1
|
Costa AF, da Silva JT, Martins JA, Rocha VL, Amaral AC. Chitosan nanoparticles encapsulating farnesol show potent antifungal activity against Candida albicans biofilms. Braz J Microbiol 2025:10.1007/s42770-025-01624-x. [PMID: 39937379 DOI: 10.1007/s42770-025-01624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
Candida albicans biofilms are characterized as the main virulence factor responsible for therapeutic failure with antifungals and the development of resistant strains. Chitosan nanoparticles with farnesol (NF) may be able to penetrate biofilms due to their small size and enable the delivery of molecules to specific locations. The objective of the study was to assess the in vitro effectiveness of NF on C. albicans biofilms, as an additional study of the previously presented in vivo data. In the antifungal tests with C. albicans ATCC 10231, NF showed an IC50 of 73.25 µg/mL and inhibited biofilm formation at concentrations of up to 146.5 µg/mL. Images obtained by scanning electron microscopy demonstrated the ability of NF to inhibit the development of biofilms in vitro. In addition to their in vivo effectiveness against C. albicans infections, the produced nanoparticles could serve as a promising alternative to inhibit the formation of C. albicans biofilms on surfaces.
Collapse
Affiliation(s)
| | | | - Juliana Assis Martins
- Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Viviane Lopes Rocha
- Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Andre Correa Amaral
- Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
2
|
Bayer IS. Fungal quorum sensing molecules as potential drugs in the treatment of chronic wounds and their delivery. Expert Opin Drug Deliv 2025; 22:277-296. [PMID: 39791701 DOI: 10.1080/17425247.2025.2452303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/27/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Chronic non-healing wounds have emerged as a significant global healthcare challenge. Biofilm induced wound infections has been widely acknowledged. Despite the advanced understanding of biofilm formation, the existing approaches for diagnosing biofilms in wounds remain considerably suboptimal. Chemical signals produced by fungi to sense their environment, known as quorum sensing (QS) molecules are anticipated to cause revolution in non-healing wound antisepsis. AREAS COVERED Biofilms render chronic wounds resistant to treatment and impede tissue repair by inducing chronic inflammation. QS is a biochemical signaling pathway that involves certain secreted molecules, namely phenylethanoids, indolyl, and sesquiterpene alcohols that can significantly minimize and obliterate bacterial biofilms if properly applied and released in wound treatments. EXPERT OPINION QS molecules (QSMs) possess inhibitory properties that obstruct the formation of microbial biofilms and exhibit synergism with common antimicrobials. They can disrupt biofilms formed by drug-resistant microorganisms. The understanding of the current mechanisms and advancements in the utilization of QSMs within diverse drug delivery systems, and their release dynamics will be crucial in new drug design and delivery. Exploration of co-delivery of drugs alongside QS molecules, and assessing their impact on healing of chronic wounds before moving to clinical trials remain unaddressed.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
3
|
Wang Z, Shao J. Fungal vaccines and adjuvants: a tool to reveal the interaction between host and fungi. Arch Microbiol 2024; 206:293. [PMID: 38850421 DOI: 10.1007/s00203-024-04010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024]
Abstract
Fungal infections are incurring high risks in a range from superficial mucosal discomforts (such as oropharyngeal candidiasis and vulvovaginal candidiasis) to disseminated life-threatening diseases (such as invasive pulmonary aspergillosis and cryptococcal meningitis) and becoming a global health problem in especially immunodeficient population. The major obstacle to conquer fungal harassment lies in the presence of increasing resistance to conventional antifungal agents used in newly clinically isolated strains. Although recombinant cytokines and mono-/poly-clonal antibodies are added into antifungal armamentarium, more effective antimycotic drugs are exceedingly demanded. It is comforting that the development of fungal vaccines and adjuvants opens up a window to brighten the prospective way in the diagnosis, prevention and treatment of fungal assaults. In this review, we focus on the progression of several major fungal vaccines devised for the control of Candida spp., Aspergillus spp., Cryptococcus spp., Coccidioides spp., Paracoccidioides spp., Blastomyces spp., Histoplasma spp., Pneumocystis spp. as well as the adjuvants adopted. We then expound the interaction between fungal vaccines/adjuvants and host innate (macrophages, dendritic cells, neutrophils), humoral (IgG, IgM and IgA) and cellular (Th1, Th2, Th17 and Tc17) immune responses which generally experience immune recognition of pattern recognition receptors, activation of immune cells, and clearance of invaded fungi. Furthermore, we anticipate an in-depth understanding of immunomodulatory properties of univalent and multivalent vaccines against diverse opportunistic fungi, providing helpful information in the design of novel fungal vaccines and adjuvants.
Collapse
Affiliation(s)
- Zixu Wang
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Jing Shao
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
| |
Collapse
|
4
|
Izadi A, Paknia F, Roostaee M, Mousavi SAA, Barani M. Advancements in nanoparticle-based therapies for multidrug-resistant candidiasis infections: a comprehensive review. NANOTECHNOLOGY 2024; 35:332001. [PMID: 38749415 DOI: 10.1088/1361-6528/ad4bed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Candida auris, a rapidly emerging multidrug-resistant fungal pathogen, poses a global health threat, with cases reported in over 47 countries. Conventional detection methods struggle, and the increasing resistance ofC. auristo antifungal agents has limited treatment options. Nanoparticle-based therapies, utilizing materials like silver, carbon, zinc oxide, titanium dioxide, polymer, and gold, show promise in effectively treating cutaneous candidiasis. This review explores recent advancements in nanoparticle-based therapies, emphasizing their potential to revolutionize antifungal therapy, particularly in combatingC. aurisinfections. The discussion delves into mechanisms of action, combinations of nanomaterials, and their application against multidrug-resistant fungal pathogens, offering exciting prospects for improved clinical outcomes and reduced mortality rates. The aim is to inspire further research, ushering in a new era in the fight against multidrug-resistant fungal infections, paving the way for more effective and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Alireza Izadi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Paknia
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Seyed Amin Ayatollahi Mousavi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmood Barani
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran
| |
Collapse
|
5
|
Dalabehera M, Rathore C, Rathee A, Lal UR. From plants to particles: herbal solutions and nanotechnology combating resistant vulvovaginal candidiasis. Ther Deliv 2024; 15:371-392. [PMID: 38651887 PMCID: PMC11221605 DOI: 10.4155/tde-2023-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
Despite having current advanced therapy, vulvovaginal candidiasis (VVC) remains a common yet debated healthcare-associated topic worldwide due to multi-drug resistance Candida species. In our review, we outlined and highlighted upcoming values with scope of existing and emerging information regarding the possibility of using various natural molecules combined with modern technology that shows promising anti-candida activity in VVC. Furthermore, in this review, we compiled herbal drug molecules and their nanocarriers approach for enhancing the efficacy and stability of herbal molecules. We have also summarized the patent literature available on herbal drug molecules and their nanoformulation techniques that could alternatively become a new innovative era to combat resistance VVC.
Collapse
Affiliation(s)
- Manoj Dalabehera
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| | - Charul Rathore
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| | - Ankit Rathee
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| | - Uma Ranjan Lal
- Department of Natural Products, National Institute of Pharmaceutical Education & Research, Punjab 160062 Mohali, India
| |
Collapse
|
6
|
Costa AF, da Silva JT, Martins JA, Rocha VL, de Menezes LB, Amaral AC. Chitosan nanoparticles encapsulating farnesol evaluated in vivo against Candida albicans. Braz J Microbiol 2024; 55:143-154. [PMID: 37964169 PMCID: PMC10920512 DOI: 10.1007/s42770-023-01168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
Farnesol is a natural essential oil with antimicrobial properties. Complexation of farnesol in chitosan nanoparticles can be useful to improve its bioavailability and potentiate its antifungal capabilities such as inhibition of hyphal and biofilm formation. The aim of this study was to develop and characterize chitosan nanoparticles with farnesol (NF) and evaluate their toxicity and antifungal action on C. albicans in vivo. The NF were prepared by the ionic gelation method and showed physicochemical characteristics such as diameter less than 200 nm, monodisperse distribution, positive zeta potential, spherical morphology, and stability after 120 days of storage. In the evaluation of toxicity in Galleria mellonella, NF did not reduce the survival rate, indicating that there was no toxicity in vivo at the doses tested. In the assays with G. mellonella infected by C. albicans, the larvae treated with NF had a high survival rate after 48 h, with a significant reduction of the fungal load and inhibition of the formation of biofilms and hyphae. In the murine model of vulvovaginal candidiasis (VVC), histopathological analysis showed a reduction in inflammatory parameters, fungal burden, and hyphal inhibition in mice treated with NF. The produced nanoparticles can be a promising alternative to inhibit C. albicans infection.
Collapse
Affiliation(s)
- Adelaide Fernandes Costa
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil.
| | - Jacqueline Teixeira da Silva
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Juliana Assis Martins
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Viviane Lopes Rocha
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Liliana Borges de Menezes
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Andre Correa Amaral
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| |
Collapse
|
7
|
Tarannum N, Pooja K, Jakhar S, Mavi A. Nanoparticles assisted intra and transdermic delivery of antifungal ointment: an updated review. DISCOVER NANO 2024; 19:11. [PMID: 38195832 PMCID: PMC10776542 DOI: 10.1186/s11671-023-03932-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
This review paper highlights the trans-dermic delivery of nanoparticles (NPs) based antifungal ointments with the help of nanotechnology. It also describes the novel trans-dermal approach utilizing various nanoparticles which enables an efficient delivery to the target site. This current review gives an overview about past research and developments as well as the current nanoparticle-based ointments. This review also presents data regarding types, causes of infection, and different pathogens within their infection site. It also gives information about antifungal ointments with their activity and side effects of antifungal medicines. Additionally, this review also focuses on the future aspects of the topical administration of nanoparticle-based antifungal ointments. These nanoparticles can encapsulate multiple antifungal drugs as a combination therapy targeting different aspects of fungal infection. Nanoparticles can be designed in such a way that they can specifically target fungal cells and do not affect healthy cells. Nanoparticle based antifungal ointments exhibit outstanding potential to treat fungal diseases. As further research and advancements evolve in nanotechnology, we expect more development of nanoparticle-based antifungal formulations shortly. This paper discusses all the past and future applications, recent trends, and developments in the various field and also shows its bright prospective in the upcoming years.
Collapse
Affiliation(s)
- Nazia Tarannum
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India.
| | - Km Pooja
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India
| | - Shivani Jakhar
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India
| | - Anshika Mavi
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India
| |
Collapse
|
8
|
Chaudhari V, Vairagade V, Thakkar A, Shende H, Vora A. Nanotechnology-based fungal detection and treatment: current status and future perspective. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:77-97. [PMID: 37597093 DOI: 10.1007/s00210-023-02662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
Fungal infections impose a significant impact on global health and encompass major expenditures in medical treatments. Human mycoses, a fungal co-infection associated with SARS-CoV-2, is caused by opportunistic fungal pathogens and is often overlooked or misdiagnosed. Recently, there is increasing threat about spread of antimicrobial resistance in fungus, mostly in hospitals and other healthcare facilities. The diagnosis and treatment of fungal infections are associated with several issues, including tedious and non-selective detection methods, the growth of drug-resistant bacteria, severe side effects, and ineffective drug delivery. Thus, a rapid and sensitive diagnostic method and a high-efficacy and low-toxicity therapeutic approach are needed. Nanomedicine has emerged as a viable option for overcoming these limitations. Due to the unique physicochemical and optical properties of nanomaterials and newer biosensing techniques, nanodiagnostics play an important role in the accurate and prompt differentiation and detection of fungal diseases. Additionally, nano-based drug delivery techniques can increase drug permeability, reduce adverse effects, and extend systemic circulation time and drug half-life. This review paper is aimed at highlighting recent, promising, and unique trends in nanotechnology to design and develop diagnostics and treatment methods for fungal diseases.
Collapse
Affiliation(s)
- Vinay Chaudhari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Vaishnavi Vairagade
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Ami Thakkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Himani Shende
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India.
| |
Collapse
|
9
|
Ahuja A, Bajpai M. Nanoformulations Insights: A Novel Paradigm for Antifungal Therapies and Future Perspectives. Curr Drug Deliv 2024; 21:1241-1272. [PMID: 37859317 DOI: 10.2174/0115672018270783231002115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Currently, fungal infections are becoming more prevalent worldwide. Subsequently, many antifungal agents are available to cure diseases like pemphigus, athlete's foot, acne, psoriasis, hyperpigmentation, albinism, and skin cancer. Still, they fall short due to pitfalls in physiochemical properties. Conventional medications like lotion, creams, ointments, poultices, and gels are available for antifungal therapy but present many shortcomings. They are associated with drug retention and poor penetration problems, resulting in drug resistance, hypersensitivity, and diminished efficacy. On the contrary, nanoformulations have gained tremendous potential in overcoming the drawbacks of conventional delivery. Furthermore, the potential breakthroughs of nanoformulations are site-specific targeting. It has improved bioavailability, patient-tailored approach, reduced drug retention and hypersensitivity, and improved skin penetration. Nowadays, nanoformulations are gaining popularity for antifungal therapy against superficial skin infections. Nanoformulations-based liposomes, niosomes, nanosponges, solid lipid nanoparticles, and potential applications have been explored for antifungal therapy due to enhanced activity and reduced toxicity. Researchers are now more focused on developing patient-oriented target-based nano delivery to cover the lacunas of conventional treatment with higher immune stimulatory effects. Future direction involves the construction of novel nanotherapeutic devices, nanorobotics, and robust methods. In addition, for the preparations of nanoformulations for clinical studies, animal modeling solves the problems of antifungal therapy. This review describes insights into various superficial fungal skin infections and their potential applications, nanocarrier-based drug delivery, and mechanism of action. In addition, it focuses on regulatory considerations, pharmacokinetic and pharmacodynamic studies, clinical trials, patents, challenges, and future inputs for researchers to improve antifungal therapy.
Collapse
Affiliation(s)
- Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| |
Collapse
|
10
|
da Silva JT, Dantas de Sousa PH, Costa AF, de Menezes LB, Alves SF, Pellegrini F, Amaral AC. Fluconazole and propolis co-encapsulated in chitosan nanoparticles for the treatment of vulvovaginal candidiasis in a murine model. Med Mycol 2023; 61:myad113. [PMID: 37947253 DOI: 10.1093/mmy/myad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) is a fungal infection caused mainly by Candida albicans. The treatment of VVC with azoles has been impaired due to the increased cases of resistance presented by this pathogen. The aim of the present study was to investigate the antifungal activity of mucoadhesive chitosan nanoparticles encapsulating both green propolis and fluconazole for topical use in the treatment of VVC. The nanoparticles were prepared by the ionic gelation method, resulting in a size of 316.5 nm containing 22 mg/kg of green propolis and 2.4 mg/kg of fluconazole. The nanoparticles were non-toxic in vitro using red blood cells or in vivo in a Galleria mellonella toxicity model. The treatment of female BALB/c mice infected by C. albicans ATCC 10231 with topical nanoparticles co-encapsulating fluconazole and green propolis was effective even using a fluconazole amount 20 times lower than the amount of miconazole nitrate 2% cream. Considering that the mucoadhesive property of chitosan, which is known to allow a prolonged retention time of the compounds at the mucous epithelia, the antifungal potential of the phenols and flavonoids present in green propolis may have favored the effectiveness of this treatment. These results indicate that this formulation of topical use for fluconazole associated with green propolis can be used as a promising approach to therapy for the treatment of VVC, thus contributing to reducing the development of resistance to azoles.
Collapse
Affiliation(s)
- Jacqueline Teixeira da Silva
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, St 235 university sector, Goiânia, GO, 74605-050, Brazil
| | - Paulo Henrique Dantas de Sousa
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, St 235 university sector, Goiânia, GO, 74605-050, Brazil
| | - Adelaide Fernandes Costa
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, St 235 university sector, Goiânia, GO, 74605-050, Brazil
| | - Liliana Borges de Menezes
- Laboratory of Pathology, Universidade Federal de Goiás, St 235 university sector, Goiânia, GO, 74605-050, Brazil
| | - Suzana Ferreira Alves
- Pharmacy Course, School of Medical Sciences, Pharmaceuticals and Biomedical Sciences, Pontifícia Universidade Católica de Goiás, Av university, 1440, Goiânia, GO, 74175-120, Brazil
| | - Flavio Pellegrini
- Company Citrinitas, St Pedroso Alvarenga, 505, São Paulo, SP, 04531-930, Brazil
| | - Andre Correa Amaral
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, St 235 university sector, Goiânia, GO, 74605-050, Brazil
| |
Collapse
|
11
|
Landa G, Miranda-Calderon LG, Gomez A, Perez M, Sebastian V, Arruebo M, Lamarche I, Tewes F, Irusta S, Mendoza G. Real-time in vivo monitoring of the antimicrobial action of combination therapies in the management of infected topical wounds. Int J Pharm 2023; 646:123502. [PMID: 37827392 DOI: 10.1016/j.ijpharm.2023.123502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The increasing prevalence of non-healing infected wounds has become a serious concern in the clinical practice, being associated to population aging and to the rising prevalence of several chronic conditions such as diabetes. Herein, the evaluation of the bactericidal and antibiofilm effects of the natural antiseptic terpenes thymol and farnesol standing alone or in combination with the standard care antiseptic chlorhexidine was carried out both in vitro and in vivo. The in vitro combinatorial treatment of chlorhexidine associated with those terpenes against Staphylococcus aureus in its planktonic and sessile forms demonstrated a superior antibacterial activity than that of chlorhexidine alone. Real-time in vivo monitoring of infection progression and antimicrobial treatment outcomes were evaluated using the bioluminescent S. aureus strain Xen36. In vivo studies on infected wound splinting murine models corroborated the superior bactericidal effects of the combinatorial treatments here proposed. Moreover, the encapsulation of thymol in electrospun Eudragit® S100 (i.e., a synthetic anionic copolymer of methacrylic acid and ethyl acrylate)-based wound dressings was also carried out in order to design efficient antimicrobial wound dressings.
Collapse
Affiliation(s)
- Guillermo Landa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Laura G Miranda-Calderon
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Alex Gomez
- Department of Animal Pathology, University of Zaragoza, 177 Miguel Servet Street, 50013 Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), University of Zaragoza, 50013 Zaragoza, Spain
| | - Marta Perez
- Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), University of Zaragoza, 50013 Zaragoza, Spain; Department of Anatomy, Embriology and Animal Genetics, University of Zaragoza, 177 Miguel Servet Street, 50013 Zaragoza, Spain
| | - Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain.
| | - Isabelle Lamarche
- INSERM U1070 "Pharmacology of anti-infective agents", 1 rue Georges Bonnet, Pôle Biologie Santé, 86022 Poitiers, France
| | - Frederic Tewes
- INSERM U1070 "Pharmacology of anti-infective agents", 1 rue Georges Bonnet, Pôle Biologie Santé, 86022 Poitiers, France.
| | - Silvia Irusta
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Gracia Mendoza
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| |
Collapse
|
12
|
Shi L, Xu S, Zhu Q, Wei Y. Chitosan-coated miconazole as an effective anti-inflammatory agent for the treatment of postoperative infections in obstetrics and vaginal yeast infection control on in vitro evaluations. Microb Pathog 2023; 184:106312. [PMID: 37652266 DOI: 10.1016/j.micpath.2023.106312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
People with immune deficiency are at risk of developing infections caused by several bacterial and fungal species. In this work, chitosan-coated miconazole was developed by a simple sol-gel method. Miconazole is considered an effective drug to treat vaginal infection-causing bacteria and fungi. The coating of chitosan with miconazole nitrate showed the highest drug loading efficiency (62.43%) and mean particle size (2 μm). FTIR spectroscopic analysis confirmed the entrapment of miconazole nitrate into chitosan polymer. The antifungal result demonstrated that MN@CS microgel possessed notable anti-Aspergillus fumigatus and Candida albicans activity in lower doses. Antibacterial activity results revealed excellent bacterial growth inhibition of MN@CS microgel towards human skin infectious pathogens Escherichia coli and Staphylococcus aureus. The biocompatibility studies of In vitro cell viability and Artemia salina lethality assay suggested that MN@CS microgel is more biosafe and suitable for human external applications. In the future, it will be an efficient anti-inflammatory agent for the treatment of vaginal infections.
Collapse
Affiliation(s)
- Lixia Shi
- Department of Obstetrics, JiNan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Shan Xu
- Department of Obstetrics, JiNan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Qing Zhu
- Department of Obstetrics, JiNan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Yongqing Wei
- Department of Obstetrics, JiNan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China.
| |
Collapse
|
13
|
Teixeira ADR, Quaresma ADV, Branquinho RT, Santos SLEN, Magalhães JTD, Silva FHRD, Marques MBDF, Moura SALD, Barboza APM, Araújo MGDF, Silva GRD. Miconazole-loaded nanoparticles coated with hyaluronic acid to treat vulvovaginal candidiasis. Eur J Pharm Sci 2023; 188:106508. [PMID: 37379779 DOI: 10.1016/j.ejps.2023.106508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Miconazole-loaded nanoparticles coated with hyaluronic acid (miconazole-loaded nanoparticles/HA) were developed to overcome the limitations of the conventional therapy of the vulvovaginal candidiasis (VVC). They were synthesized by emulsification and solvent evaporation techniques, characterized by diameter, polydispersity index, zeta potential, encapsulation efficiency, atomic force microscopy (AFM), evaluated in terms of efficacy against C. albicans in vitro, and tested in a murine VVC model. Nanoparticles showed 211nm of diameter with a 0.32 polydispersity index, -53mV of zeta potential, and 90% miconazole encapsulation efficiency. AFM evidenced nanoparticles with a spherical shape. They inhibited the proliferation of C. albicans in vitro and in vivo after a single administration. Nanoparticles released the miconazole directly in the site of action at low therapeutic doses, which was enough to eliminate the fungal burden in the murine VVC model. These systems were rationally designed since the existence of the HA induces their adhesion on the vaginal mucus and their internalization via CD44 receptors, inhibiting the C. albicans. Therefore, miconazole-loaded nanoparticles/HA represent an innovative non-conventional pharmaceutical dosage form to treat the VVC and recurrent VVC.
Collapse
Affiliation(s)
- Aniely Dos Reis Teixeira
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chakraborty A, Diwan A, Tatake J. Prospect of nanomaterials as antimicrobial and antiviral regimen. AIMS Microbiol 2023; 9:444-466. [PMID: 37649798 PMCID: PMC10462459 DOI: 10.3934/microbiol.2023024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 09/01/2023] Open
Abstract
In recent years studies of nanomaterials have been explored in the field of microbiology due to the increasing evidence of antibiotic resistance. Nanomaterials could be inorganic or organic, and they may be synthesized from natural products from plant or animal origin. The therapeutic applications of nano-materials are wide, from diagnosis of disease to targeted delivery of drugs. Broad-spectrum antiviral and antimicrobial activities of nanoparticles are also well evident. The ratio of nanoparticles surface area to their volume is high and that allows them to be an advantageous vehicle of drugs in many respects. Effective uses of various materials for the synthesis of nanoparticles impart much specificity in them to meet the requirements of specific therapeutic strategies. The potential therapeutic use of nanoparticles and their mechanisms of action against infections from bacteria, fungi and viruses were the focus of this review. Further, their potential advantages, drawbacks, limitations and side effects are also included here. Researchers are characterizing the exposure pathways of nano-medicines that may cause serious toxicity to the subjects or the environment. Indeed, societal ethical issues in using nano-medicines pose a serious question to scientists beyond anything.
Collapse
|
15
|
Negi P, Singh A, Pundir S, Parashar A, Upadhyay N, Agarwal S, Chauhan R, Tambuwala MM. Essential oil and nanocarrier-based formulations approaches for vaginal candidiasis. Ther Deliv 2023; 14:207-225. [PMID: 37191049 DOI: 10.4155/tde-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
An exclusive site for local drug delivery is the vagina, especially for vaginal infections. The fungus Candida albicans causes vaginal infection known as vulvovaginal candidiasis, a highly prevalent and recurrent gynaecological disease among women. Vaginal candidiasis affects over 75% of women at a certain point in their life and has a recurrence rate of 40-50%. Medicinal plants provide some very effective phytoconstituents which when delivered as nanosystems have enhanced therapeutic action and efficacy by alteration in their characteristics. Antifungal drugs are used to treat these conditions, alternative medicine is required for prophylaxis and improved prognosis. The current review focuses on the research carried out on various nanocarrier-based approaches and essential oil-based formulations for vaginal candidiasis.
Collapse
Affiliation(s)
- Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Akriti Singh
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Swati Pundir
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Arun Parashar
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Navneet Upadhyay
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Shweta Agarwal
- L.R Institute of Pharmacy, Oachghat, Solan, 173212, India
| | - Raveen Chauhan
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
16
|
Doghish AS, Hashem AH, Shehabeldine AM, Sallam AAM, El-Sayyad GS, Salem SS. Nanocomposite based on gold nanoparticles and carboxymethyl cellulose: Synthesis, characterization, antimicrobial, and anticancer activities. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Mura P, Maestrelli F, Cirri M, Mennini N. Multiple Roles of Chitosan in Mucosal Drug Delivery: An Updated Review. Mar Drugs 2022; 20:335. [PMID: 35621986 PMCID: PMC9146108 DOI: 10.3390/md20050335] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Chitosan (CS) is a linear polysaccharide obtained by the deacetylation of chitin, which, after cellulose, is the second biopolymer most abundant in nature, being the primary component of the exoskeleton of crustaceans and insects. Since joining the pharmaceutical field, in the early 1990s, CS attracted great interest, which has constantly increased over the years, due to its several beneficial and favorable features, including large availability, biocompatibility, biodegradability, non-toxicity, simplicity of chemical modifications, mucoadhesion and permeation enhancer power, joined to its capability of forming films, hydrogels and micro- and nanoparticles. Moreover, its cationic character, which renders it unique among biodegradable polymers, is responsible for the ability of CS to strongly interact with different types of molecules and for its intrinsic antimicrobial, anti-inflammatory and hemostatic activities. However, its pH-dependent solubility and susceptibility to ions presence may represent serious drawbacks and require suitable strategies to be overcome. Presently, CS and its derivatives are widely investigated for a great variety of pharmaceutical applications, particularly in drug delivery. Among the alternative routes to overcome the problems related to the classic oral drug administration, the mucosal route is becoming the favorite non-invasive delivery pathway. This review aims to provide an updated overview of the applications of CS and its derivatives in novel formulations intended for different methods of mucosal drug delivery.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.M.); (M.C.); (N.M.)
| | | | | | | |
Collapse
|
18
|
Aleanizy FS, Taha EI, Salem-Bekhit MM, Felimban AMJ, Al-Suwayeh SA, Al-Joufi FA, Muharram MM, Alqahtani FY, Shakeel F, Youssof AME, Bayomi M, Abouelela AEF. Formulation and in vitro and in vivo evaluation of surfactant-stabilized mucoadhesive nanogels for vaginal delivery of fluconazole. Drug Dev Ind Pharm 2022; 47:1935-1942. [PMID: 35537065 DOI: 10.1080/03639045.2022.2070760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Surfactant-stabilized mucoadhesive nanogels (NGs) for vaginal delivery of fluconazole (FLZ) were studied and evaluated in this work. FLZ-NG formulations were prepared using two different types of mucoadhesive polymers, Carbopol 934 (Ca934) and Pluronic F-127 (PF127). A rheology study revealed a non-Newtonian pseudoplastic flow behavior (shear thinning) in the prepared NGs. The viscosity of Ca934 NG (0.47 Pa s) was much lower compared to the PF127 NG (6.10 Pa s). The rheology study results correlated well with the in vitro FLZ release profile from the NG formulations. A pH study (pH = 3.90-4.90) revealed that the formulations were physiologically suitable for vaginal application, to avoid the irritation of the vaginal mucosa. Finally, in vitro and in vivo antimicrobial tests were performed. FLZ incorporated into the Ca934 gel had the strongest antimicrobial effect, with a mean inhibition zone of 24 ± 1.6 mm. Based on these results, it was concluded that the mucoadhesive NG incorporating FLZ resulted in a sustained release and enhanced antimicrobial effect, which would enhance and prolong the therapeutic effects of vaginally delivered FLZ.
Collapse
Affiliation(s)
- Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ehab I Taha
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mounir M Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Microbiology & Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Alaa M J Felimban
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Al-Suwayeh
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fakhria A Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Saudi Arabia
| | - Magdy M Muharram
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.,Department of Microbiology, College of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Fulwah Y Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah M E Youssof
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohsen Bayomi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal E F Abouelela
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
19
|
Mba IE, Nweze EI. Application of Nanotechnology in the Treatment of Infectious Diseases: An Overview. NANOTECHNOLOGY FOR INFECTIOUS DISEASES 2022:25-51. [DOI: 10.1007/978-981-16-9190-4_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
20
|
Current trends in chitosan based nanopharmaceuticals for topical vaginal therapies. Int J Biol Macromol 2021; 193:2140-2152. [PMID: 34780894 DOI: 10.1016/j.ijbiomac.2021.11.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/03/2021] [Accepted: 11/06/2021] [Indexed: 01/21/2023]
Abstract
Large surface area, rich vascularisation, well defined mucous membrane, balanced pH and relatively low enzymatic activity makes vagina a suitable site for drugs associated with women's health issues like Urinary tract infection (UTI) and vaginal infections. Therapeutic performance of intravaginal dosage forms largely depends on the properties of polymers and drugs. Chitosan (CS) because of its unique physical, chemical, pharmaceutical and biopharmaceutical properties have received a great deal of attention as an essential component in vaginal drug delivery systems. Further the presence of free amino and hydroxyl groups on the chitosan skeleton allows easy derivatization under mild conditions to meet specific application requirements. Moreover, CS-based nanopharmaceuticals like nanoparticles, nanofiber, nanogel, nanofilm, liposomes and micelles are widely studied to improve therapeutic performance of vaginal formulations. However, susceptibility of CS to the acidic pH of vagina, poor loading of hydrophobic drugs, rapid mucosal turn over are the key issues need to be addressed for successful outcomes. In this review, we have discussed the application of CS and CS derivatives in vaginal drug delivery and also highlight the recent progress in chitosan based nanocarrier platforms in terms of their limitations and potentials.
Collapse
|
21
|
Hemmingsen LM, Škalko-Basnet N, Jøraholmen MW. The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Mar Drugs 2021; 19:697. [PMID: 34940696 PMCID: PMC8704789 DOI: 10.3390/md19120697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Chitosan is one of the most studied natural origin polymers for biomedical applications. This review focuses on the potential of chitosan in localized antimicrobial therapy to address the challenges of current rising antimicrobial resistance. Due to its mucoadhesiveness, chitosan offers the opportunity to prolong the formulation residence time at mucosal sites; its wound healing properties open possibilities to utilize chitosan as wound dressings with multitargeted activities and more. We provide an unbiased overview of the state-of-the-art chitosan-based delivery systems categorized by the administration site, addressing the site-related challenges and evaluating the representative formulations. Specifically, we offer an in-depth analysis of the current challenges of the chitosan-based novel delivery systems for skin and vaginal infections, including its formulations optimizations and limitations. A brief overview of chitosan's potential in treating ocular, buccal and dental, and nasal infections is included. We close the review with remarks on toxicity issues and remaining challenges and perspectives.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| | | | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| |
Collapse
|
22
|
Abstract
The antifungal resistance threat posed by Candida auris necessitates bold and innovative therapeutic options. Farnesol is a quorum-sensing molecule with a potential antifungal and/or adjuvant effect; it may be a promising candidate in alternative treatment regimens. To gain further insights into the farnesol-related effect on C. auris, genome-wide gene transcription analysis was performed using transcriptome sequencing (RNA-Seq). Farnesol exposure resulted in 1,766 differentially expressed genes. Of these genes, 447 and 304 genes with at least 1.5-fold increase or decrease in transcription, respectively, were selected for further investigation. Genes involved in morphogenesis, biofilm events (maturation and dispersion), gluconeogenesis, iron metabolism, and regulation of RNA biosynthesis showed downregulation, whereas those related to antioxidative defense, transmembrane transport, glyoxylate cycle, fatty acid β-oxidation, and peroxisome processes were upregulated. In addition, farnesol treatment increased the transcription of certain efflux pump genes, including MDR1, CDR1, and CDR2. Growth, measured by the change in the number of CFU, was significantly inhibited within 2 h of the addition of farnesol (5.8 × 107 ± 1.1 × 107 and 1.1 × 107 ± 0.3 × 107 CFU/ml for untreated control and farnesol-exposed cells, respectively) (P < 0.001). In addition, farnesol treatment caused a significant reduction in intracellular iron (152.2 ± 21.1 versus 116.0 ± 10.0 mg/kg), manganese (67.9 ± 5.1 versus 18.6 ± 1.8 mg/kg), and zinc (787.8 ± 22.2 versus 245.8 ± 34.4 mg/kg) (P < 0.05 to 0.001) compared to untreated control cells, whereas the level of cooper was significantly increased (274.6 ± 15.7 versus 828.8 ± 106.4 mg/kg) (P < 0.001). Our data demonstrate that farnesol significantly influences the growth, intracellular metal ion contents, and gene transcription related to fatty acid metabolism, which could open new directions in developing alternative therapies against C. auris. IMPORTANCECandida auris is a dangerous fungal pathogen that causes outbreaks in health care facilities, with infections associated with a high mortality rate. As conventional antifungal drugs have limited effects against the majority of clinical isolates, new and innovative therapies are urgently needed. Farnesol is a key regulator molecule of fungal morphogenesis, inducing phenotypic adaptations and influencing biofilm formation as well as virulence. Alongside these physiological modulations, it has a potent antifungal effect alone or in combination with traditional antifungals, especially at supraphysiological concentrations. However, our knowledge about the mechanisms underlying this antifungal effect against C. auris is limited. This study has demonstrated that farnesol enhances the oxidative stress and reduces the fungal survival strategies. Furthermore, it inhibits manganese, zinc transport, and iron metabolism as well as increases fungal intracellular copper content. In addition, metabolism was modulated toward β-oxidation. These results provide definitive explanations for the observed antifungal effects.
Collapse
|
23
|
Striking Back against Fungal Infections: The Utilization of Nanosystems for Antifungal Strategies. Int J Mol Sci 2021; 22:ijms221810104. [PMID: 34576268 PMCID: PMC8466259 DOI: 10.3390/ijms221810104] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Fungal infections have become a major health concern, given that invasive infections by Candida, Cryptococcus, and Aspergillus species have led to millions of mortalities. Conventional antifungal drugs including polyenes, echinocandins, azoles, allylamins, and antimetabolites have been used for decades, but their limitations include off-target toxicity, drug-resistance, poor water solubility, low bioavailability, and weak tissue penetration, which cannot be ignored. These drawbacks have led to the emergence of novel antifungal therapies. In this review, we discuss the nanosystems that are currently utilized for drug delivery and the application of antifungal therapies.
Collapse
|
24
|
das Neves J, Notario-Pérez F, Sarmento B. Women-specific routes of administration for drugs: A critical overview. Adv Drug Deliv Rev 2021; 176:113865. [PMID: 34280514 DOI: 10.1016/j.addr.2021.113865] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
The woman's body presents a number of unique anatomical features that can constitute valuable routes for the administration of drugs, either for local or systemic action. These are associated with genitalia (vaginal, endocervical, intrauterine, intrafallopian and intraovarian routes), changes occurring during pregnancy (extra-amniotic, intra-amniotic and intraplacental routes) and the female breast (breast intraductal route). While the vaginal administration of drug products is common, other routes have limited clinical application and are fairly unknown even for scientists involved in drug delivery science. Understanding the possibilities and limitations of women-specific routes is of key importance for the development of new preventative, diagnostic and therapeutic strategies that will ultimately contribute to the advancement of women's health. This article provides an overview on women-specific routes for the administration of drugs, focusing on aspects such as biological features pertaining to drug delivery, relevance in current clinical practice, available drug dosage forms/delivery systems and administration techniques, as well as recent trends in the field.
Collapse
|
25
|
Saleh N, Elshaer S, Girgis G. Biodegradable polymers-based nanoparticles to enhance the antifungal efficacy of fluconazole against Candida albicans. Curr Pharm Biotechnol 2021; 23:749-757. [PMID: 34238149 DOI: 10.2174/1389201022666210708105142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Fluconazole (FLZ), a potent antifungal medication, is characterized by poor water solubility that reduced its antifungal efficacy. OBJECTIVE This study aimed to prepare FLZ-loaded polymeric nanoparticles (NPs) by using different polymers and techniques as a mean of enhancing the antifungal activity of FLZ. METHODS NP1, NP2, and NP3 were prepared by the double emulsion/solvent evaporation method using PLGA, PCL, and PLA, respectively. The ionotropic pre-gelation technique was applied to prepare an alginate/chitosan-based formulation (NP4). Particle size, zeta potential, encapsulation efficiency, and loading capacity were characterized. FT-IR spectra of FLZ, the polymers, and the prepared NPs were estimated. NP4 was selected for further in-vitro release evaluation. The broth dilution method was used to assess the antifungal activity of NP4 using a resistant clinical isolate of Candida albicans. RESULTS The double emulsion method produced smaller-sized particles (<390 nm) but with much lower encapsulation efficiency (< 12%). Alternatively, the ionic gelation method resulted in nanosized particles with a markedly higher encapsulation efficiency of about 40%. The FT-IR spectroscopy confirmed the loading of the FLZ molecules in the polymeric network of the prepared NPs. The release profile of NP4 showed a burst initial release followed by a controlled pattern up to 24 hours with a higher percent released relative to the free FLZ suspension. NP4 was able to reduce the value of MIC of FLZ by 20 times. CONCLUSION The antifungal activity of FLZ against C. albicans was enhanced markedly via its loading in the alginate/chitosan-based polymeric matrix of NP4.
Collapse
Affiliation(s)
- Noha Saleh
- Pharmaceutics Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Soha Elshaer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Germeen Girgis
- Pharmaceutics Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
26
|
HPLC Method Validated for Quantification of Fluconazole Co-Encapsulated with Propolis Within Chitosan Nanoparticles. Indian J Microbiol 2021; 61:364-369. [PMID: 34295002 DOI: 10.1007/s12088-021-00954-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022] Open
Abstract
Considering the cases of fungal resistance to classic antifungals, it is necessary to develop more efficient and innovative therapies capable of reversing this situation. Fluconazole is an antifungal frequently used in the treatment of mycosis and some fungi developed resistance to its mechanism of action. In this work, fluconazole and green propolis were co-encapsulated in chitosan nanoparticles to be explored in order to promote a synergistic effect to enhance its therapeutic efficacy. However, because of the complexity of the chemical composition of green propolis, it was necessary to develop a simple and precise methodology to quantify fluconazole in the formulation. High Efficiency Liquid Chromatography methodology was developed and validated following the Brazilian regulatory guidelines (ANVISA, RDC 166/2017) for the separation of co-eluted peaks of fluconazole and green propolis in the nanoparticle supernatant. Applying the method developed, it was possible to quantify fluconazole in the same sample containing propolis. Thus, the results allow to affirm that it is a specific test, effective, precise and robust, which helped to determine the efficiency of association of the compounds within the nanoparticle. The method can be applied to quantify compounds that have similar chromatographic retention times. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-021-00954-2.
Collapse
|
27
|
Renzi DF, de Almeida Campos L, Miranda EH, Mainardes RM, Abraham WR, Grigoletto DF, Khalil NM. Nanoparticles as a Tool for Broadening Antifungal Activities. Curr Med Chem 2021; 28:1841-1873. [PMID: 32223729 DOI: 10.2174/0929867327666200330143338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
Fungal infections are diseases that are considered neglected although their infection rates have increased worldwide in the last decades. Thus, since the antifungal arsenal is restricted and many strains have shown resistance, new therapeutic alternatives are necessary. Nanoparticles are considered important alternatives to promote drug delivery. In this sense, the objective of the present study was to evaluate the contributions of newly developed nanoparticles to the treatment of fungal infections. Studies have shown that nanoparticles generally improve the biopharmaceutical and pharmacokinetic characteristics of antifungals, which is reflected in a greater pharmacodynamic potential and lower toxicity, as well as the possibility of prolonged action. It also offers the proposition of new routes of administration. Nanotechnology is known to contribute to a new drug delivery system, not only for the control of infectious diseases but for various other diseases as well. In recent years, several studies have emphasized its application in infectious diseases, presenting better alternatives for the treatment of fungal infections.
Collapse
Affiliation(s)
- Daniele Fernanda Renzi
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Laís de Almeida Campos
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Eduardo Hösel Miranda
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Wolf-Rainer Abraham
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Diana Fortkamp Grigoletto
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| |
Collapse
|
28
|
Costa AF, Silva LDC, Amaral AC. Farnesol: An approach on biofilms and nanotechnology. Med Mycol 2021; 59:958-969. [PMID: 33877362 DOI: 10.1093/mmy/myab020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/04/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Biofilms are important virulence factor in infections caused by microorganisms because of its complex structure, which provide resistance to conventional antimicrobials. Strategies involving the use of molecules capable of inhibiting their formation and also act synergistically with conventional drugs have been explored. Farnesol is a molecule present in essential oils and produced by Candida albicans as a quorum sensing component. This sesquiterpene presents inhibitory properties in the formation of microbial biofilms and synergism with antimicrobials used in clinical practice, and can be exploited even for eradication of biofilms formed by drug-resistant microorganisms. Despite this, farnesol has physical and chemical characteristics that can limit its use, such as high hydrophobicity and volatility. Therefore, nanotechnology may represent an option to improve the efficiency of this molecule in high complex environments such as biofilms. Nanostructured systems present important results in the improvement of treatment with different commercial drugs and molecules with therapeutic or preventive potential. The formation of nanoparticles offers advantages such as protection of the incorporated drugs against degradation, improved biodistribution and residence time in specific treatment sites. The combination of farnesol with nanotechnology may be promising for the development of more effective antibiofilm therapies, as it can improve its solubility, reduce volatility, and increase bioavailability. This review summarizes existing data about farnesol, its action on biofilms, and discusses its encapsulation in nanostructured systems. LAY SUMMARY Farnesol is a natural compound that inhibits the formation of biofilms from different microbial species. The encapsulation of this molecule in nanoparticles is a promising alternative for the development of more effective therapies against biofilms.
Collapse
Affiliation(s)
- Adelaide Fernandes Costa
- Biological Science Institute, Universidade Federal de Goiás, Goiânia, 74690-900, Brazil.,Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, 74605-050, Brazil
| | - Lívia do Carmo Silva
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, 74605-050, Brazil
| | - Andre Correa Amaral
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, 74605-050, Brazil
| |
Collapse
|
29
|
Araujo VHS, de Souza MPC, Carvalho GC, Duarte JL, Chorilli M. Chitosan-based systems aimed at local application for vaginal infections. Carbohydr Polym 2021; 261:117919. [PMID: 33766328 DOI: 10.1016/j.carbpol.2021.117919] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/31/2022]
Abstract
Vaginal administration is a promising route for the local treatment of infectious vaginal diseases since it can bypass the first-pass metabolism, drug interactions, and adverse effects. However, the commercial products currently available for topical vulvovaginal treatment have low acceptability and do not adequately explore this route. Mucoadhesive systems can optimize the efficacy of drugs administered by this route to increase the retention time of the drug in the vaginal environment. Several polymers are used to develop mucoadhesive systems, among them chitosan, a natural polymer that is highly biocompatible and technologically versatile. Thus, the present review aimed to analyze the studies that used chitosan to develop mucoadhesive systems for the treatment of local vaginal infections. These studies demonstrated that chitosan as a component of mucoadhesive drug delivery systems (DDS) is a promising device for the treatment of vaginal infectious diseases, due to the intrinsic antimicrobial activity of this biopolymer and because it does not interfere with the effectiveness of the drugs used for the treatment.
Collapse
Affiliation(s)
| | | | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, Brazil.
| |
Collapse
|
30
|
Spirescu VA, Chircov C, Grumezescu AM, Andronescu E. Polymeric Nanoparticles for Antimicrobial Therapies: An Up-To-Date Overview. Polymers (Basel) 2021; 13:724. [PMID: 33673451 PMCID: PMC7956825 DOI: 10.3390/polym13050724] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the many advancements in the pharmaceutical and medical fields and the development of numerous antimicrobial drugs aimed to suppress and destroy pathogenic microorganisms, infectious diseases still represent a major health threat affecting millions of lives daily. In addition to the limitations of antimicrobial drugs associated with low transportation rate, water solubility, oral bioavailability and stability, inefficient drug targeting, considerable toxicity, and limited patient compliance, the major cause for their inefficiency is the antimicrobial resistance of microorganisms. In this context, the risk of a pre-antibiotic era is a real possibility. For this reason, the research focus has shifted toward the discovery and development of novel and alternative antimicrobial agents that could overcome the challenges associated with conventional drugs. Nanotechnology is a possible alternative, as there is significant evidence of the broad-spectrum antimicrobial activity of nanomaterials and nanoparticles in particular. Moreover, owing to their considerable advantages regarding their efficient cargo dissolving, entrapment, encapsulation, or surface attachment, the possibility of forming antimicrobial groups for specific targeting and destruction, biocompatibility and biodegradability, low toxicity, and synergistic therapy, polymeric nanoparticles have received considerable attention as potential antimicrobial drug delivery agents. In this context, the aim of this paper is to provide an up-to-date overview of the most recent studies investigating polymeric nanoparticles designed for antimicrobial therapies, describing both their targeting strategies and their effects.
Collapse
Affiliation(s)
- Vera Alexandra Spirescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (E.A.)
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (E.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (E.A.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (E.A.)
| |
Collapse
|
31
|
Development of Nano-Antifungal Therapy for Systemic and Endemic Mycoses. J Fungi (Basel) 2021; 7:jof7020158. [PMID: 33672224 PMCID: PMC7926374 DOI: 10.3390/jof7020158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
Fungal mycoses have become an important health and environmental concern due to the numerous deleterious side effects on the well-being of plants and humans. Antifungal therapy is limited, expensive, and unspecific (causes toxic effects), thus, more efficient alternatives need to be developed. In this work, Copper (I) Iodide (CuI) nanomaterials (NMs) were synthesized and fully characterized, aiming to develop efficient antifungal agents. The bioactivity of CuI NMs was evaluated using Sporothrix schenckii and Candida albicans as model organisms. CuI NMs were prepared as powders and as colloidal suspensions by a two-step reaction: first, the CuI2 controlled precipitation, followed by hydrazine reduction. Biopolymers (Arabic gum and chitosan) were used as surfactants to control the size of the CuI materials and to enhance its antifungal activity. The materials (powders and colloids) were characterized by SEM-EDX and AFM. The materials exhibit a hierarchical 3D shell morphology composed of ordered nanostructures. Excellent antifungal activity is shown by the NMs against pathogenic fungal strains, due to the simultaneous and multiple mechanisms of the composites to combat fungi. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of CuI-AG and CuI-Chitosan are below 50 μg/mL (with 5 h of exposition). Optical and Atomic Force Microscopy (AFM) analyses demonstrate the capability of the materials to disrupt biofilm formation. AFM also demonstrates the ability of the materials to adhere and penetrate fungal cells, followed by their lysis and death. Following the concept of safe by design, the biocompatibility of the materials was tested. The hemolytic activity of the materials was evaluated using red blood cells. Our results indicate that the materials show an excellent antifungal activity at lower doses of hemolytic disruption.
Collapse
|
32
|
Ré ACS, Martins JF, Cunha-Filho M, Gelfuso GM, Aires CP, Gratieri T. New perspectives on the topical management of recurrent candidiasis. Drug Deliv Transl Res 2021; 11:1568-1585. [PMID: 33469892 DOI: 10.1007/s13346-021-00901-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 12/24/2022]
Abstract
Candidiasis is a common opportunistic infection caused by fungi of the Candida genus that affects mainly mucocutaneous tissues (e.g., vaginal, oral, and mammary). This condition has been known for a long time; thus, innumerous topical and systemic treatments are already available on the market worldwide. Yet, recurrent superficial candidiasis (RSC) is an expected outcome, still lacking effective and convenient treatments. Although several individual conditions may contribute to disease recurrence, biofilms' presence seems to be the main etiological factor contributing to antifungal resistance. More than proposing novel antifungal agents, current research seems to be focusing on improving the pharmaceutical technology aspects of formulations to address such a challenge. These include extending and improving intimate contact of drug delivery systems with the mucocutaneous tissues, increasing drug loading dose, and enhancing topical drug permeation. This review discusses the current understanding of the RSC and the use of pharmaceutical technology tools in obtaining better results. Even though several drawbacks of conventional formulations have been circumvented with the help of nano- or microencapsulation techniques and with the use of mucoadhesive formulation excipients, many challenges remain. In particular, the need to mask the unpalatable taste of formulations for the treatment of oral candidiasis, and the necessity of formulations with a "dryer" sensorial feeling and improved performances in providing higher bioavailability for the treatment of mammary and vaginal candidiasis.
Collapse
Affiliation(s)
- Ana Carolina S Ré
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirao Preto, SP, 14040-903, Brazil
| | - Jayanaraian F Martins
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Marcílio Cunha-Filho
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Carolina P Aires
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirao Preto, SP, 14040-903, Brazil
| | - Taís Gratieri
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, 70910-900, Brazil. .,Campus Universitário Darcy Ribeiro, Asa Norte, Brasilia, DF, 70910-900, Brazil.
| |
Collapse
|
33
|
Bezerra CF, de Alencar Júnior JG, de Lima Honorato R, dos Santos ATL, Pereira da Silva JC, Gusmão da Silva T, Leal ALAB, Rocha JE, de Freitas TS, Tavares Vieira TA, Bezerra MCF, Sales DL, Kerntopf MR, de Araujo Delmondes G, Filho JMB, Peixoto LR, Pinheiro AP, Ribeiro-Filho J, Coutinho HDM, Morais-Braga MFB, Gonçalves da Silva T. Antifungal activity of farnesol incorporated in liposomes and associated with fluconazole. Chem Phys Lipids 2020; 233:104987. [DOI: 10.1016/j.chemphyslip.2020.104987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
|
34
|
Arumugam G, Rajendran R. Callophycin A loaded chitosan and spicules based nanocomposites as an alternative strategy to overcome vaginal candidiasis. Int J Biol Macromol 2020; 161:656-665. [PMID: 32544582 DOI: 10.1016/j.ijbiomac.2020.06.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/23/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
The present study aimed to understand the killing effects of seaweed derived metabolite Callophycin A (Cal A). In vitro studies confirmed that the beneficial effects of Cal A on the viability of C. albicans. To enhance the biological activity, we used to demonstrated that chitosan and spicules as a drug carrier. The Callophycin A loading was confirmed by spectral variation of FT-IR and morphological variation by SEM. Moreover, around 65% and 38% of Cal A was successfully loaded in chitosan and spicules respectively. Further, VVC induced animal model experiments confirmed that the candidicidal activity of 1% clotrimazole, Cal A, Cal@Chi and Cal@Spi. After 6 days of treatment Cal@Chi produces a significant reduction in the fungal burden of vaginal lavage. The histo-morphological alterations also evidenced that the protective role of Cal@Chi in VVC model. The present investigations are known to be the first and foremost study to discriminate the potentiality of Cal A composites. Cal A loaded chitosan nanoparticles could be used as an alternative strategy for the development of the novel marine natural product based topical applications.
Collapse
Affiliation(s)
- Ganeshkumar Arumugam
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - Rajaram Rajendran
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, India.
| |
Collapse
|
35
|
Tejada G, Barrera MG, García P, Sortino M, Lamas MC, Lassalle V, Alvarez V, Leonardi D. Nanoparticulated Systems Based on Natural Polymers Loaded with Miconazole Nitrate and Lidocaine for the Treatment of Topical Candidiasis. AAPS PharmSciTech 2020; 21:278. [PMID: 33033939 DOI: 10.1208/s12249-020-01826-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
People with weakened immune systems are at risk of developing candidiasis which is a fungal infection caused by several species of Candida genus. In this work, polymeric nanoparticles containing miconazole nitrate and the anesthetic lidocaine clorhydrate were developed. Miconazole was chosen as a typical drug to treat buccopharyngeal candidiasis whereas lidocaine may be useful in the management of the pain burning, and pruritus caused by the infection. Nanoparticles were synthesized using chitosan and gelatin at different ratios ranging from 10:90 to 90:10. The nano-systems presented nanometric size (between 80 and 300 nm in water; with polydispersion index ranging from 0.120 to 0.596), and positive Z potential (between 20.11 and 37.12 mV). The determined encapsulation efficiency ranges from 65 to 99% or 34 to 91% for miconazole nitrate and lidocaine clorhydrate, respectively. X-ray diffraction and DSC analysis suggested that both drugs were in amorphous state in the nanoparticles. Finally, the systems fitted best the Korsmeyer-Peppas model showing that the release from the nanoparticles was through diffusion allowing a sustained release of both drugs and prolonged the activity of miconazole nitrate over time against Candida albicans for at least 24 h.
Collapse
|
36
|
Yenice Gürsu B. Potential antibiofilm activity of farnesol-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against Candida albicans. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-00241-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractCandida species are ubiquitous fungal pathogens and are the most common causes of mucosal and invasive fungal infections in humans. Especially Candida albicans commonly resides as a commensal in the mucosal tissues of approximately half of the human population. When the balance of the normal flora is disrupted or the immune defenses are compromised, Candida species can become pathogenic, often causing recurrent disease in susceptible individuals.The treatments available for Candida infection are commonly drug-based and can involve topical and systemic antifungal agents. However, the use of standard antifungal therapies can be limited because of toxicity, low efficacy rates, and drug resistance. Candida species ability to produce drug-resistant biofilm is an important factor in human infections, because microorganisms within biofilm benefit from various advantages over their planktonic counterparts including protection from antimicrobials and chemicals. These limitations emphasize the need to develop new and more effective antifungal agents. Natural products are attractive alternatives for this purpose due to their broad spectrum of biological activities. Farnesol is produced by many microorganisms and found in some essential oils. It has also a great attention as a quorum-sensing molecule and virulence factor. It has also antimicrobial potential due to its inhibitory effects on various bacteria and fungi. However, as it is a hydrophobic component, its solubility and biofilm inhibiting properties are limited.To overcome these shortcomings, nanoparticle-based drug delivery systems have been successfully used. For this purpose, especially using biodegradable polymeric nanoparticles has gained increasing attention owing to their biocompatibility and minimal toxicity. Poly (DL-lactide-co-glycolide) (PLGA) is the most widely used polymer in this area. In this study, farnesol is loaded to PLGA nanoparticles (F-PLGA NPs) by emulsion evaporation method and characterized by DLS, TEM, and FT-IR analyses. Our TEM findings indicate that the sizes of F-PLGA NPs are approximately 140 nm. The effects of F-PLGA NPs on planktonic cells and biofilm formation of C. albicans were compared with effects of farnesol alone. Farnesol inhibits the growth at a range of 53% at a concentration of 2.5 μL compared to the control group. This rate is 45% for F-PLGA NPs at the same concentration. However, although farnesol amount in F-PLGA is approximately 22.5% of the total volume, the observed effect is significant. In TEM examinations, planktonic Candida cells treated with farnesol showed relatively regular ultrastructural morphology. Few membrane and wall damage and electron density in the cytoplasm were determined. In F-PLGA NP-treated cells, increased irregular cell morphology, membrane and wall damages, and large vacuoles are observed. Our SEM and XTT data suggest that F-PLGA NPs can reduce the biofilm formation at lower concentrations than farnesol alone 57%, and our results showed that F-PLGA NPs are effective and biocompatible alternatives for inhibiting growth and biofilm formation of C. albicans, but detailed studies are needed.
Collapse
|
37
|
Mba IE, Nweze EI. The use of nanoparticles as alternative therapeutic agents against Candida infections: an up-to-date overview and future perspectives. World J Microbiol Biotechnol 2020; 36:163. [PMID: 32990838 DOI: 10.1007/s11274-020-02940-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022]
Abstract
Candida spp. are opportunistic fungi that can cause severe infections especially in immunocompromised patients. Candidiasis is currently the most frequent fungal disease affecting humans globally. This rise is attributed to the vast increase in resistance to antifungal agents. In recent years, the epidemiological and clinical relevance of fungal infections caused by Candida species have attracted a lot of interest with increasing reports of intrinsic and acquired resistance among Candida species. Thus, the formulation of novel, and efficient therapy for Candida infection persists as a critical challenge in modern medicine. The use of nanoparticle as a potential biomaterial to achieve this feat has gained global attention. Nanoparticles have shown promising antifungal activity, and thus, could be seen as the next generation antifungal agents. This review concisely discussed Candida infection with emphasis on anti-candida resistance mechanisms and the use of nanoparticles as potential therapeutic agents against Candida species. Moreover, the mechanisms of activity of nanoparticles against Candida species, recent findings on the anti-candida potentials of nanoparticles and future perspectives are also presented.
Collapse
|
38
|
Kischkel B, Rossi SA, Santos SR, Nosanchuk JD, Travassos LR, Taborda CP. Therapies and Vaccines Based on Nanoparticles for the Treatment of Systemic Fungal Infections. Front Cell Infect Microbiol 2020; 10:463. [PMID: 33014889 PMCID: PMC7502903 DOI: 10.3389/fcimb.2020.00463] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment modalities for systemic mycoses are still limited. Currently, the main antifungal therapeutics include polyenes, azoles, and echinocandins. However, even in the setting of appropriate administration of antifungals, mortality rates remain unacceptably high. Moreover, antifungal therapy is expensive, treatment periods can range from weeks to years, and toxicity is also a serious concern. In recent years, the increased number of immunocompromised individuals has contributed to the high global incidence of systemic fungal infections. Given the high morbidity and mortality rates, the complexity of treatment strategies, drug toxicity, and the worldwide burden of disease, there is a need for new and efficient therapeutic means to combat invasive mycoses. One promising avenue that is actively being pursued is nanotechnology, to develop new antifungal therapies and efficient vaccines, since it allows for a targeted delivery of drugs and antigens, which can reduce toxicity and treatment costs. The goal of this review is to discuss studies using nanoparticles to develop new therapeutic options, including vaccination methods, to combat systemic mycoses caused by Candida sp., Cryptococcus sp., Paracoccidioides sp., Histoplasma sp., Coccidioides sp., and Aspergillus sp., in addition to providing important information on the use of different types of nanoparticles, nanocarriers and their corresponding mechanisms of action.
Collapse
Affiliation(s)
- Brenda Kischkel
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Suélen A Rossi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Samuel R Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine [Division of Infectious Diseases], Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos P Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Araujo VHS, Duarte JL, Carvalho GC, Silvestre ALP, Fonseca-Santos B, Marena GD, Ribeiro TDC, Dos Santos Ramos MA, Bauab TM, Chorilli M. Nanosystems against candidiasis: a review of studies performed over the last two decades. Crit Rev Microbiol 2020; 46:508-547. [PMID: 32795108 DOI: 10.1080/1040841x.2020.1803208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The crescent number of cases of candidiasis and the increase in the number of infections developed by non-albicans species and by multi-resistant strains has taken the attention of the scientific community, which has been searching for new therapeutic alternatives. Among the alternatives found the use of nanosystems for delivery of drugs already commercialized and new biomolecules have grown, in order to increase stability, solubility, optimize efficiency and reduce adverse effects. In view of the growing number of studies involving technological alternatives for the treatment of candidiasis, the present review came with the intention of gathering studies from the last two decades that used nanotechnology for the treatment of candidiasis, as well as analysing them critically and pointing out the future perspectives for their application with this purpose. Different studies were considered for the development of this review, addressing nanosystems such as metallic nanoparticles, mesoporous silica nanoparticles, polymeric nanoparticles, liposomes, nanoemulsion, microemulsion, solid lipid nanoparticle, nanostructured lipid carrier, lipidic nanocapsules and liquid crystals; and different clinical presentations of candidiasis. As a general overview, nanotechnology has proven to be an important ally for the treatment against the diversity of candidiasis found in the clinic, whether in increasing the effectiveness of commercialized drugs and reducing their adverse effects, as well as allowing exploring more effectively properties therapeutics of new biomolecules.
Collapse
Affiliation(s)
- Victor Hugo Sousa Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriel Davi Marena
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Tais de Cassia Ribeiro
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Matheus Aparecido Dos Santos Ramos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
40
|
Investigation of thiosemicarbazide free or within chitosan nanoparticles in a murine model of vulvovaginal candidiasis. Braz J Microbiol 2020; 51:1465-1473. [PMID: 32638273 DOI: 10.1007/s42770-020-00326-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/22/2020] [Indexed: 01/12/2023] Open
Abstract
Vulvovaginal candidiasis is a serious health problem affecting numerous women around the world. Its treatment is based on antifungals which may not provide an effective cure because of the resistance presented by its etiological pathogens Candida spp. Candida albicans is the most prevalent species related to vulvovaginal candidiasis. Here, we evaluated the in vivo antifungal potential of thiosemicarbazide and thiosemicarbazide encapsulated within chitosan nanoparticles in a murine model of vulvovaginal candidiasis. The results demonstrated the antifungal capacity of free or nanoencapsulated thiosemicarbazide within chitosan to reduce the fungal load in the vaginal tissue of infected mice. In addition, histological analyses indicated the absence or a mild to moderate infection in thiosemicarbazide-treated groups. Statistical tests confirmed the existence of significant differences between the treated and the control groups. Therefore, our results suggest a potential application of thiosemicarbazide and encapsulated thiosemicarbazide as an alternative vulvovaginal candidiasis therapy.
Collapse
|
41
|
Riaz A, Hendricks S, Elbrink K, Guy C, Maes L, Ahmed N, Kiekens F, Khan GM. Preparation and Characterization of Nanostructured Lipid Carriers for Improved Topical Drug Delivery: Evaluation in Cutaneous Leishmaniasis and Vaginal Candidiasis Animal Models. AAPS PharmSciTech 2020; 21:185. [PMID: 32632542 DOI: 10.1208/s12249-020-01717-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to develop, characterize and evaluate the amphotericin B-loaded nanostructured lipid carriers (AmB-NLCs) for topical treatment of cutaneous leishmaniasis (CL) and vulvovaginal candidiasis (VVC). AmB-NLCs were characterized for particle size, zeta potential, encapsulation efficiency and surface morphology. Prepared NLCs were also characterized for in vitro drug release, ex vivo skin permeation and deposition before evaluating their in vitro and in vivo efficacy. Cytotoxicity of NLCs was assessed on MRC-5 cells, whereas skin irritation potential was evaluated in vivo using rats. Significant accumulation of drug in to the skin supported the topical application potential of drug-loaded NLCs. Encapsulation of AmB in NLCs resulted in enhanced in vitro potency against promastigotes and intracellular amastigotes of L. major JISH 118 (IC50 ± SEM = 0.02 ± 0.1 μM for both) compared with free drug (IC50 ± SEM = 0.15 ± 0.2 & 0.14 ± 0.0, respectively). Similar improved potency of AmB-NLCs was also observed for other Leishmania and fungal strains compared with drug solution. Topical application of AmB-NLCs on L. major-infected BALB/c mice caused a significant reduction in parasite burden per mg of lesion (65 × 108 ± 13) compared with the control group (> 167.8 × 108 ± 11). Topical AmB-NLCs gel demonstrated superior efficacy in the vaginal C. albicans rat model for VVC as compared with plain AmB gel. Moreover, results of in vitro cytotoxicity assay and in vivo skin irritation test confirmed AmB-NLCs to be non-toxic and safe for topical use. In conclusion, NLCs may have promising potential as carrier for topical treatment of various conditions of skin and mucosa.
Collapse
Affiliation(s)
- Amina Riaz
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Sarah Hendricks
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Kimberley Elbrink
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Caljon Guy
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Louis Maes
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Filip Kiekens
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Gul Majid Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
42
|
Kovács R, Majoros L. Fungal Quorum-Sensing Molecules: A Review of Their Antifungal Effect against Candida Biofilms. J Fungi (Basel) 2020; 6:jof6030099. [PMID: 32630687 PMCID: PMC7559060 DOI: 10.3390/jof6030099] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023] Open
Abstract
The number of effective therapeutic strategies against biofilms is limited; development of novel therapies is urgently needed to treat a variety of biofilm-associated infections. Quorum sensing is a special form of microbial cell-to-cell communication that is responsible for the release of numerous extracellular molecules, whose concentration is proportional with cell density. Candida-secreted quorum-sensing molecules (i.e., farnesol and tyrosol) have a pivotal role in morphogenesis, biofilm formation, and virulence. Farnesol can mediate the hyphae-to-yeast transition, while tyrosol has the opposite effect of inducing transition from the yeast to hyphal form. A number of questions regarding Candida quorum sensing remain to be addressed; nevertheless, the literature shows that farnesol and tyrosol possess remarkable antifungal and anti-biofilm effect at supraphysiological concentration. Furthermore, previous in vitro and in vivo data suggest that they may have a potent adjuvant effect in combination with certain traditional antifungal agents. This review discusses the most promising farnesol- and tyrosol-based in vitro and in vivo results, which may be a foundation for future development of novel therapeutic strategies to combat Candida biofilms.
Collapse
Affiliation(s)
- Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +0036-52-255-425; Fax: +0036-52-255-424
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
43
|
Gündel SDS, de Godoi SN, Santos RCV, da Silva JT, Leite LBDM, Amaral AC, Ourique AF. In vivo antifungal activity of nanoemulsions containing eucalyptus or lemongrass essential oils in murine model of vulvovaginal candidiasis. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Abstract
Farnesol is a natural sesquiterpenoid and an interesting quorum-sensing molecule. Its insolubility in water is the biggest obstacle to its application for bacterial biofilm treatments since it compromises the bioavailability. Recently, an increasing interest in farnesol encapsulation or loading in polymeric materials may be noted due to the prolonged action of the active macromolecular systems. In this short review, we present an overview of methods leading to improved interactions between farnesol and microbial biofilms.
Collapse
|
45
|
Nagy F, Vitális E, Jakab Á, Borman AM, Forgács L, Tóth Z, Majoros L, Kovács R. In vitro and in vivo Effect of Exogenous Farnesol Exposure Against Candida auris. Front Microbiol 2020; 11:957. [PMID: 32508780 PMCID: PMC7251031 DOI: 10.3389/fmicb.2020.00957] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
The spreading of multidrug-resistant Candida auris is considered as an emerging global health threat. The number of effective therapeutic regimens is strongly limited; therefore, development of novel strategies is needed. Farnesol is a quorum-sensing molecule with a potential antifungal and/or adjuvant effect; it may be a promising candidate in alternative treatment against Candida species including C. auris. To examine the effect of farnesol on C. auris, we performed experiments focusing on growth, biofilm production ability, production of enzymes related to oxidative stress, triazole susceptibility and virulence. Concentrations ranging from 100 to 300 μM farnesol caused a significant growth inhibition against C. auris planktonic cells for 24 h (p < 0.01-0.05). Farnesol treatment showed a concentration dependent inhibition in terms of biofilm forming ability of C. auris; however, it did not inhibit significantly the biofilm development at 24 h. Nevertheless, the metabolic activity of adhered farnesol pre-exposed cells (75 μM) was significantly diminished at 24 h depending on farnesol treatment during biofilm formation (p < 0.001-0.05). Moreover, 300 μM farnesol exerted a marked decrease in metabolic activity against one-day-old biofilms between 2 and 24 h (p < 0.001). Farnesol increased the production of reactive species remarkably, as revealed by 2',7'-dichlorofluorescein (DCF) assay {3.96 ± 0.89 [nmol DCF (OD640)-1] and 23.54 ± 4.51 [nmol DCF (OD640)-1] for untreated cells and farnesol exposed cells, respectively; p < 0.001}. This was in line with increased superoxide dismutase level {85.69 ± 5.42 [munit (mg protein)-1] and 170.11 ± 17.37 [munit (mg protein)-1] for untreated cells and farnesol exposed cells, respectively; p < 0.001}, but the catalase level remained statistically comparable between treated and untreated cells (p > 0.05). Concerning virulence-related enzymes, exposure to 75 μM farnesol did not influence phospholipase or aspartic proteinase activity (p > 0.05). The interaction between fluconazole, itraconazole, voriconazole, posaconazole, isavuconazole and farnesol showed clear synergism (FICI ranges from 0.038 to 0.375) against one-day-old biofilms. Regarding in vivo experiments, daily 75 μM farnesol treatment decreased the fungal burden in an immunocompromised murine model of disseminated candidiasis, especially in case of inocula pre-exposed to farnesol (p < 0.01). In summary, farnesol shows a promising therapeutic or adjuvant potential in traditional or alternative therapies such as catheter lock therapy.
Collapse
Affiliation(s)
- Fruzsina Nagy
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Eszter Vitális
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary.,Hospital Hygiene Ward, Clinical Centre, University of Debrecen, Debrecen, Hungary
| | - Ágnes Jakab
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary
| | - Andrew M Borman
- UK National Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom
| | - Lajos Forgács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
46
|
Arias LS, Pessan JP, de Souza Neto FN, Lima BHR, de Camargo ER, Ramage G, Delbem ACB, Monteiro DR. Novel nanocarrier of miconazole based on chitosan-coated iron oxide nanoparticles as a nanotherapy to fight Candida biofilms. Colloids Surf B Biointerfaces 2020; 192:111080. [PMID: 32361504 DOI: 10.1016/j.colsurfb.2020.111080] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 02/09/2023]
Abstract
Overexposure of microorganisms to conventional drugs has led to resistant species that require new treatment strategies. This study prepared and characterized a nanocarrier of miconazole (MCZ) based on iron oxide nanoparticles (IONPs) functionalized with chitosan (CS), and tested its antifungal activity against biofilms of Candida albicans and Candida glabrata. IONPs-CS-MCZ nanocarrier was prepared by loading MCZ on CS-covered IONPs and characterized by physicochemical methods. Minimum inhibitory concentration (MIC) of the nanocarrier was determined by the microdilution method. Biofilms were developed (48 h) in microtiter plates and treated with MCZ-carrying nanocarrier at 31.2 and 78 μg/mL, in both the presence and absence of an external magnetic field (EMF). Biofilms were evaluated by total biomass, metabolic activity, cultivable cells (CFU), extracellular matrix components, scanning electron microscopy and confocal microscopy. Data were analyzed by two-way ANOVA and Holm-Sidak test (p < 0.05). A nanocarrier with diameter lower than 50 nm was obtained, presenting MIC values lower than those found for MCZ, and showing synergism for C. albicans and indifference for C. glabrata (fractional inhibitory concentration indexes of <0.12 and <0.53, respectively). IONPs-CS-MCZ did not affect total biomass and extracellular matrix. IONPs-CS-MCZ containing 78 μg/mL MCZ showed a superior antibiofilm effect to MCZ in reducing CFU and metabolism for single biofilms of C. albicans and dual-species biofilms. The EMF did not improve the nanocarrier effects. Microscopy confirmed the antibiofilm effect of the nanocarrier. In conclusion, IONPs-CS-MCZ was more effective than MCZ mainly against C. albicans planktonic cells and number of CFU and metabolism of the biofilms.
Collapse
Affiliation(s)
- Laís Salomão Arias
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba, São Paulo, Brazil
| | - Juliano Pelim Pessan
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba, São Paulo, Brazil
| | - Francisco Nunes de Souza Neto
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba, São Paulo, Brazil
| | | | | | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G2 3JZ, UK
| | - Alberto Carlos Botazzo Delbem
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba, São Paulo, Brazil
| | - Douglas Roberto Monteiro
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba, São Paulo, Brazil; Graduate Program in Dentistry (GPD - Master's Degree), University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente, São Paulo, Brazil.
| |
Collapse
|
47
|
Barot T, Rawtani D, Kulkarni P, Hussain CM, Akkireddy S. Physicochemical and biological assessment of flowable resin composites incorporated with farnesol loaded halloysite nanotubes for dental applications. J Mech Behav Biomed Mater 2020; 104:103675. [PMID: 32174431 DOI: 10.1016/j.jmbbm.2020.103675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/23/2022]
Abstract
The aim of this study was to fabricate flowable resin composites, by incorporating Farnesol loaded Halloysite Nanotubes (Fa-HNT) as a filler and evaluate their physicochemical as well as biological properties. Chemical and morphological characterization of antibacterial filler, Fa-HNT were performed using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM). The antibacterial filler was mixed into composite material consisting of methacrylate monomers and dental glass fillers at concentrations of 1-20% (wt./wt.). It was observed that addition of mass fractions of Fa-HNT causes enhancement of compressive strength as well as flexural modulus of the composite. However, it significantly decreases flexural strength and degree of conversion. A significant antibacterial activity of dental composite was observed with increase in the area of zone of inhibition against the strains of Streptococcus mutans (S. mutans). There was no cytotoxicity observed by Fa-HNT resin composites on NIH-3T3 (mouse embryonic fibroblast cells) cell lines. A favourable integration of antibacterial filler with significant mechanical properties was achieved at concentrations from 7 to 13 wt% of Fa-HNT in dental composites, which is desirable in dentistry.
Collapse
Affiliation(s)
- Tejas Barot
- Institute of Research and Development, Gujarat Forensic Sciences University, sector 9, near Police Bhawan, Gandhinagar-382007, Gujarat, India
| | - Deepak Rawtani
- Institute of Research and Development, Gujarat Forensic Sciences University, sector 9, near Police Bhawan, Gandhinagar-382007, Gujarat, India.
| | - Pratik Kulkarni
- Institute of Research and Development, Gujarat Forensic Sciences University, sector 9, near Police Bhawan, Gandhinagar-382007, Gujarat, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 161 Warren St., University Heights, Newark, NJ 07102, USA
| | | |
Collapse
|
48
|
Wu X, Zhang S, Xu X, Shen L, Xu B, Qu W, Zhuang W, Locock K, Deighton M, Qu Y. RAFT-Derived Polymethacrylates as a Superior Treatment for Recurrent Vulvovaginal Candidiasis by Targeting Biotic Biofilms and Persister Cells. Front Microbiol 2019; 10:2592. [PMID: 31787962 PMCID: PMC6853869 DOI: 10.3389/fmicb.2019.02592] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background Vulvovaginal candidiasis (VVC) is a common infection in need of more effective treatment. Formation of epithelium-associated Candida biofilms and the presence of persister cells are among the major contributing factors to the recurrence of this condition. We have previously developed RAFT-derived polymethacrylates that are effective in killing C. albicans biofilms in vitro. This study aimed to examine the clinical potential of polymethacrylates as antifungals for treatment of recurrent VVC (RVVC). Methods A mouse model of VVC was used to establish vaginal epithelium-associated biofilms, using C. albicans isolates from VVC/RVVC patients. A comparison was made of the efficacies of polymethacrylates and conventional antifungals, clotrimazole and nystatin, in killing Candida in epithelium-associated biofilms in vivo. Ex vivo biofilms were used for Candida population profiling and to quantify persister cells in vaginal epithelia. The potency of polymethacrylates and conventional antifungals against persister cells, either as sole agents or in combination, was assessed. Results Polymethacrylates showed negligible local toxicity, resistance to vaginal acidity, and outstanding in vivo activity against vaginal epithelium-associated C. albicans biofilms. In vivo tests polymethacrylates outperformed the conventional antifungals, nystatin and clotrimazole at concentrations 50 times below the over-the-counter concentrations. Using polymethacrylates was associated with fewer persister cells, and better eradication of persister cells pre-selected by conventional antifungals. Conclusion This study systematically assessed the clinical potential of RAFT-derived polymethacrylates as an effective treatment for VVC/RVVC in a mouse model. Polymethacrylates effectively killed vaginal epithelium-related C. albicans in vivo by specially targeting biotic biofilms and persister cells. Treatment presented negligible local toxicity.
Collapse
Affiliation(s)
- Xueqing Wu
- The Division of Gynecology, Shenzhen University General Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, Wenzhou Medical University, Wenzhou, China
| | - Sisi Zhang
- Department of Obstetrics and Gynecology, Wenzhou Medical University, Wenzhou, China
| | - Xinxin Xu
- Department of Obstetrics and Gynecology, Wenzhou Medical University, Wenzhou, China
| | - Laien Shen
- Department of Obstetrics and Gynecology, Wenzhou Medical University, Wenzhou, China
| | - Boyun Xu
- Department of Obstetrics and Gynecology, Wenzhou Medical University, Wenzhou, China
| | - Wenzhen Qu
- Department of Obstetrics and Gynecology, Wenzhou Medical University, Wenzhou, China
| | - Wenyi Zhuang
- The Division of Gynecology, Shenzhen University General Hospital, Shenzhen, China
| | - Katherine Locock
- CSIRO Manufacturing Flagship, Clayton, VIC, Australia.,School of Chemical and Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Margaret Deighton
- School of Applied Sciences, RMIT University, Bundoora, VIC, Australia
| | - Yue Qu
- Neonatal Intensive Care Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
49
|
Mehmood A, Liu G, Wang X, Meng G, Wang C, Liu Y. Fungal Quorum-Sensing Molecules and Inhibitors with Potential Antifungal Activity: A Review. Molecules 2019; 24:E1950. [PMID: 31117232 PMCID: PMC6571750 DOI: 10.3390/molecules24101950] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022] Open
Abstract
The theory of persisting independent and isolated regarding microorganisms is no longer accepted. To survive and reproduce they have developed several communication platforms within the cells which facilitates them to adapt the surrounding environmental changes. This cell-to-cell communication is termed as quorum sensing; it relies upon the cell density and can stimulate several traits of microbes including biofilm formation, competence, and virulence factors secretion. Initially, this sophisticated mode of communication was discovered in bacteria; later, it was also confirmed in eukaryotes (fungi). As a consequence, many quorum-sensing molecules and inhibitors have been identified and characterized in various fungal species. In this review article, we will primarily focus on fungal quorum-sensing molecules and the production of inhibitors from fungal species with potential applications for combating fungal infections.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Guorong Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Xin Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Guannan Meng
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Ya Liu
- R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming 650202, China.
| |
Collapse
|
50
|
Cordeiro RDA, Pereira LMG, de Sousa JK, Serpa R, Andrade ARC, Portela FVM, Evangelista AJDJ, Sales JA, Aguiar ALR, Mendes PBL, Brilhante RSN, Sidrim JJDC, Castelo-Branco DDSCM, Rocha MFG. Farnesol inhibits planktonic cells and antifungal-tolerant biofilms of Trichosporon asahii and Trichosporon inkin. Med Mycol 2019; 57:1038-1045. [DOI: 10.1093/mmy/myy160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/20/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022] Open
Abstract
Abstract
Trichosporon species have been considered important agents of opportunistic systemic infections, mainly among immunocompromised patients. Infections by Trichosporon spp. are generally associated with biofilm formation in invasive medical devices. These communities are resistant to therapeutic antifungals, and therefore the search for anti-biofilm molecules is necessary. This study evaluated the inhibitory effect of farnesol against planktonic and sessile cells of clinical Trichosporon asahii (n = 3) andTrichosporon inkin (n = 7) strains. Biofilms were evaluated during adhesion, development stages and after maturation for metabolic activity, biomass and protease activity, as well as regarding morphology and ultrastructure by optical microscopy, confocal laser scanning microscopy, and scanning electron microscopy. Farnesol inhibited Trichosporon planktonic growth by 80% at concentrations ranging from 600 to 1200 μM for T. asahii and from 75 to 600 μM for T. inkin. Farnesol was able to reduce cell adhesion by 80% at 300 μM for T. asahii and T. inkin at 600 μM, while biofilm development of both species was inhibited by 80% at concentration of 150 μM, altering their structure. After biofilm maturation, farnesol decreased T. asahii biofilm formation by 50% at 600 μM concentration and T. inkin formation at 300 μM. Farnesol inhibited gradual filamentation in a concentration range between 600 and 1200 μM. Farnesol caused reduction of filament structures of Trichosporon spp. at every stage of biofilm development analyzed. These data show the potential of farnesol as an anti-biofilm molecule.
Collapse
Affiliation(s)
- Rossana de Aguiar Cordeiro
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
- Faculty of Medicine, Post Graduate Program in Medical Sciences, Federal University of Ceará, Brazil
| | | | - José Kleybson de Sousa
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
| | - Rosana Serpa
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
| | | | | | | | - Jamille Alencar Sales
- Faculty of Veterinary Medicine, Post Graduate Program in Veterinary Science, State University of Ceará, Brazil
| | - Ana Luiza Ribeiro Aguiar
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
| | | | - Raimunda Sâmia Nogueira Brilhante
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
- Faculty of Medicine, Post Graduate Program in Medical Sciences, Federal University of Ceará, Brazil
| | - José Júlio da Costa Sidrim
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
- Faculty of Medicine, Post Graduate Program in Medical Sciences, Federal University of Ceará, Brazil
| | | | - Marcos Fabio Gadelha Rocha
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
- Faculty of Veterinary Medicine, Post Graduate Program in Veterinary Science, State University of Ceará, Brazil
| |
Collapse
|