1
|
Parri S, Cai G, Romi M, Cantini C, Pinto DCGA, Silva AMS, Dias MCP. Comparative metabolomics of leaves and stems of three Italian olive cultivars under drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1408731. [PMID: 39022609 PMCID: PMC11251969 DOI: 10.3389/fpls.2024.1408731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024]
Abstract
The Mediterranean will be one of the focal points of climate change. The predicted dry and hot summers will lead to water scarcity in agriculture, which may limit crop production and growth. The olive tree serves as a model woody plant for studying drought stress and improving water resource management; thus, it is critical to identify genotypes that are more drought tolerant and perform better under low irrigation or even rainfed conditions. In this study, the metabolomic approach was used to highlight variations in metabolites in stems and leaves of three Italian olive cultivars (previously characterized physiologically) under two and four weeks of drought stress. Phenolic and lipophilic profiles were obtained by gas chromatography-mass spectrometry and ultra-high performance liquid chromatography-mass spectrometry, respectively. The findings identified the leaf as the primary organ in which phenolic variations occurred. The Maurino cultivar exhibited a strong stress response in the form of phenolic compound accumulation, most likely to counteract oxidative stress. The phenolic compound content of 'Giarraffa' and 'Leccino' plants remained relatively stable whether they were exposed to drought or not. Variations in the lipid profile occurred in leaves and stems of all the cultivars. A high accumulation of compounds related to epicuticular wax components was observed in the leaf of 'Giarraffa', while a strong reduction of lipids and long-chain alkanes occurred in 'Maurino' when exposed to drought stress conditions.
Collapse
Affiliation(s)
- Sara Parri
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Marco Romi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Claudio Cantini
- Institute for BioEconomy (IBE), National Research Council (CNR), Follonica, Italy
| | | | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | |
Collapse
|
2
|
De Meester B, Van Acker R, Wouters M, Traversari S, Steenackers M, Neukermans J, Van Breusegem F, Déjardin A, Pilate G, Boerjan W. Field and saccharification performances of poplars severely downregulated in CAD1. THE NEW PHYTOLOGIST 2022; 236:2075-2090. [PMID: 35808905 DOI: 10.1111/nph.18366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Lignin is one of the main factors causing lignocellulosic biomass recalcitrance to enzymatic hydrolysis. Glasshouse-grown poplars severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE 1 (CAD1), the enzyme catalysing the last step in the monolignol-specific branch of lignin biosynthesis, have increased saccharification yields and normal growth. Here, we assess the performance of these hpCAD poplars in the field under short rotation coppice culture for two consecutive rotations of 1 yr and 3 yr. While 1-yr-old hpCAD wood had 10% less lignin, 3-yr-old hpCAD wood had wild-type lignin levels. Because of their altered cell wall composition, including elevated levels of cinnamaldehydes, both 1-yr-old and 3-yr-old hpCAD wood showed enhanced saccharification yields upon harsh alkaline pretreatments (up to +85% and +77%, respectively). In contrast with previous field trials with poplars less severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE (CAD), the hpCAD poplars displayed leaning phenotypes, early bud set, early flowering and yield penalties. Moreover, hpCAD wood had enlarged vessels, decreased wood density and reduced relative and free water contents. Our data show that the phenotypes of CAD-deficient poplars are strongly dependent on the environment and underpin the importance of field trials in translating basic research towards applications.
Collapse
Affiliation(s)
- Barbara De Meester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Rebecca Van Acker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Marlies Wouters
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Silvia Traversari
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- Research Institute on Terrestrial Ecosytems (IRET-CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - Marijke Steenackers
- Research Institute for Nature and Forest (INBO), Gaverstraat 4, 9500, Geraardsbergen, Belgium
| | - Jenny Neukermans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Annabelle Déjardin
- INRAE, ONF, BioForA Orléans, 2163 Avenue de la pomme de pin, 45075, Ardon, France
| | - Gilles Pilate
- INRAE, ONF, BioForA Orléans, 2163 Avenue de la pomme de pin, 45075, Ardon, France
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| |
Collapse
|
3
|
Giovannelli A, Mattana S, Emiliani G, Anichini M, Traversi ML, Pavone FS, Cicchi R. Localized stem heating from the rest to growth phase induces latewood-like cell formation and slower stem radial growth in Norway spruce saplings. TREE PHYSIOLOGY 2022; 42:1149-1163. [PMID: 34918169 DOI: 10.1093/treephys/tpab166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Recent climate projections predict a more rapid increase of winter temperature than summer and global temperature averages in temperate and cold environments. As there is relatively little experimental knowledge on the effect of winter warming on cambium phenology and stem growth in species growing in cold environments, the setting of manipulative experiments is considered of primary importance, and they can help to decipher the effect of reduced winter chilling and increased forcing temperatures on cambium reactivation, growth and xylem traits. In this study, localized stem heating was applied to investigate the effect of warming from the rest to the growth phase on cambium phenology, intra-annual stem growth dynamics and ring wood features in Picea abies (L.) H.Karst. We hypothesized that reduced winter chilling induces a postponed cambium dormancy release and decrease of stem growth, while high temperature during cell wall lignification determines an enrichment of latewood-like cells. The heating device was designed to maintain a +5 °C temperature delta with respect to air temperature, thus allowing an authentic scenario of warming. Continuous stem heating from the rest (November) to the growing phase determined, at the beginning of radial growth, a reduction of the number of cell layers in the cambium, higher number of cell layers in the wall thickening phase and an asynchronous stem radial growth when comparing heated and ambient saplings. Nevertheless, heating did not induce changes in the number of produced cell layers at the end of the growing season. The analyses of two-photon fluorescence images showed that woody rings formed during heating were enriched with latewood-like cells. Our results showed that an increase of 5 °C of temperature applied to the stem from the rest to growth might not influence, as generally reported, onset of cambial activity, but it could affect xylem morphology of Norway spruce in mountain environments.
Collapse
Affiliation(s)
- Alessio Giovannelli
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Sara Mattana
- Istituto Nazionale di Ottica (INO), Consiglio Nazionale delle Ricerche, Largo Fermi 6, Firenze 50125, Italy
| | - Giovanni Emiliani
- Istituto Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Monica Anichini
- Istituto per la Bioeconomia (IBE), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Maria Laura Traversi
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Francesco Saverio Pavone
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via G. Sansone 1, Sesto Fiorentino 50019, Italy
| | - Riccardo Cicchi
- Istituto Nazionale di Ottica (INO), Consiglio Nazionale delle Ricerche, Largo Fermi 6, Firenze 50125, Italy
- Laboratorio Europeo di Spettroscopie Non-lineari (LENS), Via N. Carrara 1, Sesto Fiorentino 50019, Italy
| |
Collapse
|
4
|
Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M. Osmoregulation and its actions during the drought stress in plants. PHYSIOLOGIA PLANTARUM 2021; 172:1321-1335. [PMID: 33280137 DOI: 10.1111/ppl.13297] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/07/2020] [Accepted: 12/01/2020] [Indexed: 05/27/2023]
Abstract
Drought stress, which causes a decline in quality and quantity of crop yields, has become more accentuated these days due to climatic change. Serious measures need to be taken to increase the tolerance of crop plants to acute drought conditions likely to occur due to global warming. Drought stress causes many physiological and biochemical changes in plants, rendering the maintenance of osmotic adjustment highly crucial. The degree of plant resistance to drought varies with plant species and cultivars, phenological stages of the plant, and the duration of plant exposure to the stress. Osmoregulation in plants under low water potential relies on synthesis and accumulation of osmoprotectants or osmolytes such as soluble proteins, sugars, and sugar alcohols, quaternary ammonium compounds, and amino acids, like proline. This review highlights the role of osmolytes in water-stressed plants and of enzymes entailed in their metabolism. It will be useful, especially for researchers working on the development of drought-resistant crops by using the metabolic-engineering techniques.
Collapse
Affiliation(s)
- Munir Ozturk
- Botany Department, Centre for Environmental Studies, Ege University, Izmir, Turkey
| | - Bengu Turkyilmaz Unal
- Department of Biotechnology, Faculty of Science and Arts, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Agrifood Campus of International Excellence, Almería, Spain
| | - Anum Khursheed
- Department of Biochemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
5
|
Heilig D, Heil B, Leibing C, Röhle H, Kovács G. Comparison of the Initial Growth of Different Poplar Clones on Four Sites in Western Slovakia-Preliminary Results. BIOENERGY RESEARCH 2021; 14:374-384. [PMID: 33488910 PMCID: PMC7810598 DOI: 10.1007/s12155-020-10227-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
This study was conducted to evaluate four hybrid poplar comparison tests along a groundwater availability gradient in Western Slovakia. The weather fluctuation during the 3-year study period was described with indices, such as the Forestry Aridity Index (FAI) or the hydrothermal coefficient (HTC). The soil chemical and physical parameters were determined from soil samples from the two upper horizons. The nutrient status and supply of the trees were categorized based on leaf elemental analysis. Altogether, 21 different clones from 6 genomic groups were compared. The survival (SRV), diameter at breast height (DBH), and height of the trees (H) had been measured annually since the plantations were established, and from these measurements, mean annual height increment (MAHI) values were derived. These weather, edaphic, and clonal factors were evaluated and compared. Significant effects of the site (edaphic factors) were found as the primary source of variance and clonal differences as secondary sources of variance among the growth of trees. The interaction of site × clone effects was not significant. The results showed that for short rotation forestry (SRF), the site parameters-especially groundwater availability-are key factors.
Collapse
Affiliation(s)
- Dávid Heilig
- Institute of Environmental and Earth Sciences, Faculty of Forestry, University of Sopron, P.O. Box 132, Sopron, H-9400 Hungary
| | - Bálint Heil
- Institute of Environmental and Earth Sciences, Faculty of Forestry, University of Sopron, P.O. Box 132, Sopron, H-9400 Hungary
- Ökoforestino Kft., Ibolya út 11. V/21, Sopron, H-9400 Hungary
| | - Christoph Leibing
- IKEA Industry Slovakia, Továrenská 2614/19, SK-901 01 Malacky, Slovakia
| | - Heinz Röhle
- Institute of Forest Growth and Forest Computer Sciences, Faculty of Forestry, Geo and Hydro Sciences, Technische Universität Dresden, Pienner Str. 8, D-01737 Tharandt, Germany
| | - Gábor Kovács
- Institute of Environmental and Earth Sciences, Faculty of Forestry, University of Sopron, P.O. Box 132, Sopron, H-9400 Hungary
- Ökoforestino Kft., Ibolya út 11. V/21, Sopron, H-9400 Hungary
| |
Collapse
|
6
|
Isotopic and Water Relation Responses to Ozone and Water Stress in Seedlings of Three Oak Species with Different Adaptation Strategies. FORESTS 2020. [DOI: 10.3390/f11080864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The impact of global changes on forest ecosystem processes is based on the species-specific responses of trees to the combined effect of multiple stressors and the capacity of each species to acclimate and cope with the environment modification. Combined environmental constraints can severely affect plant and ecological processes involved in plant functionality. This study provides novel insights into the impact of a simultaneous pairing of abiotic stresses (i.e., water and ozone (O3) stress) on the responses of oak species. Water stress (using 40 and 100% of soil water content at field capacity—WS and WW treatments, respectively) and O3 exposure (1.0, 1.2, and 1.4 times the ambient concentration—AA, 1.2AA, and 1.4AA, respectively) were carried out on Quercus robur L., Quercus ilex L., and Quercus pubescens Willd. seedlings, to study physiological traits (1. isotope signature [δ13C, δ18O and δ15N], 2. water relation [leaf water potential, leaf water content], 3. leaf gas exchange [light-saturated net photosynthesis, Asat, and stomatal conductance, gs]) for adaptation strategies in a Free-Air Controlled Exposure (FACE) experiment. Ozone decreased Asat in Q. robur and Q. pubescens while water stress decreased it in all three oak species. Ozone did not affect δ13C, whereas δ18O was influenced by O3 especially in Q. robur. This may reflect a reduction of gs with the concomitant reduction in photosynthetic capacity. However, the effect of elevated O3 on leaf gas exchange as indicated by the combined analysis of stable isotopes was much lower than that of water stress. Water stress was detectable by δ13C and by δ18O in all three oak species, while δ15N did not define plant response to stress conditions in any species. The δ13C signal was correlated to leaf water content (LWC) in Q. robur and Q. ilex, showing isohydric and anisohydric strategy, respectively, at increasing stress intensity (low value of LWC). No interactive effect of water stress and O3 exposure on the isotopic responses was found, suggesting no cross-protection on seasonal carbon assimilation independently on the species adaptation strategy.
Collapse
|
7
|
Brunetti C, Savi T, Nardini A, Loreto F, Gori A, Centritto M. Changes in abscisic acid content during and after drought are related to carbohydrate mobilization and hydraulic recovery in poplar stems. TREE PHYSIOLOGY 2020; 40:1043-1057. [PMID: 32186735 DOI: 10.1093/treephys/tpaa032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 02/26/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Drought compromises plant's ability to replace transpired water vapor with water absorbed from the soil, leading to extensive xylem dysfunction and causing plant desiccation and death. Short-term plant responses to drought rely on stomatal closure, and on the plant's ability to recover hydraulic functioning after drought relief. We hypothesize a key role for abscisic acid (ABA) not only in the control of stomatal aperture, but also in hydraulic recovery. Young plants of Populus nigra L. were used to investigate possible relationships among ABA, non-structural carbohydrates (NSC) and xylem hydraulic function under drought and after re-watering. In Populus nigra L. plants subjected to drought, water transport efficiency and hydraulic recovery after re-watering were monitored by measuring the percentage loss of hydraulic conductivity (PLC) and stem specific hydraulic conductivity (Kstem). In the same plants ABA and NSC were quantified in wood and bark. Drought severely reduced stomatal conductance (gL) and markedly increased the PLC. Leaf and stem water potential, and stem hydraulic efficiency fully recovered within 24 h after re-watering, but gL values remained low. After re-watering, we found significant correlations between changes in ABA content and hexoses concentration both in wood and bark. Our findings suggest a role for ABA in the regulation of stem carbohydrate metabolism and starch mobilization upon drought relief, possibly promoting the restoration of xylem transport capacity.
Collapse
Affiliation(s)
- Cecilia Brunetti
- National Research Council of Italy, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy
| | - Tadeja Savi
- University of Natural Resources and Life Sciences, Institute of Botany, Department of Integrative Biology and Biodiversity Research, BOKU, Gregor-Mendel-Straße 33, 1190, Vienna, Austria Austria
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Francesco Loreto
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Piazzale Aldo Moro 7, 00185 Roma, Italy
| | - Antonella Gori
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino (Florence), Italy
| | - Mauro Centritto
- National Research Council of Italy, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
8
|
Traversari S, De Carlo A, Traversi ML, Minnocci A, Francini A, Sebastiani L, Giovannelli A. Osmotic adjustments support growth of poplar cultured cells under high concentrations of carbohydrates. PLANT CELL REPORTS 2020; 39:971-982. [PMID: 32314047 DOI: 10.1007/s00299-020-02542-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Poplar callus maintained a specific difference in osmotic potential with respect to media when supplemented with different carbohydrate concentrations. This balance in osmotic potential guaranteed the growth capacity. Osmotic stress is caused by several abiotic factors such as drought, salinity, or freezing. However, the threshold of osmotic potential that allows the growth under stress conditions has not been thoroughly studied. In this study, different levels of osmotic stress in Populus alba (L.) callus have been induced with the addition of mannitol or sorbitol in the medium (from 0 to 500 mM). The key factor for preserving the growth was observed to be the restoration of a constant difference in osmotic potential between callus and medium for all the tested conditions. The osmotic adjustments were primarily achieved with the uptake of mannitol or sorbitol from the media considering their chemical properties instead of their biological functions. The decrease in water content (from - 1 to - 10% after 21 days) and mineral elements, such as potassium, calcium, and magnesium, together with the alterations in cell morphology, did not show negative effects on growth. The activity of sorbitol dehydrogenase was detected for the first time in poplar (+ 4.7 U l-1 in callus treated with sorbitol compared to control callus). This finding suggested the importance of choosing carefully the molecules used to exert osmotic stress for separating the dual function of carbohydrates in osmotic adjustments and cell metabolism.
Collapse
Affiliation(s)
- Silvia Traversari
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Anna De Carlo
- Institute of Bioeconomy (IBE-CNR), Via Madonna del Piano 10, Sesto F.no, 50019, Florence, Italy
| | - Maria Laura Traversi
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via Madonna del Piano 10, Sesto F.no, 50019, Florence, Italy
| | - Antonio Minnocci
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Alessandra Francini
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Luca Sebastiani
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Alessio Giovannelli
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via Madonna del Piano 10, Sesto F.no, 50019, Florence, Italy
| |
Collapse
|
9
|
Traversari S, Neri A, Traversi ML, Giovannelli A, Francini A, Sebastiani L. Daily osmotic adjustments in stem may be good predictors of water stress intensity in poplar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:13-22. [PMID: 31710921 DOI: 10.1016/j.plaphy.2019.10.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Drought events impair the carbon and water balances in plants. Climate changes highlight the importance to understand the limits of woody species to reallocate carbon in different processes and the mechanisms driving the osmotic adjustments during the day under stress. In this frame, the aim of this work was to investigate the plant capability to shift energy among competing sinks and preserve the osmotic balance during the day under severe short periods of water deficit. The role of carbohydrates as osmolytes as well as energy sources was investigated in poplar plants. Results highlighted that during water deficit soluble sugars, derived both from the new synthetised carbon and starch degradation, were principally convoyed in the bark. This increase in carbohydrates allowed the maintenance of a water reserve used during the day to prevent a water decrease within the xylem. The decrease of xylem sap osmotic potential during the night, driven by an increase of K, Ca, and fructose (+0.46, 0.52, and 0.26 mg ml-1 in water limited plants after 8 days of withholding water, respectively), probably further attracted water into the xylem. This response mechanism increased at higher water deficit intensity. The little variations in carbohydrates and mineral elements within the leaves highlighted the main role of sinks rather than sources in the early response to water deficit.
Collapse
Affiliation(s)
- Silvia Traversari
- BioLabs Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Andrea Neri
- BioLabs Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Maria Laura Traversi
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto F.no, Florence, Italy
| | - Alessio Giovannelli
- BioLabs Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy; Research Institute on Terrestrial Ecosystems (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto F.no, Florence, Italy
| | - Alessandra Francini
- BioLabs Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Luca Sebastiani
- BioLabs Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| |
Collapse
|
10
|
Paoletti E, Alivernini A, Anav A, Badea O, Carrari E, Chivulescu S, Conte A, Ciriani ML, Dalstein-Richier L, De Marco A, Fares S, Fasano G, Giovannelli A, Lazzara M, Leca S, Materassi A, Moretti V, Pitar D, Popa I, Sabatini F, Salvati L, Sicard P, Sorgi T, Hoshika Y. Toward stomatal-flux based forest protection against ozone: The MOTTLES approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:516-527. [PMID: 31325852 DOI: 10.1016/j.scitotenv.2019.06.525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
European standards for the protection of forests from ozone (O3) are based on atmospheric exposure (AOT40) that is not always representative of O3 effects since it is not a proxy of gas uptake through stomata (stomatal flux). MOTTLES "MOnitoring ozone injury for seTTing new critical LEvelS" is a LIFE project aimed at establishing a permanent network of forest sites based on active O3 monitoring at remote areas at high and medium risk of O3 injury, in order to define new standards based on stomatal flux, i.e. PODY (Phytotoxic Ozone Dose above a threshold Y of uptake). Based on the first year of data collected at MOTTLES sites, we describe the MOTTLES monitoring station, together with protocols and metric calculation methods. AOT40 and PODY, computed with different methods, are then compared and correlated with forest-health indicators (radial growth, crown defoliation, visible foliar O3 injury). For the year 2017, the average AOT40 calculated according to the European Directive was even 5 times (on average 1.7 times) the European legislative standard for the protection of forests. When the metrics were calculated according to the European protocols (EU Directive 2008/50/EC or Modelling and Mapping Manual LTRAP Convention), the values were well correlated to those obtained on the basis of the real duration of the growing season (i.e. MOTTLES method) and were thus representative of the actual exposure/flux. AOT40 showed opposite direction relative to PODY. Visible foliar O3 injury appeared as the best forest-health indicator for O3 under field conditions and was more frequently detected at forest edge than inside the forest. The present work may help the set-up of further long-term forest monitoring sites dedicated to O3 assessment in forests, especially because flux-based assessments are recommended as part of monitoring air pollution impacts on ecosystems in the revised EU National Emissions Ceilings Directive.
Collapse
Affiliation(s)
- E Paoletti
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - A Alivernini
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy
| | - A Anav
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; ENEA, SSPT-PVS, Via Anguillarese 301, 00123 Santa Maria di Galeria (Rome), Italy
| | - O Badea
- INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania
| | - E Carrari
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
| | - S Chivulescu
- INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania
| | - A Conte
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy
| | - M L Ciriani
- GIEFS, 69 avenue des Hespérides, 06300 Nice, France
| | | | - A De Marco
- ENEA, SSPT-PVS, Via Anguillarese 301, 00123 Santa Maria di Galeria (Rome), Italy
| | - S Fares
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy
| | - G Fasano
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - A Giovannelli
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - M Lazzara
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - S Leca
- INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania
| | - A Materassi
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - V Moretti
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy
| | - D Pitar
- INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania
| | - I Popa
- INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania
| | - F Sabatini
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - L Salvati
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy
| | - P Sicard
- ARGANS, 260 route du Pin Montard, 06410 Biot, France
| | - T Sorgi
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy
| | - Y Hoshika
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Effect of Long-Term vs. Short-Term Ambient Ozone Exposure on Radial Stem Growth, Sap Flux and Xylem Morphology of O3-Sensitive Poplar Trees. FORESTS 2019. [DOI: 10.3390/f10050396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High ozone (O3) pollution impairs the carbon and water balance of trees, which is of special interest in planted forests. However, the effect of long-term O3 exposure on tree growth and water use, little remains known. In this study, we analysed the relationships of intra-annual stem growth pattern, seasonal sap flow dynamics and xylem morphology to assess the effect of long term O3 exposure of mature O3-sensitive hybrid poplars (‘Oxford’ clone). Rooted cuttings were planted in autumn 2007 and drip irrigated with 2 liters of water as ambient O3 treatment, or 450 ppm ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N0-phenylurea, abbreviated as EDU) solution as O3 protection treatment over all growing seasons. During 2013, point dendrometers and heat pulses were installed to monitor radial growth, stem water relations and sap flow. Ambient O3 did not affect growth rates, even if the seasonal culmination point was 20 days earlier on average than that recorded in the O3 protected trees. Under ambient O3, trees showed reduced seasonal sap flow, however, the lower water use was due to a decrease of Huber value (decrease of leaf area for sapwood unit) rather than to a change in xylem morphology or due to a direct effect of sluggish stomatal responses on transpiration. Under high evaporative demand and ambient O3 concentrations, trees showed a high use of internal stem water resources modulated by stomatal sluggishness, thus predisposing them to be more sensitive water deficit during summer. The results of this study help untangle the compensatory mechanisms involved in the acclimation processes of forest species to long-term O3 exposure in a context of global change.
Collapse
|
12
|
Sellier D, Mammeri Y. Diurnal dynamics of phloem loading: theoretical consequences for transport efficiency and flow characteristics. TREE PHYSIOLOGY 2019; 39:300-311. [PMID: 30753675 DOI: 10.1093/treephys/tpz001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Phloem transport is the process by which plants internally distribute assimilates. The loading of assimilates near the photosynthetic source is responsible for generating enough osmotic pressure to drive sap flow towards the sink tissues where assimilates are consumed. Phloem loading is variable and subject to a diurnal cycle. It is dominated by photosynthesis during the day and by degradation of leaf starch to sugars at night. Most studies ignore the effect of the loading cycle on transport and assume that sugar flow operates at equilibrium. In this study, phloem transport was simulated for three successive days using a finite element model of time-dependent Münch-Horwitz equations. The spatial and temporal distributions of phloem pressure, sucrose concentration, sap velocity and sucrose flux were predicted for five different time variations in sucrose loading. Results showed that periodic loading induces an alternance of two distinct transport phases: one with high pressure, concentration and sucrose flux magnitudes and another with low magnitudes. In contrast, phloem water velocity remained remarkably stable. The alternating phases persisted over time and, under source-driven variation, transport did not reach steady-state conditions for the tested configuration. However, the impact of loading dynamics on transport was mitigated by pathway effects. Oscillations were not only delayed as one travelled away from the source, their amplitude was also reduced over distance. That behaviour stabilized the supply of sucrose to the sink, which continued at moderate levels during the dark cycles. This finding suggests that transport would assist night conversion of starch to sugars in the leaf to prevent carbon starvation at distant sinks in the early morning. The propagation velocity of pressure/concentration waves in phloem was predicted to vary by a factor up to 2.5 depending on the time series chosen to describe the dynamics of loading. Finally, the model predicted that up to 87% of the amount of sucrose loaded over 48 h would be unloaded under time-dependent loading, whereas only 76% would under constant-rate loading. This additional efficiency was periodic. It did not increase significantly the overall efficiency of the system but could be responsible for inducing rhythms in sink activity.
Collapse
Affiliation(s)
- Damien Sellier
- New Zealand Forest Research Institute (trading as SCION), Private Bag 3020, Rotorua, New Zealand
| | - Youcef Mammeri
- Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS UMR 7352, Université de Picardie Jules Verne, Amiens, France
- Institut de Génétique, Environnement et Protection des Plantes, INRA UMR 1349, Le Rheu, France
| |
Collapse
|