1
|
Zang S, Wang R, Liu Y, Zhao S, Su L, Dai X, Chen H, Yin Z, Zheng L, Liu Q, Zhai Y. Insulin Signaling Pathway Mediates FoxO-Pepck Axis Regulation of Glucose Homeostasis in Drosophila suzukii. Int J Mol Sci 2024; 25:10441. [PMID: 39408770 PMCID: PMC11482478 DOI: 10.3390/ijms251910441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
The agricultural pest Drosophila suzukii exhibits a strong preference for feeding on fresh fruits, demonstrating high adaptability to sugary environments. Meanwhile, high sugar levels stimulate insulin secretion, thereby regulating the steady state of sugar metabolism. Understanding the mechanisms related to sugar metabolism in D. suzukii is crucial due to its adaptation to these specific environmental conditions. The insulin signaling pathway is an evolutionarily conserved phosphorylation cascade with significant roles in development and metabolism. We observed that the activation of the insulin signaling pathway inhibited FoxO activity and downregulated the expression of Pepck, thereby activating glycolysis and reducing glucose levels. By contrast, inhibiting insulin signaling increased the FoxO activity and upregulated the expression of Pepck, which activated gluconeogenesis and led to increased glucose levels. Our findings demonstrated the crucial role of the insulin signaling pathway in mediating glucose metabolism through the FoxO-Pepck axis, which supports the ecological adaptation of D. suzukii to high-sugar niches, thereby providing insights into its metabolic control and suggesting potential strategies for pest management. Elucidating these molecular processes is important for understanding metabolic regulation and ecological specialization in D. suzukii.
Collapse
Affiliation(s)
- Shuting Zang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- College of Life Sciences, Shandong Agricultural University, Tai’an 271000, China
| | - Ruijuan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Long Su
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an 271000, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| |
Collapse
|
2
|
Afkhami M. Neurobiology of egg-laying behavior in Drosophila: neural control of the female reproductive system. J Neurogenet 2024:1-15. [PMID: 39250036 DOI: 10.1080/01677063.2024.2396352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Egg-laying is one of the key aspects of female reproductive behavior in insects. Egg-laying has been studied since the dawn of Drosophila melanogaster as a model organism. The female's internal state, hormones, and external factors, such as nutrition, light, and social environment, affect egg-laying output. However, only recently, neurobiological features of egg-laying behavior have been studied in detail. fruitless and doublesex, two key players in the sex determination pathway, have become focal points in identifying neurons of reproductive significance in both central and peripheral nervous systems. The reproductive tract and external terminalia house sensory neurons that carry the sensory information of egg maturation, mating and egg-laying. These sensory signals include the presence of male accessory gland products and mechanical stimuli. The abdominal neuromere houses neurons that receive information from the reproductive tract, including sex peptide abdominal ganglion neurons (SAGs), and send their information to the brain. In the brain, neuronal groups like aDNs and pC1 clusters modulate egg-laying decision-making, and other neurons like oviINs and oviDNs are necessary for egg-laying itself. Lastly, motor neurons involved in egg-laying, which are mostly octopaminergic, reside in the abdominal neuromere and orchestrate the muscle movements required for laying the egg. Egg-laying neuronal control is important in various evolutionary processes like cryptic female choice, and using different Drosophila species can provide intriguing avenues for the future of the field.
Collapse
Affiliation(s)
- Mehrnaz Afkhami
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
3
|
Otárola-Jiménez J, Nataraj N, Bisch-Knaden S, Hansson BS, Knaden M. Oviposition experience affects oviposition preference in Drosophila melanogaster. iScience 2024; 27:110472. [PMID: 39129830 PMCID: PMC11315110 DOI: 10.1016/j.isci.2024.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/02/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Learning, memorizing, and recalling of potential ovipositing sites can influence oviposition preference. Classical conditioning experiments have shown that vinegar flies can learn the association of olfactory, gustatory, or visual stimuli with either positive or negative unconditioned stimuli. However, less is known about whether similar associations are formed in an ecologically more relevant context like during oviposition. Our experiments reveal that Drosophila melanogaster females increase their preference for substrates they have already experienced. However, this change of preference requires that the flies not only smelled or touched the substrates but also oviposited on them. We furthermore show that such an experience results in long-term memory lasting for at least 4 days, i.e., a duration that so far was shown only for aversive conditioning. Our study thus reveals a different form of associative learning in D. melanogaster that might be highly relevant for settling novel ecological niches.
Collapse
Affiliation(s)
- Julio Otárola-Jiménez
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Chemistry School, University of Costa Rica, San Pedro, San José 11501-2060, Costa Rica
| | - Nandita Nataraj
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sonja Bisch-Knaden
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
4
|
Lee M, Park SH, Joo KM, Kwon JY, Lee KH, Kang K. Drosophila HCN mediates gustatory homeostasis by preserving sensillar transepithelial potential in sweet environments. eLife 2024; 13:RP96602. [PMID: 39073076 PMCID: PMC11286260 DOI: 10.7554/elife.96602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Establishing transepithelial ion disparities is crucial for sensory functions in animals. In insect sensory organs called sensilla, a transepithelial potential, known as the sensillum potential (SP), arises through active ion transport across accessory cells, sensitizing receptor neurons such as mechanoreceptors and chemoreceptors. Because multiple receptor neurons are often co-housed in a sensillum and share SP, niche-prevalent overstimulation of single sensory neurons can compromise neighboring receptors by depleting SP. However, how such potential depletion is prevented to maintain sensory homeostasis remains unknown. Here, we find that the Ih-encoded hyperpolarization-activated cyclic nucleotide-gated (HCN) channel bolsters the activity of bitter-sensing gustatory receptor neurons (bGRNs), albeit acting in sweet-sensing GRNs (sGRNs). For this task, HCN maintains SP despite prolonged sGRN stimulation induced by the diet mimicking their sweet feeding niche, such as overripe fruit. We present evidence that Ih-dependent demarcation of sGRN excitability is implemented to throttle SP consumption, which may have facilitated adaptation to a sweetness-dominated environment. Thus, HCN expressed in sGRNs serves as a key component of a simple yet versatile peripheral coding that regulates bitterness for optimal food intake in two contrasting ways: sweet-resilient preservation of bitter aversion and the previously reported sweet-dependent suppression of bitter taste.
Collapse
Affiliation(s)
- MinHyuk Lee
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Samsung Medical CenterSuwonRepublic of Korea
- Department of Biological Sciences, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Se Hoon Park
- Department of Brain Sciences, DGISTDaeguRepublic of Korea
| | - Kyeung Min Joo
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Samsung Medical CenterSuwonRepublic of Korea
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Kyung-Hoon Lee
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Samsung Medical CenterSuwonRepublic of Korea
| | - KyeongJin Kang
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| |
Collapse
|
5
|
de Albuquerque Melo Xavier JK, de Jesus Alves Miranda A, Dos Santos Soares Buna S, da Rocha CQ, da Silva Lima A. Neotropical Flora's Contribution to the Development of Biorational Products for Drosophila suzukii Control. NEOTROPICAL ENTOMOLOGY 2024; 53:400-414. [PMID: 38214825 DOI: 10.1007/s13744-023-01123-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
Essential oils (EOs) produced by aromatic plants belonging to different families, such as Asteraceae, Lamiaceae, Lauraceae, Myrtaceae, and Piperaceae, are generally suggested as potential sources of new molecules with insecticidal activity. The EOs are constituted bioactive molecules that may have to control Drosophila suzukii (Matsumura), a serious economic invasive pest of small fruits worldwide. Currently, the control strategy against D. suzukii depends especially on treatment with synthetic insecticides. Due to impacts to human health and the environment, efforts have been made to seek efficient insecticides in chemical pest control. Thus, sixty-five oils extracted from plants were selected to find new alternative types of insecticides active against D. suzukii. The monoterpenes, such as limonene, α-pinene, 1,8-cineole, linalool, menthol, geranial, and neral, were the most representative, which stand out for their insecticidal efficiency. The OEs demonstrated to be used in the management of D. suzukii, thus being an effective strategy to control this pest, ensuring crop protection and agricultural sustainability. Therefore, the substitution by natural products or eco-friendly pesticides instead of synthetic pesticides represents a notable option to mitigate harmful effects on human health and the environment.
Collapse
Affiliation(s)
| | - Amanda de Jesus Alves Miranda
- Programa de Pós-Graduação em Química, Departamento de Química, Universidade Federal do Maranhão - UFMA, São Luís, MA, Brazil
| | - Samuel Dos Santos Soares Buna
- Programa de Pós-Graduação em Química, Departamento de Química, Universidade Federal do Maranhão - UFMA, São Luís, MA, Brazil
| | - Claudia Quintino da Rocha
- Programa de Pós-Graduação em Química, Departamento de Química, Universidade Federal do Maranhão - UFMA, São Luís, MA, Brazil
| | - Aldilene da Silva Lima
- Programa de Pós-Graduação em Agroecologia, Universidade Estadual do Maranhão - UEMA, São Luís, MA, Brazil.
| |
Collapse
|
6
|
Rode NO, Meslin C. A sweet tooth makes a fly a pest. Trends Ecol Evol 2024; 39:315-317. [PMID: 38493056 DOI: 10.1016/j.tree.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
The major insect pest of soft and stone fruits, the spotted-wing drosophila, Drosophila suzukii, has evolved a greater preference for laying eggs on ripe fruits over fermented ones. In a recent study, Cavey et al. found that higher responsiveness to low sugar concentrations has had an important role in this evolutionary shift in egg-laying behavior.
Collapse
Affiliation(s)
- Nicolas O Rode
- CBGP, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France.
| | - Camille Meslin
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Versailles, France.
| |
Collapse
|
7
|
Sato A, Yew JY, Takahashi A. Effect of acetic acid bacteria colonization on oviposition and feeding site choice in Drosophila suzukii and its related species. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001111. [PMID: 38404921 PMCID: PMC10884830 DOI: 10.17912/micropub.biology.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
Unlike many species of Drosophila flies that colonize decaying fruits, Drosophila suzukii lay eggs in ripening fruits. The oviposition and feeding site preferences for bacterial growth were quantified in multiple strains of D. suzukii and its closely related species, D. subpulchrella and D. biarmipes . A continuous degree of preference for oviposition sites with Acetobacter growth both within and across species suggested that the separation in resource usage is notable but not complete among these species. The lack of interspecific differences in feeding site preference for Acetobacter -containing media implied that the oviposition site preferences evolved independently from the feeding site preference.
Collapse
Affiliation(s)
- Airi Sato
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States
| | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
8
|
Cavey M, Charroux B, Travaillard S, Manière G, Berthelot-Grosjean M, Quitard S, Minervino C, Detailleur B, Grosjean Y, Prud’homme B. Increased sugar valuation contributes to the evolutionary shift in egg-laying behavior of the fruit pest Drosophila suzukii. PLoS Biol 2023; 21:e3002432. [PMID: 38079457 PMCID: PMC10735178 DOI: 10.1371/journal.pbio.3002432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/21/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Behavior evolution can promote the emergence of agricultural pests by changing their ecological niche. For example, the insect pest Drosophila suzukii has shifted its oviposition (egg-laying) niche from fermented fruits to ripe, non-fermented fruits, causing significant damage to a wide range of fruit crops worldwide. We investigate the chemosensory changes underlying this evolutionary shift and ask whether fruit sugars, which are depleted during fermentation, are important gustatory cues that direct D. suzukii oviposition to sweet, ripe fruits. We show that D. suzukii has expanded its range of oviposition responses to lower sugar concentrations than the model D. melanogaster, which prefers to lay eggs on fermented fruit. The increased response of D. suzukii to sugar correlates with an increase in the value of sugar relative to a fermented strawberry substrate in oviposition decisions. In addition, we show by genetic manipulation of sugar-gustatory receptor neurons (GRNs) that sugar perception is required for D. suzukii to prefer a ripe substrate over a fermented substrate, but not for D. melanogaster to prefer the fermented substrate. Thus, sugar is a major determinant of D. suzukii's choice of complex substrates. Calcium imaging experiments in the brain's primary gustatory center (suboesophageal zone) show that D. suzukii GRNs are not more sensitive to sugar than their D. melanogaster counterparts, suggesting that increased sugar valuation is encoded in downstream circuits of the central nervous system (CNS). Taken together, our data suggest that evolutionary changes in central brain sugar valuation computations are involved in driving D. suzukii's oviposition preference for sweet, ripe fruit.
Collapse
Affiliation(s)
- Matthieu Cavey
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, Marseille, France
| | - Bernard Charroux
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, Marseille, France
| | - Solène Travaillard
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, Marseille, France
| | - Gérard Manière
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, Dijon, France
| | - Martine Berthelot-Grosjean
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, Dijon, France
| | - Sabine Quitard
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, Marseille, France
| | - Caroline Minervino
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, Marseille, France
| | - Brice Detailleur
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, Marseille, France
| | - Yaël Grosjean
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, Dijon, France
| | - Benjamin Prud’homme
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, Marseille, France
| |
Collapse
|
9
|
Tungadi TD, Powell G, Shaw B, Fountain MT. Factors influencing oviposition behaviour of the invasive pest, Drosophila suzukii, derived from interactions with other Drosophila species: potential applications for control. PEST MANAGEMENT SCIENCE 2023; 79:4132-4139. [PMID: 37516913 PMCID: PMC10952728 DOI: 10.1002/ps.7693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 06/16/2023] [Accepted: 07/30/2023] [Indexed: 07/31/2023]
Abstract
Drosophila suzukii (Matsumura) or spotted wing Drosophila is a worldwide invasive pest of soft- and stone-fruit production. Female D. suzukii lay their eggs in ripening fruit and the hatched larvae damage fruit from the inside, rendering it unmarketable and causing significant economic loss. Current methods to reduce D. suzukii population in the field primarily rely on chemical insecticides which are not a sustainable long-term solution and increase the risk of resistance developing. Several studies demonstrate that when D. suzukii encounter or coexist with other Drosophila on a food source, this is usually a disadvantage to D. suzukii, leading to reduced oviposition and increased larval mortality. These effects have potential to be exploited from a pest management perspective. In this review we summarise recent research articles focusing on the interspecific interactions between D. suzukii and other Drosophila species aimed at understanding how this drives D. suzukii behaviour. Potential semiochemical and microbiome impacts are postulated as determinants of D. suzukii behaviour. Development of control practices focusing on reducing D. suzukii populations and deterring them from laying eggs by utilising factors that drive their behaviour are discussed. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Bethan Shaw
- NIABCambridgeUK
- New Zealand Institute for Plant and Food Research LtdAucklandNew Zealand
| | | |
Collapse
|
10
|
Khodursky S, Zheng EB, Svetec N, Durkin SM, Benjamin S, Gadau A, Wu X, Zhao L. The evolution and mutational robustness of chromatin accessibility in Drosophila. Genome Biol 2023; 24:232. [PMID: 37845780 PMCID: PMC10578003 DOI: 10.1186/s13059-023-03079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND The evolution of genomic regulatory regions plays a critical role in shaping the diversity of life. While this process is primarily sequence-dependent, the enormous complexity of biological systems complicates the understanding of the factors underlying regulation and its evolution. Here, we apply deep neural networks as a tool to investigate the sequence determinants underlying chromatin accessibility in different species and tissues of Drosophila. RESULTS We train hybrid convolution-attention neural networks to accurately predict ATAC-seq peaks using only local DNA sequences as input. We show that our models generalize well across substantially evolutionarily diverged species of insects, implying that the sequence determinants of accessibility are highly conserved. Using our model to examine species-specific gains in accessibility, we find evidence suggesting that these regions may be ancestrally poised for evolution. Using in silico mutagenesis, we show that accessibility can be accurately predicted from short subsequences in each example. However, in silico knock-out of these sequences does not qualitatively impair classification, implying that accessibility is mutationally robust. Subsequently, we show that accessibility is predicted to be robust to large-scale random mutation even in the absence of selection. Conversely, simulations under strong selection demonstrate that accessibility can be extremely malleable despite its robustness. Finally, we identify motifs predictive of accessibility, recovering both novel and previously known motifs. CONCLUSIONS These results demonstrate the conservation of the sequence determinants of accessibility and the general robustness of chromatin accessibility, as well as the power of deep neural networks to explore fundamental questions in regulatory genomics and evolution.
Collapse
Affiliation(s)
- Samuel Khodursky
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
| | - Eric B Zheng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
| | - Sylvia M Durkin
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
- Present Address: Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, USA
| | - Sigi Benjamin
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
| | - Alice Gadau
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
| | - Xia Wu
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Guilhot R, Xuéreb A, Lagmairi A, Olazcuaga L, Fellous S. Microbiota acquisition and transmission in Drosophila flies. iScience 2023; 26:107656. [PMID: 37670792 PMCID: PMC10475513 DOI: 10.1016/j.isci.2023.107656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023] Open
Abstract
Understanding the ecological and evolutionary dynamics of host-microbiota associations notably involves exploring how members of the microbiota assemble and whether they are transmitted along host generations. Here, we investigate the larval acquisition of facultative bacterial and yeast symbionts of Drosophila melanogaster and Drosophila suzukii in ecologically realistic setups. Fly mothers and fruit were major sources of symbionts. Microorganisms associated with adult males also contributed to larval microbiota, mostly in D. melanogaster. Yeasts acquired at the larval stage maintained through metamorphosis, adult life, and were transmitted to offspring. All these observations varied widely among microbial strains, suggesting they have different transmission strategies among fruits and insects. Our approach shows microbiota members of insects can be acquired from a diversity of sources and highlights the compound nature of microbiotas. Such microbial transmission events along generations should favor the evolution of mutualistic interactions and enable microbiota-mediated local adaptation of the insect host.
Collapse
Affiliation(s)
- Robin Guilhot
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
| | - Anne Xuéreb
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
| | - Auxane Lagmairi
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
| | - Laure Olazcuaga
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Simon Fellous
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
| |
Collapse
|
12
|
Vaughan AL, Parvizi E, Matheson P, McGaughran A, Dhami MK. Current stewardship practices in invasion biology limit the value and secondary use of genomic data. Mol Ecol Resour 2023. [PMID: 37647021 DOI: 10.1111/1755-0998.13858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/09/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Invasive species threaten native biota, putting fragile ecosystems at risk and having a large-scale impact on primary industries. Growing trade networks and the popularity of personal travel make incursions a more frequent risk, one only compounded by global climate change. With increasing publication of whole-genome sequences lies an opportunity for cross-species assessment of invasive potential. However, the degree to which published sequences are accompanied by satisfactory spatiotemporal data is unclear. We assessed the metadata associated with 199 whole-genome assemblies of 89 invasive terrestrial invertebrate species and found that only 38% of these were derived from field-collected samples. Seventy-six assemblies (38%) reported an 'undescribed' sample origin and, while further examination of associated literature closed this gap to 23.6%, an absence of spatial data remained for 47 of the total assemblies. Of the 76 assemblies that were ultimately determined to be field-collected, associated metadata relevant for invasion studies was predominantly lacking: only 35% (27 assemblies) provided granular location data, and 33% (n = 25) lacked sufficient collection date information. Our results support recent calls for standardized metadata in genome sequencing data submissions, highlighting the impact of missing metadata on current research in invasion biology (and likely other fields). Notably, large-scale consortia tended to provide the most complete metadata submissions in our analysis-such cross-institutional collaborations can foster a culture of increased adherence to improved metadata submission standards and a standard of metadata stewardship that enables reuse of genomes in invasion science.
Collapse
Affiliation(s)
- Amy L Vaughan
- Biocontrol & Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Elahe Parvizi
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Paige Matheson
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Angela McGaughran
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Manpreet K Dhami
- Biocontrol & Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| |
Collapse
|
13
|
Peláez JN, Gloss AD, Goldman-Huertas B, Kim B, Lapoint RT, Pimentel-Solorio G, Verster KI, Aguilar JM, Nelson Dittrich AC, Singhal M, Suzuki HC, Matsunaga T, Armstrong EE, Charboneau JLM, Groen SC, Hembry DH, Ochoa CJ, O’Connor TK, Prost S, Zaaijer S, Nabity PD, Wang J, Rodas E, Liang I, Whiteman NK. Evolution of chemosensory and detoxification gene families across herbivorous Drosophilidae. G3 (BETHESDA, MD.) 2023; 13:jkad133. [PMID: 37317982 PMCID: PMC10411586 DOI: 10.1093/g3journal/jkad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/19/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
Herbivorous insects are exceptionally diverse, accounting for a quarter of all known eukaryotic species, but the genomic basis of adaptations that enabled this dietary transition remains poorly understood. Many studies have suggested that expansions and contractions of chemosensory and detoxification gene families-genes directly mediating interactions with plant chemical defenses-underlie successful plant colonization. However, this hypothesis has been challenging to test because the origins of herbivory in many insect lineages are ancient (>150 million years ago (mya)), obscuring genomic evolutionary patterns. Here, we characterized chemosensory and detoxification gene family evolution across Scaptomyza, a genus nested within Drosophila that includes a recently derived (<15 mya) herbivore lineage of mustard (Brassicales) specialists and carnation (Caryophyllaceae) specialists, and several nonherbivorous species. Comparative genomic analyses revealed that herbivorous Scaptomyza has among the smallest chemosensory and detoxification gene repertoires across 12 drosophilid species surveyed. Rates of gene turnover averaged across the herbivore clade were significantly higher than background rates in over half of the surveyed gene families. However, gene turnover was more limited along the ancestral herbivore branch, with only gustatory receptors and odorant-binding proteins experiencing strong losses. The genes most significantly impacted by gene loss, duplication, or changes in selective constraint were those involved in detecting compounds associated with feeding on living plants (bitter or electrophilic phytotoxins) or their ancestral diet (fermenting plant volatiles). These results provide insight into the molecular and evolutionary mechanisms of plant-feeding adaptations and highlight gene candidates that have also been linked to other dietary transitions in Drosophila.
Collapse
Affiliation(s)
- Julianne N Peláez
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Andrew D Gloss
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Benjamin Goldman-Huertas
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Bernard Kim
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Richard T Lapoint
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Kirsten I Verster
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Jessica M Aguilar
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Anna C Nelson Dittrich
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Malvika Singhal
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Hiromu C Suzuki
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Teruyuki Matsunaga
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ellie E Armstrong
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Joseph L M Charboneau
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Simon C Groen
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
- Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| | - David H Hembry
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology, University of Texas Permian Basin, Odessa, TX 79762, USA
| | - Christopher J Ochoa
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy K O’Connor
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Stefan Prost
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Sophie Zaaijer
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Jacobs Institute, Cornell Tech, New York, NY 10044, USA
- FIND Genomics, New York, NY 10044, USA
| | - Paul D Nabity
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Jiarui Wang
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - Esteban Rodas
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Irene Liang
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Noah K Whiteman
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Khodursky S, Zheng EB, Svetec N, Durkin SM, Benjamin S, Gadau A, Wu X, Zhao L. The evolution and mutational robustness of chromatin accessibility in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546587. [PMID: 37425760 PMCID: PMC10327059 DOI: 10.1101/2023.06.26.546587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The evolution of regulatory regions in the genome plays a critical role in shaping the diversity of life. While this process is primarily sequence-dependent, the enormous complexity of biological systems has made it difficult to understand the factors underlying regulation and its evolution. Here, we apply deep neural networks as a tool to investigate the sequence determinants underlying chromatin accessibility in different tissues of Drosophila. We train hybrid convolution-attention neural networks to accurately predict ATAC-seq peaks using only local DNA sequences as input. We show that a model trained in one species has nearly identical performance when tested in another species, implying that the sequence determinants of accessibility are highly conserved. Indeed, model performance remains excellent even in distantly-related species. By using our model to examine species-specific gains in chromatin accessibility, we find that their orthologous inaccessible regions in other species have surprisingly similar model outputs, suggesting that these regions may be ancestrally poised for evolution. We then use in silico saturation mutagenesis to reveal evidence of selective constraint acting specifically on inaccessible chromatin regions. We further show that chromatin accessibility can be accurately predicted from short subsequences in each example. However, in silico knock-out of these sequences does not qualitatively impair classification, implying that chromatin accessibility is mutationally robust. Subsequently, we demonstrate that chromatin accessibility is predicted to be robust to large-scale random mutation even in the absence of selection. We also perform in silico evolution experiments under the regime of strong selection and weak mutation (SSWM) and show that chromatin accessibility can be extremely malleable despite its mutational robustness. However, selection acting in different directions in a tissue-specific manner can substantially slow adaptation. Finally, we identify motifs predictive of chromatin accessibility and recover motifs corresponding to known chromatin accessibility activators and repressors. These results demonstrate the conservation of the sequence determinants of accessibility and the general robustness of chromatin accessibility, as well as the power of deep neural networks as tools to answer fundamental questions in regulatory genomics and evolution.
Collapse
Affiliation(s)
- Samuel Khodursky
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
- These authors contributed equally
| | - Eric B Zheng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
- These authors contributed equally
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Sylvia M Durkin
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
- Current Address: Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, USA
| | - Sigi Benjamin
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Alice Gadau
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Xia Wu
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
15
|
Kim H, Kim Y, Roh GH, Kim YH. Comparison of Preference for Chemicals Associated with Fruit Fermentation between Drosophila melanogaster and Drosophila suzukii and between Virgin and Mated D. melanogaster. INSECTS 2023; 14:382. [PMID: 37103197 PMCID: PMC10145260 DOI: 10.3390/insects14040382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Two taxonomically similar Drosophila species, Drosophila melanogaster and Drosophila suzukii, are known to have distinct habitats: D. melanogaster is mostly found near overripe and fermented fruits, whereas D. suzukii is attracted to fresh fruits. Since chemical concentrations are typically higher in overripe and fermented fruits than in fresh fruits, D. melanogaster is hypothesized to be attracted to higher concentrations of volatiles than D. suzukii. Therefore, the chemical preferences of the two flies were compared via Y-tube olfactometer assays and electroantennogram (EAG) experiments using various concentrations of 2-phenylethanol, ethanol, and acetic acid. D. melanogaster exhibited a higher preference for high concentrations of all the chemicals than that of D. suzukii. In particular, since acetic acid is mostly produced at the late stage of fruit fermentation, the EAG signal distance to acetic acid between the two flies was higher than those to 2-phenylethanol and ethanol. This supports the hypothesis that D. melanogaster prefers fermented fruits compared to D. suzukii. When comparing virgin and mated female D. melanogaster, mated females showed a higher preference for high concentrations of chemicals than that of virgin females. In conclusion, high concentrations of volatiles are important attraction factors for mated females seeking appropriate sites for oviposition.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Ecological Science, Kyungpook National University, Sangju-si 37224, Gyeongsangbuk-do, Republic of Korea
| | - YeongHo Kim
- Department of Ecological Science, Kyungpook National University, Sangju-si 37224, Gyeongsangbuk-do, Republic of Korea
| | - Gwang Hyun Roh
- Department of Plant Medicine and Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju-si 52828, Gyeongsangnam-do, Republic of Korea
| | - Young Ho Kim
- Department of Ecological Science, Kyungpook National University, Sangju-si 37224, Gyeongsangbuk-do, Republic of Korea
- Research Institute of Invertebrate Vector, Kyungpook National University, Sangju-si 37224, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
16
|
Sato A, Yew JY, Takahashi A. Effect of acetic acid bacteria colonization on oviposition and feeding site choice in Drosophila suzukii and its related species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533419. [PMID: 36993389 PMCID: PMC10055295 DOI: 10.1101/2023.03.20.533419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Oviposition site choice has a large impact on offspring performance. Unlike other vinegar flies that colonize decaying fruits, Drosophila suzukii lay eggs into hard ripening fruits by using their enlarged and serrated ovipositors (oviscapts). This behavior has an advantage over other species by providing access to the host fruit earlier and avoiding competition. However, the larvae are not fully adapted to a low-protein diet, and the availability of intact healthy fruits is seasonally restricted. Thus, to investigate oviposition site preference for microbial growth in this species, we conducted an oviposition assay using single species of commensal Drosophila acetic acid bacteria, Acetobacter and Gluconobacter. The oviposition site preferences for media with or without bacterial growth were quantified in multiple strains of D. suzukii and its closely related species, D. subpulchrella and D. biarmipes, and a typical fermenting-fruit consumer, D. melanogaster. Our comparisons demonstrated a continuous degree of preference for sites with Acetobacter growth both within and across species, suggesting that the niche separation is notable but not complete. The preference for Gluconobacter showed large variations among replicates and no clear differences between the strains. In addition, the lack of interspecific differences in feeding site preference for Acetobacter-containing media implies that the interspecific divergence in oviposition site preference occurred independently from the feeding site preference. Our oviposition assays measuring the preference of multiple strains from each fly species for acetic acid bacteria growth revealed intrinsic properties of shared resource usage among these fruit fly species.
Collapse
Affiliation(s)
- Airi Sato
- Department of Biological Sciences, Tokyo Metropolitan University, Minamiosawa, Hachioji, Japan
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, Minamiosawa, Hachioji, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Minamiosawa, Hachioji, Japan
| |
Collapse
|
17
|
Pelaez JN, Gloss AD, Goldman-Huertas B, Kim B, Lapoint RT, Pimentel-Solorio G, Verster KI, Aguilar JM, Dittrich ACN, Singhal M, Suzuki HC, Matsunaga T, Armstrong EE, Charboneau JL, Groen SC, Hembry DH, Ochoa CJ, O’Connor TK, Prost S, Zaaijer S, Nabity PD, Wang J, Rodas E, Liang I, Whiteman NK. Evolution of chemosensory and detoxification gene families across herbivorous Drosophilidae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532987. [PMID: 36993186 PMCID: PMC10055167 DOI: 10.1101/2023.03.16.532987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Herbivorous insects are exceptionally diverse, accounting for a quarter of all known eukaryotic species, but the genetic basis of adaptations that enabled this dietary transition remains poorly understood. Many studies have suggested that expansions and contractions of chemosensory and detoxification gene families - genes directly mediating interactions with plant chemical defenses - underlie successful plant colonization. However, this hypothesis has been challenging to test because the origins of herbivory in many lineages are ancient (>150 million years ago [mya]), obscuring genomic evolutionary patterns. Here, we characterized chemosensory and detoxification gene family evolution across Scaptomyza, a genus nested within Drosophila that includes a recently derived (<15 mya) herbivore lineage of mustard (Brassicales) specialists and carnation (Caryophyllaceae) specialists, and several non-herbivorous species. Comparative genomic analyses revealed that herbivorous Scaptomyza have among the smallest chemosensory and detoxification gene repertoires across 12 drosophilid species surveyed. Rates of gene turnover averaged across the herbivore clade were significantly higher than background rates in over half of the surveyed gene families. However, gene turnover was more limited along the ancestral herbivore branch, with only gustatory receptors and odorant binding proteins experiencing strong losses. The genes most significantly impacted by gene loss, duplication, or changes in selective constraint were those involved in detecting compounds associated with feeding on plants (bitter or electrophilic phytotoxins) or their ancestral diet (yeast and fruit volatiles). These results provide insight into the molecular and evolutionary mechanisms of plant-feeding adaptations and highlight strong gene candidates that have also been linked to other dietary transitions in Drosophila .
Collapse
Affiliation(s)
- Julianne N. Pelaez
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Andrew D. Gloss
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Benjamin Goldman-Huertas
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Bernard Kim
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Richard T. Lapoint
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- National Center for Biotechnology Information, Bethesda, MD 20894, USA
| | | | - Kirsten I. Verster
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Jessica M. Aguilar
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Anna C. Nelson Dittrich
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Boyce Thompson Institute, Ithaca NY 14853 USA
| | - Malvika Singhal
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry & Biochemistry, University of Oregon, OR, CA 97403, USA
| | - Hiromu C. Suzuki
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Teruyuki Matsunaga
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | | | - Joseph L.M. Charboneau
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Simon C. Groen
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- Department of Nematology, University of California-Riverside, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92521, USA
- Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - David H. Hembry
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology, University of Texas Permian Basin, Odessa, TX 79762, USA
| | - Christopher J. Ochoa
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy K. O’Connor
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Stefan Prost
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Sophie Zaaijer
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Jacobs Institute, Cornell Tech, New York, NY 10044, USA
- FIND Genomics, New York, NY 10044, USA
| | - Paul D. Nabity
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92521, USA
| | - Jiarui Wang
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - Esteban Rodas
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Irene Liang
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Noah K. Whiteman
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Reisenman CE, Wong J, Vedagarbha N, Livelo C, Scott K. Taste adaptations associated with host specialization in the specialist Drosophila sechellia. J Exp Biol 2023; 226:jeb244641. [PMID: 36637369 PMCID: PMC10088416 DOI: 10.1242/jeb.244641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Abstract
Chemosensory-driven host plant specialization is a major force mediating insect ecological adaptation and speciation. Drosophila sechellia, a species endemic to the Seychelles islands, feeds and oviposits on Morinda citrifolia almost exclusively. This fruit is harmless to D. sechellia but toxic to other Drosophilidae, including the closely related generalists D. simulans and D. melanogaster, because of its high content of fatty acids. While several olfactory adaptations mediating D. sechellia's preference for its host have been uncovered, the role of taste has been much less examined. We found that D. sechellia has reduced taste and feeding aversion to bitter compounds and host fatty acids that are aversive to D. melanogaster and D. simulans. The loss of aversion to canavanine, coumarin and fatty acids arose in the D. sechellia lineage, as its sister species D. simulans showed responses akin to those of D. melanogaster. Drosophila sechellia has increased taste and feeding responses towards M. citrifolia. These results are in line with D. sechellia's loss of genes that encode bitter gustatory receptors (GRs) in D. melanogaster. We found that two GR genes which are lost in D. sechellia, GR39a.a and GR28b.a, influence the reduction of aversive responses to some bitter compounds. Also, D. sechellia has increased appetite for a prominent host fatty acid compound that is toxic to its relatives. Our results support the hypothesis that changes in the taste system, specifically a reduction of sensitivity to bitter compounds that deter generalist ancestors, contribute to the specialization of D. sechellia for its host.
Collapse
Affiliation(s)
- Carolina E. Reisenman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Essig Museum of Entomology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joshua Wong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Namrata Vedagarbha
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | | | - Kristin Scott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| |
Collapse
|
19
|
Wang W, Dweck HKM, Talross GJS, Zaidi A, Gendron JM, Carlson JR. Sugar sensation and mechanosensation in the egg-laying preference shift of Drosophila suzukii. eLife 2022; 11:e81703. [PMID: 36398882 PMCID: PMC9674340 DOI: 10.7554/elife.81703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
The agricultural pest Drosophila suzukii differs from most other Drosophila species in that it lays eggs in ripe, rather than overripe, fruit. Previously, we showed that changes in bitter taste sensation accompanied this adaptation (Dweck et al., 2021). Here, we show that D. suzukii has also undergone a variety of changes in sweet taste sensation. D. suzukii has a weaker preference than Drosophila melanogaster for laying eggs on substrates containing all three primary fruit sugars: sucrose, fructose, and glucose. Major subsets of D. suzukii taste sensilla have lost electrophysiological responses to sugars. Expression of several key sugar receptor genes is reduced in the taste organs of D. suzukii. By contrast, certain mechanosensory channel genes, including no mechanoreceptor potential C, are expressed at higher levels in the taste organs of D. suzukii, which has a higher preference for stiff substrates. Finally, we find that D. suzukii responds differently from D. melanogaster to combinations of sweet and mechanosensory cues. Thus, the two species differ in sweet sensation, mechanosensation, and their integration, which are all likely to contribute to the differences in their egg-laying preferences in nature.
Collapse
Affiliation(s)
- Wanyue Wang
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Hany KM Dweck
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Gaëlle JS Talross
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Ali Zaidi
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Joshua M Gendron
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| |
Collapse
|
20
|
Wang Y, Fang G, Xu P, Gao B, Liu X, Qi X, Zhang G, Cao S, Li Z, Ren X, Wang H, Cao Y, Pereira R, Huang Y, Niu C, Zhan S. Behavioral and genomic divergence between a generalist and a specialist fly. Cell Rep 2022; 41:111654. [DOI: 10.1016/j.celrep.2022.111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/03/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022] Open
|
21
|
High fat diet-induced hyperlipidemia and tissue steatosis in rabbits through modulating ileal microbiota. Appl Microbiol Biotechnol 2022; 106:7187-7207. [PMID: 36173452 DOI: 10.1007/s00253-022-12203-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
Abstract
High-fat diet (HFD) and overnutrition are important starting factors that may alter intestinal microbiota, lipid metabolism, and systemic inflammation. However, there were few studies on how intestinal microbiota contributes to tissue steatosis and hyperlipidemia. Here, we investigated the effect of lipid metabolism disorder-induced inflammation via toll-like receptor 2 (TLR-2), toll-like receptor 4 (TLR-4), and nuclear factor-κB (NF-κB) pathways at the intestinal level in response to HFD. Twenty 80-day-old male New Zealand White rabbits were randomly divided into the normal diet group (NDG) and the high-fat diet group (HDG) for 80 days. Growth performance, blood biochemical parameters, lipid metabolism, inflammation, degree of tissue steatosis, and intestinal microbial composition were measured. HFD increased the relative abundance of Christensenellaceae_R_7_group, Marvinbryantia, Akkermansia etc., with a reduced relative abundance of Enterorhabdus and Lactobacillus. Moreover, HFD caused steatosis in the liver and abdominal fat and abnormal expression of some genes related to lipid metabolism and tight junction proteins. The TLR-2, TLR-4, NF-κB, TNF-α, and IL-6 were confirmed by overexpression with downregulation of IL-10. Serum biochemical indices (TG, TCHO, LDL-C, and HDL-C) were also increased, indicating evidence for the development of the hyperlipidemia model. Correlation analysis showed that this microbial dysbiosis was correlated with lipid metabolism and inflammation, which were associated with the intestinal tract's barrier function and hyperlipidemia. These results provide an insight into the relationship between HFD, the intestinal microbiota, intestinal barrier, tissue inflammation, lipid metabolism, and hyperlipidemia. KEY POINTS: • High-fat diet leads to ileal microbiota disorders • Ileal microbiota mediates local and systemic lipid metabolism disorders and inflammation • There is a specific link between ileal microbiota, histopathology, and hyperlipidemia.
Collapse
|
22
|
Drosophila suzukii preferentially lays eggs on spherical surfaces with a smaller radius. Sci Rep 2022; 12:15792. [PMID: 36138089 PMCID: PMC9500074 DOI: 10.1038/s41598-022-20022-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Drosophila suzukii is an agricultural pest that predominantly harms small fruits, having a serrated ovipositor that is able to pierce the skin of ripening fruits. Its oviposition preference has been studied from various aspects including chemical and physical properties of oviposition substrates. However, its preference for certain shapes or sizes of substrates has not been explored. In this study, we tested the oviposition preference of D. suzukii for artificial oviposition substrates with different surface curvatures using 27 strains recently established from wild populations collected in Japan. We found that D. suzukii laid more eggs on a surface with smaller radii (4.8 and 5.7 mm) compared with larger radii (7.7 and 9.6 mm). We also found that the most preferred radius differed among strains. Notably, the preference was independent of the volume of substrates, suggesting that D. suzukii uses the surface curvature as a cue for its oviposition site selection. These results provide an additional explanation for why D. suzukii preferentially uses small fruits as its oviposition sites.
Collapse
|
23
|
Biasazin TD, Herrera SL, Kimbokota F, Dekker T. Diverging olfactory sensitivities to yeast volatiles reflect resource partitioning of tephritids and drosophilids. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.999762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As pests of fruits and vegetables, ovipositing tephritid fruit flies are infamous for their frugivory. Yet, adult tephritids have remained saprophytic in their feeding behavior, as they require decomposing, protein rich media for sexual maturation and oogenesis. Drosophilid fruit flies, in contrast, are saprophytic both during oviposition and feeding. Here we compared the sensory and behavioral responses of two tephritid (Bactrocera dorsalis and Ceratitis capitata) and two drosophilid species (Drosophila melanogaster and Drosophila suzukii) to differentially aged cultures of the yeast Saccharomyces cerevisiae. We assessed convergence and divergence in the detection of and behavioral response to these attractive substrates, and how these might be linked to the roles of the substrates for the different taxa. The headspace shifted substantially as broth cultures transitioned from active (1-day) to inactive (8- and 15-days). Interestingly, Drosophila flies were significantly attracted to actively fermenting 1-day old yeast cultures, whereas the preference shifted to older cultures for the tephritids. Bactrocera dorsalis flies preferred inactive, lysing cultures (8- and 15-days old). We identified compounds from the 1- to 8-days old broth cultures that elicited antennal responses in each species. Synthetic blends composed of antennally active compounds evoked similar behavioral responses as broth cultures. Similarly, the attractiveness of less attractive broth cultures (1- and 8-days old for drosophilids and tephritids, respectively) could be augmented by adding volatiles of the more attractive cultures. The results show that the volatile profiles of fermenting substrates evolve quantitatively and qualitatively, and that fly species key into volatile blends that indicate suitability of the substrates for their purposes. For drosophilids early arrival at fermenting substrates confers a competitive advantage to offspring. In contrast, for tephritid the concentration and availability of protein is facilitated by older, lysed yeast cultures. The data from this comparative study are also instrumental in the development of novel lures for these pests.
Collapse
|
24
|
Renou M. Is the evolution of insect odorscapes under anthropic pressures a risk for herbivorous insect invasions? CURRENT OPINION IN INSECT SCIENCE 2022; 52:100926. [PMID: 35489680 DOI: 10.1016/j.cois.2022.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Olfaction is directly involved in the insect capacity to exploit new habitats by guiding foraging behaviors. We searched in the literature whether some traits of olfactory systems and behaviors are associated with invasiveness and the impact of anthropogenic activities thereof. Human activities dramatically modify habitats and alter insect odorscapes. Air pollution, for instance, decreases lifetime and active range of semiochemicals. Plasticity and behavioral adaptability of invasive species are decisive by allowing host shifts and adaptative responses to new habitats. Changes in biophysical environments also impact on the use of semiochemicals in biocontrol. Although no evidence for a unique ensemble of olfactory traits associated with invasiveness was found, a growing number of case studies reveal characteristics with risk-predicting value, opening the paths to better invasion-control strategies.
Collapse
Affiliation(s)
- Michel Renou
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France.
| |
Collapse
|
25
|
Tanaka KM, Takahashi K, Rice G, Rebeiz M, Kamimura Y, Takahashi A. Trichomes on female reproductive tract: rapid diversification and underlying gene regulatory network in Drosophila suzukii and its related species. BMC Ecol Evol 2022; 22:93. [PMID: 35902820 PMCID: PMC9331688 DOI: 10.1186/s12862-022-02046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The ovipositors of some insects are external female genitalia, which have their primary function to deliver eggs. Drosophila suzukii and its sibling species D. subpulchrella are known to have acquired highly sclerotized and enlarged ovipositors upon their shifts in oviposition sites from rotting to ripening fruits. Inside the ovipositor plates, there are scale-like polarized protrusions termed "oviprovector scales" that are likely to aid the mechanical movement of the eggs. The size and spatial distribution of the scales need to be rearranged following the divergence of the ovipositors. In this study, we examined the features of the oviprovector scales in D. suzukii and its closely related species. We also investigated whether the scales are single-cell protrusions comprised of F-actin under the same conserved gene regulatory network as the well-characterized trichomes on the larval cuticular surface. RESULTS The oviprovector scales of D. suzukii and D. subpulchrella were distinct in size and spatial arrangement compared to those of D. biarmipes and other closely related species. The scale numbers also varied greatly among these species. The comparisons of the size of the scales suggested a possibility that the apical cell area of the oviprovector has expanded upon the elongation of the ovipositor plates in these species. Our transcriptome analysis revealed that 43 out of the 46 genes known to be involved in the trichome gene regulatory network are expressed in the developing female genitalia of D. suzukii and D. subpulchrella. The presence of Shavenbaby (Svb) or svb was detected in the inner cavity of the developing ovipositors of D. melanogaster, D. suzukii, and D. subpulchrella. Also, shavenoid (sha) was expressed in the corresponding patterns in the developing ovipositors and showed differential expression levels between D. suzukii and D. subpulchrella at 48 h APF. CONCLUSIONS The oviprovector scales have divergent size and spatial arrangements among species. Therefore, these scales may represent a rapidly diversifying morphological trait of the female reproductive tract reflecting ecological contexts. Furthermore, our results showed that the gene regulatory network underlying trichome formation is also utilized to develop the rapidly evolving trichomes on the oviprovectors of these flies.
Collapse
Affiliation(s)
- Kentaro M Tanaka
- Department of Biological Sciences, Tokyo Metropolitan University, 192-0397, Hachioji, Japan
| | - Kanoko Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, 192-0397, Hachioji, Japan
| | - Gavin Rice
- Department of Biological Sciences, University of Pittsburgh, 15260, Pittsburgh, PA, USA
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, 15260, Pittsburgh, PA, USA
| | | | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, 192-0397, Hachioji, Japan.
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, 192-0397, Hachioji, Japan.
| |
Collapse
|
26
|
Chakraborty A, Mori B, Rehermann G, Garcia AH, Lemmen‐Lechelt J, Hagman A, Khalil S, Håkansson S, Witzgall P, Becher PG. Yeast and fruit fly mutual niche construction and antagonism against mould. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amrita Chakraborty
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences Czech University of Life Sciences Kamýcka 129 16500 Prague Czech Republic
| | - Boyd Mori
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
- Department of Agricultural, Food and Nutritional Science University of Alberta Agriculture/Forestry Centre 4‐10 Edmonton Alberta Canada T6G 2P5
| | - Guillermo Rehermann
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Armando Hernández Garcia
- Department of Molecular Sciences Swedish University of Agricultural Sciences Box 7015 75007 Uppsala Sweden
- Division of Biotechnology Department of Chemistry Faculty of Engineering Lund University Box 124 221 00 Lund Sweden
| | - Joelle Lemmen‐Lechelt
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Arne Hagman
- Division of Biotechnology Department of Chemistry Faculty of Engineering Lund University Box 124 221 00 Lund Sweden
| | - Sammar Khalil
- Department of Biosystems and Technology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Sebastian Håkansson
- Department of Molecular Sciences Swedish University of Agricultural Sciences Box 7015 75007 Uppsala Sweden
- Division of Applied Microbiology Department of Chemistry Faculty of Engineering Lund University Lund Sweden
| | - Peter Witzgall
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Paul G Becher
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| |
Collapse
|
27
|
Lewald KM, Abrieux A, Wilson DA, Lee Y, Conner WR, Andreazza F, Beers EH, Burrack HJ, Daane KM, Diepenbrock L, Drummond FA, Fanning PD, Gaffney MT, Hesler SP, Ioriatti C, Isaacs R, Little BA, Loeb GM, Miller B, Nava DE, Rendon D, Sial AA, da Silva CSB, Stockton DG, Van Timmeren S, Wallingford A, Walton VM, Wang X, Zhao B, Zalom FG, Chiu JC. Population genomics of Drosophila suzukii reveal longitudinal population structure and signals of migrations in and out of the continental United States. G3-GENES GENOMES GENETICS 2021; 11:6380432. [PMID: 34599814 PMCID: PMC8664444 DOI: 10.1093/g3journal/jkab343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/10/2021] [Indexed: 11/14/2022]
Abstract
Drosophila suzukii, or spotted-wing drosophila, is now an established pest in many parts of the world, causing significant damage to numerous fruit crop industries. Native to East Asia, D. suzukii infestations started in the United States a decade ago, occupying a wide range of climates. To better understand invasion ecology of this pest, knowledge of past migration events, population structure, and genetic diversity is needed. In this study, we sequenced whole genomes of 237 individual flies collected across the continental United States, as well as several sites in Europe, Brazil, and Asia, to identify and analyze hundreds of thousands of genetic markers. We observed strong population structure between Western and Eastern US populations, but no evidence of any population structure between different latitudes within the continental United States, suggesting that there are no broad-scale adaptations occurring in response to differences in winter climates. We detect admixture from Hawaii to the Western United States and from the Eastern United States to Europe, in agreement with previously identified introduction routes inferred from microsatellite analysis. We also detect potential signals of admixture from the Western United States back to Asia, which could have important implications for shipping and quarantine policies for exported agriculture. We anticipate this large genomic dataset will spur future research into the genomic adaptations underlying D. suzukii pest activity and development of novel control methods for this agricultural pest.
Collapse
Affiliation(s)
- Kyle M Lewald
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Antoine Abrieux
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Derek A Wilson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, University of Florida Institute of Food and Agricultural Sciences, Vero Beach, FL 32603, USA
| | - William R Conner
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Felipe Andreazza
- Laboratory of Entomology, Embrapa Clima Temperado, BR 392 Km 78, Caixa Postal 403, Pelotas, RS 96010-971, Brazil
| | - Elizabeth H Beers
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 99164, USA
| | - Hannah J Burrack
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27601, USA
| | - Kent M Daane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Lauren Diepenbrock
- UF IFAS Citrus Research and Education Center, University of Florida, Lake Alfred, FL 32603, USA
| | - Francis A Drummond
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Philip D Fanning
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Michael T Gaffney
- Horticultural Development Department, Teagasc, Ashtown, Dublin 15, Ireland
| | - Stephen P Hesler
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA
| | - Claudio Ioriatti
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010 San Michele all'Adige (TN), Italy
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Brian A Little
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Gregory M Loeb
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA
| | - Betsey Miller
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Dori E Nava
- Laboratory of Entomology, Embrapa Clima Temperado, BR 392 Km 78, Caixa Postal 403, Pelotas, RS 96010-971, Brazil
| | - Dalila Rendon
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Ashfaq A Sial
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | | | - Dara G Stockton
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA.,USDA-ARS, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI 96720, USA
| | - Steven Van Timmeren
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Anna Wallingford
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA.,Department of Agriculture, Nutrition & Food Systems, University of New Hampshire, Durham, NH 03824, USA
| | - Vaughn M Walton
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Xingeng Wang
- USDA Agricultural Research Service, Beneficial Insects Introduction Research Unit, Newark, DE 19713, USA
| | - Bo Zhao
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27601, USA
| | - Frank G Zalom
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|