1
|
Min WK, Lee KH, Song JT, Seo HS. Rice small protein OsS1Fa1 participates in stress responses as an inner nuclear membrane protein. PLANT SIGNALING & BEHAVIOR 2024; 19:2439252. [PMID: 39652403 PMCID: PMC11633190 DOI: 10.1080/15592324.2024.2439252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
The rice small protein OsS1Fa1, a homolog of spinach S1Fa, plays a significant role in drought tolerance, attributed to its transmembrane domain. In this study, we aim to further elucidate the potential roles of OsS1Fa1 in cold and biotic stresses as an inner nuclear membrane protein. Fluorescence analysis confirmed the localization of OsS1Fa1 to the inner nuclear membrane. Utilizing the bimolecular fluorescence complementation (BiFC) and bacterial infiltration assays with OsS1Fa1 and the inner nuclear membrane protein OsSUN1 (Rice Sad1 and UNC84 (SUN) domain containing 1 (SUN1)), we observed fluorescence detection within the inner nuclear membrane, indicating a direct interaction and colocalization between OsS1Fa1 and OsSUN1. Expression analysis revealed that overexpression of OsS1Fa1 induced the expression of various genes associated with cold and defense responses, including COLD-REGULATED 15A (COR15A), PATHOGENESIS-RELATED PROTEIN 1 (PR1), and PLANT DEFENSIN 1.2 (PDF1.2). Our findings collectively indicate that OsS1Fa1 plays crucial roles in both abiotic and biotic stress tolerance as an inner nuclear membrane protein.
Collapse
Affiliation(s)
- Wang Ki Min
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Kyu Ho Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Jong Tae Song
- Department of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
- Bio-MAX Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
2
|
Wang X, Yu W, Yuan Q, Chen X, He Y, Zhou J, Xun Q, Wang G, Li J, Meng X. The pathogen-induced peptide CEP14 is perceived by the receptor-like kinase CEPR2 to promote systemic disease resistance in Arabidopsis. PLANT PHYSIOLOGY 2024; 197:kiae549. [PMID: 39412292 DOI: 10.1093/plphys/kiae549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/19/2024] [Indexed: 12/24/2024]
Abstract
Secreted plant peptides that trigger cellular signaling are crucial for plant growth, development, and adaptive responses to environmental stresses. In Arabidopsis (Arabidopsis thaliana), the C-TERMINALLY ENCODED PEPTIDE (CEP) family is a class of secreted signaling peptides that is phylogenetically divided into 2 groups: group I (CEP1-CEP12) and group II (CEP13-CEP15). Several group I CEP peptides regulate root architecture and nitrogen starvation responses, whereas the biological activity and roles of group II CEPs remain unknown. Here, we report that a group II CEP peptide, CEP14, functions as a pathogen-induced elicitor of Arabidopsis immunity. In response to infection by the bacterial pathogen Pseudomonas syringae, CEP14 expression was highly induced via the salicylic acid pathway in Arabidopsis leaves and roots. In the absence of a pathogen attack, treatment of Arabidopsis plants with synthetic CEP14 peptides was sufficient to trigger immune responses. Genetic and biochemical analyses demonstrated that the receptor-like kinase CEP RECEPTOR 2 (CEPR2) perceives CEP14 to trigger plant immunity. The SOMATIC EMBRYOGENESIS RECEPTOR KINASES (SERKs) BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) and SERK4 also participated in CEP14 perception by forming CEP14-induced complexes with CEPR2. Overexpression of CEP14 largely enhanced Arabidopsis resistance to P. syringae, while CEP14 or CEPR2 mutation significantly attenuated Arabidopsis systemic resistance to P. syringae. Taken together, our data reveal that the pathogen-induced CEP14 peptide, which is perceived by the CEPR2-BAK1/SERK4 receptor complexes, acts as an endogenous elicitor to promote systemic disease resistance in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wenlong Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qin Yuan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xinyu Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yunxia He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jinggeng Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qingqing Xun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guodong Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
3
|
Isidra-Arellano MC, Valdés-López O. Understanding the Crucial Role of Phosphate and Iron Availability in Regulating Root Nodule Symbiosis. PLANT & CELL PHYSIOLOGY 2024; 65:1925-1936. [PMID: 39460549 DOI: 10.1093/pcp/pcae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024]
Abstract
The symbiosis between legumes and nitrogen-fixing bacteria (rhizobia) is instrumental in sustaining the nitrogen cycle and providing fixed nitrogen to the food chain. Both partners must maintain an efficient nutrient exchange to ensure a successful symbiosis. This mini-review highlights the intricate phosphate and iron uptake and homeostasis processes taking place in legumes during their interactions with rhizobia. The coordination of transport and homeostasis of these nutrients in host plants and rhizobia ensures an efficient nitrogen fixation process and nutrient use. We discuss the genetic machinery controlling the uptake and homeostasis of these nutrients in the absence of rhizobia and under symbiotic conditions with this soil bacterium. We also highlight the genetic impact of the availability of phosphate and iron to coordinate the activation of the genetic programs that allow legumes to engage in symbiosis with rhizobia. Finally, we discuss how the transcription factor phosphate starvation response might be a crucial genetic element to integrate the plant's needs of nitrogen, iron and phosphate while interacting with rhizobia. Understanding the coordination of the iron and phosphate uptake and homeostasis can lead us to better harness the ecological benefits of the legume-rhizobia symbiosis, even under adverse environmental conditions.
Collapse
Affiliation(s)
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Department of Biology, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, México
| |
Collapse
|
4
|
Ahmad EM, Abdelsamad A, El-Shabrawi HM, El-Awady MAM, Aly MAM, El-Soda M. In-silico identification of putatively functional intergenic small open reading frames in the cucumber genome and their predicted response to biotic and abiotic stresses. PLANT, CELL & ENVIRONMENT 2024; 47:5330-5342. [PMID: 39189930 DOI: 10.1111/pce.15104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/13/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024]
Abstract
The availability of high-throughput sequencing technologies increased our understanding of different genomes. However, the genomes of all living organisms still have many unidentified coding sequences. The increased number of missing small open reading frames (sORFs) is due to the length threshold used in most gene identification tools, which is true in the genic and, more importantly and surprisingly, in the intergenic regions. Scanning the cucumber genome intergenic regions revealed 420 723 sORF. We excluded 3850 sORF with similarities to annotated cucumber proteins. To propose the functionality of the remaining 416 873 sORF, we calculated their codon adaptation index (CAI). We found 398 937 novel sORF (nsORF) with CAI ≥ 0.7 that were further used for downstream analysis. Searching against the Rfam database revealed 109 nsORFs similar to multiple RNA families. Using SignalP-5.0 and NLS, identified 11 592 signal peptides. Five predicted proteins interacting with Meloidogyne incognita and Powdery mildew proteins were selected using published transcriptome data of host-pathogen interactions. Gene ontology enrichment interpreted the function of those proteins, illustrating that nsORFs' expression could contribute to the cucumber's response to biotic and abiotic stresses. This research highlights the importance of previously overlooked nsORFs in the cucumber genome and provides novel insights into their potential functions.
Collapse
Affiliation(s)
- Esraa M Ahmad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ahmed Abdelsamad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hattem M El-Shabrawi
- Plant Biotechnology Department, Genetic Engineering & Biotechnology Division, National Research Center, Giza, Egypt
| | | | - Mohammed A M Aly
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed El-Soda
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Mishra S, Levengood H, Fan J, Zhang C. Plants Under Stress: Exploring Physiological and Molecular Responses to Nitrogen and Phosphorus Deficiency. PLANTS (BASEL, SWITZERLAND) 2024; 13:3144. [PMID: 39599353 PMCID: PMC11597474 DOI: 10.3390/plants13223144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Nitrogen (N) and phosphorus (P) are essential mineral macronutrients critical for plant structure and function. Both contribute to processes ranging from cellular integrity to signal transduction. Since plants require these nutrients in high concentrations, replenishing them in soil often involves chemical fertilizers. However, the main source of P, rock phosphate, is non-renewable and in decline. N, second only to carbon, oxygen, and hydrogen in plant requirements, is vital for synthesizing proteins, nucleic acids, and plant pigments. Although N is available to plants through biological fixation or fertilizer application, the frequent application of N is not a sustainable solution due to environmental concerns like groundwater contamination and eutrophication. Plants have developed sophisticated mechanisms to adapt to nutrient deficiencies, such as changes in root architecture, local signaling, and long-distance signaling through the phloem. A dual deficiency of N and P is common in the field. In addition to individual N and P deficiency responses, this review also highlights some of the most recent discoveries in the responses of plants to the combined N and P deficiencies. Understanding the molecular and physiological responses in plants to mineral deficiency will help implement strategies to produce plants with high mineral use efficiency, leading to the reduced application of fertilizers, decreased mineral runoff, and improved environment.
Collapse
Affiliation(s)
| | | | | | - Cankui Zhang
- Department of Agronomy and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA; (S.M.); (H.L.); (J.F.)
| |
Collapse
|
6
|
Yao XL, Wang YZ, Meng HX, Zhang MH, Zhou X, Kang XT, Dong S, Yuan X, Li X, Gao L, Yang G, Chu X, Wang JG. Identification of systemic nitrogen signaling in foxtail millet (Setaria italica) roots based on split-root system and transcriptome analysis. PLANT CELL REPORTS 2024; 43:243. [PMID: 39340664 DOI: 10.1007/s00299-024-03338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
KEY MESSAGE The study established split-root system (SRS) in foxtail millet, and identified the molecular regulatory mechanisms and metabolic pathways related to systemic nitrogen signaling based on this system and transcriptome analysis. The growth of crops is primarily constrained by the availability of nitrogen (N), an essential nutrient. Foxtail millet (Setaria italica L.) is a significant orphan crop known for its strong tolerance to barren conditions. Despite this, the signaling pathway of nitrogen in foxtail millet remains largely unexplored. Identifying the candidate genes responsible for nitrogen response in foxtail millet is crucial for enhancing its agricultural productivity. This study utilized the split-root system (SRS) in foxtail millet to uncover genes associated with Systemic Nitrogen Signaling (SNS). Transcriptome analysis of the SRS revealed 2158 differentially expressed genes (DEGs) implicated in SNS, including those involved in cytokinin synthesis, transcription factors, E3 ubiquitin ligase, and ROS metabolism. Silencing of SiIPT5 and SiATL31 genes through RNAi in transgenic plants resulted in reduced SNS response, indicating their role in the nitrogen signaling pathway of foxtail millet. Furthermore, the induction of ROS metabolism-related genes in response to KNO3 of the split-root System (Sp.KNO3) suggests a potential involvement of ROS signaling in the SNS of foxtail millet. Overall, this study sheds light on the molecular regulatory mechanisms and metabolic pathways of foxtail millet in relation to SNS.
Collapse
Affiliation(s)
- Xin-Li Yao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China
| | - Yu-Ze Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Hui-Xin Meng
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Ming-Hua Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xuan Zhou
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xue-Ting Kang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaorui Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Lulu Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Guanghui Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoqian Chu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Jia-Gang Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
- Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
7
|
Chen G, Wu X, Zhu Z, Li T, Tang G, Liu L, Wu Y, Ma Y, Han Y, Liu K, Han Z, Li X, Yang G, Li B. Bioinformatic and Phenotypic Analysis of AtPCP-Ba Crucial for Silique Development in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2614. [PMID: 39339588 PMCID: PMC11435202 DOI: 10.3390/plants13182614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Silique development exerts significant impacts on crop yield. CRPs (Cysteine-rich peptides) can mediate cell-cell communication during plant reproduction and development. However, the functional characterization and regulatory mechanisms of CRPs in silique development remain unclear. In this study, we identified many CRP genes downstream of the CRP gene TPD1 (TAPETUM DETERMINANT1) during silique development using a microarray assay. The novel Arabidopsis thaliana pollen-borne CRPs, the PCP-Bs (for pollen coat protein B-class) gene AtPCP-Ba, along with TPD1, are essential for silique development. The AtPCP-Ba was significantly down-regulated in tpd1 flower buds but up-regulated in OE-TPD1 flower buds and siliques. The silencing of AtPCP-Ba compromised the wider silique of OE-TPD1 plants and inhibited the morphology of OE-TPD1 siliques to the size observed in the wild type. A total of 258 CRPs were identified with the bioinformatic analysis in Arabidopsis, Brassica napus, Glycine max, Oryza sativa, Sorghum bicolor, and Zea mays. Based on the evolutionary tree classification, all CRP members can be categorized into five subgroups. Notably, 107 CRP genes were predicted to exhibit abundant expression in flowers and fruits. Most cysteine-rich peptides exhibited high expression levels in Arabidopsis and Brassica napus. These findings suggested the involvement of the CRP AtPCP-Ba in the TPD1 signaling pathway, thereby regulating silique development in Arabidopsis.
Collapse
Affiliation(s)
- Guangxia Chen
- Shandong Academy of Grape, Jinan 250100, China; (G.C.); (Z.Z.); (T.L.); (L.L.); (Y.W.); (Y.M.); (Y.H.); (K.L.) (Z.H.); (X.L.); (G.Y.)
| | - Xiaobin Wu
- State Key Laboratory of Nutrient Use and Management, Key Laboratory of Agro-Environment of Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Ziguo Zhu
- Shandong Academy of Grape, Jinan 250100, China; (G.C.); (Z.Z.); (T.L.); (L.L.); (Y.W.); (Y.M.); (Y.H.); (K.L.) (Z.H.); (X.L.); (G.Y.)
| | - Tinggang Li
- Shandong Academy of Grape, Jinan 250100, China; (G.C.); (Z.Z.); (T.L.); (L.L.); (Y.W.); (Y.M.); (Y.H.); (K.L.) (Z.H.); (X.L.); (G.Y.)
| | - Guiying Tang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Li Liu
- Shandong Academy of Grape, Jinan 250100, China; (G.C.); (Z.Z.); (T.L.); (L.L.); (Y.W.); (Y.M.); (Y.H.); (K.L.) (Z.H.); (X.L.); (G.Y.)
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yusen Wu
- Shandong Academy of Grape, Jinan 250100, China; (G.C.); (Z.Z.); (T.L.); (L.L.); (Y.W.); (Y.M.); (Y.H.); (K.L.) (Z.H.); (X.L.); (G.Y.)
| | - Yujiao Ma
- Shandong Academy of Grape, Jinan 250100, China; (G.C.); (Z.Z.); (T.L.); (L.L.); (Y.W.); (Y.M.); (Y.H.); (K.L.) (Z.H.); (X.L.); (G.Y.)
| | - Yan Han
- Shandong Academy of Grape, Jinan 250100, China; (G.C.); (Z.Z.); (T.L.); (L.L.); (Y.W.); (Y.M.); (Y.H.); (K.L.) (Z.H.); (X.L.); (G.Y.)
| | - Kai Liu
- Shandong Academy of Grape, Jinan 250100, China; (G.C.); (Z.Z.); (T.L.); (L.L.); (Y.W.); (Y.M.); (Y.H.); (K.L.) (Z.H.); (X.L.); (G.Y.)
| | - Zhen Han
- Shandong Academy of Grape, Jinan 250100, China; (G.C.); (Z.Z.); (T.L.); (L.L.); (Y.W.); (Y.M.); (Y.H.); (K.L.) (Z.H.); (X.L.); (G.Y.)
| | - Xiujie Li
- Shandong Academy of Grape, Jinan 250100, China; (G.C.); (Z.Z.); (T.L.); (L.L.); (Y.W.); (Y.M.); (Y.H.); (K.L.) (Z.H.); (X.L.); (G.Y.)
| | - Guowei Yang
- Shandong Academy of Grape, Jinan 250100, China; (G.C.); (Z.Z.); (T.L.); (L.L.); (Y.W.); (Y.M.); (Y.H.); (K.L.) (Z.H.); (X.L.); (G.Y.)
| | - Bo Li
- Shandong Academy of Grape, Jinan 250100, China; (G.C.); (Z.Z.); (T.L.); (L.L.); (Y.W.); (Y.M.); (Y.H.); (K.L.) (Z.H.); (X.L.); (G.Y.)
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
8
|
Lu S, Xiao F. Small Peptides: Orchestrators of Plant Growth and Developmental Processes. Int J Mol Sci 2024; 25:7627. [PMID: 39062870 PMCID: PMC11276966 DOI: 10.3390/ijms25147627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Small peptides (SPs), ranging from 5 to 100 amino acids, play integral roles in plants due to their diverse functions. Despite their low abundance and small molecular weight, SPs intricately regulate critical aspects of plant life, including cell division, growth, differentiation, flowering, fruiting, maturation, and stress responses. As vital mediators of intercellular signaling, SPs have garnered significant attention in plant biology research. This comprehensive review delves into SPs' structure, classification, and identification, providing a detailed understanding of their significance. Additionally, we summarize recent findings on the biological functions and signaling pathways of prominent SPs that regulate plant growth and development. This review also offers a perspective on future research directions in peptide signaling pathways.
Collapse
Affiliation(s)
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| |
Collapse
|
9
|
Pečenková T, Potocký M, Stegmann M. More than meets the eye: knowns and unknowns of the trafficking of small secreted proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3713-3730. [PMID: 38693754 DOI: 10.1093/jxb/erae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/01/2024] [Indexed: 05/03/2024]
Abstract
Small proteins represent a significant portion of the cargo transported through plant secretory pathways, playing crucial roles in developmental processes, fertilization, and responses to environmental stresses. Despite the importance of small secreted proteins, substantial knowledge gaps persist regarding the regulatory mechanisms governing their trafficking along the secretory pathway, and their ultimate localization or destination. To address these gaps, we conducted a comprehensive literature review, focusing particularly on trafficking and localization of Arabidopsis small secreted proteins with potential biochemical and/or signaling roles in the extracellular space, typically those within the size range of 101-200 amino acids. Our investigation reveals that while at least six members of the 21 mentioned families have a confirmed extracellular localization, eight exhibit intracellular localization, including cytoplasmic, nuclear, and chloroplastic locations, despite the presence of N-terminal signal peptides. Further investigation into the trafficking and secretion mechanisms of small protein cargo could not only deepen our understanding of plant cell biology and physiology but also provide a foundation for genetic manipulation strategies leading to more efficient plant cultivation.
Collapse
Affiliation(s)
- Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Stegmann
- Technical University Munich, School of Life Sciences, Phytopathology, Emil-Ramann-Str. 2, 85354 Freising, Germany
| |
Collapse
|
10
|
Zhang Y, Duan X, Wang Z, Lv Y, Qi W, Li L, Luo L, Xuan W. CEPs suppress auxin signaling but promote cytokinin signaling to inhibit root growth in Arabidopsis. Biochem Biophys Res Commun 2024; 711:149934. [PMID: 38626621 DOI: 10.1016/j.bbrc.2024.149934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
C-terminally encoded peptides (CEPs) are peptide hormones that function as mobile signals coordinating crucial developmental programs in plants. Previous studies have revealed that CEPs exert negative regulation on root development through interaction with CEP receptors (CEPRs), CEP DOWNSTREAMs (CEPDs), the cytokinin receptor ARABIDOPSIS HISTIDINE KINASE (AHKs) and the transcriptional repressor Auxin/Indole-3-Acetic Acid (AUX/IAA). However, the precise molecular mechanisms underlying CEPs-mediated regulation of root development via auxin and cytokinin signaling pathways still necessitate further detailed investigation. In this study, we examined prior research and elucidated the underlying molecular mechanisms. The results showed that both synthetic AtCEPs and overexpression of AtCEP5 markedly supressed primary root elongation and lateral root (LR) formation in Arabidopsis. Molecular biology and genetics elucidated how CEPs inhibit root growth by suppressing auxin signaling while promoting cytokinin signaling. In summary, this study elucidated the inhibitory effects of AtCEPs on Arabidopsis root growth and provided insights into their potential molecular mechanisms, thus enhancing our comprehension of CEP-mediated regulation of plant growth and development.
Collapse
Affiliation(s)
- Yuwen Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xingliang Duan
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanda Lv
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China; Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Weicong Qi
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China; Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lun Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Le Luo
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Xuan
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
11
|
Xu C, Xiang L, Huang W, Zhang X, Mao C, Wu S, Li T, Wang S, Wang S. Unraveling a Small Secreted Peptide SUBPEP3 That Positively Regulates Salt-Stress Tolerance in Pyrus betulifolia. Int J Mol Sci 2024; 25:4612. [PMID: 38731831 PMCID: PMC11083645 DOI: 10.3390/ijms25094612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Small secreted peptides (SSPs) play important roles in regulating plants' growth and development in response to external stimulus, but the genes and functions of SSPs in many species are still unknown. Therefore, it is particularly significant to characterize and annotate SSP genes in plant genomes. As a widely used stock of pears, Pyrus betulifolia has strong resistance to biotic and abiotic stresses. In this study, we analyzed the SSPs genes in the genome of P. betulifolia according to their characteristics and homology. A total of 1195 SSP genes were identified, and most of them are signaling molecules. Among these, we identified a new SSP, subtilase peptide 3 (SUBPEP3), which derived from the PA region of preSUBPEP3, increasing the expression level under salt stress. Both adding synthetic peptide SUBPEP3 to the culture medium of pears and the overexpression of SUBPEP3 in tobacco can improve the salt tolerance of plants. In summary, we annotated the SSP genes in the P. betulifolia genome and identified a small secreted peptide SUBPEP3 that regulates the salt tolerance of P. betulifolia, which provides an important theoretical basis for further revealing the function of SSPs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shengnan Wang
- College of Horticulture, China Agricultural University, Beijing 100080, China
| |
Collapse
|
12
|
Mei Z, Li B, Zhu S, Li Y, Yao J, Pan J, Zhang Y, Chen W. A Genome-Wide Analysis of the CEP Gene Family in Cotton and a Functional Study of GhCEP46-D05 in Plant Development. Int J Mol Sci 2024; 25:4231. [PMID: 38673820 PMCID: PMC11050269 DOI: 10.3390/ijms25084231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
C-TERMINALLY ENCODED PEPTIDEs (CEPs) are a class of peptide hormones that have been shown in previous studies to play an important role in regulating the development and response to abiotic stress in model plants. However, their role in cotton is not well understood. In this study, we identified 54, 59, 34, and 35 CEP genes from Gossypium hirsutum (2n = 4x = 52, AD1), G. barbadense (AD2), G. arboreum (2n = 2X = 26, A2), and G. raimondii (2n = 2X = 26, D5), respectively. Sequence alignment and phylogenetic analyses indicate that cotton CEP proteins can be categorized into two subgroups based on the differentiation of their CEP domain. Chromosomal distribution and collinearity analyses show that most of the cotton CEP genes are situated in gene clusters, suggesting that segmental duplication may be a critical factor in CEP gene expansion. Expression pattern analyses showed that cotton CEP genes are widely expressed throughout the plant, with some genes exhibiting specific expression patterns. Ectopic expression of GhCEP46-D05 in Arabidopsis led to a significant reduction in both root length and seed size, resulting in a dwarf phenotype. Similarly, overexpression of GhCEP46-D05 in cotton resulted in reduced internode length and plant height. These findings provide a foundation for further investigation into the function of cotton CEP genes and their potential role in cotton breeding.
Collapse
Affiliation(s)
- Zhenyu Mei
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Bei Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shouhong Zhu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yan Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jinbo Yao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jingwen Pan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yongshan Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Chen
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
13
|
Datta T, Kumar RS, Sinha H, Trivedi PK. Small but mighty: Peptides regulating abiotic stress responses in plants. PLANT, CELL & ENVIRONMENT 2024; 47:1207-1223. [PMID: 38164016 DOI: 10.1111/pce.14792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Throughout evolution, plants have developed strategies to confront and alleviate the detrimental impacts of abiotic stresses on their growth and development. The combat strategies involve intricate molecular networks and a spectrum of early and late stress-responsive pathways. Plant peptides, consisting of fewer than 100 amino acid residues, are at the forefront of these responses, serving as pivotal signalling molecules. These peptides, with roles similar to phytohormones, intricately regulate plant growth, development and facilitate essential cell-to-cell communications. Numerous studies underscore the significant role of these small peptides in coordinating diverse signalling events triggered by environmental challenges. Originating from the proteolytic processing of larger protein precursors or directly translated from small open reading frames, including microRNA (miRNA) encoded peptides from primary miRNA, these peptides exert their biological functions through binding with membrane-embedded receptor-like kinases. This interaction initiates downstream cellular signalling cascades, often involving major phytohormones or reactive oxygen species-mediated mechanisms. Despite these advances, the precise modes of action for numerous other small peptides remain to be fully elucidated. In this review, we delve into the dynamics of stress physiology, mainly focusing on the roles of major small signalling peptides, shedding light on their significance in the face of changing environmental conditions.
Collapse
Affiliation(s)
- Tapasya Datta
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Ravi S Kumar
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Hiteshwari Sinha
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prabodh K Trivedi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Pan X, Deng Z, Wu R, Yang Y, Akher SA, Li W, Zhang Z, Guo Y. Identification of CEP peptides encoded by the tobacco (Nicotiana tabacum) genome and characterization of their roles in osmotic and salt stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108525. [PMID: 38518396 DOI: 10.1016/j.plaphy.2024.108525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Members of the CEP (C-terminally Encoded Peptide) gene family have been shown to be involved in various developmental processes and stress responses in plants. In order to understand the roles of CEP peptides in stress response, a comprehensive bioinformatics approach was employed to identify NtCEP genes in tobacco (Nicotiana tabacum L.) and to analyze their potential roles in stress responses. Totally 21 NtCEP proteins were identified and categorized into two subgroups based on their CEP domains. Expression changes of the NtCEP genes in response to various abiotic stresses were analyzed via qRT-PCR and the results showed that a number of NtCEPs were significant up-regulated under drought, salinity, or temperature stress conditions. Furthermore, application of synthesized peptides derived from NtCEP5, NtCEP13, NtCEP14, and NtCEP17 enhanced plant tolerance to different salt stress treatments. NtCEP5, NtCEP9 and NtCEP14, and NtCEP17 peptides were able to promote osmotic tolerance of tobacco plants. The results from this study suggest that NtCEP peptides may serve as important signaling molecules in tobacco's response to abiotic stresses.
Collapse
Affiliation(s)
- Xiaolu Pan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China
| | - Zhichao Deng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China
| | - Rongrong Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China; Qingdao Agricultural University, Qingdao, China
| | - Yalun Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China; Qingdao Agricultural University, Qingdao, China
| | - Sayed Abdul Akher
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China
| | - Wei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China
| | - Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China.
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China.
| |
Collapse
|
15
|
Huang Y, Ji Z, Zhang S, Li S. Function of hormone signaling in regulating nitrogen-use efficiency in plants. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154191. [PMID: 38335845 DOI: 10.1016/j.jplph.2024.154191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Nitrogen (N) is one of the most important nutrients for crop plant performance, however, the excessive application of nitrogenous fertilizers in agriculture significantly increases production costs and causes severe environmental problems. Therefore, comprehensively understanding the molecular mechanisms of N-use efficiency (NUE) with the aim of developing new crop varieties that combine high yields with improved NUE is an urgent goal for achieving more sustainable agriculture. Plant NUE is a complex trait that is affected by multiple factors, of which hormones are known to play pivotal roles. In this review, we focus on the interaction between the biosynthesis and signaling pathways of plant hormones with N metabolism, and summarize recent studies on the interplay between hormones and N, including how N regulates multiple hormone biosynthesis, transport and signaling and how hormones modulate root system architecture (RSA) in response to external N sources. Finally, we explore potential strategies for promoting crop NUE by modulating hormone synthesis, transport and signaling. This provides insights for future breeding of N-efficient crop varieties and the advancement of sustainable agriculture.
Collapse
Affiliation(s)
- Yunzhi Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ji
- Department of Biology, University of Oxford, Oxford, UK
| | - Siyu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
16
|
Taleski M, Jin M, Chapman K, Taylor K, Winning C, Frank M, Imin N, Djordjevic MA. CEP hormones at the nexus of nutrient acquisition and allocation, root development, and plant-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:538-552. [PMID: 37946363 PMCID: PMC10773996 DOI: 10.1093/jxb/erad444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
A growing understanding is emerging of the roles of peptide hormones in local and long-distance signalling that coordinates plant growth and development as well as responses to the environment. C-TERMINALLY ENCODED PEPTIDE (CEP) signalling triggered by its interaction with CEP RECEPTOR 1 (CEPR1) is known to play roles in systemic nitrogen (N) demand signalling, legume nodulation, and root system architecture. Recent research provides further insight into how CEP signalling operates, which involves diverse downstream targets and interactions with other hormone pathways. Additionally, there is emerging evidence of CEP signalling playing roles in N allocation, root responses to carbon levels, the uptake of other soil nutrients such as phosphorus and sulfur, root responses to arbuscular mycorrhizal fungi, plant immunity, and reproductive development. These findings suggest that CEP signalling more broadly coordinates growth across the whole plant in response to diverse environmental cues. Moreover, CEP signalling and function appear to be conserved in angiosperms. We review recent advances in CEP biology with a focus on soil nutrient uptake, root system architecture and organogenesis, and roles in plant-microbe interactions. Furthermore, we address knowledge gaps and future directions in this research field.
Collapse
Affiliation(s)
- Michael Taleski
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Marvin Jin
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Kelly Chapman
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Katia Taylor
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Courtney Winning
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Nijat Imin
- School of Science, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| |
Collapse
|
17
|
Chapman K, Taleski M, Frank M, Djordjevic MA. C-TERMINALLY ENCODED PEPTIDE (CEP) and cytokinin hormone signaling intersect to promote shallow lateral root angles. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:631-641. [PMID: 37688302 DOI: 10.1093/jxb/erad353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/07/2023] [Indexed: 09/10/2023]
Abstract
Root system architecture (RSA) influences the acquisition of heterogeneously dispersed soil nutrients. Cytokinin and C-TERMINALLY ENCODED PEPTIDE (CEP) hormones affect RSA, in part by controlling the angle of lateral root (LR) growth. Both hormone pathways converge on CEP DOWNSTREAM 1 (CEPD1) and CEPD2 to control primary root growth; however, a role for CEPDs in controlling the growth angle of LRs is unknown. Using phenotyping combined with genetic and grafting approaches, we show that CEP hormone-mediated shallower LR growth requires cytokinin biosynthesis and perception in roots via ARABIDOPSIS HISTIDINE KINASE 2 (AHK2) and AHK3. Consistently, cytokinin biosynthesis and ahk2,3 mutants phenocopied the steeper root phenotype of cep receptor 1 (cepr1) mutants on agar plates, and CEPR1 was required for trans-Zeatin (tZ)-type cytokinin-mediated shallower LR growth. In addition, the cepd1,2 mutant was less sensitive to CEP and tZ, and showed basally steeper LRs on agar plates. Cytokinin and CEP pathway mutants were grown in rhizoboxes to define the role of these pathways in controlling RSA. Only cytokinin receptor mutants and cepd1,2 partially phenocopied the steeper-rooted phenotype of cepr1 mutants. These results show that CEP and cytokinin signaling intersect to promote shallower LR growth, but additional components contribute to the cepr1 phenotype in soil.
Collapse
Affiliation(s)
- Kelly Chapman
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Michael Taleski
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| |
Collapse
|
18
|
Li C, Hu Q, Luo Z, Wang X, Tang W, Lu H, Ma C, Kong X. C-terminally encoded peptides act as signals to increase cotton root nitrate uptake under nonuniform salinity. PLANT PHYSIOLOGY 2023; 194:530-545. [PMID: 37757884 DOI: 10.1093/plphys/kiad513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Soil salinity is often heterogeneous in saline fields. Nonuniform root salinity increases nitrate uptake into cotton (Gossypium hirsutum) root portions exposed to low salinity, which may be regulated by root portions exposed to high salinity through a systemic long-distance signaling mechanism. However, the signals transmitted between shoots and roots and their precise molecular mechanisms for regulating nitrate uptake remain unknown. Here, we showed that nonuniform root salinity treatment using split-root systems increases the expression of C-TERMINALLY ENCODED PEPTIDE (GhCEP) genes in high-saline-treated root portions. GhCEP peptides originating in high-saline-treated root portions act as ascending long-distance mobile signals transported to the shoots to promote the expression of CEP DOWNSTREAM (GhCEPD) genes by inducing the expression of CEP receptor (GhCEPR) genes. The shoot-derived GhCEPD polypeptides act as descending mobile signals transported to the roots through the phloem, increasing the expression of nitrate transport genes NITRATE TRANSPORTER 1.1 (GhNRT1.1), GhNRT2.1, and GhNRT1.5 in nonsaline-treated root portions, thereby increasing nitrate uptake in the nonsaline-treated root portions. This study indicates that GhCEP and GhCEPD signals are transported between roots and shoots to increase nitrate uptake in cotton, and the transport from the nonsaline root side is in response to nonuniform root salinity distribution.
Collapse
Affiliation(s)
- Chenyang Li
- Institute of Industrial Crops, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Qiuyue Hu
- Institute of Industrial Crops, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Zhen Luo
- Institute of Industrial Crops, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Xiaowen Wang
- Institute of Industrial Crops, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Wei Tang
- Institute of Industrial Crops, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Hequan Lu
- Institute of Industrial Crops, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Xiangqiang Kong
- Institute of Industrial Crops, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|
19
|
Mishra S, Hu W, DiGennaro P. Root-Knot-Nematode-Encoded CEPs Increase Nitrogen Assimilation. Life (Basel) 2023; 13:2020. [PMID: 37895402 PMCID: PMC10608282 DOI: 10.3390/life13102020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
C-terminally encoded peptides (CEPs) are plant developmental signals that regulate growth and adaptive responses to nitrogen stress conditions. These small signal peptides are common to all vascular plants, and intriguingly have been characterized in some plant parasitic nematodes. Here, we sought to discover the breadth of root-knot nematode (RKN)-encoded CEP-like peptides and define the potential roles of these signals in the plant-nematode interaction, focusing on peptide activity altering plant root phenotypes and nitrogen uptake and assimilation. A comprehensive bioinformatic screen identified 61 CEP-like sequences encoded within the genomes of six root-knot nematode (RKN; Meloidogyne spp.) species. Exogenous application of an RKN CEP-like peptide altered A. thaliana and M. truncatula root phenotypes including reduced lateral root number in M. truncatula and inhibited primary root length in A. thaliana. To define the role of RKN CEP-like peptides, we applied exogenous RKN CEP and demonstrated increases in plant nitrogen uptake through the upregulation of nitrate transporter gene expression in roots and increased 15N/14N in nematode-formed root galls. Further, we also identified enhanced nematode metabolic processes following CEP application. These results support a model of parasite-induced changes in host metabolism and inform endogenous pathways to regulate plant nitrogen assimilation.
Collapse
Affiliation(s)
| | | | - Peter DiGennaro
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA; (S.M.); (W.H.)
| |
Collapse
|
20
|
Xu K, Tian D, Wang T, Zhang A, Elsadek MAY, Liu W, Chen L, Guo Y. Small secreted peptides (SSPs) in tomato and their potential roles in drought stress response. MOLECULAR HORTICULTURE 2023; 3:17. [PMID: 37789434 PMCID: PMC10515272 DOI: 10.1186/s43897-023-00063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 10/05/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the most important vegetable crops in the world and abiotic stresses often cause serious problems in tomato production. It is thus important to identify new regulators in stress response and to devise new approaches to promote stress tolerance in tomato. Previous studies have shown that small secreted peptides (SSPs) are important signal molecules regulating plant growth and stress response by mediating intercellular communication. However, little is known about tomato SSPs, especially their roles in responding to abiotic stresses. Here we report the identification of 1,050 putative SSPs in the tomato genome, 557 of which were classified into 38 known SSP families based on their conserved domains. GO and transcriptome analyses revealed that a large proportion of SlSSPs might be involved in abiotic stress response. Further analysis indicated that stress response related cis-elements were present on the SlCEP promotors and a number of SlCEPs were significantly upregulated by drought treatments. Among the drought-inducible SlCEPs, SlCEP10 and SlCEP11b were selected for further analysis via exogenous application of synthetic peptides. The results showed that treatments with both SlCEP10 and SlCEP11b peptides enhanced tomato drought stress tolerance, indicating the potential roles of SlSSPs in abiotic stress response.
Collapse
Affiliation(s)
- Kexin Xu
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dongdong Tian
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - TingJin Wang
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Aijun Zhang
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | | - Weihong Liu
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liping Chen
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
21
|
Taleski M, Chapman K, Novák O, Schmülling T, Frank M, Djordjevic MA. CEP peptide and cytokinin pathways converge on CEPD glutaredoxins to inhibit root growth. Nat Commun 2023; 14:1683. [PMID: 36973257 PMCID: PMC10042822 DOI: 10.1038/s41467-023-37282-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
AbstractC-TERMINALLY ENCODED PEPTIDE (CEP) and cytokinin hormones act over short and long distances to control plant responses to environmental cues. CEP and cytokinin pathway mutants share phenotypes, however, it is not known if these pathways intersect. We show that CEP and cytokinin signalling converge on CEP DOWNSTREAM (CEPD) glutaredoxins to inhibit primary root growth. CEP inhibition of root growth was impaired in mutants defective in trans-zeatin (tZ)-type cytokinin biosynthesis, transport, perception, and output. Concordantly, mutants affected in CEP RECEPTOR 1 showed reduced root growth inhibition in response to tZ, and altered levels of tZ-type cytokinins. Grafting and organ-specific hormone treatments showed that tZ-mediated root growth inhibition involved CEPD activity in roots. By contrast, root growth inhibition by CEP depended on shoot CEPD function. The results demonstrate that CEP and cytokinin pathways intersect, and utilise signalling circuits in separate organs involving common glutaredoxin genes to coordinate root growth.
Collapse
|
22
|
Ding S, Lv J, Hu Z, Wang J, Wang P, Yu J, Foyer CH, Shi K. Phytosulfokine peptide optimizes plant growth and defense via glutamine synthetase GS2 phosphorylation in tomato. EMBO J 2023; 42:e111858. [PMID: 36562188 PMCID: PMC10015362 DOI: 10.15252/embj.2022111858] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Phytosulfokine (PSK) is a plant pentapeptide hormone that fulfills a wide range of functions. Although PSK has frequently been reported to function in the inverse regulation of growth and defense in response to (hemi)biotrophic pathogens, the mechanisms involved remain largely unknown. Using the tomato (Solanum lycopersicum) and Pseudomonas syringae pv. tomato (Pst) DC3000 pathogen system, we present compelling evidence that the PSK receptor PSKR1 interacts with the calcium-dependent protein kinase CPK28, which in turn phosphorylates the key enzyme of nitrogen assimilation glutamine synthetase GS2 at two sites (Serine-334 and Serine-360). GS2 phosphorylation at S334 specifically regulates plant defense, whereas S360 regulates growth, uncoupling the PSK-induced effects on defense responses and growth regulation. The discovery of these sites will inform breeding strategies designed to optimize the growth-defense balance in a compatible manner.
Collapse
Affiliation(s)
- Shuting Ding
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jianrong Lv
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Zhangjian Hu
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jiao Wang
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Ping Wang
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jingquan Yu
- Department of HorticultureZhejiang UniversityHangzhouChina
- Hainan Institute, Yazhou Bay Science and Technology CityZhejiang UniversitySanyaChina
- Key Laboratory of Horticultural Plant Growth and DevelopmentMinistry of Agriculture and Rural AffairsHangzhouChina
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Kai Shi
- Department of HorticultureZhejiang UniversityHangzhouChina
- Hainan Institute, Yazhou Bay Science and Technology CityZhejiang UniversitySanyaChina
- Key Laboratory of Horticultural Plant Growth and DevelopmentMinistry of Agriculture and Rural AffairsHangzhouChina
| |
Collapse
|
23
|
Huang A, Cui T, Zhang Y, Ren X, Wang M, Jia L, Zhang Y, Wang G. CRISPR/Cas9-Engineered Large Fragment Deletion Mutations in Arabidopsis CEP Peptide-Encoding Genes Reveal Their Role in Primary and Lateral Root Formation. PLANT & CELL PHYSIOLOGY 2023; 64:19-26. [PMID: 36508310 DOI: 10.1093/pcp/pcac171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
C-TERMINALLY ENCODED PEPTIDEs (CEPs) are post-translationally modified peptides that play essential roles in root and shoot development, nitrogen absorption, nodule formation and stress resilience. However, it has proven challenging to determine biological activities of CEPs because of difficulties in obtaining loss-of-function mutants for these small genes. To overcome this challenge, we thus assembled a collection of easily detectable large fragment deletion mutants of Arabidopsis CEP genes through the clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9-engineered genome editing. This collection was then evaluated for the usability by functionally analyzing the Arabidopsis growth and development with a focus on the root. Most cep mutants displayed developmental defects in primary and lateral roots showing an increased primary root length and an enhanced lateral root number, demonstrating that the genetic resource provides a useful tool for further investigations into the roles of CEPs.
Collapse
Affiliation(s)
- Aixia Huang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Tingting Cui
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xufang Ren
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Mengfang Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lingyu Jia
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yonghong Zhang
- School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Guodong Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
24
|
Kong F, Yang L. Pathogen-triggered changes in plant development: Virulence strategies or host defense mechanism? Front Microbiol 2023; 14:1122947. [PMID: 36876088 PMCID: PMC9975269 DOI: 10.3389/fmicb.2023.1122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Plants, as sessile organisms, are constantly exposed to pathogens in nature. Plants rely on physical barriers, constitutive chemical defenses, and sophisticated inducible immunity to fight against pathogens. The output of these defense strategies is highly associated with host development and morphology. Successful pathogens utilize various virulence strategies to colonize, retrieve nutrients, and cause disease. In addition to the overall defense-growth balance, the host-pathogen interactions often lead to changes in the development of specific tissues/organs. In this review, we focus on recent advances in understanding the molecular mechanisms of pathogen-induced changes in plants' development. We discuss that changes in host development could be a target of pathogen virulence strategies or an active defense strategy of plants. Current and ongoing research about how pathogens shape plant development to increase their virulence and causes diseases could give us novel views on plant disease control.
Collapse
Affiliation(s)
- Feng Kong
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Li Yang
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| |
Collapse
|
25
|
Qiu Z, Zhuang K, Liu Y, Ge X, Chen C, Hu S, Han H. Functional characterization of C-TERMINALLY ENCODED PEPTIDE (CEP) family in Brassica rapa L. PLANT SIGNALING & BEHAVIOR 2022; 17:2021365. [PMID: 34968412 PMCID: PMC8920145 DOI: 10.1080/15592324.2021.2021365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The small regulatory C-TERMINALLY ENCODED PEPTIDE (CEP) peptide family plays crucial roles in plant growth and stress response. However, little is known about this peptide family in Brassica species. Here, we performed a systematic analysis to identify the putative Brassica rapa L. CEP (BrCEP) gene family. In total, 27 BrCEP genes were identified and they were classified into four subgroups based on the CEP motifs similarity. BrCEP genes displayed distinct expression patterns in response to both developmental and several environmental signals, suggesting their broad roles during Brassica rapa development. Furthuremore, the synthetic BrCEP3 peptide accelerated Brassica rapa primary root growth in a hydrogen peroxide (H2O2) and Ca2+ dependent manner. In summary, our work will provide fundamental insights into the physiological function of CEP peptides during Brassica rapa development.
Collapse
Affiliation(s)
- Ziwen Qiu
- Research Center for Plant Functional Genes and Tissue Culture Technology; College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Keqing Zhuang
- Research Center for Plant Functional Genes and Tissue Culture Technology; College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Yiting Liu
- Research Center for Plant Functional Genes and Tissue Culture Technology; College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiaomin Ge
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an City, Shaanxi Province, China
| | - Chen Chen
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an City, Shaanxi Province, China
| | - Songping Hu
- Research Center for Plant Functional Genes and Tissue Culture Technology; College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Huibin Han
- Research Center for Plant Functional Genes and Tissue Culture Technology; College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
26
|
Lebedeva MA, Gancheva MS, Kulaeva OA, Zorin EA, Dobychkina DA, Romanyuk DA, Sulima AS, Zhukov VA, Lutova LA. Identification and Expression Analysis of the C-TERMINALLY ENCODED PEPTIDE Family in Pisum sativum L. Int J Mol Sci 2022; 23:14875. [PMID: 36499210 PMCID: PMC9739355 DOI: 10.3390/ijms232314875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The C-TERMINALLY ENCODED PEPTIDE(CEP) peptides play crucial roles in plant growth and response to environmental factors. These peptides were characterized as positive regulators of symbiotic nodule development in legume plants. However, little is known about the CEP peptide family in pea. Here, we discovered in pea genome 21 CEP genes (PsCEPs), among which three genes contained additional conserved motifs corresponding to the PIP (PAMP-induced secreted peptides) consensus sequences. We characterized the expression patterns of pea PsCEP genes based on transcriptomic data, and for six PsCEP genes with high expression levels in the root and symbiotic nodules the detailed expression analysis at different stages of symbiosis and in response to nitrate treatment was performed. We suggest that at least three PsCEP genes, PsCEP1, PsCEP7 and PsCEP2, could play a role in symbiotic nodule development, whereas the PsCEP1 and PsCEP13 genes, downregulated by nitrate addition, could be involved in regulation of nitrate-dependent processes in pea. Further functional studies are required to elucidate the functions of these PsCEP genes.
Collapse
Affiliation(s)
- Maria A. Lebedeva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, Saint Petersburg 199034, Russia
| | - Maria S. Gancheva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, Saint Petersburg 199034, Russia
| | - Olga A. Kulaeva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, Saint Petersburg 199034, Russia
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelsky Sh. 3, Saint Petersburg 196608, Russia
| | - Evgeny A. Zorin
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelsky Sh. 3, Saint Petersburg 196608, Russia
| | - Daria A. Dobychkina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, Saint Petersburg 199034, Russia
| | - Daria A. Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelsky Sh. 3, Saint Petersburg 196608, Russia
| | - Anton S. Sulima
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelsky Sh. 3, Saint Petersburg 196608, Russia
| | - Vladimir A. Zhukov
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, Saint Petersburg 199034, Russia
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelsky Sh. 3, Saint Petersburg 196608, Russia
| | - Lyudmila A. Lutova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, Saint Petersburg 199034, Russia
| |
Collapse
|
27
|
Tian D, Xie Q, Deng Z, Xue J, Li W, Zhang Z, Dai Y, Zheng B, Lu T, De Smet I, Guo Y. Small secreted peptides encoded on the wheat ( triticum aestivum L.) genome and their potential roles in stress responses. FRONTIERS IN PLANT SCIENCE 2022; 13:1000297. [PMID: 36212358 PMCID: PMC9532867 DOI: 10.3389/fpls.2022.1000297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Small secreted peptides (SSPs) are important signals for cell-to-cell communication in plant, involved in a variety of growth and developmental processes, as well as responses to stresses. While a large number of SSPs have been identified and characterized in various plant species, little is known about SSPs in wheat, one of the most important cereal crops. In this study, 4,981 putative SSPs were identified on the wheat genome, among which 1,790 TaSSPs were grouped into 38 known SSP families. The result also suggested that a large number of the putaitive wheat SSPs, Cys-rich peptides in particular, remained to be characterized. Several TaSSP genes were found to encode multiple SSP domains, including CLE, HEVEIN and HAIRPININ domains, and two potentially novel TaSSP family DYY and CRP8CI were identified manually among unpredicted TaSSPs. Analysis on the transcriptomic data showed that a great proportion of TaSSPs were expressed in response to abiotic stresses. Exogenous application of the TaCEPID peptide encoded by TraesCS1D02G130700 enhanced the tolerance of wheat plants to drought and salinity, suggesting porential roles of SSPs in regulating stress responses in wheat.
Collapse
Affiliation(s)
- Dongdong Tian
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qi Xie
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Zhichao Deng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jin Xue
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yifei Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
28
|
Liu D, Shen Z, Zhuang K, Qiu Z, Deng H, Ke Q, Liu H, Han H. Systematic Annotation Reveals CEP Function in Tomato Root Development and Abiotic Stress Response. Cells 2022; 11:2935. [PMID: 36230896 PMCID: PMC9562649 DOI: 10.3390/cells11192935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Tomato (Solanum lycopersicum) is one of the most important vegetable crops worldwide; however, environmental stressors severely restrict tomato growth and yield. Therefore, it is of great interest to discover novel regulators to improve tomato growth and environmental stress adaptions. Here, we applied a comprehensive bioinformatics approach to identify putative tomato C-TERMINALLY ENCODED PEPTIDE (CEP) genes and to explore their potential physiological function in tomato root development and abiotic stress responses. A total of 17 tomato CEP genes were identified and grouped into two subgroups based on the similarity of CEP motifs. The public RNA-Seq data revealed that tomato CEP genes displayed a diverse expression pattern in tomato tissues. Additionally, CEP genes expression was differentially regulated by nitrate or ammonium status in roots and shoots, respectively. The differences in expression levels of CEP genes induced by nitrogen indicate a potential involvement of CEPs in tomato nitrogen acquisition. The synthetic CEP peptides promoted tomato primary root growth, which requires nitric oxide (NO) and calcium signaling. Furthermore, we also revealed that CEP peptides improved tomato root resistance to salinity. Overall, our work will contribute to provide novel genetic breeding strategies for tomato cultivation under adverse environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
29
|
Mataranyika PN, Chimwamurombe PM, Venturi V, Uzabakiriho JD. Bacterial bioinoculants adapted for sustainable plant health and soil fertility enhancement in Namibia. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1002797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The increase in dryland agriculture elicits the need to develop sustainable practices that improve crop yield and protect soil fertility. The use of biofertilisers adapted to nutrient deficient soils and arid climates would help achieve this. In this review, the use of plant growth-promoting bacteria is explored as a possible solution to the current state of dryland agriculture and climate change threats to agriculture. Plant microbe interactions form the basis of this review as evidence has shown that these interactions often exist to improve the health of plants. This is achieved by the production of important biochemicals and enzymes like indole acetic acid and amino cyclopropane-1-carboxylate deaminase while also actively protecting plants from pathogens including fungal pathogens. Research, therefore, has shown that these plant-growth promoting bacteria may be exploited and developed into biofertilisers. These biofertilisers are both economically and environmentally sustainable while improving soil quality and crop yield. The literature presented in this review is in context of the Namibian climate and soil profiles.
Collapse
|
30
|
Dreccer MF, Zwart AB, Schmidt RC, Condon AG, Awasi MA, Grant TJ, Galle A, Bourot S, Frohberg C. Wheat yield potential can be maximized by increasing red to far-red light conditions at critical developmental stages. PLANT, CELL & ENVIRONMENT 2022; 45:2652-2670. [PMID: 35815553 DOI: 10.1111/pce.14390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Sensing of neighbours via the Red to Far-Red light ratio (R:FR) may exert a cap to yield potential in wheat. The effects of an increased R:FR inside the canopy were studied in dense wheat mini canopies grown in controlled environments by lowering FR. To distinguish between effects exerted by light sensing and assimilate supply, the treatments were complemented with elevated CO2 , applied between different developmental timepoints to specifically impact tillering, spike growth, floret fertility and grain filling, in different combinations. The yield response to high R:FR was strongly dependent on the developmental stage in all three cultivars and pivoted between positive if applied after the start of stem elongation, and negative or null if applied before. Yield gains of up to 70% and 120% were observed, respectively, in two cultivars, associated with a higher number of tiller spikes and grains per spike in the main shoot. The response to the combination of high R:FR and elevated CO2 or CO2 alone were cultivar dependent. Taken together, our results suggest that R:FR exerts a significant control on yield potential in wheat and achieving a high R:FR from stem elongation to maturity is a promising lever towards a significant increase in grain yield.
Collapse
Affiliation(s)
| | - Alec B Zwart
- CSIRO Agriculture and Food, Black Mountain, Australia
| | | | | | - Mary A Awasi
- CSIRO Cooper Laboratory, University of Queensland Gatton Campus, Gatton, Australia
| | - Terry J Grant
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, Saint Lucia, Australia
| | - Alexander Galle
- BASF Innovation Center Gent, BASF Belgium Coordination Center CommV, Gent, Belgium
| | - Stephane Bourot
- BASF Innovation Center Gent, BASF Belgium Coordination Center CommV, Gent, Belgium
| | - Claus Frohberg
- BASF Innovation Center Gent, BASF Belgium Coordination Center CommV, Gent, Belgium
| |
Collapse
|
31
|
Mathesius U. Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153765. [PMID: 35952452 DOI: 10.1016/j.jplph.2022.153765] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 05/14/2023]
Abstract
Nitrogen fixing symbioses between plants and bacteria are ancient and, while not numerous, are formed in diverse lineages of plants ranging from microalgae to angiosperms. One symbiosis stands out as the most widespread one is that between legumes and rhizobia, leading to the formation of nitrogen-fixing nodules. The legume family is one of the largest and most diverse group of plants and legumes have been used by humans since the beginning of agriculture, both as high nitrogen food, as well as pastures and rotation crops. One open question is whether their ability to form a nitrogen-fixing symbiosis has contributed to legumes' success, and whether legumes have any unique characteristics that have made them more diverse and widespread than other groups of plants. This review examines the evolutionary journey that has led to the diversification of legumes, in particular its nitrogen-fixing symbiosis, and asks four questions to investigate which legume traits might have contributed to their success: 1. In what ways do legumes differ from other plant groups that have evolved nitrogen-fixing symbioses? In order to answer this question, the characteristics of the symbioses, and efficiencies of nitrogen fixation are compared between different groups of nitrogen fixing plants. 2. Could certain unique features of legumes be a reason for their success? This section examines the manifestations and possible benefits of a nitrogen-rich 'lifestyle' in legumes. 3. If nitrogen fixation was a reason for such a success, why have some species lost the symbiosis? Formation of symbioses has trade-offs, and while these are less well known for non-legumes, there are known energetic and ecological reasons for loss of symbiotic potential in legumes. 4. What can we learn from the unique traits of legumes for future crop improvements? While exploiting some of the physiological properties of legumes could be used to improve legume breeding, our increasing molecular understanding of the essential regulators of root nodule symbioses raise hope of creating new nitrogen fixing symbioses in other crop species.
Collapse
Affiliation(s)
- Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT, 2601, Australia.
| |
Collapse
|
32
|
Abstract
Peptide signaling is an emerging paradigm in molecular plant-microbe interactions with vast implications for our understanding of plant-nematode interactions and beyond. Plant-like peptide hormones, first discovered in cyst nematodes, are now recognized as an important class of peptide effectors mediating several different types of pathogenic and symbiotic interactions. Here, we summarize what has been learned about nematode-secreted CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptide effectors since the last comprehensive review on this topic a decade ago. We also highlight new discoveries of a diverse array of peptide effectors that go beyond the CLE peptide effector family in not only phytonematodes but in organisms beyond the phylum Nematoda.
Collapse
Affiliation(s)
- Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| | - Xunliang Liu
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| |
Collapse
|
33
|
Rutter WB, Franco J, Gleason C. Rooting Out the Mechanisms of Root-Knot Nematode-Plant Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:43-76. [PMID: 35316614 DOI: 10.1146/annurev-phyto-021621-120943] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Root-knot nematodes (RKNs; Meloidogyne spp.) engage in complex parasitic interactions with many different host plants around the world, initiating elaborate feeding sites and disrupting host root architecture. Although RKNs have been the focus of research for many decades, new molecular tools have provided useful insights into the biological mechanisms these pests use to infect and manipulate their hosts. From identifying host defense mechanisms underlying resistance to RKNs to characterizing nematode effectors that alter host cellular functions, the past decade of research has significantly expanded our understanding of RKN-plant interactions, and the increasing number of quality parasite and host genomes promises to enhance future research efforts into RKNs. In this review, we have highlighted recent discoveries, summarized the current understanding within the field, and provided links to new and useful resources for researchers. Our goal is to offer insights and tools to support the study of molecular RKN-plant interactions.
Collapse
Affiliation(s)
- William B Rutter
- US Vegetable Laboratory, USDA Agricultural Research Service, Charleston, South Carolina, USA
| | - Jessica Franco
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA;
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA;
| |
Collapse
|
34
|
Hsieh YH, Wei YH, Lo JC, Pan HY, Yang SY. Arbuscular mycorrhizal symbiosis enhances tomato lateral root formation by modulating CEP2 peptide expression. THE NEW PHYTOLOGIST 2022; 235:292-305. [PMID: 35358343 DOI: 10.1111/nph.18128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Plant lateral root (LR) growth usually is stimulated by arbuscular mycorrhizal (AM) symbiosis. However, the molecular mechanism is still unclear. We used gene expression analysis, peptide treatment and virus-induced gene alteration assays to demonstrate that C-terminally encoded peptide (CEP2) expression in tomato was downregulated during AM symbiosis to mitigate its negative effect on LR formation through an auxin-related pathway. We showed that enhanced LR density and downregulated CEP2 expression were observed during mycorrhizal symbiosis. Synthetic CEP2 peptide treatment reduced LR density and impaired the expression of genes involved in indole-3-butyric acid (IBA, the precursor of IAA) to IAA conversion, auxin polar transport and the LR-related signaling pathway; however, application of IBA or synthetic auxin 1-naphthaleneacetic acid (NAA) to the roots may rescue both defective LR formation and reduced gene expression. CEP receptor 1 (CEPR1) might be the receptor of CEP2 because its knockdown plants did not respond to CEP2 treatment. Most importantly, the LR density of CEP2 overexpression or knockdown plants could not be further increased by AM inoculation, suggesting that CEP2 was critical for AM-induced LR formation. These results indicated that AM symbiosis may regulate root development by modulating CEP2, which affects the auxin-related pathway.
Collapse
Affiliation(s)
- Yu-Heng Hsieh
- Institute of Plant Biology, Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Hsien Wei
- Institute of Plant Biology, Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Jui-Chi Lo
- Institute of Plant Biology, Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsuan-Yu Pan
- Institute of Plant Biology, Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Shu-Yi Yang
- Institute of Plant Biology, Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
35
|
Dodueva IE, Lebedeva MA, Lutova LA. Phytopathogens and Molecular Mimicry. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Metabolic Profiles Reveal Changes in the Leaves and Roots of Rapeseed (Brassica napus L.) Seedlings under Nitrogen Deficiency. Int J Mol Sci 2022; 23:ijms23105784. [PMID: 35628591 PMCID: PMC9142919 DOI: 10.3390/ijms23105784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
Rapeseed (Brassica napus L.) is an important oil crop species and plays a crucial role in supplying edible oil worldwide. However, rapeseed production in the field is often severely inhibited due to nitrogen (N) deficiency. Metabolites play key roles in plant growth and resistance to environmental stress, but little is known about the differential synthesis and accumulation of metabolites underlying rapeseed adaptation to N deficiency. Here, we studied the phenotypic response and used LC–electrospray ionization (ESI), ESI–MS/MS, and widely untargeted metabolomic approaches to detect differences in rapeseed under normal N (HN) and N-deficient (LN) conditions. The results showed that N deficiency severely inhibited rapeseed shoot growth and promoted rapeseed root architectural changes under LN conditions. In total, 574 metabolites were detected, and there were 175 and 166 differentially accumulated metabolites in the leaves and roots between the HN and LN conditions, respectively. The significantly differentially accumulated metabolites were involved in four primary metabolic pathways, namely, sucrose, phenylalanine, amino acid, and tricarboxylic acid cycle metabolism. Notably, we found that plant hormones have distinct accumulation patterns in rapeseed and coordinate to play crucial roles in both maintaining growth and protecting against damage from plant disease under HN and LN conditions. Moreover, our results indicated that flavonoid compounds, especially anthocyanins and rutin, may play important roles in increasing root cell resistance to oxidative damage and soil pathogen infections. Overall, this work provides valuable information for understanding the overall metabolite changes in rapeseed under N deficiency conditions, which may be beneficial for improving and producing new varieties of rapeseed capable of high yields under low N conditions.
Collapse
|
37
|
Liu Q, Wu K, Song W, Zhong N, Wu Y, Fu X. Improving Crop Nitrogen Use Efficiency Toward Sustainable Green Revolution. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:523-551. [PMID: 35595292 DOI: 10.1146/annurev-arplant-070121-015752] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Green Revolution of the 1960s improved crop yields in part through the widespread cultivation of semidwarf plant varieties, which resist lodging but require a high-nitrogen (N) fertilizer input. Because environmentally degrading synthetic fertilizer use underlies current worldwide cereal yields, future agricultural sustainability demands enhanced N use efficiency (NUE). Here, we summarize the current understanding of how plants sense, uptake, and respond to N availability in the model plants that can be used to improve sustainable productivity in agriculture. Recent progress in unlocking the genetic basis of NUE within the broader context of plant systems biology has provided insights into the coordination of plant growth and nutrient assimilation and inspired the implementation of a new breeding strategy to cut fertilizer use in high-yield cereal crops. We conclude that identifying fresh targets for N sensing and response in crops would simultaneously enable improved grain productivity and NUE to launch a new Green Revolution and promote future food security.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Kun Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Wenzhen Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Nan Zhong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Yunzhe Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Yu L, Di Q, Zhang D, Liu Y, Li X, Mysore KS, Wen J, Yan J, Luo L. A legume-specific novel type of phytosulfokine, PSK-δ, promotes nodulation by enhancing nodule organogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2698-2713. [PMID: 35137020 DOI: 10.1093/jxb/erac051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Phytosulfokine-α (PSK-α), a tyrosine-sulfated pentapeptide with the sequence YSO3IYSO3TQ, is widely distributed across the plant kingdom and plays multiple roles in plant growth, development, and immune response. Here, we report a novel type of phytosulfokine, PSK-δ, and its precursor proteins (MtPSKδ, LjPSKδ, and GmPSKδ1), specifically from legume species. The sequence YSO3IYSO3TN of sulfated PSK-δ peptide is different from PSK-α at the last amino acid. Expression pattern analysis revealed PSK-δ-encoding precursor genes to be expressed primarily in legume root nodules. Specifically, in Medicago truncatula, MtPSKδ expression was detected in root cortical cells undergoing nodule organogenesis, in nodule primordia and young nodules, and in the apical region of mature nodules. Accumulation of sulfated PSK-δ peptide in M. truncatula nodules was detected by LC/MS. Application of synthetic PSK-δ peptide significantly increased nodule number in legumes. Similarly, overexpression of MtPSKδ in transgenic M. truncatula markedly promoted symbiotic nodulation. This increase in nodule number was attributed to enhanced nodule organogenesis induced by PSK-δ. Additional genetic evidence from the MtPSKδ mutant and RNA interference assays suggested that the PSK-δ and PSK-α peptides function redundantly in regulating nodule organogenesis. These results suggest that PSK-δ, a legume-specific novel type of phytosulfokine, promotes symbiotic nodulation by enhancing nodule organogenesis.
Collapse
Affiliation(s)
- Liangliang Yu
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qi Di
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Danping Zhang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yumin Liu
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaolin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, USA
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, USA
| | - Junhui Yan
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Li Luo
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
39
|
Xie H, Zhao W, Li W, Zhang Y, Hajný J, Han H. Small signaling peptides mediate plant adaptions to abiotic environmental stress. PLANTA 2022; 255:72. [PMID: 35218440 DOI: 10.1007/s00425-022-03859-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/14/2022] [Indexed: 05/27/2023]
Abstract
Peptide-receptor complexes activate distinct downstream regulatory networks to mediate plant adaptions to abiotic environmental stress. Plants are constantly exposed to various adverse environmental factors; thus they must adjust their growth accordingly. Plants recruit small secretory peptides to adapt to these detrimental environments. These small peptides, which are perceived by their corresponding receptors and/or co-receptors, act as local- or long-distance mobile signaling molecules to establish cell-to-cell regulatory networks, resulting in optimal cellular and physiological outputs. In this review, we highlight recent advances on the regulatory role of small peptides in plant abiotic responses and nutrients signaling.
Collapse
Affiliation(s)
- Heping Xie
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Wen Zhao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Weilin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Yuzhou Zhang
- College of Life Science, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Jakub Hajný
- Laboratory of Growth Regulators, Institute of Experimental Botany and Palacký University, The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China.
| |
Collapse
|
40
|
Gu B, Chen Y, Xie F, Murray JD, Miller AJ. Inorganic Nitrogen Transport and Assimilation in Pea ( Pisum sativum). Genes (Basel) 2022; 13:158. [PMID: 35052498 PMCID: PMC8774688 DOI: 10.3390/genes13010158] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
The genome sequences of several legume species are now available allowing the comparison of the nitrogen (N) transporter inventories with non-legume species. A survey of the genes encoding inorganic N transporters and the sensing and assimilatory families in pea, revealed similar numbers of genes encoding the primary N assimilatory enzymes to those in other types of plants. Interestingly, we find that pea and Medicago truncatula have fewer members of the NRT2 nitrate transporter family. We suggest that this difference may result from a decreased dependency on soil nitrate acquisition, as legumes have the capacity to derive N from a symbiotic relationship with diazotrophs. Comparison with M. truncatula, indicates that only one of three NRT2s in pea is likely to be functional, possibly indicating less N uptake before nodule formation and N-fixation starts. Pea seeds are large, containing generous amounts of N-rich storage proteins providing a reserve that helps seedling establishment and this may also explain why fewer high affinity nitrate transporters are required. The capacity for nitrate accumulation in the vacuole is another component of assimilation, as it can provide a storage reservoir that supplies the plant when soil N is depleted. Comparing published pea tissue nitrate concentrations with other plants, we find that there is less accumulation of nitrate, even in non-nodulated plants, and that suggests a lower capacity for vacuolar storage. The long-distance transported form of organic N in the phloem is known to be specialized in legumes, with increased amounts of organic N molecules transported, like ureides, allantoin, asparagine and amides in pea. We suggest that, in general, the lower tissue and phloem nitrate levels compared with non-legumes may also result in less requirement for high affinity nitrate transporters. The pattern of N transporter and assimilatory enzyme distribution in pea is discussed and compared with non-legumes with the aim of identifying future breeding targets.
Collapse
Affiliation(s)
- Benguo Gu
- Biochemistry & Metabolism Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; (B.G.); (Y.C.)
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| | - Yi Chen
- Biochemistry & Metabolism Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; (B.G.); (Y.C.)
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| | - Jeremy D. Murray
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| | - Anthony J. Miller
- Biochemistry & Metabolism Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; (B.G.); (Y.C.)
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| |
Collapse
|
41
|
Roy S, Griffiths M, Torres-Jerez I, Sanchez B, Antonelli E, Jain D, Krom N, Zhang S, York LM, Scheible WR, Udvardi M. Application of Synthetic Peptide CEP1 Increases Nutrient Uptake Rates Along Plant Roots. FRONTIERS IN PLANT SCIENCE 2022; 12:793145. [PMID: 35046980 PMCID: PMC8763272 DOI: 10.3389/fpls.2021.793145] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/03/2021] [Indexed: 05/26/2023]
Abstract
The root system of a plant provides vital functions including resource uptake, storage, and anchorage in soil. The uptake of macro-nutrients like nitrogen (N), phosphorus (P), potassium (K), and sulphur (S) from the soil is critical for plant growth and development. Small signaling peptide (SSP) hormones are best known as potent regulators of plant growth and development with a few also known to have specialized roles in macronutrient utilization. Here we describe a high throughput phenotyping platform for testing SSP effects on root uptake of multiple nutrients. The SSP, CEP1 (C-TERMINALLY ENCODED PEPTIDE) enhanced nitrate uptake rate per unit root length in Medicago truncatula plants deprived of N in the high-affinity transport range. Single structural variants of M. truncatula and Arabidopsis thaliana specific CEP1 peptides, MtCEP1D1:hyp4,11 and AtCEP1:hyp4,11, enhanced uptake not only of nitrate, but also phosphate and sulfate in both model plant species. Transcriptome analysis of Medicago roots treated with different MtCEP1 encoded peptide domains revealed that hundreds of genes respond to these peptides, including several nitrate transporters and a sulfate transporter that may mediate the uptake of these macronutrients downstream of CEP1 signaling. Likewise, several putative signaling pathway genes including LEUCINE-RICH REPEAT RECPTOR-LIKE KINASES and Myb domain containing transcription factors, were induced in roots by CEP1 treatment. Thus, a scalable method has been developed for screening synthetic peptides of potential use in agriculture, with CEP1 shown to be one such peptide.
Collapse
Affiliation(s)
- Sonali Roy
- Noble Research Institute LLC, Ardmore, OK, United States
- College of Agriculture, Tennessee State University, Nashville, TN, United States
| | | | | | - Bailey Sanchez
- Noble Research Institute LLC, Ardmore, OK, United States
| | | | - Divya Jain
- College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Nicholas Krom
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Shulan Zhang
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Larry M. York
- Noble Research Institute LLC, Ardmore, OK, United States
| | | | | |
Collapse
|
42
|
Liu C, Xiang D, Wu Q, Ye X, Yan H, Zhao G, Zou L. Dynamic transcriptome and co-expression analysis suggest the potential roles of small secreted peptides from Tartary buckwheat (Fagopyrum tataricum) in low nitrogen stress response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111091. [PMID: 34763875 DOI: 10.1016/j.plantsci.2021.111091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/03/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Small secreted peptides (SSPs) regulate nitrogen (N) response and signaling in plants. Although much progress has been made in understanding the functions of SSPs in N response, very little information is available regarding non-model plants. Tartary buckwheat (Fagopyrum tataricum), a dicotyledonous crop, has a good adaptability to low N (LN) stress; however, little is known regarding the associated mechanisms underlying this adaptation. In this study, 932 putative SSPs were genome-wide characterized in TB genome. Of these SSPs, 233 SSPs were annotated as established SSPs, such as CLE, RALF, PSK, and CEP peptides. The gene expression of 675 putative SSPs was detected in five tissues and 258 SSPs were tissue-specific expressed genes. To analyze the responses of TB SSPs to LN, the dynamic expression analysis of TB roots under LN stress was conducted by RNA-seq. The expression of 378 putative TB SSP genes was detected with diverse expression patterns under LN stress, and some important LN-responsive SSPs were identified. Co-expression analysis suggested SSPs may regulate the adaptability of TB under LN conditions by modulating the expression of the genes involved in N transport and assimilation and IAA signaling. Furthermore, 53 LN stress-responsive RLKs encoding genes were identified and they were predicted as potential SSP receptors. This study expands the repertoire of SSPs in plants and provides useful information for further investigation of the functions of Tartary buckwheat SSPs in LN stress responses.
Collapse
Affiliation(s)
- Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Huiling Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| |
Collapse
|
43
|
Liu Y, Zuo T, Qiu Z, Zhuang K, Hu S, Han H. Genome-wide identification reveals the function of CEP peptide in cucumber root development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:119-126. [PMID: 34775178 DOI: 10.1016/j.plaphy.2021.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/28/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
C-Terminally Encoded (CEP) peptides are crucial plant growth regulators. Nevertheless, their physiological roles in cucumber (Cucumis sativus L.), an essential worldwide economical vegetable, remains untapped. In this study, 6 cucumber CEP (CsCEP) genes were identified. A comprehensive analysis showed that the CsCEP proteins displayed conserved characteristics to the identified CEP protein members in other species. CsCEP genes expression levels were variant in cucumber tissues, and were also differentially induced by several environmental factors, suggesting distinct and overlapping roles of CsCEPs in various cucumber developmental processes. We further revealed that synthetic CsCEP4 peptide promoted cucumber primary root growth in a reactive oxygen species (ROS) dependent manner. Overall, our work will provide fundamental insights into the crucial physiological roles of small bioactive peptides during cucumber root development.
Collapse
Affiliation(s)
- Yiting Liu
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Tingting Zuo
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Ziwen Qiu
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Keqing Zhuang
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Songping Hu
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, 330045, Nanchang, China; Key Laboratory of Ministry of Education for Crop Physiology, Ecology and Genetics and Breeding of Jiangxi Agricultural University, 330045 Nanchang, China.
| | - Huibin Han
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, 330045, Nanchang, China.
| |
Collapse
|
44
|
Song X, Li J, Lyu M, Kong X, Hu S, Song Q, Zuo K. CALMODULIN-LIKE-38 and PEP1 RECEPTOR 2 integrate nitrate and brassinosteroid signals to regulate root growth. PLANT PHYSIOLOGY 2021; 187:1779-1794. [PMID: 34618046 PMCID: PMC8566301 DOI: 10.1093/plphys/kiab323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/22/2021] [Indexed: 05/23/2023]
Abstract
Plants exhibit remarkable developmental plasticity, enabling them to adapt to adverse environmental conditions such as low nitrogen (N) in the soil. Brassinosteroids (BRs) promote root foraging for nutrients under mild N deficiency, but the crosstalk between the BR- and N-signaling pathways in the regulation of root growth remains largely unknown. Here, we show that CALMODULIN-LIKE-38 (CML38), a calmodulin-like protein, specifically interacts with the PEP1 RECEPTOR 2 (PEPR2), and negatively regulates root elongation in Arabidopsis (Arabidopsis thaliana) in response to low nitrate (LN). CML38 and PEPR2 are transcriptionally induced by treatments of exogenous nitrate and BR. Compared with Col-0, the single mutants cml38 and pepr2 and the double mutant cml38 pepr2 displayed enhanced primary root growth and produced more lateral roots under LN. This is consistent with their higher nitrate absorption abilities, and their stronger expression of nitrate assimilation genes. Furthermore, CML38 and PEPR2 regulate common downstream genes related to BR signaling, and they have positive roles in BR signaling. Low N facilitated BR signal transmission in Col-0 and CML38- or PEPR2-overexpressing plants, but not in the cml38 and pepr2 mutants. Taken together, our results illustrate a mechanism by which CML38 interacts with PEPR2 to integrate LN and BR signals for coordinating root development to prevent quick depletion of N resources in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoyun Song
- Plant Biotech Center: Center of Single Cell Research, School of Agriculture and Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianfu Li
- Plant Biotech Center: Center of Single Cell Research, School of Agriculture and Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengli Lyu
- Plant Biotech Center: Center of Single Cell Research, School of Agriculture and Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiuzhen Kong
- Plant Biotech Center: Center of Single Cell Research, School of Agriculture and Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi Hu
- Plant Biotech Center: Center of Single Cell Research, School of Agriculture and Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingwei Song
- Plant Biotech Center: Center of Single Cell Research, School of Agriculture and Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaijing Zuo
- Plant Biotech Center: Center of Single Cell Research, School of Agriculture and Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
45
|
Wu D, Wang L, Zhang Y, Bai L, Yu F. Emerging roles of pathogen-secreted host mimics in plant disease development. Trends Parasitol 2021; 37:1082-1095. [PMID: 34627670 DOI: 10.1016/j.pt.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/19/2022]
Abstract
Plant pathogens and parasites use multiple virulence factors to successfully infect plants. While most plant-pathogen interaction studies focus on pathogen effectors and their functions in suppressing plant immunity or interfering with normal cellular processes, other virulence factors likely also contribute. Here we highlight another important strategy used by pathogens to promote virulence: secretion of mimics of host molecules, including peptides, phytohormones, and small RNAs, which play diverse roles in plant development and stress responses. Pathogen-secreted mimics hijack the host endogenous signaling pathways, thereby modulating host cellular functions to the benefit of the pathogen and promoting infection. Understanding the mechanisms of pathogen-secreted host mimics will expand our knowledge of host-pathogen coevolution and interactions, while providing new targets for plant disease control.
Collapse
Affiliation(s)
- Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Lifeng Wang
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China
| | - Lianyang Bai
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| | - Feng Yu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
46
|
Lee HC, Binos S, Chapman K, Pulsford SB, Ivanovici A, Rathjen JP, Djordjevic MA. A new method to visualize CEP hormone-CEP receptor interactions in vascular tissue in vivo. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6164-6174. [PMID: 34059899 DOI: 10.1093/jxb/erab244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
C-TERMINALLY ENCODED PEPTIDEs (CEPs) control diverse responses in plants including root development, root system architecture, nitrogen demand signalling, and nutrient allocation that influences yield, and there is evidence that different ligands impart different phenotypic responses. Thus, there is a need for a simple method that identifies bona fide CEP hormone-receptor pairings in vivo and examines whether different CEP family peptides bind the same receptor. We used formaldehyde or photoactivation to cross-link fluorescently tagged group 1 or group 2 CEPs to receptors in semi-purified Medicago truncatula or Arabidopsis thaliana leaf vascular tissues to verify that COMPACT ROOT ARCHITECTURE 2 (CRA2) is the Medicago CEP receptor, and to investigate whether sequence diversity within the CEP family influences receptor binding. Formaldehyde cross-linked the fluorescein isothiocyanate (FITC)-tagged Medicago group 1 CEP (MtCEP1) to wild-type Medicago or Arabidopsis vascular tissue cells, but not to the CEP receptor mutants, cra2 or cepr1. Binding competition showed that unlabelled MtCEP1 displaces FITC-MtCEP1 from CRA2. In contrast, the group 2 CEP, FITC-AtCEP14, bound to vascular tissue independently of CEPR1 or CRA2, and AtCEP14 did not complete with FITC-MtCEP1 to bind CEP receptors. The binding of a photoactivatable FITC-MtCEP1 to the periphery of Medicago vascular cells suggested that CRA2 localizes to the plasma membrane. We separated and visualized a fluorescent 105 kDa protein corresponding to the photo-cross-linked FITC-MtCEP1-CRA2 complex using SDS-PAGE. Mass spectrometry identified CRA2-specific peptides in this protein band. The results indicate that FITC-MtCEP1 binds to CRA2, MtCRA2 and AtCEPR1 are functionally equivalent, and the binding specificities of group 1 and group 2 CEPs are distinct. Using formaldehyde or photoactivated cross-linking of biologically active, fluorescently tagged ligands may find wider utility by identifying CEP-CEP receptor pairings in diverse plants.
Collapse
Affiliation(s)
- Han-Chung Lee
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Steve Binos
- Thermo Fisher Scientific, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Kelly Chapman
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Sacha B Pulsford
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Ariel Ivanovici
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - John P Rathjen
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
47
|
Furumizu C, Krabberød AK, Hammerstad M, Alling RM, Wildhagen M, Sawa S, Aalen RB. The sequenced genomes of non-flowering land plants reveal the innovative evolutionary history of peptide signaling. THE PLANT CELL 2021; 33:2915-2934. [PMID: 34240188 PMCID: PMC8462819 DOI: 10.1093/plcell/koab173] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
An understanding of land plant evolution is a prerequisite for in-depth knowledge of plant biology. Here we extract and explore information hidden in the increasing number of sequenced plant genomes, from bryophytes to angiosperms, to elucidate a specific biological question - how peptide signaling evolved. To conquer land and cope with changing environmental conditions, plants have gone through transformations that must have required innovations in cell-to-cell communication. We discuss peptides mediating endogenous and exogenous changes by interaction with receptors activating intracellular molecular signaling. Signaling peptides were discovered in angiosperms and operate in tissues and organs such as flowers, seeds, vasculature, and 3D meristems that are not universally conserved across land plants. Nevertheless, orthologs of angiosperm peptides and receptors have been identified in non-angiosperms. These discoveries provoke questions regarding co-evolution of ligands and their receptors, and whether de novo interactions in peptide signaling pathways may have contributed to generate novel traits in land plants. The answers to such questions will have profound implications for the understanding of the evolution of cell-to-cell communication and the wealth of diversified terrestrial plants. Under this perspective we have generated, analyzed, and reviewed phylogenetic, genomic, structural, and functional data to elucidate the evolution of peptide signaling.
Collapse
Affiliation(s)
- Chihiro Furumizu
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Anders K Krabberød
- Section for Evolutionary Biology and Genetics, Department of Biosciences, University of Oslo, Norway
| | - Marta Hammerstad
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo, Norway
| | - Renate M Alling
- Section for Evolutionary Biology and Genetics, Department of Biosciences, University of Oslo, Norway
| | - Mari Wildhagen
- Section for Evolutionary Biology and Genetics, Department of Biosciences, University of Oslo, Norway
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Reidunn B Aalen
- Section for Evolutionary Biology and Genetics, Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
48
|
Zhu F, Ye Q, Chen H, Dong J, Wang T. Multigene editing reveals that MtCEP1/2/12 redundantly control lateral root and nodule number in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3661-3676. [PMID: 33640986 PMCID: PMC8096600 DOI: 10.1093/jxb/erab093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/25/2021] [Indexed: 05/26/2023]
Abstract
The multimember CEP (C-terminally Encoded Peptide) gene family is a complex group that is involved in various physiological activities in plants. Previous studies demonstrated that MtCEP1 and MtCEP7 control lateral root formation or nodulation, but these studies were based only on gain of function or artificial miRNA (amiRNA)/RNAi approaches, never knockout mutants. Moreover, an efficient multigene editing toolkit is not currently available for Medicago truncatula. Our quantitative reverse transcription-PCR data showed that MtCEP1, 2, 4, 5, 6, 7, 8, 9, 12, and 13 were up-regulated under nitrogen starvation conditions and that MtCEP1, 2, 7, 9, and 12 were induced by rhizobial inoculation. Treatment with synthetic MtCEP peptides of MtCEP1, 2, 4, 5, 6, 8, and 12 repressed lateral root emergence and promoted nodulation in the R108 wild type but not in the cra2 mutant. We optimized CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9] genome editing system for M. truncatula, and thus created single mutants of MtCEP1, 2, 4, 6, and 12 and the double mutants Mtcep1/2C and Mtcep5/8C; however, these mutants did not exhibit significant differences from R108. Furthermore, a triple mutant Mtcep1/2/12C and a quintuple mutant Mtcep1/2/5/8/12C were generated and exhibited more lateral roots and fewer nodules than R108. Overall, MtCEP1, 2, and 12 were confirmed to be redundantly important in the control of lateral root number and nodulation. Moreover, the CRISPR/Cas9-based multigene editing protocol provides an additional tool for research on the model legume M. truncatula, which is highly efficient at multigene mutant generation.
Collapse
Affiliation(s)
- Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Grassland Sciences, China Agricultural University, Beijing, China
| | - Qinyi Ye
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong Chen
- State Key Laboratory of Agrobiotechnology, College of Grassland Sciences, China Agricultural University, Beijing, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
49
|
Liu C, Wu Q, Sun L, You X, Ye X, Wan Y, Wu X, Jiang L, Zhao G, Xiang D, Zou L. Nitrate dose-responsive transcriptome analysis identifies transcription factors and small secreted peptides involved in nitrogen response in Tartary buckwheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:1-13. [PMID: 33652200 DOI: 10.1016/j.plaphy.2021.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is an economically important pseudocereal crop, which can adapt well to extreme environments, including low nitrogen (LN) stress. However, little is known regarding the associated molecular mechanisms. In this study, the molecular mechanism of Tartary buckwheat roots in response to different doses of nitrate was investigated by combining physiological changes with transcriptional regulatory network. LN improved elongation and branching of lateral roots, indicating that the plasticity of lateral roots drives the adaption of Tartary buckwheat under LN condition. The roots of the seedlings that were cultivated under four N conditions were selected for RNA-Seq analysis. In total 1686 nitrate dose-responsive genes were identified. Of these genes, 16 genes encoding N transporters showed response to N availability, and they may play important roles in N transport and root system architecture in Tartary buckwheat roots. 108 transcription factors (TFs) showed dose-response to N availability, and they may regulate N response and root growth under varied N conditions by modulating the expression of N transporters. A NIN-like protein, FtNLP7, was identified and it may contribute to the transcriptional regulation of N transporters. Furthermore, 81 N-responsive genes were identified as the small secreted peptides (SSPs). 48 N-responsive SSPs were annotated as hypothetical proteins and they may be the species-specific proteins of Tartary buckwheat. This paper provides useful information for further investigation of the mechanisms underlying the adaptation of Tartary buckwheat under N-deficient condition.
Collapse
Affiliation(s)
- Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China
| | - Lu Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China
| | - Xiaoqing You
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China
| | - Liangzhen Jiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China.
| |
Collapse
|
50
|
Zhang J, Yue L, Wu X, Liu H, Wang W. Function of Small Peptides During Male-Female Crosstalk in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:671196. [PMID: 33968121 PMCID: PMC8102694 DOI: 10.3389/fpls.2021.671196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/06/2021] [Indexed: 05/25/2023]
Abstract
Plant peptides secreted as signal molecular to trigger cell-to-cell signaling are indispensable for plant growth and development. Successful sexual reproduction in plants requires extensive communication between male and female gametophytes, their gametes, and with the surrounding sporophytic tissues. In the past decade, it has been well-documented that small peptides participate in many important reproductive processes such as self-incompatibility, pollen tube growth, pollen tube guidance, and gamete interaction. Here, we provide a comprehensive overview of the peptides regulating the processes of male-female crosstalk in plant, aiming at systematizing the knowledge on the sexual reproduction, and signaling of plant peptides in future.
Collapse
|