Mediates ω-3 Fatty Acid-Enriched Oil Biosynthesis by Down-Regulating PfLPAT1B Gene Expression in Plant Tissues. Int J Mol Sci 2024; 25:4375. [PMID: 38673960 PMCID: PMC11050522 DOI: 10.3390/ijms25084375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The basic leucine zipper (bZIP) transcription factor (TF) family is one of the biggest TF families identified so far in the plant kingdom, functioning in diverse biological processes including plant growth and development, signal transduction, and stress responses. For Perilla frutescens, a novel oilseed crop abundant in polyunsaturated fatty acids (PUFAs) (especially α-linolenic acid, ALA), the identification and biological functions of bZIP members remain limited. In this study, 101 PfbZIPs were identified in the perilla genome and classified into eleven distinct groups (Groups A, B, C, D, E, F, G, H, I, S, and UC) based on their phylogenetic relationships and gene structures. These PfbZIP genes were distributed unevenly across 18 chromosomes, with 83 pairs of them being segmental duplication genes. Moreover, 78 and 148 pairs of orthologous bZIP genes were detected between perilla and Arabidopsis or sesame, respectively. PfbZIP members belonging to the same subgroup exhibited highly conserved gene structures and functional domains, although significant differences were detected between groups. RNA-seq and RT-qPCR analysis revealed differential expressions of 101 PfbZIP genes during perilla seed development, with several PfbZIPs exhibiting significant correlations with the key oil-related genes. Y1H and GUS activity assays evidenced that PfbZIP85 downregulated the expression of the PfLPAT1B gene by physical interaction with the promoter. PfLPAT1B encodes a lysophosphatidate acyltransferase (LPAT), one of the key enzymes for triacylglycerol (TAG) assembly. Heterogeneous expression of PfbZIP85 significantly reduced the levels of TAG and UFAs (mainly C18:1 and C18:2) but enhanced C18:3 accumulation in both seeds and non-seed tissues in the transgenic tobacco lines. Furthermore, these transgenic tobacco plants showed no significantly adverse phenotype for other agronomic traits such as plant growth, thousand seed weight, and seed germination rate. Collectively, these findings offer valuable perspectives for understanding the functions of PfbZIPs in perilla, particularly in lipid metabolism, showing PfbZIP85 as a suitable target in plant genetic improvement for high-value vegetable oil production.
Collapse
Affiliation(s)
- Xusheng Huang
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China; (X.H.); (Y.Z.); (J.W.)
| | - Yali Zhou
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China; (X.H.); (Y.Z.); (J.W.)
| | - Xianfei Shi
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China; (X.H.); (Y.Z.); (J.W.)
| | - Jing Wen
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China; (X.H.); (Y.Z.); (J.W.)
| | - Yan Sun
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China; (X.H.); (Y.Z.); (J.W.)
| | - Shuwei Chen
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China; (X.H.); (Y.Z.); (J.W.)
| | - Ting Hu
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China; (X.H.); (Y.Z.); (J.W.)
| | - Runzhi Li
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China; (X.H.); (Y.Z.); (J.W.)
| | - Jiping Wang
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China; (X.H.); (Y.Z.); (J.W.)
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
8
|
Shen B, Li W, Zheng Y, Zhou X, Zhang Y, Qu M, Wang Y, Yuan Y, Pang K, Feng Y, Wu J, Zeng B. Morphological and molecular response mechanisms of the root system of different Hemarthria compressa species to submergence stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1342814. [PMID: 38638357 PMCID: PMC11024365 DOI: 10.3389/fpls.2024.1342814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Introduction The severity of flood disasters is increasing due to climate change, resulting in a significant reduction in the yield and quality of forage crops worldwide. This poses a serious threat to the development of agriculture and livestock. Hemarthria compressa is an important high-quality forage grass in southern China. In recent years, frequent flooding has caused varying degrees of impacts on H. compressa and their ecological environment. Methods In this study, we evaluated differences in flooding tolerance between the root systems of the experimental materials GY (Guang Yi, flood-tolerant) and N1291 (N201801291, flood-sensitive). We measured their morphological indexes after 7 d, 14 d, and 21 d of submergence stress and sequenced their transcriptomes at 8 h and 24 h, with 0 h as the control. Results During submergence stress, the number of adventitious roots and root length of both GY and N1291 tended to increase, but the overall growth of GY was significantly higher than that of N1291. RNA-seq analysis revealed that 6046 and 7493 DEGs were identified in GY-8h and GY-24h, respectively, and 9198 and 4236 DEGs in N1291-8h and N1291-24h, respectively, compared with the control. The GO and KEGG enrichment analysis results indicated the GO terms mainly enriched among the DEGs were oxidation-reduction process, obsolete peroxidase reaction, and other antioxidant-related terms. The KEGG pathways that were most significantly enriched were phenylpropanoid biosynthesis, plant hormone signal transduction etc. The genes of transcription factor families, such as C2H2, bHLH and bZIP, were highly expressed in the H. compressa after submergence, which might be closely related to the submergence adaptive response mechanisms of H. compressa. Discussion This study provides basic data for analyzing the molecular and morphological mechanisms of H. compressa in response to submergence stress, and also provides theoretical support for the subsequent improvement of submergence tolerance traits of H. compressa.
Collapse
Affiliation(s)
- Bingna Shen
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wenwen Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuqian Zheng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiaoli Zhou
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yinuo Zhang
- College of Grassland Agriculture, Northwest Agriculture and Forestry University, Shanxi, China
| | - Minghao Qu
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Institute of Prataculture, Chongqing Academy of Animal Science, Chongqing, China
| | - Yinchen Wang
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Provincial Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou, China
| | - Yang Yuan
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Provincial Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou, China
| | - Kaiyue Pang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yanlong Feng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jiahai Wu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Provincial Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou, China
| | - Bing Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, China
- College of Animal Science and Technology, Southwest University, Chongqing University Herbivore Engineering Research Center, Chongqing, China
| |
Collapse
|
9
|
Wolf ESA, Vela S, Wilker J, Davis A, Robert M, Infante V, Venado RE, Voiniciuc C, Ané JM, Vermerris W. Identification of genetic and environmental factors influencing aerial root traits that support biological nitrogen fixation in sorghum. G3 (BETHESDA, MD.) 2024; 14:jkad285. [PMID: 38096484 PMCID: PMC10917507 DOI: 10.1093/g3journal/jkad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/19/2023] [Indexed: 03/08/2024]
Abstract
Plant breeding and genetics play a major role in the adaptation of plants to meet human needs. The current requirement to make agriculture more sustainable can be partly met by a greater reliance on biological nitrogen fixation by symbiotic diazotrophic microorganisms that provide crop plants with ammonium. Select accessions of the cereal crop sorghum (Sorghum bicolor (L.) Moench) form mucilage-producing aerial roots that harbor nitrogen-fixing bacteria. Breeding programs aimed at developing sorghum varieties that support diazotrophs will benefit from a detailed understanding of the genetic and environmental factors contributing to aerial root formation. A genome-wide association study of the sorghum minicore, a collection of 242 landraces, and 30 accessions from the sorghum association panel was conducted in Florida and Wisconsin and under 2 fertilizer treatments to identify loci associated with the number of nodes with aerial roots and aerial root diameter. Sequence variation in genes encoding transcription factors that control phytohormone signaling and root system architecture showed significant associations with these traits. In addition, the location had a significant effect on the phenotypes. Concurrently, we developed F2 populations from crosses between bioenergy sorghums and a landrace that produced extensive aerial roots to evaluate the mode of inheritance of the loci identified by the genome-wide association study. Furthermore, the mucilage collected from aerial roots contained polysaccharides rich in galactose, arabinose, and fucose, whose composition displayed minimal variation among 10 genotypes and 2 fertilizer treatments. These combined results support the development of sorghums with the ability to acquire nitrogen via biological nitrogen fixation.
Collapse
Affiliation(s)
- Emily S A Wolf
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32609, USA
| | - Saddie Vela
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32609, USA
| | - Jennifer Wilker
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Alyssa Davis
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32610, USA
| | - Madalen Robert
- Independent Junior Research Group–Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32609, USA
| | - Valentina Infante
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Rafael E Venado
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Cătălin Voiniciuc
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32609, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
- Department of Agronomy, University of Wisconsin, Madison, WI 53706, USA
| | - Wilfred Vermerris
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32610, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
10
|
Liu L, Ma L, Yu Y, Ma Z, Yin Y, Zhou S, Yu Y, Cui N, Meng X, Fan H. Cucumis sativus CsbZIP90 suppresses Podosphaera xanthii resistance by modulating reactive oxygen species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111945. [PMID: 38061503 DOI: 10.1016/j.plantsci.2023.111945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/19/2023] [Accepted: 12/02/2023] [Indexed: 01/13/2024]
Abstract
Resistance to disease in plants requires the coordinated action of multiple functionally related genes, as it is difficult to improve disease resistance with a single functional gene. Therefore, the use of transcription factors to regulate the expression of multiple resistance genes to improve disease resistance has become a recent focus in the field of gene research. The basic leucine zipper (bZIP) transcription factor family plays vital regulatory roles in processes, such as plant growth and development and the stress response. In our previous study, CsbZIP90 (Cucsa.134370) was involved in the defense response of cucumber to Podosphaera xanthii, but the relationship between cucumber and resistance to powdery mildew remained unclear. Herein, we detected the function of CsbZIP90 in response to P. xanthii. CsbZIP90 was localized to the cytoplasm and nucleus, and its expression was significantly induced during P. xanthii attack. Transient overexpression of CsbZIP90 in cucumber cotyledons resulted in decreased resistance to P. xanthii, while silencing CsbZIP90 increased resistance to P. xanthii. CsbZIP90 negatively regulated the expression of reactive oxygen species (ROS)-related genes and activities of ROS-related kinases. Taken together, our results show that CsbZIP90 suppresses P. xanthi resistance by modulating ROS. This study will provide target genes for breeding cucumbers resistant to P. xanthii.
Collapse
Affiliation(s)
- Linghao Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Lifeng Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yongbo Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhangtong Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yunhan Yin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Shuang Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Fruit and Vegetable Biology and Germplasm Enhancement, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Fruit and Vegetable Biology and Germplasm Enhancement, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Fruit and Vegetable Biology and Germplasm Enhancement, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Fruit and Vegetable Biology and Germplasm Enhancement, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
11
|
Soto-Cerda BJ, Larama G, Cloutier S, Fofana B, Inostroza-Blancheteau C, Aravena G. The Genetic Dissection of Nitrogen Use-Related Traits in Flax ( Linum usitatissimum L.) at the Seedling Stage through the Integration of Multi-Locus GWAS, RNA-seq and Genomic Selection. Int J Mol Sci 2023; 24:17624. [PMID: 38139451 PMCID: PMC10743809 DOI: 10.3390/ijms242417624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Nitrogen (N), the most important macro-nutrient for plant growth and development, is a key factor that determines crop yield. Yet its excessive applications pollute the environment and are expensive. Hence, studying nitrogen use efficiency (NUE) in crops is fundamental for sustainable agriculture. Here, an association panel consisting of 123 flax accessions was evaluated for 21 NUE-related traits at the seedling stage under optimum N (N+) and N deficiency (N-) treatments to dissect the genetic architecture of NUE-related traits using a multi-omics approach integrating genome-wide association studies (GWAS), transcriptome analysis and genomic selection (GS). Root traits exhibited significant and positive correlations with NUE under N- conditions (r = 0.33 to 0.43, p < 0.05). A total of 359 QTLs were identified, accounting for 0.11% to 23.1% of the phenotypic variation in NUE-related traits. Transcriptomic analysis identified 1034 differentially expressed genes (DEGs) under contrasting N conditions. DEGs involved in N metabolism, root development, amino acid transport and catabolism and others, were found near the QTLs. GS models to predict NUE stress tolerance index (NUE_STI) trait were tested using a random genome-wide SNP dataset and a GWAS-derived QTLs dataset. The latter produced superior prediction accuracy (r = 0.62 to 0.79) compared to the genome-wide SNP marker dataset (r = 0.11) for NUE_STI. Our results provide insights into the QTL architecture of NUE-related traits, identify candidate genes for further studies, and propose genomic breeding tools to achieve superior NUE in flax under low N input.
Collapse
Affiliation(s)
- Braulio J. Soto-Cerda
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile; (C.I.-B.); (G.A.)
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile
| | - Giovanni Larama
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada;
| | - Bourlaye Fofana
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada
| | - Claudio Inostroza-Blancheteau
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile; (C.I.-B.); (G.A.)
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile
| | - Gabriela Aravena
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile; (C.I.-B.); (G.A.)
| |
Collapse
|
12
|
Chen Y, Zhang M, Sui D, Jiang J, Wang L. Role of bZIP Transcription Factors in Response to NaCl Stress in Tamarix ramosissima under Exogenous Potassium (K +). Genes (Basel) 2023; 14:2203. [PMID: 38137025 PMCID: PMC10743189 DOI: 10.3390/genes14122203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/19/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Salt stress is a significant environmental factor affecting plant growth and development, with NaCl stress being one of the most common types of salt stress. The halophyte, Tamarix ramosissima Ledeb (T. ramosissima), is frequently utilized for the afforestation of saline-alkali soils. Indeed, there has been limited research and reports by experts and scholars on the regulatory mechanisms of basic leucine zipper (bZIP) genes in T. ramosissima when treated with exogenous potassium (K+) to alleviate the effects of NaCl stress. This study focused on the bZIP genes in T. ramosissima roots under NaCl stress with additional KCl applied. We identified key candidate genes and metabolic pathways related to bZIP and validated them through quantitative real-time PCR (qRT-PCR). The results revealed that under NaCl stress with additional KCl applied treatments at 0 h, 48 h, and 168 h, based on Pfam protein domain prediction and physicochemical property analysis, we identified 20 related bZIP genes. Notably, four bZIP genes (bZIP_2, bZIP_6, bZIP_16, and bZIP_18) were labeled with the plant hormone signal transduction pathway, showing a predominant up-regulation in expression levels. The results suggest that these genes may mediate multiple physiological pathways under NaCl stress with additional KCl applied at 48 h and 168 h, enhancing signal transduction, reducing the accumulation of ROS, and decreasing oxidative damage, thereby enhancing the tolerance of T. ramosissima to NaCl stress. This study provides gene resources and a theoretical basis for further breeding of salt-tolerant Tamarix species and the involvement of bZIP transcription factors in mitigating NaCl toxicity.
Collapse
Affiliation(s)
- Yahui Chen
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Min Zhang
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
| | - Dezong Sui
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
| | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Wang
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
| |
Collapse
|
13
|
Zhao H, Li X, Xiao X, Wang T, Liu L, Li C, Wu H, Shan Z, Wu Q. Evaluating Tartary Buckwheat Genotypes with High Callus Induction Rates and the Transcriptomic Profiling during Callus Formation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3663. [PMID: 37960020 PMCID: PMC10647830 DOI: 10.3390/plants12213663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Due to their complex genotypes, low in vitro regeneration rates, and difficulty in obtaining transgenic plants, studies concerning basic biological research and molecular breeding in Tartary buckwheat (TB) are greatly limited. In this study, the hypocotyls of 60 genotypes of TB (TBC1~60) were used as explants. Of these, TBC14 was selected due to a high callus induction rate of 97.78% under dark and a proliferation coefficient (PC) of 28.2 when cultured on MS medium supplemented with 2.0 mg/L of 2,4-D and 1.5 mg/L of 6-BA. Subsequently, the samples of the calli obtained from TBC14 were collected at 0, 10, 20, and 30 d, and their transcriptomes were sequenced where identified. GO enrichment led to the detection of the most significant active gene set, which was the DNA binding transcription factor activity. The DEGs related to the pathways concerning metabolism, the biosynthesis of secondary metabolites, and hormone signal transduction were the most enriched in the KEGG database. The sets of MYB, AP2/ERF, and bHLH TFs exhibited the highest number of DEGs. Using this enrichment analysis, 421 genes encoding TFs, 47 auxin- and cytokinin-related genes, and 6 signal transduction-associated genes were screened that may play significant roles in callus formation (CF) in TB. Furthermore, FtPinG0008123200.01 (bZIP), a key gene promoting CF, was screened in terms of the weighted gene co-expression network associated with the various stages of CF. Our study not only provides valuable information about the molecular mechanism of CF but also reveals new genes involved in this process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya’an 625014, China; (H.Z.); (X.L.); (X.X.); (T.W.); (L.L.); (C.L.); (H.W.); (Z.S.)
| |
Collapse
|
14
|
Bo C, Su C, Teng J, Sheng W, Xue T, Zhu Y, Xue J. Transcriptome Profiling Reveals Differential Gene Expression during the Process of Microtuber Formation in Pinellia ternata. Int J Mol Sci 2023; 24:11604. [PMID: 37511363 PMCID: PMC10380585 DOI: 10.3390/ijms241411604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Using petiole material as explants and directly inducing the formation of microtubers without going through the callus stage is an essential way to rapidly expand scarce medical plants such as Pinellia ternata. However, the early molecular mechanism underlying the formation of the microtuber is largely elusive. Here, we conducted cytology and dynamic transcriptome analyses of inchoate microtubers in Pinellia explants and identified 1092 differentially expressed genes after their cultivation in vitro for 0, 5, and 15 days. Compared with 0 day, the number and size of the microtuber cells were larger at 5 and 15 days of culture. Detailed categorization revealed that the differentially expressed genes were mainly related to responses to stimulus, biological regulation, organelles, membranes, transcription factor activity, and protein binding. Further analysis revealed that the microtuber at different incubation days exhibited quite a difference in both hormone signaling pathway transduction and the regulation pattern of transcription factors. Therefore, this study contributes to a better understanding of the early molecular regulation during the formation of the microtuber and provides new insights for the study of the rapid expansion of P. ternata and other medical plants.
Collapse
Affiliation(s)
- Chen Bo
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Chuandong Su
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jingtong Teng
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wei Sheng
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Tao Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Yanfang Zhu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jianping Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
15
|
Godfroy O, Zheng M, Yao H, Henschen A, Peters AF, Scornet D, Colin S, Ronchi P, Hipp K, Nagasato C, Motomura T, Cock JM, Coelho SM. The baseless mutant links protein phosphatase 2A with basal cell identity in the brown alga Ectocarpus. Development 2023; 150:dev201283. [PMID: 36786333 PMCID: PMC10112911 DOI: 10.1242/dev.201283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023]
Abstract
The first mitotic division of the initial cell is a key event in all multicellular organisms and is associated with the establishment of major developmental axes and cell fates. The brown alga Ectocarpus has a haploid-diploid life cycle that involves the development of two multicellular generations: the sporophyte and the gametophyte. Each generation deploys a distinct developmental programme autonomously from an initial cell, the first cell division of which sets up the future body pattern. Here, we show that mutations in the BASELESS (BAS) gene result in multiple cellular defects during the first cell division and subsequent failure to produce basal structures during both generations. BAS encodes a type B″ regulatory subunit of protein phosphatase 2A (PP2A), and transcriptomic analysis identified potential effector genes that may be involved in determining basal cell fate. The bas mutant phenotype is very similar to that observed in distag (dis) mutants, which lack a functional Tubulin-binding co-factor Cd1 (TBCCd1) protein, indicating that TBCCd1 and PP2A are two essential components of the cellular machinery that regulates the first cell division and mediates basal cell fate determination.
Collapse
Affiliation(s)
- Olivier Godfroy
- Laboratory of Integrative Biology of Marine Models, Sorbonne Université, UPMC University of Paris 06, CNRS, UMR 8227, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Min Zheng
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Haiqin Yao
- Laboratory of Integrative Biology of Marine Models, Sorbonne Université, UPMC University of Paris 06, CNRS, UMR 8227, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Agnes Henschen
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | | - Delphine Scornet
- Laboratory of Integrative Biology of Marine Models, Sorbonne Université, UPMC University of Paris 06, CNRS, UMR 8227, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Sebastien Colin
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Katharina Hipp
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - J. Mark Cock
- Laboratory of Integrative Biology of Marine Models, Sorbonne Université, UPMC University of Paris 06, CNRS, UMR 8227, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Susana M. Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
16
|
Rhizogenic Agrobacterium protein RolB interacts with the TOPLESS repressor proteins to reprogram plant immunity and development. Proc Natl Acad Sci U S A 2023; 120:e2210300120. [PMID: 36634142 PMCID: PMC9934019 DOI: 10.1073/pnas.2210300120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rhizogenic Agrobacterium strains comprise biotrophic pathogens that cause hairy root disease (HRD) on hydroponically grown Solanaceae and Cucurbitaceae crops, besides being widely explored agents for the creation of hairy root cultures for the sustainable production of plant-specialized metabolites. Hairy root formation is mediated through the expression of genes encoded on the T-DNA of the root-inducing (Ri) plasmid, of which several, including root oncogenic locus B (rolB), play a major role in hairy root development. Despite decades of research, the exact molecular function of the proteins encoded by the rol genes remains enigmatic. Here, by means of TurboID-mediated proximity labeling in tomato (Solanum lycopersicum) hairy roots, we identified the repressor proteins TOPLESS (TPL) and Novel Interactor of JAZ (NINJA) as direct interactors of RolB. Although these interactions allow RolB to act as a transcriptional repressor, our data hint at another in planta function of the RolB oncoprotein. Hence, by a series of plant bioassays, transcriptomic and DNA-binding site enrichment analyses, we conclude that RolB can mitigate the TPL functioning so that it leads to a specific and partial reprogramming of phytohormone signaling, immunity, growth, and developmental processes. Our data support a model in which RolB manipulates host transcription, at least in part, through interaction with TPL, to facilitate hairy root development. Thereby, we provide important mechanistic insights into this renowned oncoprotein in HRD.
Collapse
|
17
|
Wang T, Li XK, Liu X, Yang XQ, Li YJ, Hou BK. Rice glycosyltransferase gene UGT2 functions in salt stress tolerance under the regulation of bZIP23 transcription factor. PLANT CELL REPORTS 2023; 42:17-28. [PMID: 36224499 DOI: 10.1007/s00299-022-02933-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Rice glycosyltransferase gene UGT2 was identified to play a crucial role in salt tolerance. The transcription factor OsbZIP23 was demonstrated to regulate the UGT2 expression under stress conditions. UDP-glycosyltransferases (UGTs) play key roles in modulating plant responses to environmental challenges. In this study, we characterized a novel glycosyltransferase, UGT2, which plays an important role in salt stress responses in rice (Oryza sativa L). We found that seedlings overexpressing UGT2 exhibited better growth than wild type in shoot and root under hydroponic culture with salt stress treatments, while ugt2ko mutant lines suffered much more growth inhibition. When the soil-grown UGT2 transgenic plants were subjected to salt stress, we also found that ugt2ko mutant lines were severely withered and most of them died, while the overexpression lines grew well and had higher survival rate. Compared with wild-type plants, UGT2 overexpression greatly increased the expression levels of the reactive oxygen species scavenging genes and stress-responsive genes. Furthermore, the upstream regulatory mechanism of the UGT2 gene was identified and we found that a bZIP transcription factor, OsbZIP23, can bind to the UGT2 promoter and enhance the UGT2 transcription levels. This work reveals that OsbZIP23-UGT2 module may play a major role in regulating the salt stress tolerance in rice.
Collapse
Affiliation(s)
- Ting Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
- Institute of Advanced Agricultural Sciences, Peking University, Weifang, 261000, China
| | - Xing-Kun Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xi Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xian-Qin Yang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yan-Jie Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Bing-Kai Hou
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
18
|
Yue L, Pei X, Kong F, Zhao L, Lin X. Divergence of functions and expression patterns of soybean bZIP transcription factors. FRONTIERS IN PLANT SCIENCE 2023; 14:1150363. [PMID: 37123868 PMCID: PMC10146240 DOI: 10.3389/fpls.2023.1150363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Soybean (Glycine max) is a major protein and oil crop. Soybean basic region/leucine zipper (bZIP) transcription factors are involved in many regulatory pathways, including yield, stress responses, environmental signaling, and carbon-nitrogen balance. Here, we discuss the members of the soybean bZIP family and their classification: 161 members have been identified and clustered into 13 groups. Our review of the transcriptional regulation and functions of soybean bZIP members provides important information for future study of bZIP transcription factors and genetic resources for soybean breeding.
Collapse
Affiliation(s)
- Lin Yue
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xinxin Pei
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, China
- *Correspondence: Xiaoya Lin, ; Lin Zhao,
| | - Xiaoya Lin
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
- *Correspondence: Xiaoya Lin, ; Lin Zhao,
| |
Collapse
|
19
|
Jia Z, Zhang M, Ma C, Wang Z, Wang Z, Fang Y, Wang J. Identification and Functional Validation of Auxin-Responsive Tabzip Genes from Wheat Leaves in Arabidopsis. Int J Mol Sci 2023; 24:ijms24010756. [PMID: 36614202 PMCID: PMC9821592 DOI: 10.3390/ijms24010756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Leaves are an essential and unique organ of plants, and many studies have proved that auxin has significant impacts on the architecture of leaves, thus the manipulation of the three-dimensional structure of a leaf could provide potential strategies for crop yields. In this study, 32 basic leucine zipper transcription factors (bZIP TFs) which responded to 50 μM of indole-acetic acid (IAA) were identified in wheat leaves by transcriptome analysis. Phylogenetic analysis indicated that the 32 auxin-responsive TabZIPs were classified into eight groups with possible different functions. Phenotypic analysis demonstrated that knocking out the homologous gene of the most down-regulated auxin-responsive TabZIP6D_20 in Arabidopsis (AtHY5) decreased its sensitivity to 1 and 50 μM IAA, while the TabZIP6D_20/hy5 complementary lines recovered its sensitivity to auxin as a wild type (Wassilewskija), suggesting that the down-regulated TabZIP6D_20 was a negative factor in the auxin-signaling pathway. These results demonstrated that the auxin-responsive TabZIP genes might have various and vital functions in the architecture of a wheat leaf under auxin response.
Collapse
Affiliation(s)
- Ziyao Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Mengjie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Can Ma
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xianyang 712100, China
| | - Zanqiang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Yan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xianyang 712100, China
- Correspondence: (Y.F.); (J.W.)
| | - Jun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Correspondence: (Y.F.); (J.W.)
| |
Collapse
|
20
|
Ye F, Zhu X, Wu S, Du Y, Pan X, Wu Y, Qian Z, Li Z, Lin W, Fan K. Conserved and divergent evolution of the bZIP transcription factor in five diploid Gossypium species. PLANTA 2022; 257:26. [PMID: 36571656 DOI: 10.1007/s00425-022-04059-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
495 bZIP members with 12 subfamilies were identified in the five diploid cottons. Segmental duplication events in cotton ancestor might have led to primary expansion of the cotton bZIP members. The basic leucine zipper (bZIP) transcription factor is one of the largest and most diverse families in plants. The evolutionary history of the bZIP family is still unclear in cotton. In this study, a total of 495 bZIP members were identified in five diploid Gossypium species, including 100 members in Gossypium arboreum, 104 members in Gossypium herbaceum, 95 members in Gossypium raimondii, 96 members in Gossypium longicalyx, and 100 members in Gossypium turneri. The bZIP members could be divided into 12 subfamilies with biased gene proportions, gene structures, conserved motifs, expansion rates, gene loss rates, and cis-regulatory elements. A total of 239 duplication events were identified in the five Gossypium species, and mainly occurred in their common ancestor. Furthermore, some GabZIPs and GhebZIPs could be regarded as important candidates in cotton breeding. The bZIP members had a conserved and divergent evolution in the five diploid Gossypium species. The current study laid an important foundation on the evolutionary history of the bZIP family in cotton.
Collapse
Affiliation(s)
- Fangting Ye
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Xiaogang Zhu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Shaofang Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Yunyue Du
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Xinfeng Pan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Yuchen Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Zhengyi Qian
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Zhaowei Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Wenxiong Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Kai Fan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China.
| |
Collapse
|
21
|
Zhang L, Zhong M, Yue L, Chai X, Zhao P, Kang Y, Yang X. Transcriptomic and metabolomic analyses reveal the mechanism of uniconazole inducing hypocotyl dwarfing by suppressing BrbZIP39- BrPAL4 module mediating lignin biosynthesis in flowering Chinese cabbage. FRONTIERS IN PLANT SCIENCE 2022; 13:1014396. [PMID: 36589099 PMCID: PMC9794620 DOI: 10.3389/fpls.2022.1014396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Uniconazole, a triazole plant growth regulator, is widely used to regulate plant height and prevent the overgrowth of seedlings. However, the underlying molecular mechanism of uniconazole in inhibiting the hypocotyl elongation of seedlings is still largely unclear, and there has been little research on the integration of transcriptomic and metabolomic data to investigate the mechanisms of hypocotyl elonga-tion. Herein we observed that the hypocotyl elongation of flowering Chinese cabbage seedings was significantly inhibited by uniconazole. Interestingly, based on combined transcriptome and metabolome analyses, we found that the "phenylpropanoid biosynthesis" pathway was significantly affected by uniconazole. In this pathway, only one member of the portal enzyme gene family, named BrPAL4, was remarkably downregulated, which was related to lignin biosynthesis. Furthermore, the yeast one-hybrid and dual-luciferase assays showed that BrbZIP39 could directly bind to the promoter region of BrPAL4 and activate its transcript. The virus-induced gene silencing system further demonstrated that BrbZIP39 could positively regulate hypocotyl elongation and the lignin biosynthesis of hypocotyl. Our findings provide a novel insight into the molecular regulatory mechanism of uniconazole inhibiting hypocotyl elongation in flowering Chinese cabbage and confirm, for the first time, that uniconazole decreases lignin content through repressing the BrbZIP39-BrPAL4 module-mediated phenylpropanoid biosynthesis, which leads to the hypocotyl dwarfing of flowering Chinese cabbage seedlings.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xian Yang
- *Correspondence: Yunyan Kang, ; Xian Yang,
| |
Collapse
|
22
|
Gholami R, Fahadi Hoveizeh N, Zahedi SM, Gholami H, Carillo P. Effect of three water-regimes on morpho-physiological, biochemical and yield responses of local and foreign olive cultivars under field conditions. BMC PLANT BIOLOGY 2022; 22:477. [PMID: 36203130 PMCID: PMC9540738 DOI: 10.1186/s12870-022-03855-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Drought stress is among the most serious threats jeopardizing the economic yield of crop plants in Iran. In particular, in response to withholding irrigation, the reduction in performance and quality of a precious plant such as the olive tree is remarkable. Therefore, the selection of cultivars that are resistant or tolerant to drought has been recognized as one of the most effective long-term strategies for sustainably alleviating the adverse effects of this stress. In this view, our study evaluated the response of 8 olive cultivars including 4 elite native cultivars (Zard Aliabad, Roughani, Dezful, and Shengeh) and 4 foreign cultivars (Manzanilla, Sevillana, Konservolia, and Mission) to water shortage in the Dallaho Olive Research station of Sarpole-Zahab in Kermanshah province in 2020. Olive trees underwent 3 levels of irrigation treatment including 100% full irrigation (control), 75%, and 50% deficit irrigation. RESULTS Based on the results, 50% deficit irrigation decreased both growth and pomological traits, but determined the highest dry matter percentage. As the severity of drought stress increased, with an accumulation of sodium and malondialdehyde, an incremental increase in osmolytes was observed, as well as an enhancement of the activity of antioxidant enzymes (peroxidase and catalase). In contrast, full irrigation led to an increase in photosynthetic pigments, calcium, and potassium. Dezful and Konservolia cultivars revealed a significantly higher growth rate, correlated in the former to higher levels of chlorophyll, compatible compounds, total phenolic content, relative water content, potassium to sodium ratio, catalase, and peroxidase activities compared with other cultivars. Konservolia showed the best yield parameters under 75% and 100% irrigation regimes, correlated to higher chlorophyll, potassium, and total phenolic content (in particular at 75% ET). CONCLUSIONS Generally, the selection of more resilient or tolerant cultivars to sustain water scarcity stress is a widely operative solution to extend rainfed orchards in semi-arid environments. Our study showed that Dezful and Konservolia had the best adaptive mechanisms to cope with the detrimental effects of drought stress.
Collapse
Affiliation(s)
- Rahmatollah Gholami
- Crop and Horticultural Science Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran.
| | - Narjes Fahadi Hoveizeh
- Department of Horticultural Science, College of Agriculture, Shahid Chamran University of Ahwaz, Ahwaz, Iran
| | - Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Hojattollah Gholami
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Kurdistan, Iran
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy.
| |
Collapse
|
23
|
Skirycz A, Fernie AR. Past accomplishments and future challenges of the multi-omics characterization of leaf growth. PLANT PHYSIOLOGY 2022; 189:473-489. [PMID: 35325227 PMCID: PMC9157134 DOI: 10.1093/plphys/kiac136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The advent of omics technologies has revolutionized biology and advanced our understanding of all biological processes, including major developmental transitions in plants and animals. Here, we review the vast knowledge accumulated concerning leaf growth in terms of transcriptional regulation before turning our attention to the historically less well-characterized alterations at the protein and metabolite level. We will then discuss how the advent of biochemical methods coupled with metabolomics and proteomics can provide insight into the protein-protein and protein-metabolite interactome of the growing leaves. We finally highlight the substantial challenges in detection, spatial resolution, integration, and functional validation of the omics results, focusing on metabolomics as a prerequisite for a comprehensive understanding of small-molecule regulation of plant growth.
Collapse
Affiliation(s)
- Aleksandra Skirycz
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- Cornell University, Ithaca, New York 14853, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| |
Collapse
|
24
|
Du YC, Kong LJ, Cao LS, Zhang W, Zhu Q, Ma CY, Sun K, Dai CC. Endophytic Fungus Phomopsis liquidambaris Enhances Fe Absorption in Peanuts by Reducing Hydrogen Peroxide. FRONTIERS IN PLANT SCIENCE 2022; 13:872242. [PMID: 35574149 PMCID: PMC9100952 DOI: 10.3389/fpls.2022.872242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) deficiency in alkaline calcium soil is a problem that needs to be solved urgently as Fe is an essential and commonly limiting nutrient for plants. Endophytic fungus, Phomopsis liquidambaris (P. liquidambaris), has been reported to promote Fe absorption in peanuts (Arachis hypogaea L.), however, the mechanisms remain unclear. Under prolonged Fe deficiency, an increase in hydrogen peroxide (H2O2) often triggers a series of signaling events and leads to the inhibition of Fe acquisition. The main purpose of this study was to explore whether and how the endophytic fungus P. liquidambaris promote Fe absorption in peanut through regulating H2O2 and assisting in resisting oxidative stress. In this study, we detected the Fe deficiency-induced transcription factor (FIT), Fe2+ transporter (IRT1), and ferric reduction oxidase 2 (FRO2) of peanuts, and confirmed that they were negatively related to Fe concentration. Similarly, FIT, IRT1, and FRO2 were also inhibited by H2O2. The addition of P. liquidambaris reduces H2O2 under Fe-deficiency with an increase in Fe content, while the exogenous addition of H2O2 further decreases it, and the addition of catalase (CAT) under Fe-deficiency reverses this phenomenon. Through transcriptome analysis, we proved that the expression of FIT, IRT1, FRO2 and CAT are consistent with our hypothesis, and P. liquidambaris has a stress-mitigating effect on peanuts mainly via CAT, glutathione peroxidase, and malondialdehyde. Our study proved the Fe-absorption promoting effect and stress mitigation effect of P. liquidambaris under Fe-deficiency in peanuts, and their combined usage may help peanuts grow better.
Collapse
|
25
|
Sun Y, Wang B, Ren J, Zhou Y, Han Y, Niu S, Zhang Y, Shi Y, Zhou J, Yang C, Ma X, Liu X, Luo Y, Jin C, Luo J. OsbZIP18, a Positive Regulator of Serotonin Biosynthesis, Negatively Controls the UV-B Tolerance in Rice. Int J Mol Sci 2022; 23:ijms23063215. [PMID: 35328636 PMCID: PMC8949417 DOI: 10.3390/ijms23063215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 01/30/2023] Open
Abstract
Serotonin (5-hydroxytryptamine) plays an important role in many developmental processes and biotic/abiotic stress responses in plants. Although serotonin biosynthetic pathways in plants have been uncovered, knowledge of the mechanisms of serotonin accumulation is still limited, and no regulators have been identified to date. Here, we identified the basic leucine zipper transcription factor OsbZIP18 as a positive regulator of serotonin biosynthesis in rice. Overexpression of OsbZIP18 strongly induced the levels of serotonin and its early precursors (tryptophan and tryptamine), resulting in stunted growth and dark-brown phenotypes. A function analysis showed that OsbZIP18 activated serotonin biosynthesis genes (including tryptophan decarboxylase 1 (OsTDC1), tryptophan decarboxylase 3 (OsTDC3), and tryptamine 5-hydroxylase (OsT5H)) by directly binding to the ACE-containing or G-box cis-elements in their promoters. Furthermore, we demonstrated that OsbZIP18 is induced by UV-B stress, and experiments using UV-B radiation showed that transgenic plants overexpressing OsbZIP18 exhibited UV-B stress-sensitive phenotypes. Besides, exogenous serotonin significantly exacerbates UV-B stress of OsbZIP18_OE plants, suggesting that the excessive accumulation of serotonin may be responsible for the sensitivity of OsbZIP18_OE plants to UV-B stress. Overall, we identified a positive regulator of serotonin biosynthesis and demonstrated that UV-B-stress induced serotonin accumulation, partly in an OsbZIP18-dependent manner.
Collapse
Affiliation(s)
- Yangyang Sun
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Bi Wang
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Junxia Ren
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yutong Zhou
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yu Han
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Shuying Niu
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yuanyuan Zhang
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yuheng Shi
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Junjie Zhou
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China;
| | - Xuemin Ma
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden;
| | - Xianqing Liu
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yuehua Luo
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Cheng Jin
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Correspondence: (C.J.); (J.L.)
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Correspondence: (C.J.); (J.L.)
| |
Collapse
|
26
|
Interactome of Arabidopsis Thaliana. PLANTS 2022; 11:plants11030350. [PMID: 35161331 PMCID: PMC8838453 DOI: 10.3390/plants11030350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/24/2023]
Abstract
More than 95,000 protein–protein interactions of Arabidopsis thaliana have been published and deposited in databases. This dataset was supplemented by approximately 900 additional interactions, which were identified in the literature from the years 2002–2021. These protein–protein interactions were used as the basis for a Cytoscape network and were supplemented with data on subcellular localization, gene ontologies, biochemical properties and co-expression. The resulting network has been exemplarily applied in unraveling the PPI-network of the plant vacuolar proton-translocating ATPase (V-ATPase), which was selected due to its central importance for the plant cell. In particular, it is involved in cellular pH homeostasis, providing proton motive force necessary for transport processes, trafficking of proteins and, thereby, cell wall synthesis. The data points to regulation taking place on multiple levels: (a) a phosphorylation-dependent regulation by 14-3-3 proteins and by kinases such as WNK8 and NDPK1a, (b) an energy-dependent regulation via HXK1 and the glucose receptor RGS1 and (c) a Ca2+-dependent regulation by SOS2 and IDQ6. The known importance of V-ATPase for cell wall synthesis is supported by its interactions with several proteins involved in cell wall synthesis. The resulting network was further analyzed for (experimental) biases and was found to be enriched in nuclear, cytosolic and plasma membrane proteins but depleted in extracellular and mitochondrial proteins, in comparison to the entity of protein-coding genes. Among the processes and functions, proteins involved in transcription were highly abundant in the network. Subnetworks were extracted for organelles, processes and protein families. The degree of representation of organelles and processes reveals limitations and advantages in the current knowledge of protein–protein interactions, which have been mainly caused by a high number of database entries being contributed by only a few publications with highly specific motivations and methodologies that favor, for instance, interactions in the cytosol and the nucleus.
Collapse
|
27
|
Han X, Wei X, Lu W, Wu Q, Mao L, Luo Z. Transcriptional regulation of KCS gene by bZIP29 and MYB70 transcription factors during ABA-stimulated wound suberization of kiwifruit (Actinidia deliciosa). BMC PLANT BIOLOGY 2022; 22:23. [PMID: 34998386 PMCID: PMC8742354 DOI: 10.1186/s12870-021-03407-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/09/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Our previous study has demonstrated that the transcription of AchnKCS involved in suberin biosynthesis was up-regulated by exogenous abscisic acid (ABA) during the wound suberization of kiwifruit, but the regulatory mechanism has not been fully elucidated. RESULTS Through subcellular localization analysis in this work, AchnbZIP29 and AchnMYB70 transcription factors were observed to be localized in the nucleus. Yeast one-hybrid and dual-luciferase assay proved the transcriptional activation of AchnMYB70 and transcriptional suppression of AchnbZIP29 on AchnKCS promoter. Furthermore, the transcription level of AchnMYB70 was enhanced by ABA during wound suberization of kiwifruit, but AchnbZIP29 transcription was reduced by ABA. CONCLUSIONS Therefore, it was believed that ABA enhanced the transcriptional activation of AchnMYB70 on AchnKCS by increasing AchnMYB70 expression. On the contrary, ABA relieved the inhibitory effect of AchnbZIP29 on transcription of AchnKCS by inhibiting AchnbZIP29 expression. These results gave further insight into the molecular regulatory network of ABA in wound suberization of kiwifruit.
Collapse
Affiliation(s)
- Xueyuan Han
- School of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Xiaopeng Wei
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Wenjing Lu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qiong Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China.
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| |
Collapse
|
28
|
Li M, Hwarari D, Li Y, Ahmad B, Min T, Zhang W, Wang J, Yang L. The bZIP transcription factors in Liriodendron chinense: Genome-wide recognition, characteristics and cold stress response. FRONTIERS IN PLANT SCIENCE 2022; 13:1035627. [PMID: 36420021 PMCID: PMC9676487 DOI: 10.3389/fpls.2022.1035627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/17/2022] [Indexed: 05/08/2023]
Abstract
The basic leucine zipper (bZIP) is a transcription factor family that plays critical roles in abiotic and biotic stress responses as well as plant development and growth. A comprehensive genome-wide study in Liriodendron chinense was conducted to identify 45 bZIP transcription factors (LchibZIPs), which were divided into 13 subgroups according the phylogenetic analysis. Proteins in the same subgroup shared similar gene structures and conserved domains, and a total of 20 conserved motifs were revealed in LchibZIP proteins. Gene localization analysis revealed that LchibZIP genes were unequally distributed across 16 chromosomes, and that 4 pairs of tandem and 9 segmental gene duplications existed. Concluding that segmental duplication events may be strongly associated with the amplification of the L. chinense bZIP gene family. We also assessed the collinearity of LchibZIPs between the Arabidopsis and Oryza and showed that the LchibZIP is evolutionarily closer to O. sativa as compared to the A. thaliana. The cis-regulatory element analysis showed that LchibZIPs clustered in one subfamily are involved in several functions. In addition, we gathered novel research suggestions for further exploration of the new roles of LchibZIPs from protein-protein interactions and gene ontology annotations of the LchibZIP proteins. Using the RNA-seq data and qRT-PCR we analyzed the gene expression patterns of LchibZIP genes, and showed that LchibZIP genes regulate cold stress, especially LchibZIP4 and LchibZIP7; and LchibZIP2 and LchibZIP28 which were up-regulated and down-regulated by cold stress, respectively. Studies of genetic engineering and gene function in L. chinense can benefit greatly from the thorough investigation and characterization of the L. chinense bZIP gene family.
Collapse
Affiliation(s)
- Mingyue Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Innovation Center of Excellence, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Delight Hwarari
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yang Li
- Innovation Center of Excellence, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Baseer Ahmad
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Tian Min
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Wenting Zhang
- Innovation Center of Excellence, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jinyan Wang
- Innovation Center of Excellence, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Jinyan Wang, ; Liming Yang,
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- *Correspondence: Jinyan Wang, ; Liming Yang,
| |
Collapse
|
29
|
Zhang A, Wei Y, Shi Y, Deng X, Gao J, Feng Y, Zheng D, Cheng X, Li Z, Wang T, Wang K, Liu F, Peng R, Zhang W. Profiling of H3K4me3 and H3K27me3 and Their Roles in Gene Subfunctionalization in Allotetraploid Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:761059. [PMID: 34975944 PMCID: PMC8714964 DOI: 10.3389/fpls.2021.761059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Cotton is an excellent model for studying crop polyploidization and domestication. Chromatin profiling helps to reveal how histone modifications are involved in controlling differential gene expression between A and D subgenomes in allotetraploid cotton. However, the detailed profiling and functional characterization of broad H3K4me3 and H3K27me3 are still understudied in cotton. In this study, we conducted H3K4me3- and H3K27me3-related ChIP-seq followed by comprehensively characterizing their roles in regulating gene transcription in cotton. We found that H3K4me3 and H3K27me3 exhibited active and repressive roles in regulating the expression of genes between A and D subgenomes, respectively. More importantly, H3K4me3 exhibited enrichment level-, position-, and distance-related impacts on expression levels of related genes. Distinct GO term enrichment occurred between A/D-specific and homeologous genes with broad H3K4me3 enrichment in promoters and gene bodies, suggesting that broad H3K4me3-marked genes might have some unique biological functions between A and D subgenome. An anticorrelation between H3K27me3 enrichment and expression levels of homeologous genes was more pronounced in the A subgenome relative to the D subgenome, reflecting distinct enrichment of H3K27me3 in homeologous genes between A and D subgenome. In addition, H3K4me3 and H3K27me3 marks can indirectly influence gene expression through regulatory networks with TF mediation. Thus, our study provides detailed insights into functions of H3K4me3 and H3K27me3 in regulating differential gene expression and subfunctionalization of homeologous genes, therefore serving as a driving force for polyploidization and domestication in cotton.
Collapse
Affiliation(s)
- Aicen Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, Nanjing, China
| | - Yangyang Wei
- Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yining Shi
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, Nanjing, China
| | - Xiaojuan Deng
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, China
| | - Jingjing Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, Nanjing, China
| | - Yilong Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, Nanjing, China
| | - Dongyang Zheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, Nanjing, China
| | - Xuejiao Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, Nanjing, China
| | - Zhaoguo Li
- Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Tao Wang
- Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Kunbo Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fang Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Renhai Peng
- Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
30
|
Han Y, Hou Z, He Q, Zhang X, Yan K, Han R, Liang Z. Genome-Wide Characterization and Expression Analysis of bZIP Gene Family Under Abiotic Stress in Glycyrrhiza uralensis. Front Genet 2021; 12:754237. [PMID: 34675967 PMCID: PMC8525656 DOI: 10.3389/fgene.2021.754237] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
bZIP gene family is one of the largest transcription factor families. It plays an important role in plant growth, metabolic, and environmental response. However, complete genome-wide investigation of bZIP gene family in Glycyrrhiza uralensis remains unexplained. In this study, 66 putative bZIP genes in the genome of G. uralensis were identified. And their evolutionary classification, physicochemical properties, conserved domain, functional differentiation, and the expression level under different stress conditions were further analyzed. All the members were clustered into 13 subfamilies (A–K, M, and S). A total of 10 conserved motifs were found in GubZIP proteins. Members from the same subfamily shared highly similar gene structures and conserved domains. Tandem duplication events acted as a major driving force for the evolution of bZIP gene family in G. uralensis. Cis-acting elements and protein–protein interaction networks showed that GubZIPs in one subfamily are involved in multiple functions, while some GubZIPs from different subfamilies may share the same functional category. The miRNA network targeting GubZIPs showed that the regulation at the transcriptional level may affect protein–protein interaction networks. We suspected that domain-mediated interactions may categorize a protein family into subfamilies in G. uralensis. Furthermore, the tissue-specific gene expression patterns of GubZIPs were analyzed using the public RNA-seq data. Moreover, gene expression level of 66 bZIP family members under abiotic stress treatments was quantified by using qRT-PCR. The results of this study may serve as potential candidates for functional characterization in the future.
Collapse
Affiliation(s)
- Yuxuan Han
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhuoni Hou
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qiuling He
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xuemin Zhang
- Tasly R&D Institute, Tasly Holding Group Co., Ltd., Tianjin, China
| | - Kaijing Yan
- Tasly R&D Institute, Tasly Holding Group Co., Ltd., Tianjin, China
| | - Ruilian Han
- Institute of Landscape and Plant Ecology, The School of Engineering and Architecture, Zhejiang Sci-tech University, Hangzhou, China
| | - Zongsuo Liang
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
31
|
Hou F, Zhou X, Liu P, Yuan G, Zou C, Lübberstedt T, Pan G, Ma L, Shen Y. Genetic dissection of maize seedling traits in an IBM Syn10 DH population under the combined stress of lead and cadmium. Mol Genet Genomics 2021; 296:1057-1070. [PMID: 34117523 DOI: 10.1007/s00438-021-01800-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
The heavy metals lead and cadmium have become important pollutants in the environment, which exert negative effects on plant morphology, growth and photosynthesis. It is particularly significant to uncover the genetic loci and the causal genes for lead and cadmium tolerance in plants. This study used an IBM Syn10 DH population to identify the quantitative trait loci (QTL) controlling maize seedling tolerance to lead and cadmium by linkage mapping. The broad-sense heritability of these seedling traits ranged from 65.8-97.3% and 32.0-98.8% under control (CK) and treatment (T) conditions, respectively. A total of 53 and 64 QTL were detected under CK and T conditions, respectively. Moreover, 42 QTL were identified using lead and cadmium tolerance coefficient (LCTC). Among these QTL, five and two major QTL that explained > 10% of phenotypic variation were identified under T condition and using LCTC, respectively. Furthermore, eight QTL were simultaneously identified by T and LCTC, explaining 5.23% to 9.21% of the phenotypic variations. Within these major and common QTL responsible for the combined heavy metal tolerance, four candidate genes (Zm00001d048759, Zm00001d004689, Zm00001d004843, Zm00001d033527) were previously reported to correlate with heavy metal transport and tolerance. These findings will contribute to functional gene identification and molecular marker-assisted breeding for improving heavy metal tolerance in maize.
Collapse
Affiliation(s)
- Fengxia Hou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xun Zhou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangsheng Yuan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoying Zou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | | | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Langlang Ma
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
32
|
Wang Q, Guo C, Li Z, Sun J, Wang D, Xu L, Li X, Guo Y. Identification and Analysis of bZIP Family Genes in Potato and Their Potential Roles in Stress Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:637343. [PMID: 34122468 PMCID: PMC8193719 DOI: 10.3389/fpls.2021.637343] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/19/2021] [Indexed: 05/27/2023]
Abstract
The bZIP proteins comprise one of the largest transcription factor families and play important roles in plant growth and development, senescence, metabolic reactions, and stress responses. In this study, 49 bZIP transcription factor-encoding genes (StbZIP genes) on the potato genome were identified and analyzed. The 49 StbZIP genes, which are located on 12 chromosomes of the potato genome, were divided into 11 subgroups together with their Arabidopsis homologs based on the results of phylogenetic analysis. Gene structure and protein motif analysis revealed that members from the same subgroup often possessed similar exon/intron structures and motif organizations, further supporting the results of the phylogenetic analysis. Syntenic analysis indicated the existence of gene duplication events, which might play an important role in the expansion of the bZIP gene family in potato. Expressions of the StbZIP genes were analyzed in a variety of tissues via RNA-Seq data, suggesting functional diversity. Several StbZIP genes were found to be induced by different stress conditions. For example, the expression of StbZIP25, the close homolog of AtbZIP36/ABF2, was significantly upregulated by salt stress treatments. The StbZIP25 protein was found to be located in the nucleus and function as a transcriptional activator. Overexpression of StbZIP25 enhanced salt tolerance in Arabidopsis. The results from this study imply potential roles of the bZIP family genes in the stress response of potato.
Collapse
Affiliation(s)
- Qi Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cun Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinhao Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Wang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Liangtao Xu
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
33
|
Arabidopsis bZIP18 and bZIP52 Accumulate in Nuclei Following Heat Stress where They Regulate the Expression of a Similar Set of Genes. Int J Mol Sci 2021; 22:ijms22020530. [PMID: 33430325 PMCID: PMC7830406 DOI: 10.3390/ijms22020530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 01/07/2023] Open
Abstract
Heat stress (HS) is a major abiotic stress that negatively impacts crop yields across the globe. Plants respond to elevated temperatures by changing gene expression, mediated by transcription factors (TFs) functioning to enhance HS tolerance. The involvement of Group I bZIP TFs in the heat stress response (HSR) is not known. In this study, bZIP18 and bZIP52 were investigated for their possible role in the HSR. Localization experiments revealed their nuclear accumulation following heat stress, which was found to be triggered by dephosphorylation. Both TFs were found to possess two motifs containing serine residues that are candidates for phosphorylation. These motifs are recognized by 14–3–3 proteins, and bZIP18 and bZIP52 were found to bind 14–3–3 ε, the interaction of which sequesters them to the cytoplasm. Mutation of both residues abolished 14–3–3 ε interaction and led to a strict nuclear localization for both TFs. RNA-seq analysis revealed coordinated downregulation of several metabolic pathways including energy metabolism and translation, and upregulation of numerous lncRNAs in particular. These results support the idea that bZIP18 and bZIP52 are sequestered to the cytoplasm under control conditions, and that heat stress leads to their re-localization to nuclei, where they jointly regulate gene expression.
Collapse
|
34
|
Liu SX, Qin B, Fang QX, Zhang WJ, Zhang ZY, Liu YC, Li WJ, Du C, Liu XX, Zhang YL, Guo YX. Genome-wide identification, phylogeny and expression analysis of the bZIP gene family in Alfalfa ( Medicago sativa). BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1938674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Shu-Xia Liu
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
- Laboratory of Economic Plants, Crop Cultivation Center, Daqing Branch of Heilongjiang Academy of Sciences, Daqing, Heilongjiang, PR China
| | - Bin Qin
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Qing-xi Fang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Wen-Jing Zhang
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Zhe-Yu Zhang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Yang-Cheng Liu
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Wei-Jia Li
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Chao Du
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Xian-xian Liu
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - You-li Zhang
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Yong-Xia Guo
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| |
Collapse
|
35
|
Yoon HS, Fujino K, Liu S, Takano T, Tsugama D. The B″-family subunits of protein phosphatase 2A are necessary for in-vitro dephosphorylation of the Arabidopsis mechanosensory transcription factor VIP1. Biochem Biophys Res Commun 2020; 534:353-358. [PMID: 33342519 DOI: 10.1016/j.bbrc.2020.11.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022]
Abstract
Protein phosphatase 2A (PP2A) B″-family subunits have Ca2+-binding EF-hand motifs and can bind PP2A substrates. Arabidopsis thaliana PP2A B″-family subunits are encoded by six genes, and bind a transcription factor, VIP1. VIP1 is dephosphorylated and nuclear-localized by hypo-osmotic stress. However, whether PP2A B″-family subunits mediate the VIP1 dephosphorylation is unclear. Here, we show by yeast two-hybrid and in vitro pull down assays that Arabidopsis PP2A B″-family subunits bind Arabidopsis PP2A A (scaffold) subunits. We also show that VIP1 dephosphorylation in vitro can be induced by a PP2A B″-family subunit.
Collapse
Affiliation(s)
- Hyuk Sung Yoon
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-ku, Sapporo-shi, Hokkaido, 060-8589, Japan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou, 311300, PR China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan
| | - Daisuke Tsugama
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| |
Collapse
|
36
|
Yu Y, Qian Y, Jiang M, Xu J, Yang J, Zhang T, Gou L, Pi E. Regulation Mechanisms of Plant Basic Leucine Zippers to Various Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2020; 11:1258. [PMID: 32973828 PMCID: PMC7468500 DOI: 10.3389/fpls.2020.01258] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/30/2020] [Indexed: 05/05/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
37
|
Yuan C, Shi J, Zhao L. The CmbZIP1 transcription factor of chrysanthemum negatively regulates shoot branching. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:69-76. [PMID: 32200192 DOI: 10.1016/j.plaphy.2020.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
The basic region/leucine zipper (bZIP) transcription factors play key roles in regulating diverse biological processes in plants. However, their participation in shoot branching has been rarely reported. Here, we isolated a CmbZIP1 transcription factor gene, a member of the bZIP family, from chrysanthemum. Subcellular localization analysis indicated that CmbZIP1 is a nuclear protein. Tissue-specific expression analysis indicated that CmbZIP1 was principally expressed in apical bud and axillary bud. Expression patterns analysis results showed that CmbZIP1 expression was suppressed in axillary buds in response to decapitation but increased in response to shade. Overexpression of CmbZIP1 in Arabidopsis inhibits its shoot branching. In addition, expression of auxin efflux protein PIN-FORMED 1 (PIN1) and auxin signaling components AUXIN RESISTANT 1/3 (AXR1, AXR3) were significantly up-regulated in overexpressing plants in comparison with wild type plants. Moreover, the transcript expression of BRANCHED 2 (AtBRC2) was also significantly up-regulated in overexpressing plants compared with the wild type. Altogether, these results suggest important and negative roles of CmbZIP1 in shoot branching. Our study extends the understanding of the function of bZIP transcription factors in plants and provides valuable gene resources for improving the architectural traits of ornamental plants.
Collapse
Affiliation(s)
- Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Jingtian Shi
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Liangjun Zhao
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
38
|
Rong S, Wu Z, Cheng Z, Zhang S, Liu H, Huang Q. Genome-Wide Identification, Evolutionary Patterns, and Expression Analysis of bZIP Gene Family in Olive ( Olea europaea L.). Genes (Basel) 2020; 11:genes11050510. [PMID: 32380769 PMCID: PMC7288668 DOI: 10.3390/genes11050510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/25/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Olive (Olea europaea.L) is an economically important oleaginous crop and its fruit cold-pressed oil is used for edible oil all over the world. The basic region-leucine zipper (bZIP) family is one of the largest transcription factors families among eukaryotic organisms; its members play vital roles in environmental signaling, stress response, plant growth, seed maturation, and fruit development. However, a comprehensive report on the bZIP gene family in olive is lacking. In this study, 103 OebZIP genes from the olive genome were identified and divided into 12 subfamilies according to their genetic relationship with 78 bZIPs of A. thaliana. Most OebZIP genes are clustered in the subgroup that has a similar gene structure and conserved motif distribution. According to the characteristics of the leucine zipper region, the dimerization characteristics of 103 OebZIP proteins were predicted. Gene duplication analyses revealed that 22 OebZIP genes were involved in the expansion of the bZIP family. To evaluate the expression patterns of OebZIP genes, RNA-seq data available in public databases were analyzed. The highly expressed OebZIP genes and several lipid synthesis genes (LPGs) in fruits of two varieties with different oil contents during the fast oil accumulation stage were examined via qRT-PCR. By comparing the dynamic changes of oil accumulation, OebZIP1, OebZIP7, OebZIP22, and OebZIP99 were shown to have a close relationship with fruit development and lipid synthesis. Additionally, some OebZIP had a significant positive correlation with various LPG genes. This study gives insights into the structural features, evolutionary patterns, and expression analysis, laying a foundation to further reveal the function of the 103 OebZIP genes in olive.
Collapse
|
39
|
Martin RC, Kronmiller BA, Dombrowski JE. Transcriptome analysis of responses in Brachypodium distachyon overexpressing the BdbZIP26 transcription factor. BMC PLANT BIOLOGY 2020; 20:174. [PMID: 32312226 PMCID: PMC7171782 DOI: 10.1186/s12870-020-02341-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Biotic and abiotic stresses are the major cause of reduced growth, persistence, and yield in agriculture. Over the past decade, RNA-Sequencing and the use of transgenics with altered expression of stress related genes have been utilized to gain a better understanding of the molecular mechanisms leading to salt tolerance in a variety of species. Identification of transcription factors that, when overexpressed in plants, improve multiple stress tolerance may be valuable for crop improvement, but sometimes overexpression leads to deleterious effects during normal plant growth. RESULTS Brachypodium constitutively expressing the BdbZIP26:GFP gene showed reduced stature compared to wild type plants (WT). RNA-Seq analysis comparing WT and bZIP26 transgenic plants revealed 7772 differentially expressed genes (DEGs). Of these DEGs, 987 of the DEGs were differentially expressed in all three transgenic lines. Many of these DEGs are similar to those often observed in response to abiotic and biotic stress, including signaling proteins such as kinases/phosphatases, calcium/calmodulin related proteins, oxidases/reductases, hormone production and signaling, transcription factors, as well as disease responsive proteins. Interestingly, there were many DEGs associated with protein turnover including ubiquitin-related proteins, F-Box and U-box related proteins, membrane proteins, and ribosomal synthesis proteins. Transgenic and control plants were exposed to salinity stress. Many of the DEGs between the WT and transgenic lines under control conditions were also found to be differentially expressed in WT in response to salinity stress. This suggests that the over-expression of the transcription factor is placing the plant in a state of stress, which may contribute to the plants diminished stature. CONCLUSION The constitutive expression of BdbZIP26:GFP had an overall negative effect on plant growth and resulted in stunted plants compared to WT plants under control conditions, and a similar response to WT plants under salt stress conditions. The results of gene expression analysis suggest that the transgenic plants are in a constant state of stress, and that they are trying to allocate resources to survive.
Collapse
Affiliation(s)
- Ruth C. Martin
- United States Department of Agriculture, Agricultural Research Service, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331 USA
| | - Brent A. Kronmiller
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331 USA
| | - James E. Dombrowski
- United States Department of Agriculture, Agricultural Research Service, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331 USA
| |
Collapse
|
40
|
Schwarz B, Bauer P. FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and -independent gene signatures. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1694-1705. [PMID: 31922570 PMCID: PMC7067300 DOI: 10.1093/jxb/eraa012] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/08/2020] [Indexed: 05/05/2023]
Abstract
Iron (Fe) is vital for plant growth. Plants balance the beneficial and toxic effects of this micronutrient, and tightly control Fe uptake and allocation. Here, we review the role of the basic helix-loop-helix (bHLH) transcription factor FIT (FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) in Fe acquisition. FIT is not only essential, it is also a central regulatory hub in root cells to steer and adjust the rate of Fe uptake by the root in a changing environment. FIT regulates a subset of root Fe deficiency (-Fe) response genes. Based on a combination of co-expression network and FIT-dependent transcriptome analyses, we defined a set of FIT-dependent and FIT-independent gene expression signatures and co-expression clusters that encode specific functions in Fe regulation and Fe homeostasis. These gene signatures serve as markers to integrate novel regulatory factors and signals into the -Fe response cascade. FIT forms a complex with bHLH subgroup Ib transcription factors. Furthermore, it interacts with key regulators from different signaling pathways that either activate or inhibit FIT function to adjust Fe acquisition to growth and environmental constraints. Co-expression clusters and FIT protein interactions suggest a connection of -Fe with ABA responses and root cell elongation processes that can be explored in future studies.
Collapse
Affiliation(s)
- Birte Schwarz
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
41
|
Nelissen H, Gonzalez N. Understanding plant organ growth: a multidisciplinary field. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7-10. [PMID: 31725876 DOI: 10.1093/jxb/erz448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Gent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Gent, Belgium
| | - Nathalie Gonzalez
- INRA, UMR1332 Biologie du fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882, Villenave d'Ornon cedex, France
| |
Collapse
|
42
|
Tsugama D, Yoon HS, Fujino K, Liu S, Takano T. Protein phosphatase 2A regulates the nuclear accumulation of the Arabidopsis bZIP protein VIP1 under hypo-osmotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6101-6112. [PMID: 31504762 PMCID: PMC6859724 DOI: 10.1093/jxb/erz384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/16/2019] [Indexed: 05/21/2023]
Abstract
VIP1 is a bZIP transcription factor in Arabidopsis thaliana. When cells are exposed to mechanical stress, VIP1 transiently accumulates in the nucleus, where it regulates the expression of its target genes and suppresses mechanical stress-induced root waving. The nuclear-cytoplasmic shuttling of VIP1 is regulated by phosphorylation and calcium-dependent signaling, but specific regulators of these processes remain to be identified. Here, inhibitors of protein phosphatase 2A (PP2A) are shown to inhibit both the mechanical stress-induced dephosphorylation and nuclear accumulation of VIP1. The PP2A B subunit, which recruits substrates of PP2A holoenzyme, is classified into B, B', B'', and B''' families. Using bimolecular fluorescence complementation, in vitro pull-down, and yeast two-hybrid assays, we show that VIP1 interacts with at least two of the six members of the Arabidopsis PP2A B''-family subunit, which have calcium-binding EF-hand motifs. VIP1AAA, a constitutively nuclear-localized VIP1 variant with substitutions in putative phosphorylation sites of VIP1, suppressed the root waving induced by VIP1-SRDX (a repression domain-fused variant of VIP1). These results support the idea that VIP1 is dephosphorylated by PP2A and that the dephosphorylation suppresses the root waving. The phosphorylation sites of VIP1 and its homologs were narrowed down by in vitro phosphorylation, yeast two-hybrid, and protein subcellular localization assays.
Collapse
Affiliation(s)
- Daisuke Tsugama
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Midori-cho, Nishitokyo-shi, Tokyo, Japan
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-ku, Sapporo-shi, Hokkaido, Japan
- Correspondence:
| | - Hyuk Sung Yoon
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Midori-cho, Nishitokyo-shi, Tokyo, Japan
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-ku, Sapporo-shi, Hokkaido, Japan
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-ku, Sapporo-shi, Hokkaido, Japan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Hangzhou, PR China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Midori-cho, Nishitokyo-shi, Tokyo, Japan
| |
Collapse
|
43
|
Yang Y, Li J, Li H, Yang Y, Guang Y, Zhou Y. The bZIP gene family in watermelon: genome-wide identification and expression analysis under cold stress and root-knot nematode infection. PeerJ 2019; 7:e7878. [PMID: 31637131 PMCID: PMC6800529 DOI: 10.7717/peerj.7878] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023] Open
Abstract
The basic leucine zipper (bZIP) family transcription factors play crucial roles in regulating plant development and stress response. In this study, we identified 62 ClabZIP genes from watermelon genome, which were unevenly distributed across the 11 chromosomes. These ClabZIP proteins could be classified into 13 groups based on the phylogenetic relationships, and members in the same group showed similar compositions of conserved motifs and gene structures. Transcriptome analysis revealed that a number of ClabZIP genes have important roles in the melatonin (MT) induction of cold tolerance. In addition, some ClabZIP genes were induced or repressed under red light (RL) or root-knot nematode infection according to the transcriptome data, and the expression patterns of several ClabZIP genes were further verified by quantitative real-time PCR, revealing their possible roles in RL induction of watermelon defense against nematode infection. Our results provide new insights into the functions of different ClabZIP genes in watermelon and their roles in response to cold stress and nematode infection.
Collapse
Affiliation(s)
- Youxin Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.,Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jingwen Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.,Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Hao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Yingui Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yelan Guang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.,Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yong Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.,Department of Biochemistry and Molecular Biology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
44
|
Calvo-Polanco M, Ruiz-Lozano JM, Azcón R, Molina S, Beuzon CR, García JL, Cantos M, Aroca R. Phenotypic and molecular traits determine the tolerance of olive trees to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:521-527. [PMID: 31015091 DOI: 10.1016/j.plaphy.2019.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/28/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Olive trees are known for their capacity to adapt to drought through several phenotypic and molecular variations, although this can vary according to the different provenances of the same olive cultivar. We confronted the same olive cultivar from two different location in Spain: Freila, in the Granada province, with low annual precipitation, and Grazalema, in the Cadiz province, with high annual precipitation, and subjected them to five weeks of severe drought stress. We found distinctive physiological and developmental adaptations among the two provenances. Thus, trees from Freila subjected to drought stress exhibited increasing root dry weights and decreasing leaf numbers and relative stem heights. On the other hand, the treatment with drought in Grazalema trees reduced their leaf chlorophyll contents, but increased their relative stem diameter and their root hydraulic conductivity. The physiological responses of Freila tree roots to drought were linked to different molecular adaptations that involved the regulation of genes related to transcription factors induced by ABA, auxin and ethylene signaling, as well as, the action of a predicted membrane intrinsic protein (MIP). On the other hand, the responses of Grazalema trees were related with different root genes related to oxidation-reduction, ATP synthesis, transduction and posttranslational regulation, with a special mention to the cytokinins signaling through the transcript predicted as a histidine-containing phosphotransfer protein. Our results show that olive trees adapted to dry environments will adjust their growth and water uptake capacity through transcription factors regulation, and this will influence the different physiological responses to drought stress.
Collapse
Affiliation(s)
- Mónica Calvo-Polanco
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), C/Profesor Albareda 1, 18008, Granada, Spain.
| | - Juan Manuel Ruiz-Lozano
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), C/Profesor Albareda 1, 18008, Granada, Spain
| | - Rosario Azcón
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), C/Profesor Albareda 1, 18008, Granada, Spain
| | - Sonia Molina
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), C/Profesor Albareda 1, 18008, Granada, Spain
| | - Carmen R Beuzon
- Department of Cellular Biology, Genetics and Physiology, Campus de Teatinos, University of Málaga, 29010, Málaga, Spain
| | - José Luis García
- Department of Cellular Biology, Genetics and Physiology, Campus de Teatinos, University of Málaga, 29010, Málaga, Spain
| | - Manuel Cantos
- Department of Plant Biotechnnology, Instituto de Recursos Naturales y Agrobiología (CSIC), Av. Reina Mercedes, 10 41012, Sevilla, Spain
| | - Ricardo Aroca
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), C/Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
45
|
Liu D, Shi S, Hao Z, Xiong W, Luo M. OsbZIP81, A Homologue of Arabidopsis VIP1, May Positively Regulate JA Levels by Directly Targetting the Genes in JA Signaling and Metabolism Pathway in Rice. Int J Mol Sci 2019; 20:ijms20092360. [PMID: 31086007 PMCID: PMC6539606 DOI: 10.3390/ijms20092360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the most important food crops in the world. In plants, jasmonic acid (JA) plays essential roles in response to biotic and abiotic stresses. As one of the largest transcription factors (TFs), basic region/leucine zipper motif (bZIP) TFs play pivotal roles through the whole life of plant growth. However, the relationship between JA and bZIP TFs were rarely reported, especially in rice. In this study, we found two rice homologues of Arabidopsis VIP1 (VirE2-interacting protein 1), OsbZIP81, and OsbZIP84. OsbZIP81 has at least two alternative transcripts, OsbZIP81.1 and OsbZIP81.2. OsbZIP81.1 and OsbZIP84 are typical bZIP TFs, while OsbZIP81.2 is not. OsbZIP81.1 can directly bind OsPIOX and activate its expression. In OsbZIP81.1 overexpression transgenic rice plant, JA (Jasmonic Acid) and SA (Salicylic acid) were up-regulated, while ABA (Abscisic acid) was down-regulated. Moreover, Agrobacterium, Methyl Jasmonic Acid (MeJA), and PEG6000 can largely induce OsbZIP81. Based on ChIP-Seq and Random DNA Binding Selection Assay (RDSA), we identified a novel cis-element OVRE (Oryza VIP1 response element). Combining ChIP-Seq and RNA-Seq, we obtained 1332 targeted genes that were categorized in biotic and abiotic responses, including α-linolenic acid metabolism and fatty acid degradation. Together, these results suggest that OsbZIP81 may positively regulate JA levels by directly targeting the genes in JA signaling and metabolism pathway in rice.
Collapse
Affiliation(s)
- Defang Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shaopeng Shi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhijun Hao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wentao Xiong
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Meizhong Luo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
46
|
Forero MG, Perdomo SA, Quimbaya MA, Perez GF. Image Processing Method for Epidermal Cells Detection and Measurement in Arabidopsis Thaliana Leaves. PATTERN RECOGNITION AND IMAGE ANALYSIS 2019. [DOI: 10.1007/978-3-030-31321-0_36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Tsugama D, Liu S, Fujino K, Takano T. Calcium signalling regulates the functions of the bZIP protein VIP1 in touch responses in Arabidopsis thaliana. ANNALS OF BOTANY 2018; 122:1219-1229. [PMID: 30010769 PMCID: PMC6324745 DOI: 10.1093/aob/mcy125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/12/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS VIP1 is a bZIP transcription factor in Arabidopsis thaliana. VIP1 and its close homologues transiently accumulate in the nucleus when cells are exposed to hypo-osmotic and/or mechanical stress. Touch-induced root bending is enhanced in transgenic plants overexpressing a repression domain-fused form of VIP1 (VIP1-SRDXox), suggesting that VIP1, possibly with its close homologues, suppresses touch-induced root bending. The aim of this study was to identify regulators of these functions of VIP1 in mechanical stress responses. METHODS Co-immunoprecipitation analysis using VIP1-GFP fusion protein expressed in Arabidopsis plants identified calmodulins as VIP1-GFP interactors. In vitro crosslink analysis was performed using a hexahistidine-tagged calmodulin and glutathione S-transferase-fused forms of VIP1 and its close homologues. Plants expressing GFP-fused forms of VIP1 and its close homologues (bZIP59 and bZIP29) were submerged in hypotonic solutions containing divalent cation chelators, EDTA and EGTA, and a potential calmodulin inhibitor, chlorpromazine, to examine their effects on the nuclear-cytoplasmic shuttling of those proteins. VIP1-SRDXox plants were grown on medium containing 40 mm CaCl2, 40 mm MgCl2 or 80 mm NaCl. MCA1 and MCA2 are mechanosensitive calcium channels, and the hypo-osmotic stress-dependent nuclear-cytoplasmic shuttling of VIP1-GFP in the mca1 mca2 double knockout mutant background was examined. KEY RESULTS In vitro crosslink products were detected in the presence of CaCl2, but not in its absence. EDTA, EGTA and chlorpromazine all inhibited both the nuclear import and the nuclear export of VIP1-GFP, bZIP59-GFP and bZIP29-GFP. Either 40 mm CaCl2or 80 mm NaCl enhanced the VIP-SRDX-dependent root bending. The nuclear-cytoplasmic shuttling of VIP1 was observed even in the mca1 mca2 mutant. CONCLUSIONS VIP1 and its close homologues can interact with calmodulins. Their nuclear-cytoplasmic shuttling requires neither MCA1 nor MCA2, but does require calcium signalling. Salt stress affects the VIP1-dependent regulation of root bending.
Collapse
Affiliation(s)
- Daisuke Tsugama
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo-shi, Hokkaido, Japan
- Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
- For correspondence. E-mail:
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Hangzhou, PR China
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo-shi, Hokkaido, Japan
| | - Tetsuo Takano
- Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| |
Collapse
|
48
|
Dröge-Laser W, Snoek BL, Snel B, Weiste C. The Arabidopsis bZIP transcription factor family-an update. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:36-49. [PMID: 29860175 DOI: 10.1016/j.pbi.2018.05.001] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/30/2018] [Accepted: 05/02/2018] [Indexed: 05/18/2023]
Abstract
The basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors in eukaryotic organisms. Here, we have updated the classification of the Arabidopsis thaliana bZIP-family, comprising 78 members, which have been assorted into 13 groups. Arabidopsis bZIPs are involved in a plethora of functions related to plant development, environmental signalling and stress response. Based on the classification, we have highlighted functional and regulatory aspects of selected well-studied bZIPs, which may serve as prototypic examples for the particular groups.
Collapse
Affiliation(s)
- Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany.
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany.
| |
Collapse
|
49
|
Wang Y, Zhang Y, Zhou R, Dossa K, Yu J, Li D, Liu A, Mmadi MA, Zhang X, You J. Identification and characterization of the bZIP transcription factor family and its expression in response to abiotic stresses in sesame. PLoS One 2018; 13:e0200850. [PMID: 30011333 PMCID: PMC6047817 DOI: 10.1371/journal.pone.0200850] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/03/2018] [Indexed: 11/18/2022] Open
Abstract
Basic leucine zipper (bZIP) gene family is one of the largest transcription factor families in plants, and members of this family play important roles in multiple biological processes such as light signaling, seed maturation, flower development as well as abiotic and biotic stress responses. Nonetheless, genome-wide comprehensive analysis of the bZIP family is lacking in the important oil crop sesame. In the present study, 63 bZIP genes distributed on 14 linkage groups were identified in sesame, and denominated as SibZIP01-SibZIP63. Besides, all members of SibZIP family were divided into nine groups based on the phylogenetic relationship of Arabidopsis bZIPs, which was further supported by the analysis of their conserved motifs and gene structures. Promoter analysis showed that all SibZIP genes harbor cis-elements related to stress responsiveness in their promoter regions. Expression analyses of SibZIP genes based on transcriptome data showed that these genes have different expression patterns in different tissues. Additionally, we showed that a majority of SibZIPs (85.71%) exhibited significant transcriptional changes in responses to abiotic stresses, including drought, waterlogging, osmotic, salt, and cold, suggesting that SibZIPs may play a cardinal role in the regulation of stress responses in sesame. Together, these results provide new insights into stress-responsive SibZIP genes and pave the way for future studies of SibZIPs-mediated abiotic stress response in sesame.
Collapse
Affiliation(s)
- Yanyan Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yujuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Cotton Research Center, Cotton Research Center, Shandong Academy of Agricultural Sciences, Huanghuaihai Key Laboratory of Cotton Genetic Improvement and Cultivation Physiology of the Ministry of Agriculture, Jinan, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Komivi Dossa
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Centre d’Etude Régional pour l’Amélioration de l’Adaptation à la Sécheresse (CERAAS), Thiès, Sénégal
| | - Jingyin Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Aili Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Marie Ali Mmadi
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Centre d’Etude Régional pour l’Amélioration de l’Adaptation à la Sécheresse (CERAAS), Thiès, Sénégal
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
50
|
Besbrugge N, Van Leene J, Eeckhout D, Cannoot B, Kulkarni SR, De Winne N, Persiau G, Van De Slijke E, Bontinck M, Aesaert S, Impens F, Gevaert K, Van Damme D, Van Lijsebettens M, Inzé D, Vandepoele K, Nelissen H, De Jaeger G. GS yellow, a Multifaceted Tag for Functional Protein Analysis in Monocot and Dicot Plants. PLANT PHYSIOLOGY 2018; 177:447-464. [PMID: 29678859 PMCID: PMC6001315 DOI: 10.1104/pp.18.00175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/01/2018] [Indexed: 05/04/2023]
Abstract
The ability to tag proteins has boosted the emergence of generic molecular methods for protein functional analysis. Fluorescent protein tags are used to visualize protein localization, and affinity tags enable the mapping of molecular interactions by, for example, tandem affinity purification or chromatin immunoprecipitation. To apply these widely used molecular techniques on a single transgenic plant line, we developed a multifunctional tandem affinity purification tag, named GSyellow, which combines the streptavidin-binding peptide tag with citrine yellow fluorescent protein. We demonstrated the versatility of the GSyellow tag in the dicot Arabidopsis (Arabidopsis thaliana) using a set of benchmark proteins. For proof of concept in monocots, we assessed the localization and dynamic interaction profile of the leaf growth regulator ANGUSTIFOLIA3 (AN3), fused to the GSyellow tag, along the growth zone of the maize (Zea mays) leaf. To further explore the function of ZmAN3, we mapped its DNA-binding landscape in the growth zone of the maize leaf through chromatin immunoprecipitation sequencing. Comparison with AN3 target genes mapped in the developing maize tassel or in Arabidopsis cell cultures revealed strong conservation of AN3 target genes between different maize tissues and across monocots and dicots, respectively. In conclusion, the GSyellow tag offers a powerful molecular tool for distinct types of protein functional analyses in dicots and monocots. As this approach involves transforming a single construct, it is likely to accelerate both basic and translational plant research.
Collapse
Affiliation(s)
- Nienke Besbrugge
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Bernard Cannoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Shubhada R Kulkarni
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Michiel Bontinck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Stijn Aesaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Francis Impens
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
- VIB Center for Medical Biotechnology, 9000 Ghent, Belgium
- VIB Proteomics Core, 9000 Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
- VIB Center for Medical Biotechnology, 9000 Ghent, Belgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|