1
|
Zhang TY, Liu NN. Fungal influence: The role of the gut mycobiome in women's health. Cell Host Microbe 2025; 33:17-19. [PMID: 39788095 DOI: 10.1016/j.chom.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025]
Abstract
In this issue of Cell Host & Microbe, Wu et al. identified enriched gut Aspergillus tubingensis in patients with polycystic ovary syndrome (PCOS). In mice, this fungus induced a PCOS-like phenotype by inhibiting interleukin (IL)-22 secretion from ILC3s via the AT-C1-AhR axis. PCOS, a women's health concern, is influenced by the gut mycobiome.
Collapse
Affiliation(s)
- Tian-Yi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
2
|
Al-Nijir M, Chuck CJ, Bedford MR, Henk DA. Metabolic modelling uncovers the complex interplay between fungal probiotics, poultry microbiomes, and diet. MICROBIOME 2024; 12:267. [PMID: 39707513 DOI: 10.1186/s40168-024-01970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/07/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The search for alternatives to antibiotic growth promoters in poultry production has increased interest in probiotics. However, the complexity of the interactions between probiotics, gut microbiome, and the host hinders the development of effective probiotic interventions. This study explores metabolic modelling to examine the possibility of designing informed probiotic interventions within poultry production. RESULTS Genomic metabolic models of fungi were generated and simulated in the context of poultry gut microbial communities. The modelling approach correlated with short-chain fatty acid production, particularly in the caecum. Introducing fungi to poultry microbiomes resulted in strain-specific and diet-dependent effects on the gut microbiome. The impact of fungal probiotics on microbiome diversity and pathogen inhibition varied depending on the specific strain, resident microbiome composition, and host diet. This context-dependency highlights the need for tailored probiotic interventions that consider the unique characteristics of each poultry production environment. CONCLUSIONS This study demonstrates the potential of metabolic modelling to elucidate the complex interactions between probiotics, the gut microbiome, and diet in poultry. While the effects of specific fungal strains were found to be context-dependent, the approach itself provides a valuable tool for designing targeted probiotic interventions. By considering the specific characteristics of the host microbiome and dietary factors, this methodology could guide the deployment of effective probiotics in poultry production. However, the current work relies on computational predictions, and further in vivo validation studies are needed to confirm the efficacy of the identified probiotic candidates. Nonetheless, this study represents a significant step in using metabolic models to inform probiotic interventions in the poultry industry. Video Abstract.
Collapse
Affiliation(s)
- Montazar Al-Nijir
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | | | - Daniel A Henk
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
3
|
Thakur R, Shishodia SK, Sharma A, Chauhan A, Kaur S, Shankar J. Accelerating the understanding of Aspergillus terreus: Epidemiology, physiology, immunology and advances. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100220. [PMID: 38303967 PMCID: PMC10831165 DOI: 10.1016/j.crmicr.2024.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Aspergillus species encompass a variety of infections, ranging from invasive aspergillosis to allergic conditions, contingent upon the immune status of the host. In this spectrum, Aspergillus terreus stands out due to its emergence as a notable pathogen and its intrinsic resistance to amphotericin-B. The significance of Aspergillus-associated infections has witnessed a marked increase in the past few decades, particularly with the increasing number of immunocompromised individuals. The exploration of epidemiology, morphological transitions, immunopathology, and novel treatment approaches such as new antifungal drugs (PC945, olorofim) and combinational therapy using antifungal drugs and phytochemicals (Phytochemicals: quercetin, shikonin, artemisinin), also using immunotherapies to modulate immune response has resulted in better outcomes. Furthermore, in the context COVID-19 era and its aftermath, fungal infections have emerged as a substantial challenge for both immunocompromised and immunocompetent individuals. This is attributed to the use of immune-suppressing therapies during COVID-19 infections and the increase in transplant cases. Consequently, this review aims to provide an updated overview encompassing the epidemiology, germination events, immunopathology, and novel drug treatment strategies against Aspergillus terreus-associated infections.
Collapse
Affiliation(s)
- Raman Thakur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar, Punjab, India
| | | | - Ananya Sharma
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan, Himachal Pradesh, India
| | - Arjun Chauhan
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Sumanpreet Kaur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar, Punjab, India
| | - Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan, Himachal Pradesh, India
| |
Collapse
|
4
|
Pérez-Llano Y, Yarzábal Rodríguez LA, Martínez-Romero E, Dobson ADW, Gunde-Cimerman N, Vasconcelos V, Batista-García RA. From friends to foes: fungi could be emerging marine sponge pathogens under global change scenarios. Front Microbiol 2023; 14:1213340. [PMID: 37670990 PMCID: PMC10476623 DOI: 10.3389/fmicb.2023.1213340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Global change, experienced in the form of ocean warming and pollution by man-made goods and xenobiotics, is rapidly affecting reef ecosystems and could have devastating consequences for marine ecology. Due to their critical role in regulating marine food webs and trophic connections, sponges are an essential model for studying and forecasting the impact of global change on reef ecosystems. Microbes are regarded as major contributors to the health and survival of sponges in marine environments. While most culture-independent studies on sponge microbiome composition to date have focused on prokaryotic diversity, the importance of fungi in holobiont behavior has been largely overlooked. Studies focusing on the biology of sponge fungi are uncommon. Thus, our current understanding is quite limited regarding the interactions and “crosstalk” between sponges and their associated fungi. Anthropogenic activities and climate change may reveal sponge-associated fungi as novel emerging pathogens. Global change scenarios could trigger the expression of fungal virulence genes and unearth new opportunistic pathogens, posing a risk to the health of sponges and severely damaging reef ecosystems. Although ambitious, this hypothesis has not yet been proven. Here we also postulate as a pioneering hypothesis that manipulating sponge-associated fungal communities may be a new strategy to cope with the threats posed to sponge health by pathogens and pollutants. Additionally, we anticipate that sponge-derived fungi might be used as novel sponge health promoters and beneficial members of the resident sponge microbiome in order to increase the sponge's resistance to opportunistic fungal infections under a scenario of global change.
Collapse
Affiliation(s)
- Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Center for Genomic Sciences, Autonomous National University of Mexico (UNAM), Cuernavaca, Morelos, Mexico
| | | | - Esperanza Martínez-Romero
- Center for Genomic Sciences, Autonomous National University of Mexico (UNAM), Cuernavaca, Morelos, Mexico
| | | | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty. University of Ljubljana, Ljubljana, Slovenia
| | - Vitor Vasconcelos
- CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| |
Collapse
|
5
|
Stemler J, Többen C, Lass-Flörl C, Steinmann J, Ackermann K, Rath PM, Simon M, Cornely OA, Koehler P. Diagnosis and Treatment of Invasive Aspergillosis Caused by Non- fumigatus Aspergillus spp. J Fungi (Basel) 2023; 9:500. [PMID: 37108955 PMCID: PMC10141595 DOI: 10.3390/jof9040500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
With increasing frequency, clinical and laboratory-based mycologists are consulted on invasive fungal diseases caused by rare fungal species. This review aims to give an overview of the management of invasive aspergillosis (IA) caused by non-fumigatus Aspergillus spp.-namely A. flavus, A. terreus, A. niger and A. nidulans-including diagnostic and therapeutic differences and similarities to A. fumigatus. A. flavus is the second most common Aspergillus spp. isolated in patients with IA and the predominant species in subtropical regions. Treatment is complicated by its intrinsic resistance against amphotericin B (AmB) and high minimum inhibitory concentrations (MIC) for voriconazole. A. nidulans has been frequently isolated in patients with long-term immunosuppression, mostly in patients with primary immunodeficiencies such as chronic granulomatous disease. It has been reported to disseminate more often than other Aspergillus spp. Innate resistance against AmB has been suggested but not yet proven, while MICs seem to be elevated. A. niger is more frequently reported in less severe infections such as otomycosis. Triazoles exhibit varying MICs and are therefore not strictly recommended as first-line treatment for IA caused by A. niger, while patient outcome seems to be more favorable when compared to IA due to other Aspergillus species. A. terreus-related infections have been reported increasingly as the cause of acute and chronic aspergillosis. A recent prospective international multicenter surveillance study showed Spain, Austria, and Israel to be the countries with the highest density of A. terreus species complex isolates collected. This species complex seems to cause dissemination more often and is intrinsically resistant to AmB. Non-fumigatus aspergillosis is difficult to manage due to complex patient histories, varying infection sites and potential intrinsic resistances to antifungals. Future investigational efforts should aim at amplifying the knowledge on specific diagnostic measures and their on-site availability, as well as defining optimal treatment strategies and outcomes of non-fumigatus aspergillosis.
Collapse
Affiliation(s)
- Jannik Stemler
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50923 Cologne, Germany
| | - Christina Többen
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50923 Cologne, Germany
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, European Diamond Excellence Center for Medical Mycology (ECMM), Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Jörg Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, 90419 Nuremberg, Germany
- Institute of Medical Microbiology, University Hospital Essen, European Diamond Excellence Center for Medical Mycology (ECMM), 45147 Essen, Germany
| | - Katharina Ackermann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, 90419 Nuremberg, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, University Hospital Essen, European Diamond Excellence Center for Medical Mycology (ECMM), 45147 Essen, Germany
| | - Michaela Simon
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Oliver Andreas Cornely
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50923 Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, 50935 Cologne, Germany
| | - Philipp Koehler
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
| |
Collapse
|
6
|
Xu X, Ding F, Hu X, Yang F, Zhang T, Dong J, Xue Y, Liu T, Wang J, Jin Q. Upper respiratory tract mycobiome alterations in different kinds of pulmonary disease. Front Microbiol 2023; 14:1117779. [PMID: 37032908 PMCID: PMC10076636 DOI: 10.3389/fmicb.2023.1117779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction The human respiratory tract is considered to be a polymicrobial niche, and an imbalance in the microorganism composition is normally associated with several respiratory diseases. In addition to the well-studied bacteriome, the existence of fungal species in the respiratory tract has drawn increasing attention and has been suggested to have a significant clinical impact. However, the understanding of the respiratory fungal microbiota (mycobiome) in pulmonary diseases is still insufficient. Methods In this study, we investigated the fungal community composition of oropharynx swab (OS) samples from patients with five kinds of pulmonary disease, including interstitial lung disease (ILD), bacterial pneumonia (BP), fungal pneumonia (FP), asthma (AS) and lung cancer (LC), and compared them with healthy controls (HCs), based on high-throughput sequencing of the amplified fungal internal transcribed spacer (ITS) region. Results The results showed significant differences in fungal composition and abundance between disease groups and HCs. Malassezia was the most significant genus, which was much more abundant in pulmonary diseases than in the control. In addition, many common taxa were shared among different disease groups, but differences in taxa abundance and specific species in distinct disease groups were also observed. Based on linear discriminant analysis effect size (LefSe), each group had its characteristic species. Furthermore, some species showed a significant correlation with the patient clinical characteristics. Discussion Our study deepened our understanding of the respiratory tract mycobiome in some diseases that are less studied and identified the commonalities and differences among different kinds of pulmonary disease. These results would provide the solid basis for further investigation of the association between the mycobiome and pathogenicity of pulmonary diseases.
Collapse
Affiliation(s)
- Xingye Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangping Ding
- Division of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiangqi Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Xue
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Tao Liu,
| | - Jing Wang
- Division of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Jing Wang,
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Qi Jin,
| |
Collapse
|
7
|
Matsumoto Y, Suzuki M, Nihei H, Matsumoto S. Discovery of Tolerance to Itraconazole in Japanese Isolates of Aspergillus Section Nigri, Aspergillus tubingensis and Aspergillus welwitschiae, by Microscopic Observation. Med Mycol J 2022; 63:65-69. [PMID: 36047184 DOI: 10.3314/mmj.22-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aspergillus section Nigri, a group of black Aspergillus, has several cryptic species that were recently discovered to be intrinsically resistant to azole antifungals. In this study, susceptibility testing of 35 clinical isolates of Aspergillus tubingensis and Aspergillus welwitschiae in Japan was carried out using microdilution method. Strains tolerant to itraconazole in A. tubingensis (14/17 strains) and A. welwitschiae (6/18 strains) were discovered with hyphal growth and conidial germination above the minimal inhibitory concentration by microscopic observation, while no resistant strain was observed macroscopically. In contrast, no strain with reduced susceptibility to voriconazole, posaconazole, and amphotericin-B was found. Further examination may be required to determine the susceptibility of cryptic species in Aspergillus section Nigri to antifungals.
Collapse
Affiliation(s)
- Yasunobu Matsumoto
- Infectious Diseases Testing Department, Microbiological Testing Group, LSI Medience Corporation
| | - Makoto Suzuki
- Infectious Diseases Testing Department, Microbiological Testing Group, LSI Medience Corporation
| | - Hiroyoshi Nihei
- Infectious Diseases Testing Department, Microbiological Testing Group, LSI Medience Corporation
| | - Satoru Matsumoto
- Infectious Diseases Testing Department, Microbiological Testing Group, LSI Medience Corporation
| |
Collapse
|
8
|
Cateau E, Leclerc A, Cartier N, Valsechi I, Bailly É, Senechal RL, Becerra M, Gallou BL, Lavergne RA, Chesnay A, Robin JP, Cray C, Goddard N, Thorel M, Guillot J, Mulot B, Desoubeaux G. pAspergillosis in a colony of Humboldt penguins (Spheniscus humboldti) under managed care: a clinical and environmental investigation in a French zoological park. Med Mycol 2022; 60:6609783. [PMID: 35713494 DOI: 10.1093/mmy/myac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/27/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Aspergillosis is pervasive in bird populations, especially those under human care. Its management can be critically impacted by exposure to high levels of conidia and by resistance to azole drugs. The fungal contamination in the environment of a Humboldt penguin (Spheniscus humboldti) group, housed in a French zoological park next to numerous large crop fields, was assessed through three serial sessions of surface sampling in nests, in 2018-20: all isolates were counted and characterized by sequencing. When identified as A. fumigatus, they were systematically screened for resistance mutations in the cyp51A gene and tested for MICs determination. In the same time, the clinical incidence of aspergillosis was evaluated in the penguin population by the means of systematic necropsy and mycological investigations. A microsatellite-based analysis tracked the circulation of A. fumigatus strains. Environmental investigations highlighted substantial increase of the fungal load during the summer season (>12-fold vs. the other timepoints) and large overrepresentation of species belonging to the Aspergillus section Fumigati, ranging from 22.7 to 94.6% relative prevalence. Only one cryptic species was detected (A. nishimurae), and one isolate exhibited G138S resistance mutation with elevated MICs. The overall incidence of aspergillosis was measured at ∼3.4% case-years, and mostly in juveniles. The analysis of microsatellite polymorphism revealed a high level of genetic diversity among A. fumigatus clinical isolates. In contrast, one environmental strain appeared largely overrepresented during the summer sampling session. In all, the rural location of the zoo did not influence the emergence of resistant strains.
Collapse
Affiliation(s)
- Estelle Cateau
- Parasitologie - Mycologie - Médecine tropicale, Hôpital Bretonneau, 37044 CHRU Tours, France.,Parasitologie - Mycologie, Hôpital de la Milétrie, 86021 CHU Poitiers, France
| | - Antoine Leclerc
- ZooParc de Beauval & Beauval Nature, 41110 Saint-Aignan-sur-Cher, France
| | - Noémie Cartier
- Parasitologie - Mycologie - Médecine tropicale, Hôpital Bretonneau, 37044 CHRU Tours, France
| | - Isabel Valsechi
- Dynamyc - Université Paris-Est Créteil-Val de Marne (UPEC), Ecole nationale vétérinaire d'Alfort (EnvA), USC Anses, 94000 Créteil, France
| | - Éric Bailly
- Parasitologie - Mycologie - Médecine tropicale, Hôpital Bretonneau, 37044 CHRU Tours, France
| | - Ronan Le Senechal
- Parasitologie - Mycologie - Médecine tropicale, Hôpital Bretonneau, 37044 CHRU Tours, France
| | - Margaux Becerra
- Parasitologie - Mycologie - Médecine tropicale, Hôpital Bretonneau, 37044 CHRU Tours, France
| | - Brice Le Gallou
- Parasitologie - Mycologie - Médecine tropicale, Hôpital Bretonneau, 37044 CHRU Tours, France
| | - Rose-Anne Lavergne
- Parasitologie - Mycologie, Hôtel Dieu, 44093 CHU Nantes, France.,Institute de Recherche en Santé 2, EA1155-IICiMed, 44200 Université de Nantes Atlantique, France
| | - Adélaïde Chesnay
- Parasitologie - Mycologie - Médecine tropicale, Hôpital Bretonneau, 37044 CHRU Tours, France.,Centre d'Etude des Pathologies Respiratoires - Inserm U100, Faculté de médecine, 37032 Université de Tours, France
| | - Jean-Patrice Robin
- Institut pluridisciplinaire Hubert Curien, CNRS - UMR 7178, 67037 Université de Strasbourg, France
| | - Carolyn Cray
- Miami University, Comparative pathology, Miller school of medicien, 33136 Miami - Florida, U.S.A
| | - Nicolas Goddard
- ZooParc de Beauval & Beauval Nature, 41110 Saint-Aignan-sur-Cher, France
| | - Milan Thorel
- ZooParc de Beauval & Beauval Nature, 41110 Saint-Aignan-sur-Cher, France
| | - Jacques Guillot
- Dynamyc - Université Paris-Est Créteil-Val de Marne (UPEC), Ecole nationale vétérinaire d'Alfort (EnvA), USC Anses, 94000 Créteil, France.,Oniris, Ecole nationale vétérinaire de Nantes, 44307 Nantes, France
| | - Baptiste Mulot
- ZooParc de Beauval & Beauval Nature, 41110 Saint-Aignan-sur-Cher, France
| | - Guillaume Desoubeaux
- Parasitologie - Mycologie - Médecine tropicale, Hôpital Bretonneau, 37044 CHRU Tours, France.,Centre d'Etude des Pathologies Respiratoires - Inserm U100, Faculté de médecine, 37032 Université de Tours, France
| |
Collapse
|
9
|
Ban S, Kasaishi R, Kamijo T, Noritake C, Kawasaki H. An exploratory MALDI-TOF MS library based on SARAMIS superspectra for rapid identification of Aspergillus section Nigri. MYCOSCIENCE 2021; 62:224-232. [PMID: 37092173 PMCID: PMC9721511 DOI: 10.47371/mycosci.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022]
Abstract
Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) is a broadly used technique for identification and typing of microorganisms. However, its application to filamentous fungi has been delayed. The objective of this study was to establish a data library for rapid identification of the genus Aspergillus sect. Nigri using MALDI-TOF MS. With respect to sample preparation, we compared the utility of using mature mycelia, including conidial structures, to accumulate a wider range of proteins versus the conventional method relying on young hyphae. Mass spectral datasets obtained for 61 strains of 17 species were subjected to cluster analysis and compared with a phylogenetic tree based on calmodulin gene sequences. Specific and frequent mass spectral peaks corresponding to each phylogenetic group were selected (superspectra for the SARAMIS system). Fifteen superspectra representing nine species were ultimately created. The percentage of correct identification for 217 spectra was improved from 36.41% to 86.64% using the revised library. Additionally, 2.76% of the spectra were assigned to candidates that comprised several related species, including the correct species.
Collapse
Affiliation(s)
- Sayaka Ban
- Medical Mycology Research Center, Chiba University
| | - Rieko Kasaishi
- Biological Resource Center, National Institute of Technology and Evaluation
| | - Tomoaki Kamijo
- Biological Resource Center, National Institute of Technology and Evaluation
| | - Chiaki Noritake
- Biological Resource Center, National Institute of Technology and Evaluation
| | - Hiroko Kawasaki
- Biological Resource Center, National Institute of Technology and Evaluation
| |
Collapse
|
10
|
Jaggi TK, Ter SK, Mac Aogáin M, Chotirmall SH. Aspergillus-Associated Endophenotypes in Bronchiectasis. Semin Respir Crit Care Med 2021; 42:556-566. [PMID: 34261180 DOI: 10.1055/s-0041-1730947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bronchiectasis is a chronic condition of global relevance resulting in permanent and irreversible structural airway damage. Bacterial infection in bronchiectasis is well studied; however, recent molecular studies identify fungi as important pathogens, either independently or in association with bacteria. Aspergillus species are established fungal pathogens in cystic fibrosis and their role is now increasingly being recognized in noncystic fibrosis bronchiectasis. While the healthy airway is constantly exposed to ubiquitously present Aspergillus conidia in the environment, anatomically damaged airways appear more prone to colonization and subsequent infection by this fungal group. Aspergilli possess diverse immunopathological mechanistic capabilities and when coupled with innate immune defects in a susceptible host, such as that observed in bronchiectasis, it may promote a range of clinical manifestations including sensitization, allergic bronchopulmonary aspergillosis, Aspergillus bronchitis, and/or invasive aspergillosis. How such clinical states influence "endophenotypes" in bronchiectasis is therefore of importance, as each Aspergillus-associated disease state has overlapping features with bronchiectasis itself, and can evolve, depending on underlying host immunity from one type into another. Concurrent Aspergillus infection complicates the clinical course and exacerbations in bronchiectasis and therefore dedicated research to better understand the Aspergillus-host interaction in the bronchiectasis airway is now warranted.
Collapse
Affiliation(s)
- Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Soo Kai Ter
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland.,Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Ireland
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
11
|
Molecular Diversity of Aspergilli in Two Iranian Hospitals. Mycopathologia 2021; 186:519-533. [PMID: 34052941 DOI: 10.1007/s11046-021-00563-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/15/2021] [Indexed: 12/13/2022]
Abstract
The Aspergillus species are main causative agents of various infections such as invasive aspergillosis (IA) in immunocompromised patients and these infections have high mortality rates. In this study, we provide insight in the species causing aspergillosis in Iran based on morphology and sequence data. Clinical (n = 117) and environmental isolates (n = 54) collected during 2010-2016 from University hospitals in Mashhad and Tehran (Iran) were identified both morphologically and molecularly using partial calmodulin (CaM) gene sequences. Clinical cases were identified based on EORTC/MSG criteria. Aspergillus flavus (n = 96, 55%) was the most prevalent species among the clinical and environmental isolates while A. fumigatus (n = 13, 7.5%) ranked fourth after A. tubingensis (n = 23, 13%) and A. welwitchiae (n = 18, 10%). Species such as A. tubingensis, A. welwitschiae, A. fumigatus, A. sydowii, A. neoniger and A. terreus were present in both clinical and environmental samples indicating the possible environmental source of infections. Interestingly, A. niger was isolated only once. Furthermore, 13 other rare and cryptic Aspergillus species were detected. Pulmonary and respiratory disorders (n = 33), followed by transplantation (n = 23), invasive fungal rhinosinusitis (n = 14), and haematological malignancies (n = 12) were major predisposing factors. According to EORTC/MSG criteria, there were 43 probable cases identified followed by 36 cases for each of proven and possible ones. Correct molecular identification will be useful for further epidemiological studies.
Collapse
|
12
|
Wardlaw AJ, Rick EM, Pur Ozyigit L, Scadding A, Gaillard EA, Pashley CH. New Perspectives in the Diagnosis and Management of Allergic Fungal Airway Disease. J Asthma Allergy 2021; 14:557-573. [PMID: 34079294 PMCID: PMC8164695 DOI: 10.2147/jaa.s251709] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
Allergy to airway-colonising, thermotolerant, filamentous fungi represents a distinct eosinophilic endotype of often severe lung disease. This endotype, which particularly affects adult asthma, but also complicates other airway diseases and sometimes occurs de novo, has a heterogeneous presentation ranging from severe eosinophilic asthma to lobar collapse. Its hallmark is lung damage, characterised by fixed airflow obstruction (FAO), bronchiectasis and lung fibrosis. It has a number of monikers including severe asthma with fungal sensitisation (SAFS) and allergic bronchopulmonary aspergillosis/mycosis (ABPA/M), but these exclusive terms constitute only sub-sets of the condition. In order to capture the full extent of the syndrome we prefer the inclusive term allergic fungal airway disease (AFAD), the criteria for which are IgE sensitisation to relevant fungi in association with airway disease. The primary fungus involved is Aspergillus fumigatus, but a number of other thermotolerant species from several genera have been implicated. The unifying mechanism involves germination of inhaled fungal spores in the lung in the context of IgE sensitisation, leading to a persistent and vigorous eosinophilic inflammatory response in association with release of fungal proteases. Most allergenic fungi, including Alternaria and Cladosporium species, are not thermotolerant and cannot germinate in the airways so only act as aeroallergens and do not cause AFAD. Studies of the airway mycobiome have shown that A. fumigatus colonises the normal as much as the asthmatic airway, suggesting it is the tendency to become IgE-sensitised that is the critical triggering factor for AFAD rather than colonisation per se. Treatment is aimed at preventing exacerbations with glucocorticoids and increasingly by the use of anti-T2 biological therapies. Anti-fungal therapy has a limited place in management, but is an effective treatment for fungal bronchitis which complicates AFAD in about 10% of cases.
Collapse
Affiliation(s)
- Andrew J Wardlaw
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, and Allergy and Respiratory Medicine Service, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Eva-Maria Rick
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, and Allergy and Respiratory Medicine Service, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Leyla Pur Ozyigit
- Allergy and Respiratory Services University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Alys Scadding
- Allergy and Respiratory Services University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Erol A Gaillard
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, Department of Paediatrics, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Catherine H Pashley
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, and Allergy and Respiratory Medicine Service, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
13
|
Nabet C, Imbert S, Normand AC, Blanchet D, Chanlin R, Becker P, Demar M, Piarroux R. Unexpected mould diversity in clinical isolates from French Guiana and associated identification difficulties. Med Mycol 2020; 59:myaa091. [PMID: 33111143 DOI: 10.1093/mmy/myaa091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
New mold species are increasingly reported in invasive fungal infections. However, these fungi are often misdiagnosed or undiagnosed due to the use of inappropriate laboratory diagnostic tools. Tropical countries, such as French Guiana, harbor a vast diversity of environmental fungi representing a potential source of emerging pathogens. To assess the impact of this diversity on the accuracy of mold-infection diagnoses, we identified mold clinical isolates in French Guiana during a five-month follow-up using both microscopy and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. In total, 38.8% of the 98 obtained molds isolates could not be identified and required a DNA-based identification. Fungal diversity was high, including 46 species, 26 genera, and 13 orders. Fungal ecology was unusual, as Aspergillus species accounted for only 27% of all isolates, and the Nigri section was the most abundant out of the six detected Aspergillus sections. Macromycetes (orders Agaricales, Polyporales, and Russulales) and endophytic fungi accounted for respectively 11% and 14% of all isolates. Thus, in tropical areas with high fungal diversity, such as French Guiana, routine mold identification tools are inadequate. Molecular identifications, as well as morphological descriptions, are necessary for the construction of region-specific mass spectrum databases. These advances will improve the diagnosis and clinical management of new fungal infections. LAY SUMMARY In French Guiana, environmental fungal diversity may be a source of emerging pathogens. We evaluated microscopy and mass spectrometry to identify mold clinical isolates. With 39% of unidentified isolates, a region-specific mass spectrum database would improve the diagnosis of new fungal infections.
Collapse
Affiliation(s)
- C Nabet
- Sorbonne Université, INSERM, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Paris, France
| | - S Imbert
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Paris, France
| | - A C Normand
- Sorbonne Université, INSERM, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Paris, France
| | - D Blanchet
- Department of Parasitology-Mycology, Hôpital Andrée Rosemon, Cayenne, French Guiana
| | - R Chanlin
- Department of Parasitology-Mycology, Hôpital Andrée Rosemon, Cayenne, French Guiana
| | - P Becker
- Sciensano, BCCM/IHEM collection, Mycology and Aerobiology Unit, Brussels, Belgium
| | - M Demar
- Department of Parasitology-Mycology, Hôpital Andrée Rosemon, Cayenne, French Guiana
- EA 3593, Ecosystèmes Amazoniens et Pathologies Tropicales, Université de Guyane, Cayenne, French Guiana
| | - R Piarroux
- Sorbonne Université, INSERM, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Paris, France
| |
Collapse
|
14
|
Takeda K, Suzuki J, Watanabe A, Matsuki M, Higa K, Inoue E, Akashi S, Shimada M, Kawashima M, Ohshima N, Fukami T, Masuda K, Yamane A, Tamura A, Nagai H, Matsui H, Tohma S, Kamei K. Species identification, antifungal susceptibility, and clinical feature association of Aspergillus section Nigri isolates from the lower respiratory tract. Med Mycol 2020; 58:310-314. [PMID: 31240316 DOI: 10.1093/mmy/myz072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/04/2019] [Accepted: 06/05/2019] [Indexed: 12/18/2022] Open
Abstract
Species of Aspergillus section Nigri are generally identified by molecular genetics approaches, whereas in clinical practice, they are classified as A. niger by their morphological characteristics. This study aimed to investigate whether the species of Aspergillus section Nigri isolated from the respiratory tract vary depending on clinical diagnosis. Forty-four Aspergillus section Nigri isolates isolated from the lower respiratory tracts of 43 patients were collected from February 2012 to January 2017 at the National Hospital Organization (NHO) Tokyo National Hospital. Species identification was carried out based on β-tubulin gene analysis. Drug susceptibility tests were performed according to the Clinical and Laboratory Standards Institute (CLSI) M38 3rd edition, and the clinical characteristics were retrospectively reviewed. A. welwitschiae was isolated most frequently, followed by A. tubingensis. More than half of the A. tubingensis isolates exhibited low susceptibility to azoles in contrast to only one A. welwitschiae isolate. Approximately three quarters of the patients from whom A. welwitschiae was isolated were diagnosed with colonization, whereas more than half the patients from whom A. tubingensis was isolated were diagnosed with chronic pulmonary aspergillosis (CPA). More attention needs to be given to the drug choice for patients with CPA with Aspergillus section Nigri infection because A. tubingensis, which was found to be frequently azole-resistant, was the most prevalent in these patients.
Collapse
Affiliation(s)
- Keita Takeda
- Center for Pulmonary Diseases, National Hospital Organization Tokyo National Hospital, Tokyo, Japan.,Department of Basic Mycobacteriology, Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Junko Suzuki
- Center for Pulmonary Diseases, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Akira Watanabe
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Mei Matsuki
- Center for Pulmonary Diseases, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Katsuyuki Higa
- Center for Pulmonary Diseases, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Eri Inoue
- Center for Pulmonary Diseases, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Shunsuke Akashi
- Center for Pulmonary Diseases, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Masahiro Shimada
- Center for Pulmonary Diseases, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Masahiro Kawashima
- Center for Pulmonary Diseases, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Nobuharu Ohshima
- Center for Pulmonary Diseases, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Takeshi Fukami
- Department of Thoracic Surgery, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Kimihiko Masuda
- Center for Pulmonary Diseases, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Akira Yamane
- Center for Pulmonary Diseases, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Atsuhisa Tamura
- Center for Pulmonary Diseases, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Hideaki Nagai
- Center for Pulmonary Diseases, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Hirotoshi Matsui
- Center for Pulmonary Diseases, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Shigeto Tohma
- Asthma, Allergy and Rheumatology Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Katsuhiko Kamei
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
15
|
Rick EM, Woolnough KF, Seear PJ, Fairs A, Satchwell J, Richardson M, Monteiro WR, Craner M, Bourne M, Wardlaw AJ, Pashley CH. The airway fungal microbiome in asthma. Clin Exp Allergy 2020; 50:1325-1341. [PMID: 32808353 DOI: 10.1111/cea.13722] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Fungal involvement in asthma is associated with severe disease. The full spectrum of fungal species in asthma is not well described and is derived largely from insensitive culture techniques. OBJECTIVES To use high-throughput sequencing to describe the airway mycobiota in asthmatics with and without fungal sensitization and healthy controls; to compare samples representing different airway compartments; to determine whether the mycobiota was influenced by the fungal composition of outdoor air; and to compare findings with clinically relevant outcomes. METHODS We amplified the internal transcribed spacer region 2 of the nuclear ribosomal operon to identify the fungal species present. Ninety-seven subjects were recruited and provided sputum (83 asthmatics; 14 healthy subjects), with 29 also undergoing a bronchoscopy. A subset of airway samples were compared with matched outdoor air and mouthwash samples. RESULTS Two hundred and six taxa at the species level were identified in sputum, most at low relative abundance. Aspergillus fumigatus, Candida albicans and Mycosphaerella tassiana had the highest relative abundances and were the most prevalent species across all subjects. The airway mycobiota consisted of a complex community with high diversity between individuals. Notable shifts in the balance of fungi detected in the lung were associated with asthma status, asthma duration and biomarkers of inflammation. Aspergillus tubingensis, a member of the Aspergillus niger species complex, was most prevalent from bronchoscopic protected brush samples and significantly associated with a low sputum neutrophilia. Cryptococcus pseudolongus, from the Cryptococcus humicola species complex, was more abundant from bronchoscopy samples than sputum, and differentially more abundant in asthma than health. CONCLUSIONS AND CLINICAL RELEVANCE The airway mycobiota was dominated by a relatively small number of species, but was distinct from the oropharyngeal mycobiota and air samples. Members of the A. niger and C. humicola species complexes may play unexpected roles in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Eva-Maria Rick
- Department of Respiratory Sciences, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
| | - Kerry F Woolnough
- Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, Glenfield Hospital, University Hospitals of Leicester, Leicester, UK
| | - Paul J Seear
- Department of Respiratory Sciences, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
| | - Abbie Fairs
- Department of Respiratory Sciences, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
| | - Jack Satchwell
- Department of Respiratory Sciences, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
| | - Matthew Richardson
- Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, Glenfield Hospital, University Hospitals of Leicester, Leicester, UK
| | - William R Monteiro
- Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, Glenfield Hospital, University Hospitals of Leicester, Leicester, UK
| | - Michelle Craner
- Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, Glenfield Hospital, University Hospitals of Leicester, Leicester, UK
| | - Michelle Bourne
- Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, Glenfield Hospital, University Hospitals of Leicester, Leicester, UK
| | - Andrew J Wardlaw
- Department of Respiratory Sciences, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK.,Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, Glenfield Hospital, University Hospitals of Leicester, Leicester, UK
| | - Catherine H Pashley
- Department of Respiratory Sciences, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
| |
Collapse
|
16
|
Cerebral and pulmonary aspergillosis, treatment and diagnostic challenges of mixed breakthrough invasive fungal infections: case report study. BMC Infect Dis 2020; 20:535. [PMID: 32703183 PMCID: PMC7376672 DOI: 10.1186/s12879-020-05162-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/17/2020] [Indexed: 02/08/2023] Open
Abstract
Background Breakthrough invasive fungal infections (bIFIs) are an area of concern in the scarcity of new antifungals. The mixed form of bIFIs is a rare phenomenon but could be potentially a troublesome challenge when caused by azole-resistant strains or non-Aspergillus fumigatus. To raise awareness and emphasize diagnostic challenges, we present a case of mixed bIFIs in a child with acute lymphoblastic leukemia. Case presentation A newly diagnosed 18-month-old boy with acute lymphoblastic leukemia was complicated with prolonged severe neutropenia after induction chemotherapy. He experienced repeated episodes of fever due to extended-spectrum beta-lactamase-producing Escherichia coli bloodstream infection and pulmonary invasive fungal infection with Aspergillus fumigatus (early-type bIFIs) while receiving antifungal prophylaxis. Shortly after pulmonary involvement, his condition aggravated by abnormal focal movement, loss of consciousness and seizure. Cerebral aspergillosis with Aspergillus niger diagnosed after brain tissue biopsy. The patient finally died despite 108-day antifungal therapy. Conclusions Mixed bIFIs is a rare condition with high morbidity and mortality in the patients receiving immunosuppressants for hematological malignancies. This case highlights the clinical importance of Aspergillus identification at the species level in invasive fungal infections with multiple site involvement in the patients on antifungal prophylaxis.
Collapse
|
17
|
Species Distribution and Comparison between EUCAST and Gradient Concentration Strips Methods for Antifungal Susceptibility Testing of 112 Aspergillus Section Nigri Isolates. Antimicrob Agents Chemother 2020; 64:AAC.02510-19. [PMID: 32312779 DOI: 10.1128/aac.02510-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/15/2020] [Indexed: 11/20/2022] Open
Abstract
Aspergillus niger, the third species responsible for invasive aspergillosis, has been considered as a homogeneous species until DNA-based identification uncovered many cryptic species. These species have been recently reclassified into the Aspergillus section Nigri However, little is yet known among the section Nigri about the species distribution and the antifungal susceptibility pattern of each cryptic species. A total of 112 clinical isolates collected from 5 teaching hospitals in France and phenotypically identified as A. niger were analyzed. Identification to the species level was carried out by nucleotide sequence analysis. The MICs of itraconazole, voriconazole, posaconazole, isavuconazole, and amphotericin B were determined by both the EUCAST and gradient concentration strip methods. Aspergillus tubingensis (n = 51, 45.5%) and Aspergillus welwitschiae (n = 50, 44.6%) were the most common species while A. niger accounted for only 6.3% (n = 7). The MICs of azole drugs were higher for A. tubingensis than for A. welwitschiae The MIC of amphotericin B was 2 mg/liter or less for all isolates. Importantly, MICs determined by EUCAST showed no correlation with those determined by the gradient concentration strip method, with the latter being lower than the former (Spearman's rank correlation tests ranging from 0.01 to 0.25 depending on the antifungal agent; P > 0.4). In conclusion, A. niger should be considered as a minority species in the section Nigri The differences in MICs between species for different azoles underline the importance of accurate identification. Significant divergences in the determination of MIC between EUCAST and the gradient concentration strip methods require further investigation.
Collapse
|
18
|
Salah H, Lackner M, Houbraken J, Theelen B, Lass-Flörl C, Boekhout T, Almaslamani M, Taj-Aldeen SJ. The Emergence of Rare Clinical Aspergillus Species in Qatar: Molecular Characterization and Antifungal Susceptibility Profiles. Front Microbiol 2019; 10:1677. [PMID: 31447794 PMCID: PMC6697061 DOI: 10.3389/fmicb.2019.01677] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022] Open
Abstract
Aspergillus are ubiquitous mold species that infect immunocompetent and immunocompromised patients. The symptoms are diverse and range from allergic reactions, bronchopulmonary infection, and bronchitis, to invasive aspergillosis. The aim of this study was to characterize 70 Aspergillus isolates recovered from clinical specimens of patients with various clinical conditions presented at Hamad general hospital in Doha, Qatar, by using molecular methods and to determine their in vitro antifungal susceptibility patterns using the Clinical and Laboratory Standards Institute (CLSI) M38-A2 reference method. Fourteen Aspergillus species were identified by sequencing β-tubulin and calmodulin genes, including 10 rare and cryptic species not commonly recovered from human clinical specimens. Aspergillus welwitschiae is reported in this study for the first time in patients with fungal rhinosinusitis (n = 6) and one patient with a lower respiratory infection. Moreover, Aspergillus pseudonomius is reported in a patient with fungal rhinosinusitis which is considered as the first report ever from clinical specimens. In addition, Aspergillus sublatus is reported for the first time in a patient with cystic fibrosis. In general, our Aspergillus strains exhibited low MIC values for most of the antifungal drugs tested. One strain of Aspergillus fumigatus showed high MECs for echinocandins and low MICs for the rest of the drugs tested. Another strain of A. fumigatus exhibited high MIC for itraconazole and categorized as non-wild type. These findings require further analysis of their molecular basis of resistance. In conclusion, reliable identification of Aspergillus species is achieved by using molecular sequencing, especially for the emerging rare and cryptic species. They are mostly indistinguishable by conventional methods and might exhibit variable antifungal susceptibility profiles. Moreover, investigation of the antifungal susceptibility patterns is necessary for improved antifungal therapy against aspergillosis.
Collapse
Affiliation(s)
- Husam Salah
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar.,Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jos Houbraken
- Applied and Industrial Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Bart Theelen
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Teun Boekhout
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Netherlands
| | - Muna Almaslamani
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Netherlands
| | - Saad J Taj-Aldeen
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
19
|
Castro C, Galán-Sanchez F, Linares MJ, Tejero R, Ruiz M, Serrano ML, Rodríguez-Iglesias M, Martín-Mazuelos E. A prospective survey of Aspergillus spp. in respiratory tract samples: Species identification and susceptibility patterns. Med Mycol 2019; 57:412-420. [PMID: 30289467 DOI: 10.1093/mmy/myy080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/31/2018] [Accepted: 09/25/2018] [Indexed: 02/03/2023] Open
Abstract
We analyzed the species distribution and susceptibility patterns of 433 strains of Aspergillus spp. isolated from respiratory samples of 419 in-patients included in multicenter prospective study (FUNGAE-IFI) between July 2014 and October 2015. Identification was carried out by conventional methods at each participating center and by molecular sequencing of a portion of the β-tubulin gene at one of the centers. In vitro susceptibility was evaluated by broth microdilution methods and using the E-test (for cryptic species). Species identified included 249 A. fumigatus sensu stricto, 60 A. terreus sensu stricto, 47 A. flavus sensu stricto, 44 A. tubingensis, 18 A. niger sensu stricto , five A. nidulans sensu stricto, three A. tamarii, two A. calidoustus, two A. carneus, one A. acuelatus, one A. carbonarius, and one A. sydowii. Cryptic species were found in 12.5% of isolates (n = 54). The frequency of non-wild-type isolates for amphotericin B was 3.4% (n = 15) of the isolates tested and for azoles 3% (n = 10). None of the Aspergillus spp. were non-wild type to echinocandins. Of the 54 cryptic species only two strains were non-wild-type strains by microdilution method (3.7%) (two A. tubingensis, one to amphotericin B and another one to voriconazole) and by E-test method five strains of A. tubingensis showed high minimal inhibitory concentration (MIC) to amphotericin B (11.4%) and five to azoles (12.1%), one A. calidoustus strain showed high MICs for three azoles (50%), A. carneus to itraconazole (100%) and A. sydowii to amphotericin B and itraconazole (100%). These results provide relevant information on susceptibility patterns, frequency, and epidemiology of species involved in respiratory tract samples and of the incidence of recently described cryptic species.
Collapse
Affiliation(s)
- Carmen Castro
- Unit of Infectious Diseases and Clinical Microbiology (UCEIM), Hospital Universitario de Valme, Seville, Spain
| | - Fátima Galán-Sanchez
- Service of Clinical Microbiology, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - María José Linares
- Service of Clinical Microbiology, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rocío Tejero
- Service of Clinical Microbiology, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Maite Ruiz
- Service of Clinical Microbiology, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - María Luisa Serrano
- Service of Clinical Microbiology, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | - Estrella Martín-Mazuelos
- Unit of Infectious Diseases and Clinical Microbiology (UCEIM), Hospital Universitario de Valme, Seville, Spain
| | | |
Collapse
|
20
|
Sabz G, Gharaghani M, Mirhendi H, Ahmadi B, Gatee MA, Sisakht MT, Hemati A, Mohammadi R, Taghavi J, Nouripour-Sisakht S. Clinical and microbial epidemiology of otomycosis in the city of Yasuj, southwest Iran, revealing Aspergillus tubingensis as the dominant causative agent. J Med Microbiol 2019; 68:585-590. [PMID: 30801244 DOI: 10.1099/jmm.0.000948] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Otomycosis is a mycotic infection of the external auditory canal and can be caused by a wide range of fungal species. In this study, we aimed to identify fungal isolates from patients suspected of otomycosis. METHODOLOGY External ear canal samples were taken from patients referred to the outpatient department of Shahid-Mofatteh Clinic in the city of Yasuj, Iran, and examined by direct microscopy and culture. DNA of the isolated fungi was tested by internal transcribed spacer PCR restriction fragment length polymorphism analysis for identification of yeasts and β-tubulin sequencing for identification of Aspergillus species. RESULTS Among 275 patients suspected of otomycosis, 144 cases (83 female and 61 male) were confirmed with otomycosis. For 89% (n=128) of positive cultures, microscopy was also positive, while there were no cases with a microscopy-positive and culture-negative result. The predominant predisposing factor was self-cleaning of the external ear using unhygienic tools, and the main risk occupation was 'housewife'. The most common isolated fungi were typically Aspergillus (n=120), including 73 isolates of Aspergillus section Nigri, 43 of section Flavi, 3 of section Terrei and 1 of section Fumigati. After sequencing, 44 out of 73 strains primarily identified as Aspergillus niger turned out to be Aspergillus tubingensis. Thirty-five isolates were identified as Candida, including Candida parapsilosis (n=22), Candida albicans (n=12) and Candida tropicalis (n=1). CONCLUSION Aspergillus tubingensis was the most common species involved in otomycosis. This work corroborates the difficulty of precise identification of species within the black Aspergilli by morphological characteristics.
Collapse
Affiliation(s)
- Gholamabbas Sabz
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Maral Gharaghani
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Mirhendi
- Departments of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Ahmadi
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohamad Amin Gatee
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Alireza Hemati
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Mohammadi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Jabar Taghavi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sadegh Nouripour-Sisakht
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
21
|
Imbert S, Normand AC, Gabriel F, Cassaing S, Bonnal C, Costa D, Lachaud L, Hasseine L, Kristensen L, Schuttler C, Raberin H, Brun S, Hendrickx M, Stubbe D, Piarroux R, Fekkar A. Multi-centric evaluation of the online MSI platform for the identification of cryptic and rare species of Aspergillus by MALDI-TOF. Med Mycol 2019; 57:962-968. [DOI: 10.1093/mmy/myz004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 11/12/2022] Open
Abstract
Abstract
The taxonomy of Aspergillus species has recently been revolutionized with the introduction of cryptic species and section concepts. However, their species-level identification in routine laboratories remains a challenge. The aim of this study was to prospectively assess the identification accuracy of cryptic species of Aspergillus in various laboratories using the mass spectrometry identification (MSI) platform, an independent and freely accessible online mass spectrometry database. Over a 12-month period, when a select set of MSI users identified cryptic species, they were contacted and requested to send the isolates to our laboratory for sequence-based identification. Sequence and MSI identification results were then compared. During the study period, 5108 Aspergillus isolates were identified using MSI including 1477 (28.9%) cryptic species. A total of 245 isolates that corresponded to 56 cryptic species and 13 sections were randomly selected for DNA sequencing confirmation. Agreement between the two methods was 99.6% at the section level and 66.1% at the species level. However, almost all discrepancies (72/83, 86.7%) were misidentifications between closely related cryptic species belonging to the same section. Fifty-one isolates from noncryptic species were also identified, thus yielding 100% and 92.2% agreement at the section and species level, respectively. Although the MSI fungus database is a reliable tool to identify Aspergillus at the section level, the database still requires adjustment to correctly identify rare or cryptic species at the species level. Nevertheless, the application properly differentiated between cryptic and sensu stricto species in the same section, thus alerting on possible specific isolate characteristics.
Collapse
Affiliation(s)
- Sébastien Imbert
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie Mycologie, F-75013 Paris, France
- Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, F-75013 Paris, France
- Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Anne Cécile Normand
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie Mycologie, F-75013 Paris, France
| | - Frédéric Gabriel
- Centre Hospitalier Universitaire de Bordeaux, Service de Parasitologie Mycologie, F-33000, Bordeaux, France
| | - Sophie Cassaing
- Centre Hospitalier Universitaire de Toulouse, Service de Parasitologie Mycologie, F-31059, Toulouse, France
| | - Christine Bonnal
- AP-HP, Hôpital Bichat-Claude Bernard, Service de Parasitologie Mycologie, F-75018 Paris, France
| | - Damien Costa
- Centre Hospitalier Universitaire de Rouen, Service de Parasitologie Mycologie, F-76000, Rouen, France
| | - Laurence Lachaud
- Centre Hospitalier Universitaire de Montpellier, Service de Parasitologie Mycologie, F-34000, Montpellier, France
| | - Lilia Hasseine
- Centre Hospitalier Universitaire de Nice, Service de Parasitologie Mycologie, F-06000, Nice, France
| | - Lise Kristensen
- Aarhus University Hospital, Department of Clinical Microbiology, DK-8200, Aarhus N, Denmark
| | | | - Hélène Raberin
- Centre Hospitalier Universitaire de Saint Etienne, Service de Parasitologie Mycologie, F-42100, Saint Etienne, France
| | - Sophie Brun
- AP-HP, Hôpital Avicenne, Service de Parasitologie Mycologie, F-93000 Bobigny, France
| | - Marijke Hendrickx
- Service of Mycology and Aerobiology, BCCM/IHEM Fungal collection, Scientific Institute of Public Health, B-1050, Brussels, Belgium
| | - Dirk Stubbe
- Service of Mycology and Aerobiology, BCCM/IHEM Fungal collection, Scientific Institute of Public Health, B-1050, Brussels, Belgium
| | - Renaud Piarroux
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie Mycologie, F-75013 Paris, France
- Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
- Institut Pierre Louis d’Epidémiologie et de Santé Publique, INSERM, F-75013 Paris, France
| | - Arnaud Fekkar
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie Mycologie, F-75013 Paris, France
- Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, F-75013 Paris, France
- Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| |
Collapse
|
22
|
Szmigiel K, Nentwig M, Oeckler O, Barczyńska-Felusiak R, Morzyk-Ociepa B. Crystal structure, vibrational spectroscopic characterization, thermal behavior and antifungal activity of a novel coordination polymer of indole‑3‑carboxylic acid with cobalt(II) and a comparison with the isostructural Zn(II) complex. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Ojuri OT, Ezekiel CN, Sulyok M, Ezeokoli OT, Oyedele OA, Ayeni KI, Eskola MK, Šarkanj B, Hajšlová J, Adeleke RA, Nwangburuka CC, Elliott CT, Krska R. Assessing the mycotoxicological risk from consumption of complementary foods by infants and young children in Nigeria. Food Chem Toxicol 2018; 121:37-50. [DOI: 10.1016/j.fct.2018.08.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022]
|
24
|
Hagiwara S, Tamura T, Satoh K, Kamewada H, Nakano M, Shinden S, Yamaguchi H, Makimura K. The Molecular Identification and Antifungal Susceptibilities of Aspergillus Species Causing Otomycosis in Tochigi, Japan. Mycopathologia 2018; 184:13-21. [PMID: 30291485 DOI: 10.1007/s11046-018-0299-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/24/2018] [Indexed: 02/01/2023]
Abstract
Aspergillus species are the most common pathogenic fungi involved in otomycosis, an infection of the outer ear canal. In this study, we examined the incidence of Aspergillus infections and the antifungal susceptibilities of 30 Aspergillus species isolates from patients with otomycosis who visited Saiseikai Utsunomiya Hospital between August 2013 and July 2016. Based on the morphological test results, the strains were identified as Aspergillus niger sensu lato (20 strains), A. terreus sensu lato (7 strains), and A. fumigatus sensu lato (3 strains). In contrast, the molecular identifications based on analyzing the isolates' partial β-tubulin gene sequences revealed them to be A. niger sensu stricto (12 strains), A. tubingensis (8 strains), A. terreus sensu stricto (7 strains), and A. fumigatus sensu stricto (3 strains). The antifungal susceptibility test results indicated that strains of A. tubingensis and A. niger sensu stricto displayed lower susceptibilities to ravuconazole, compared with the other isolates. The Aspergillus strains from this study showed low minimum inhibitory concentrations toward the azole-based drugs efinaconazole, lanoconazole, and luliconazole. Therefore, these topical therapeutic agents may be effective for the treatment of otomycosis.
Collapse
Affiliation(s)
- Shigehiro Hagiwara
- Graduate School of Medical Technology, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.,Department of Clinical Laboratory, Saiseikai Utsunomiya Hospital, 911-1 Takebayashi-machi, Utsunomiya, Tochigi, 391-0974, Japan
| | - Takashi Tamura
- General Medical Education and Research Center, Teikyo University, Tokyo, Japan.,Teikyo University Institute of Medical Mycology, Tokyo, Japan
| | - Kazuo Satoh
- General Medical Education and Research Center, Teikyo University, Tokyo, Japan.,Teikyo University Institute of Medical Mycology, Tokyo, Japan
| | - Hitoshi Kamewada
- Department of Clinical Laboratory, Saiseikai Utsunomiya Hospital, 911-1 Takebayashi-machi, Utsunomiya, Tochigi, 391-0974, Japan
| | - Masayasu Nakano
- Department of Laboratory Medicine, Saiseikai Utsunomiya Hospital, 911-1 Takebayashi-machi, Utsunomiya, Tochigi, 391-0974, Japan
| | - Seiichi Shinden
- Department of Otorhinolaryngology, Saiseikai Utsunomiya Hospital, 911-1 Takebayashi-machi, Utsunomiya, Tochigi, 391-0974, Japan
| | | | - Koichi Makimura
- Graduate School of Medical Technology, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan. .,Medical Mycology Research Unit, Graduate School of Medicine, Teikyo University, Tokyo, Japan. .,General Medical Education and Research Center, Teikyo University, Tokyo, Japan. .,Teikyo University Institute of Medical Mycology, Tokyo, Japan.
| |
Collapse
|
25
|
Xu D, Lin SR, Bonelli L, Glasgow BJ, Goldberg RA. Orbital granulomatosis with polyangiitis masquerading as invasive fungal sinusitis. Orbit 2018; 37:309-312. [PMID: 29303390 DOI: 10.1080/01676830.2017.1423339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A 55-year-old man presented with unilateral orbital inflammation and no light perception vision. Imaging revealed infiltrative enhancement of the optic nerve, orbit, and intracranial tissue. The case was suspicious for invasive fungal disease, but ultimate workup and orbital biopsy revealed granulomatosis with polyangiitis. The patient's inflammation resolved with corticosteroid and rituximab therapy. Granulomatosis with polyangiitis is a systemic vasculitis that can mimic a number of orbital pathologies.
Collapse
Affiliation(s)
- David Xu
- a Stein Eye Institute, University of California , Los Angeles , CA , USA
| | - Shawn R Lin
- a Stein Eye Institute, University of California , Los Angeles , CA , USA
| | - Laura Bonelli
- a Stein Eye Institute, University of California , Los Angeles , CA , USA
| | - Ben J Glasgow
- a Stein Eye Institute, University of California , Los Angeles , CA , USA
| | - Robert A Goldberg
- a Stein Eye Institute, University of California , Los Angeles , CA , USA
| |
Collapse
|
26
|
Identification of Aspergillus tubingensis in a primary skin infection. J Mycol Med 2018; 28:274-278. [DOI: 10.1016/j.mycmed.2018.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/22/2018] [Accepted: 02/24/2018] [Indexed: 11/18/2022]
|
27
|
Buil JB, Rijs AJMM, Meis JF, Birch M, Law D, Melchers WJG, Verweij PE. In vitro activity of the novel antifungal compound F901318 against difficult-to-treat Aspergillus isolates. J Antimicrob Chemother 2018; 72:2548-2552. [PMID: 28605488 DOI: 10.1093/jac/dkx177] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/11/2017] [Indexed: 11/14/2022] Open
Abstract
Background F901318 is a new antifungal agent with a novel mechanism of action with activity against Aspergillus species. We investigated the in vitro activity of F901318 against a collection of Aspergillus isolates. Methods A total of 213 Aspergillus isolates were used in this study. A total of 143 Aspergillus fumigatus sensu stricto isolates were used, of which 133 were azole resistant [25 TR34/L98H; 25 TR46/Y121F/T289A; 33 A. fumigatus with cyp51A-associated point mutations (25 G54, 1 G432 and 7 M220); and 50 azole-resistant A. fumigatus without known resistance mechanisms]. Ten azole-susceptible A. fumigatus isolates were used as WT controls. The in vitro activity was also determined against Aspergillus calidoustus (25 isolates), Aspergillus flavus (10), Aspergillus nidulans (10) and Aspergillus tubingensis (25). F901318 activity was compared with that of itraconazole, voriconazole, posaconazole, isavuconazole, amphotericin B and anidulafungin. Minimum effective concentrations and MICs were determined using the EUCAST broth microdilution method. Results F901318 was active against all tested isolates: A. fumigatus WT, MIC90 0.125 mg/L (range 0.031-0.125); TR34/L98H,TR46/Y121F/T289A and azole resistant without known resistance mechanisms, MIC90 0.125 mg/L (range 0.031-0.25); A. fumigatus with cyp51A-associated point mutations, MIC90 0.062 mg/L (range 0.015-0.125); and other species, A. calidoustus MIC90 0.5 mg/L (range 0.125-0.5), A. flavus MIC90 0.062 mg/L (range 0.015-0.62), A. nidulans MIC90 0.125 mg/L (range 0.062-0.25) and A. tubingensis MIC90 0.062 mg/L (range 0.015-0.25). Conclusions F901318 showed potent and consistent in vitro activity against difficult-to-treat Aspergillus spp. with intrinsic and acquired antifungal resistance due to known and unknown resistance mechanisms, suggesting no significant implications of azole resistance mechanisms for the mode of action of F901318.
Collapse
Affiliation(s)
- J B Buil
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - A J M M Rijs
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - J F Meis
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | | | - D Law
- F2G Limited, Manchester, UK
| | - W J G Melchers
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - P E Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Zanganeh E, Zarrinfar H, Rezaeetalab F, Fata A, Tohidi M, Najafzadeh MJ, Alizadeh M, Seyedmousavi S. Predominance of non-fumigatus Aspergillus species among patients suspected to pulmonary aspergillosis in a tropical and subtropical region of the Middle East. Microb Pathog 2018; 116:296-300. [DOI: 10.1016/j.micpath.2018.01.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/17/2022]
|
29
|
Fungal Pathogens in CF Airways: Leave or Treat? Mycopathologia 2017; 183:119-137. [PMID: 28770417 DOI: 10.1007/s11046-017-0184-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Chronic airway infection plays an essential role in the progress of cystic fibrosis (CF) lung disease. In the past decades, mainly bacterial pathogens, such as Pseudomonas aeruginosa, have been the focus of researchers and clinicians. However, fungi are frequently detected in CF airways and there is an increasing body of evidence that fungal pathogens might play a role in CF lung disease. Several studies have shown an association of fungi, particularly Aspergillus fumigatus and Candida albicans, with the course of lung disease in CF patients. Mechanistically, in vitro and in vivo studies suggest that an impaired immune response to fungal pathogens in CF airways renders them more susceptible to fungi. However, it remains elusive whether fungi are actively involved in CF lung disease pathologies or whether they rather reflect a dysregulated airway colonization and act as microbial bystanders. A key issue for dissecting the role of fungi in CF lung disease is the distinction of dynamic fungal-host interaction entities, namely colonization, sensitization or infection. This review summarizes key findings on pathophysiological mechanisms and the clinical impact of fungi in CF lung disease.
Collapse
|
30
|
Drug Sensitivity and Resistance Mechanism in Aspergillus Section Nigri Strains from Japan. Antimicrob Agents Chemother 2017; 61:AAC.02583-16. [PMID: 28607016 DOI: 10.1128/aac.02583-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/29/2017] [Indexed: 11/20/2022] Open
Abstract
Aspergillus niger and its related species, known as Aspergillus section Nigri, are ubiquitously distributed across the globe and are often isolated from clinical specimens. In Japan, Aspergillus section Nigri is second most often isolated from clinical specimens following Aspergillus fumigatus We determined the species of Aspergillus section Nigri isolated in Japan by DNA sequencing of partial β-tubulin genes and investigated drug susceptibility by the CLSI M38-A2 method. The collection contained 20 Aspergillus niger, 59 Aspergillus welwitschiae, and 39 Aspergillus tubingensis strains. Drug susceptibility testing revealed 30 to 55% of A. niger, 6.8 to 18.6% of A. welwitschiae, and 79.5 to 89.7% of A. tubingensis isolates to be less susceptible (so-called resistant) to itraconazole (ITC) and/or voriconazole (VRC) according to the epidemiologic cutoff values (ECVs) proposed for A. niger previously. MIC distributions of ITC or VRC showed no remarkable differences between clinical and environmental isolates. When the cyp51A sequences were compared between susceptible and resistant strains, 18 amino acid mutations were specific for resistant isolates of A. niger and A. tubingensis; however, none of them were confirmed to be associated with azole resistance. Three nonrelated A. welwitschiae isolates possessed a partial deletion in cyp51A, likely attributable to being more susceptible to azoles than other isolates. One of five ITC-resistant A. tubingensis isolates showed higher expression of cyp51A than did susceptible strains. Our results show that cyp51A point mutations may have no association with azole resistance but that in some cases the overexpression of cyp51A may lead to the azole resistance in these species.
Collapse
|
31
|
Lass-Flörl C, Cuenca-Estrella M. Changes in the epidemiological landscape of invasive mould infections and disease. J Antimicrob Chemother 2017; 72:i5-i11. [PMID: 28355462 DOI: 10.1093/jac/dkx028] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although a wide variety of pathogens are associated with invasive mould diseases, Aspergillus spp. have historically been one of the most common causative organisms. Most invasive mould infections are caused by members of the Aspergillus fumigatus species complex and an emerging issue is the occurrence of azole resistance in A. fumigatus, with resistance to amphotericin B documented in other Aspergillus spp. The epidemiology of invasive fungal disease has shifted in recent years as non-A. fumigatus Aspergillus spp. and other moulds have become progressively more important, although there are no consolidated data on the prevalence of less common species of moulds. The incidence of mucormycosis may have been underestimated, which is a potential concern since species belonging to the order Mucorales are more resistant to antifungal agents than Aspergillus spp. All species of Mucorales are unaffected by voriconazole and most show moderate resistance in vitro to echinocandins. Fusarium spp. may be the second most common nosocomial fungal pathogen after Aspergillus in some tertiary hospitals, and show a susceptibility profile marked by a higher level of resistance than that of Aspergillus spp. Recently, Scedosporium aurantiacum has been reported as an emerging opportunistic pathogen, against which voriconazole is the most active antifungal agent. Other mould species can infect humans, although invasive fungal disease occurs less frequently. Since uncommon mould species exhibit individual susceptibility profiles and require tailored clinical management, accurate classification at species level of the aetiological agent in any invasive fungal disease should be regarded as the standard of care.
Collapse
Affiliation(s)
- Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Manuel Cuenca-Estrella
- Department of Mycology, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km 2, Majadahonda, Madrid, Spain
| |
Collapse
|
32
|
Aspergillus Species in Bronchiectasis: Challenges in the Cystic Fibrosis and Non-cystic Fibrosis Airways. Mycopathologia 2017; 183:45-59. [DOI: 10.1007/s11046-017-0143-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/08/2017] [Indexed: 12/26/2022]
|
33
|
Al-Yasiri MH, Normand AC, Mauffrey JF, Ranque S. Anthropogenic impact on environmental filamentous fungi communities along the Mediterranean littoral. Mycoses 2017; 60:477-484. [DOI: 10.1111/myc.12612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Jean-François Mauffrey
- Laboratoire Population Environnement Développement (LPED)- UMR-151; Aix-Marseille Université - IRD; Marseille France
| | - Stéphane Ranque
- IP-TPT UMR MD3; Aix-Marseille Université; Marseille France
- Laboratory of Parasitology - Mycology; APHM CHU Timone; Marseille France
| |
Collapse
|
34
|
Hagiwara D, Watanabe A, Kamei K, Goldman GH. Epidemiological and Genomic Landscape of Azole Resistance Mechanisms in Aspergillus Fungi. Front Microbiol 2016; 7:1382. [PMID: 27708619 PMCID: PMC5030247 DOI: 10.3389/fmicb.2016.01382] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/22/2016] [Indexed: 11/13/2022] Open
Abstract
Invasive aspergillosis is a life-threatening mycosis caused by the pathogenic fungus Aspergillus. The predominant causal species is Aspergillus fumigatus, and azole drugs are the treatment of choice. Azole drugs approved for clinical use include itraconazole, voriconazole, posaconazole, and the recently added isavuconazole. However, epidemiological research has indicated that the prevalence of azole-resistant A. fumigatus isolates has increased significantly over the last decade. What is worse is that azole-resistant strains are likely to have emerged not only in response to long-term drug treatment but also because of exposure to azole fungicides in the environment. Resistance mechanisms include amino acid substitutions in the target Cyp51A protein, tandem repeat sequence insertions at the cyp51A promoter, and overexpression of the ABC transporter Cdr1B. Environmental azole-resistant strains harboring the association of a tandem repeat sequence and punctual mutation of the Cyp51A gene (TR34/L98H and TR46/Y121F/T289A) have become widely disseminated across the world within a short time period. The epidemiological data also suggests that the number of Aspergillus spp. other than A. fumigatus isolated has risen. Some non-fumigatus species intrinsically show low susceptibility to azole drugs, imposing the need for accurate identification, and drug susceptibility testing in most clinical cases. Currently, our knowledge of azole resistance mechanisms in non-fumigatus Aspergillus species such as A. flavus, A. niger, A. tubingensis, A. terreus, A. fischeri, A. lentulus, A. udagawae, and A. calidoustus is limited. In this review, we present recent advances in our understanding of azole resistance mechanisms particularly in A. fumigatus. We then provide an overview of the genome sequences of non-fumigatus species, focusing on the proteins related to azole resistance mechanisms.
Collapse
Affiliation(s)
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University Chiba, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University Chiba, Japan
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo Ribeirão Preto, Brazil
| |
Collapse
|
35
|
Species Distribution and In Vitro Azole Susceptibility of Aspergillus Section Nigri Isolates from Clinical and Environmental Settings. J Clin Microbiol 2016; 54:2365-72. [PMID: 27413191 DOI: 10.1128/jcm.01075-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/07/2016] [Indexed: 11/20/2022] Open
Abstract
Aspergillus section Nigri includes species of interest for animal and human health, although studies on species distribution are limited to human cases. Data on the antifungal susceptibilities and the molecular mechanism of triazole resistance in strains belonging to this section are scant. Forty-two black Aspergillus strains from human patients (16 isolates), animals (14 isolates), and the environment (12 isolates) were molecularly characterized and their in vitro triazole susceptibilities investigated. Aspergillus tubingensis was isolated from humans, animals, and environmental settings, whereas Aspergillus awamori and Aspergillus niger were isolated exclusively from humans. Phylogenetic analyses of β-tubulin and calmodulin gene sequences were concordant in differentiating A. tubingensis from A. awamori and A. niger Voriconazole and posaconazole (PSZ) were the most active triazoles. One A. tubingensis strain was resistant to itraconazole and PSZ and one A. niger strain to PSZ. Sequence analysis of the cyp51A gene revealed different sequence types within a species, and A. tubingensis strains were also phylogenetically distinct from A. awamori/A. niger strains according to the strain origin and susceptibility profile. Genetic analysis of the cyp51A sequences suggests that two nonsynonymous mutations resulting in amino acid substitutions in the CYP51A protein (changes of L to R at position 21 [L21R] and of Q to R at position 228 [Q228R]) might be involved in azole resistance. Though azole resistance in black Aspergillus isolates from animals and rural environments does not represent a threat to public health in Southern Italy, the use of triazoles in the clinical setting needs to better monitored. The cyp51A sequence is useful for the molecular identification of black Aspergillus, and point mutations in protein sequences could be responsible for azole resistance phenomena.
Collapse
|
36
|
Gautier M, Normand AC, Ranque S. Previously unknown species of Aspergillus. Clin Microbiol Infect 2016; 22:662-9. [PMID: 27263029 DOI: 10.1016/j.cmi.2016.05.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/11/2016] [Accepted: 05/14/2016] [Indexed: 12/16/2022]
Abstract
The use of multi-locus DNA sequence analysis has led to the description of previously unknown 'cryptic' Aspergillus species, whereas classical morphology-based identification of Aspergillus remains limited to the section or species-complex level. The current literature highlights two main features concerning these 'cryptic' Aspergillus species. First, the prevalence of such species in clinical samples is relatively high compared with emergent filamentous fungal taxa such as Mucorales, Scedosporium or Fusarium. Second, it is clearly important to identify these species in the clinical laboratory because of the high frequency of antifungal drug-resistant isolates of such Aspergillus species. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been shown to enable the identification of filamentous fungi with an accuracy similar to that of DNA sequence-based methods. As MALDI-TOF MS is well suited to the routine clinical laboratory workflow, it facilitates the identification of these 'cryptic' Aspergillus species at the routine mycology bench. The rapid establishment of enhanced filamentous fungi identification facilities will lead to a better understanding of the epidemiology and clinical importance of these emerging Aspergillus species. Based on routine MALDI-TOF MS-based identification results, we provide original insights into the key interpretation issues of a positive Aspergillus culture from a clinical sample. Which ubiquitous species that are frequently isolated from air samples are rarely involved in human invasive disease? Can both the species and the type of biological sample indicate Aspergillus carriage, colonization or infection in a patient? Highly accurate routine filamentous fungi identification is central to enhance the understanding of these previously unknown Aspergillus species, with a vital impact on further improved patient care.
Collapse
Affiliation(s)
- M Gautier
- Aix Marseille Univ, Univ Montpellier 1, IRBA, IP-TPT, Marseille, France; Parasitologie & Mycologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - A-C Normand
- Parasitologie & Mycologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - S Ranque
- Aix Marseille Univ, Univ Montpellier 1, IRBA, IP-TPT, Marseille, France; Parasitologie & Mycologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.
| |
Collapse
|