1
|
Bordenstein SR, The Holobiont Biology Network. The disciplinary matrix of holobiont biology. Science 2024; 386:731-732. [PMID: 39541453 DOI: 10.1126/science.ado2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Uniting life's seen and unseen realms guides a conceptual advance in research.
Collapse
Affiliation(s)
- Seth R Bordenstein
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Eberly College of Science, Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
2
|
Escuer P, Guirao-Rico S, Arnedo MA, Sánchez-Gracia A, Rozas J. Population Genomics of Adaptive Radiations: Exceptionally High Levels of Genetic Diversity and Recombination in an Endemic Spider From the Canary Islands. Mol Ecol 2024; 33:e17547. [PMID: 39400446 DOI: 10.1111/mec.17547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
The spider genus Dysdera has undergone a remarkable diversification in the oceanic archipelago of the Canary Islands, with ~60 endemic species having originated during the 20 million years since the origin of the archipelago. This evolutionary radiation has been accompanied by substantial dietary shifts, often characterised by phenotypic modifications encompassing morphological, metabolic and behavioural changes. Hence, these endemic spiders represent an excellent model for understanding the evolutionary drivers and to pinpoint the genomic determinants underlying adaptive radiations. Recently, we achieved the first chromosome-level genome assembly of one of the endemic species, D. silvatica, providing a high-quality reference sequence for evolutionary genomics studies. Here, we conducted a low coverage-based resequencing study of a natural population of D. silvatica from La Gomera island. Taking advantage of the new high-quality genome, we characterised genome-wide levels of nucleotide polymorphism, divergence and linkage disequilibrium, and inferred the demographic history of this population. We also performed comprehensive genome-wide scans for recent positive selection. Our findings uncovered exceptionally high levels of nucleotide diversity and recombination in this geographically restricted endemic species, indicative of large historical effective population sizes. We also identified several candidate genomic regions that are potentially under positive selection, highlighting relevant biological processes, such as vision and nitrogen extraction as potential adaptation targets. These processes may ultimately drive species diversification in this genus. This pioneering study of spiders that are endemic to an oceanic archipelago lays the groundwork for broader population genomics analyses aimed at understanding the genetic mechanisms driving adaptive radiation in island ecosystems.
Collapse
Affiliation(s)
- Paula Escuer
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sara Guirao-Rico
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Miquel A Arnedo
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Karageorgi M, Lyulina AS, Bitter MC, Lappo E, Greenblum SI, Mouza ZK, Tran CT, Huynh AV, Oken H, Schmidt P, Petrov DA. Dominance reversal protects large-effect resistance polymorphisms in temporally varying environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619953. [PMID: 39554016 PMCID: PMC11566011 DOI: 10.1101/2024.10.23.619953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A central challenge in evolutionary biology is to uncover mechanisms maintaining functional genetic variation in heterogeneous environments 1,2 . Population genetics theory suggests that beneficial reversal of dominance, where alleles are dominant when beneficial and recessive when deleterious, can help maintain such variation in temporally varying environments 3,4 . However, empirical examples are scarce 5 due to difficulties in measuring dominance in fitness in field experiments 6 . Here we quantify the selective effects and dominance of large-effect insecticide-resistant alleles at the Ace enzymatic locus in Drosophila melanogaster 7 . In laboratory assays, we identify a beneficial reversal of dominance of the Ace alleles for fitness-associated phenotypes under selection in the presence and absence of malathion, a widely used organophosphate insecticide. Using highly replicated field mesocosms, we show that resistant Ace alleles fluctuate rapidly in response to a pulse of malathion, but are maintained in its absence. We show that this pattern is only consistent with beneficial reversal of dominance, where the resistant Ace alleles are dominant and beneficial for resistance and recessive and deleterious for enzymatic function. Moreover, we find that seasonally fluctuating selection due to insecticide resistance can generate fluctuating chromosome-scale genomic perturbations of allele frequencies. We propose an extension to Wright's physiological theory of dominance 8 , arguing that under fluctuating selection the currently deleterious allele should often behave as loss-of-function and thus recessive to the currently beneficial allele. Overall, our results suggest that beneficial reversals of dominance can be common and can help both maintain genetic variation and allow for rapid evolutionary responses to environmental shifts.
Collapse
|
4
|
Gale JT, Kreutz R, Gottfredson Morgan SJ, Davis EK, Hough C, Cisneros Cancino WA, Burnside B, Barney R, Hunsaker R, Hoyt AT, Cluff A, Nosker M, Sefcik C, Beales E, Beltz J, Frandsen PB, Schmidt P, Chaston JM. Environment and diet shape the geography-specific Drosophila melanogaster microbiota composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617096. [PMID: 39416031 PMCID: PMC11482821 DOI: 10.1101/2024.10.07.617096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Geographic and environmental variation in the animal microbiota can be directly linked to the evolution and wild fitness of their hosts but often appears to be disordered. Here, we sought to better understand patterns that underlie wild variation in the microbiota composition of Drosophila melanogaster . First, environmental temperature predicted geographic variation in fly microbial communities better than latitude did. The microbiota also differed between wild flies and their diets, supporting previous conclusions that the fly microbiota is not merely a reflection of diet. Flies feeding on different diets varied significantly in their microbiota composition, and flies sampled from individual apples were exceptionally depauperate for the Lactic Acid Bacteria (LAB), a major bacterial group in wild and laboratory flies. However, flies bore significantly more LAB when sampled from other fruits or compost piles. Follow-up analyses revealed that LAB abundance in the flies uniquely responds to fruit decomposition, whereas other microbiota members better indicate temporal seasonal progression. Finally, we show that diet-dependent variation in the fly microbiota is associated with phenotypic differentiation of fly lines collected in a single orchard. These last findings link covariation between the flies' dietary history, microbiota composition, and genetic variation across relatively small (single-orchard) landscapes, reinforcing the critical role that environment-dependent variation in microbiota composition can play in local adaptation and genomic differentiation of a model animal host. SIGNIFICANCE STATEMENT The microbial communities of animals influence their hosts' evolution and wild fitness, but it is hard to predict and explain how the microbiota varies in wild animals. Here, we describe that the microbiota composition of wild Drosophila melanogaster can be ordered by temperature, humidity, geographic distance, diet decomposition, and diet type. We show how these determinants of microbiota variation can help explain lactic acid bacteria (LAB) abundance in the flies, including the rarity of LAB in some previous studies. Finally, we show that wild fly phenotypes segregate with the flies' diet and microbiota composition, illuminating links between the microbiota and host evolution. Together, these findings help explain how variation in microbiota compositions can shape an animal's life history.
Collapse
|
5
|
Moore LD, Chris Amuwa T, Shaw SR, Ballinger MJ. Drosophila are hosts to the first described parasitoid wasp of adult flies. Nature 2024; 633:840-847. [PMID: 39261731 PMCID: PMC11424482 DOI: 10.1038/s41586-024-07919-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Parasitoid wasps are exceptionally diverse and use specialized adaptations capable of manipulating the physiology and behaviour of host organisms1. In more than two centuries since the first records of Drosophila-parasitizing wasps, nearly 200 described and provisional parasitoid species of drosophilids have been identified2. These include endoparasitoids and ectoparasitoids, as well as species attacking larval and pupal hosts3. Despite a deep history of research attention and remarkable biodiversity, a wasp species that attacks and develops inside the adult stage of a fly host has not been described previously. Here we report the discovery of a wasp species that infects the adult stage of fruit flies in the genus Drosophila, including one of the most deeply studied model organisms in biology, Drosophila melanogaster. Notably, this wasp can be easily collected from backyard fly baits and has a broad geographic distribution throughout the eastern USA. We document its life history and unique host interactions, including egg-laying into and larval emergence from adult flies, and provide protocols to raise wasps from wild-caught host flies. Our results emphasize the need for ongoing research investment in insect biodiversity and systematics. As parasitoid research continues to uncover unusual biology and supports fundamental mechanistic insights into immunity4, metabolism5, ecology6, evolution7-9 and behaviour10-12, we anticipate that this wasp's association with the laboratory model organism, D. melanogaster, will provide new research opportunities across the life sciences.
Collapse
Affiliation(s)
- Logan D Moore
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA.
| | - Toluwanimi Chris Amuwa
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Scott Richard Shaw
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY, USA
| | - Matthew J Ballinger
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
6
|
Berardi S, Rhodes JA, Berner MC, Greenblum SI, Bitter MC, Behrman EL, Betancourt NJ, Bergland AO, Petrov DA, Rajpurohit S, Schmidt P. Drosophila melanogaster pigmentation demonstrates adaptive phenotypic parallelism but genomic unpredictability over multiple timescales. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607378. [PMID: 39211235 PMCID: PMC11361081 DOI: 10.1101/2024.08.09.607378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Populations are capable of responding to environmental change over ecological timescales via adaptive tracking. However, the translation from patterns of allele frequency change to rapid adaptation of complex traits remains unresolved. We used abdominal pigmentation in Drosophila melanogaster as a model phenotype to address the nature, genetic architecture, and repeatability of rapid adaptation in the field. We show that D. melanogaster pigmentation evolves as a highly parallel and deterministic response to shared environmental gradients across latitude and season in natural North American populations. We then experimentally evolved replicate, genetically diverse fly populations in field mesocosms to remove any confounding effects of demography and/or cryptic structure that may drive patterns in wild populations; we show that pigmentation rapidly responds, in parallel, in fewer than ten generations. Thus, pigmentation evolves concordantly in response to spatial and temporal climatic gradients. We next examined whether phenotypic differentiation was associated with allele frequency change at loci with established links to genetic variance in pigmentation in natural populations. We found that across all spatial and temporal scales, phenotypic patterns were associated with variation at pigmentation-related loci, and the sets of genes we identified in each context were largely nonoverlapping. Therefore, our findings suggest that parallel phenotypic evolution is associated with an unpredictable genomic response, with distinct components of the polygenic architecture shifting across each environmental gradient to produce redundant adaptive patterns. Significance Statement Shifts in global climate conditions have heightened our need to understand the dynamics and pace of adaptation in natural populations. In order to anticipate the population-level response to rapidly changing environmental conditions, we need to understand whether trait evolution is predictable over short timescales, and whether the genetic basis of adaptation is shared or distinct across multiple timescales. Here, we explored parallelism in the adaptive response of a complex phenotype, D. melanogaster pigmentation, to shared conditions that varied over multiple spatiotemporal scales. Our results demonstrate that while phenotypic adaptation proceeds as a predictable response to environmental gradients, even over short timescales, the genetic basis of the adaptive response is variable and nuanced across spatial and temporal contexts.
Collapse
|
7
|
Mikucki EE, O’Leary TS, Lockwood BL. Heat tolerance, oxidative stress response tuning and robust gene activation in early-stage Drosophila melanogaster embryos. Proc Biol Sci 2024; 291:20240973. [PMID: 39163981 PMCID: PMC11335408 DOI: 10.1098/rspb.2024.0973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
In organisms with complex life cycles, life stages that are most susceptible to environmental stress may determine species persistence in the face of climate change. Early embryos of Drosophila melanogaster are particularly sensitive to acute heat stress, yet tropical embryos have higher heat tolerance than temperate embryos, suggesting adaptive variation in embryonic heat tolerance. We compared transcriptomic responses to heat stress among tropical and temperate embryos to elucidate the gene regulatory basis of divergence in embryonic heat tolerance. The transcriptomes of tropical and temperate embryos differed in both constitutive and heat-stress-induced responses of the expression of relatively few genes, including genes involved in oxidative stress. Most of the transcriptomic response to heat stress was shared among all embryos. Embryos shifted the expression of thousands of genes, including increases in the expression of heat shock genes, suggesting robust zygotic gene activation and demonstrating that, contrary to previous reports, early embryos are not transcriptionally silent. The involvement of oxidative stress genes corroborates recent reports on the critical role of redox homeostasis in coordinating developmental transitions. By characterizing adaptive variation in the transcriptomic basis of embryonic heat tolerance, this study is a novel contribution to the literature on developmental physiology and developmental genetics.
Collapse
Affiliation(s)
- Emily E. Mikucki
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | | |
Collapse
|
8
|
Gutiérrez-Guerrero YT, Phifer-Rixey M, Nachman MW. Across two continents: The genomic basis of environmental adaptation in house mice (Mus musculus domesticus) from the Americas. PLoS Genet 2024; 20:e1011036. [PMID: 38968323 PMCID: PMC11253941 DOI: 10.1371/journal.pgen.1011036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/17/2024] [Accepted: 06/10/2024] [Indexed: 07/07/2024] Open
Abstract
Replicated clines across environmental gradients can be strong evidence of adaptation. House mice (Mus musculus domesticus) were introduced to the Americas by European colonizers and are now widely distributed from Tierra del Fuego to Alaska. Multiple aspects of climate, such as temperature, vary predictably across latitude in the Americas. Past studies of North American populations across latitudinal gradients provided evidence of environmental adaptation in traits related to body size, metabolism, and behavior and identified candidate genes using selection scans. Here, we investigate genomic signals of environmental adaptation on a second continent, South America, and ask whether there is evidence of parallel adaptation across multiple latitudinal transects in the Americas. We first identified loci across the genome showing signatures of selection related to climatic variation in mice sampled across a latitudinal transect in South America, accounting for neutral population structure. Consistent with previous results, most candidate SNPs were in putatively regulatory regions. Genes that contained the most extreme outliers relate to traits such as body weight or size, metabolism, immunity, fat, eye function, and the cardiovascular system. We then compared these results with the results of analyses of published data from two transects in North America. While most candidate genes were unique to individual transects, we found significant overlap among candidate genes identified independently in the three transects. These genes are diverse, with functions relating to metabolism, immunity, cardiac function, and circadian rhythm, among others. We also found parallel shifts in allele frequency in candidate genes across latitudinal gradients. Finally, combining data from all three transects, we identified several genes associated with variation in body weight. Overall, our results provide strong evidence of shared responses to selection and identify genes that likely underlie recent environmental adaptation in house mice across North and South America.
Collapse
Affiliation(s)
- Yocelyn T. Gutiérrez-Guerrero
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
| | - Megan Phifer-Rixey
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Michael W. Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
| |
Collapse
|
9
|
Jackson DJ, Cerveau N, Posnien N. De novo assembly of transcriptomes and differential gene expression analysis using short-read data from emerging model organisms - a brief guide. Front Zool 2024; 21:17. [PMID: 38902827 PMCID: PMC11188175 DOI: 10.1186/s12983-024-00538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Many questions in biology benefit greatly from the use of a variety of model systems. High-throughput sequencing methods have been a triumph in the democratization of diverse model systems. They allow for the economical sequencing of an entire genome or transcriptome of interest, and with technical variations can even provide insight into genome organization and the expression and regulation of genes. The analysis and biological interpretation of such large datasets can present significant challenges that depend on the 'scientific status' of the model system. While high-quality genome and transcriptome references are readily available for well-established model systems, the establishment of such references for an emerging model system often requires extensive resources such as finances, expertise and computation capabilities. The de novo assembly of a transcriptome represents an excellent entry point for genetic and molecular studies in emerging model systems as it can efficiently assess gene content while also serving as a reference for differential gene expression studies. However, the process of de novo transcriptome assembly is non-trivial, and as a rule must be empirically optimized for every dataset. For the researcher working with an emerging model system, and with little to no experience with assembling and quantifying short-read data from the Illumina platform, these processes can be daunting. In this guide we outline the major challenges faced when establishing a reference transcriptome de novo and we provide advice on how to approach such an endeavor. We describe the major experimental and bioinformatic steps, provide some broad recommendations and cautions for the newcomer to de novo transcriptome assembly and differential gene expression analyses. Moreover, we provide an initial selection of tools that can assist in the journey from raw short-read data to assembled transcriptome and lists of differentially expressed genes.
Collapse
Affiliation(s)
- Daniel J Jackson
- University of Göttingen, Department of Geobiology, Goldschmidtstr.3, Göttingen, 37077, Germany.
| | - Nicolas Cerveau
- University of Göttingen, Department of Geobiology, Goldschmidtstr.3, Göttingen, 37077, Germany
| | - Nico Posnien
- University of Göttingen, Department of Developmental Biology, GZMB, Justus-Von-Liebig-Weg 11, Göttingen, 37077, Germany.
| |
Collapse
|
10
|
Glaser-Schmitt A, Ramnarine TJS, Parsch J. Rapid evolutionary change, constraints and the maintenance of polymorphism in natural populations of Drosophila melanogaster. Mol Ecol 2024; 33:e17024. [PMID: 37222070 DOI: 10.1111/mec.17024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/25/2023]
Abstract
Allele frequencies can shift rapidly within natural populations. Under certain conditions, repeated rapid allele frequency shifts can lead to the long-term maintenance of polymorphism. In recent years, studies of the model insect Drosophila melanogaster have suggested that this phenomenon is more common than previously believed and is often driven by some form of balancing selection, such as temporally fluctuating or sexually antagonistic selection. Here we discuss some of the general insights into rapid evolutionary change revealed by large-scale population genomic studies, as well as the functional and mechanistic causes of rapid adaptation uncovered by single-gene studies. As an example of the latter, we consider a regulatory polymorphism of the D. melanogaster fezzik gene. Polymorphism at this site has been maintained at intermediate frequency over an extended period of time. Regular observations from a single population over a period of 7 years revealed significant differences in the frequency of the derived allele and its variance across collections between the sexes. These patterns are highly unlikely to arise from genetic drift alone or from the action of sexually antagonistic or temporally fluctuating selection individually. Instead, the joint action of sexually antagonistic and temporally fluctuating selection can best explain the observed rapid and repeated allele frequency shifts. Temporal studies such as those reviewed here further our understanding of how rapid changes in selection can lead to the long-term maintenance of polymorphism as well as improve our knowledge of the forces driving and limiting adaptation in nature.
Collapse
Affiliation(s)
- Amanda Glaser-Schmitt
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Timothy J S Ramnarine
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
11
|
Chen J, Liu C, Li W, Zhang W, Wang Y, Clark AG, Lu J. From sub-Saharan Africa to China: Evolutionary history and adaptation of Drosophila melanogaster revealed by population genomics. SCIENCE ADVANCES 2024; 10:eadh3425. [PMID: 38630810 PMCID: PMC11023512 DOI: 10.1126/sciadv.adh3425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
Drosophila melanogaster is a widely used model organism for studying environmental adaptation. However, the genetic diversity of populations in Asia is poorly understood, leaving a notable gap in our knowledge of the global evolution and adaptation of this species. We sequenced genomes of 292 D. melanogaster strains from various ecological settings in China and analyzed them along with previously published genome sequences. We have identified six global genetic ancestry groups, despite the presence of widespread genetic admixture. The strains from China represent a unique ancestry group, although detectable differentiation exists among populations within China. We deciphered the global migration and demography of D. melanogaster, and identified widespread signals of adaptation, including genetic changes in response to insecticides. We validated the effects of insecticide resistance variants using population cage trials and deep sequencing. This work highlights the importance of population genomics in understanding the genetic underpinnings of adaptation, an effort that is particularly relevant given the deterioration of ecosystems.
Collapse
Affiliation(s)
- Junhao Chen
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Chenlu Liu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Weixuan Li
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenxia Zhang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yirong Wang
- College of Biology, Hunan University, Changsha 410082, China
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Vellnow N, Gossmann TI, Waxman D. The pseudoentropy of allele frequency trajectories, the persistence of variation, and the effective population size. Biosystems 2024; 238:105176. [PMID: 38479654 DOI: 10.1016/j.biosystems.2024.105176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
To concisely describe how genetic variation, at individual loci or across whole genomes, changes over time, and to follow transitory allelic changes, we introduce a quantity related to entropy, that we term pseudoentropy. This quantity emerges in a diffusion analysis of the mean time a mutation segregates in a population. For a neutral locus with an arbitrary number of alleles, the mean time of segregation is generally proportional to the pseudoentropy of initial allele frequencies. After the initial time point, pseudoentropy generally decreases, but other behaviours are possible, depending on the genetic diversity and selective forces present. For a biallelic locus, pseudoentropy and entropy coincide, but they are distinct quantities with more than two alleles. Thus for populations with multiple biallelic loci, the language of entropy suffices. Then entropy, combined across loci, serves as a concise description of genetic variation. We used individual based simulations to explore how this entropy behaves under different evolutionary scenarios. In agreement with predictions, the entropy associated with unlinked neutral loci decreases over time. However, deviations from free recombination and neutrality have clear and informative effects on the entropy's behaviour over time. Analysis of publicly available data of a natural D. melanogaster population, that had been sampled over seven years, using a sliding-window approach, yielded considerable variation in entropy trajectories of different genomic regions. These mostly follow a pattern that suggests a substantial effective population size and a limited effect of positive selection on genome-wide diversity over short time scales.
Collapse
Affiliation(s)
- Nikolas Vellnow
- TU Dortmund University, Computational Systems Biology, Faculty of Biochemical and Chemical Engineering, Emil-Figge-Str. 66, 44227 Dortmund, Germany.
| | - Toni I Gossmann
- TU Dortmund University, Computational Systems Biology, Faculty of Biochemical and Chemical Engineering, Emil-Figge-Str. 66, 44227 Dortmund, Germany.
| | - David Waxman
- Fudan University, Centre for Computational Systems Biology, ISTBI, 220 Handan Road, Shanghai 200433, People's Republic of China.
| |
Collapse
|
13
|
Mpamhanga CD, Kounatidis I. The utility of Drosophila melanogaster as a fungal infection model. Front Immunol 2024; 15:1349027. [PMID: 38550600 PMCID: PMC10973011 DOI: 10.3389/fimmu.2024.1349027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
Invasive fungal diseases have profound effects upon human health and are on increase globally. The World Health Organization (WHO) in 2022 published the fungal priority list calling for improved public health interventions and advance research. Drosophila melanogaster presents an excellent model system to dissect host-pathogen interactions and has been proved valuable to study immunopathogenesis of fungal diseases. In this review we highlight the recent advances in fungal-Drosophila interplay with an emphasis on the recently published WHO's fungal priority list and we focus on available tools and technologies.
Collapse
Affiliation(s)
| | - Ilias Kounatidis
- School of Life Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
14
|
Cavigliasso F, Savitsky M, Koval A, Erkosar B, Savary L, Gallart-Ayala H, Ivanisevic J, Katanaev VL, Kawecki TJ. Cis-regulatory polymorphism at fiz ecdysone oxidase contributes to polygenic evolutionary response to malnutrition in Drosophila. PLoS Genet 2024; 20:e1011204. [PMID: 38452112 PMCID: PMC10962836 DOI: 10.1371/journal.pgen.1011204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/25/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
We investigate the contribution of a candidate gene, fiz (fezzik), to complex polygenic adaptation to juvenile malnutrition in Drosophila melanogaster. Experimental populations maintained for >250 generations of experimental evolution to a nutritionally poor larval diet (Selected populations) evolved several-fold lower fiz expression compared to unselected Control populations. Here we show that this divergence in fiz expression is mediated by a cis-regulatory polymorphism. This polymorphism, originally sampled from a natural population in Switzerland, is distinct from a second cis-regulatory SNP previously identified in non-African D. melanogaster populations, implying that two independent cis-regulatory variants promoting high fiz expression segregate in non-African populations. Enzymatic analyses of Fiz protein expressed in E. coli demonstrate that it has ecdysone oxidase activity acting on both ecdysone and 20-hydroxyecdysone. Four of five fiz paralogs annotated to ecdysteroid metabolism also show reduced expression in Selected larvae, implying that malnutrition-driven selection favored general downregulation of ecdysone oxidases. Finally, as an independent test of the role of fiz in poor diet adaptation, we show that fiz knockdown by RNAi results in faster larval growth on the poor diet, but at the cost of greatly reduced survival. These results imply that downregulation of fiz in Selected populations was favored by selection on the nutritionally poor diet because of its role in suppressing growth in response to nutrient shortage. However, they suggest that fiz downregulation is only adaptive in combination with other changes evolved by Selected populations, which ensure that the organism can sustain the faster growth promoted by fiz downregulation.
Collapse
Affiliation(s)
- Fanny Cavigliasso
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mikhail Savitsky
- HumanaFly Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexey Koval
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Berra Erkosar
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Loriane Savary
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vladimir L. Katanaev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tadeusz J. Kawecki
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Lafuente E, Duneau D, Beldade P. Genetic basis of variation in thermal developmental plasticity for Drosophila melanogaster body pigmentation. Mol Ecol 2024; 33:e17294. [PMID: 38366327 DOI: 10.1111/mec.17294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Seasonal differences in insect pigmentation are attributed to the influence of ambient temperature on pigmentation development. This thermal plasticity is adaptive and heritable, and thereby capable of evolving. However, the specific genes contributing to the variation in plasticity that can drive its evolution remain largely unknown. To address this, we analysed pigmentation and pigmentation plasticity in Drosophila melanogaster. We measured two components of pigmentation in the thorax and abdomen: overall darkness and the proportion of length covered by darker pattern elements (a trident in the thorax and bands in the abdomen) in females from two developmental temperatures (17 or 28°C) and 191 genotypes. Using a GWAS approach to identify the genetic basis of variation in pigmentation and its response to temperature, we identified numerous dispersed QTLs, including some mapping to melanogenesis genes (yellow, ebony, and tan). Remarkably, we observed limited overlap between QTLs for variation within specific temperatures and those influencing thermal plasticity, as well as minimal overlap between plasticity QTLs across pigmentation components and across body parts. For most traits, consistent with selection favouring the retention of plasticity, we found that lower plasticity alleles were often at lower frequencies. The functional analysis of selected candidate QTLs and pigmentation genes largely confirmed their contributions to variation in pigmentation and/or pigmentation plasticity. Overall, our study reveals the existence and underlying basis of extensive and trait-specific genetic variation for pigmentation and pigmentation plasticity, offering a rich reservoir of raw material for natural selection to shape the evolution of these traits independently.
Collapse
Affiliation(s)
- E Lafuente
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - D Duneau
- UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - P Beldade
- cE3c (Center for Ecology, Evolution and Environmental Changes) & CHANGE (Global Change and Sustainability Institute), FCUL, Lisboa, Portugal
| |
Collapse
|
16
|
Padilla Perez DJ. Geographic and seasonal variation of the for gene reveal signatures of local adaptation in Drosophila melanogaster. J Evol Biol 2024; 37:201-211. [PMID: 38301664 DOI: 10.1093/jeb/voad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/18/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024]
Abstract
In the early 1980s, the observation that Drosophila melanogaster larvae differed in their foraging behaviour laid the foundation for the work that would later lead to the discovery of the foraging gene (for) and its associated foraging phenotypes, rover and sitter. Since then, the molecular characterization of the for gene and our understanding of the mechanisms that maintain its phenotypic variants in the laboratory have progressed enormously. However, the significance and dynamics of such variation are yet to be investigated in nature. With the advent of next-generation sequencing, it is now possible to identify loci underlying the adaptation of populations in response to environmental variation. Here, I present the results of a genotype-environment association analysis that quantifies variation at the for gene among samples of D. melanogaster structured across space and time. These samples consist of published genomes of adult flies collected worldwide, and at least twice per site of collection (during spring and fall). Both an analysis of genetic differentiation based on Fst values and an analysis of population structure revealed an east-west gradient in allele frequency. This gradient may be the result of spatially varying selection driven by the seasonality of precipitation. These results support the hypothesis that different patterns of gene flow as expected under models of isolation by distance and potentially isolation by environment are driving genetic differentiation among populations. Overall, this study is essential for understanding the mechanisms underlying the evolution of foraging behaviour in D. melanogaster.
Collapse
|
17
|
Nunez JCB, Lenhart BA, Bangerter A, Murray CS, Mazzeo GR, Yu Y, Nystrom TL, Tern C, Erickson PA, Bergland AO. A cosmopolitan inversion facilitates seasonal adaptation in overwintering Drosophila. Genetics 2024; 226:iyad207. [PMID: 38051996 PMCID: PMC10847723 DOI: 10.1093/genetics/iyad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
Fluctuations in the strength and direction of natural selection through time are a ubiquitous feature of life on Earth. One evolutionary outcome of such fluctuations is adaptive tracking, wherein populations rapidly adapt from standing genetic variation. In certain circumstances, adaptive tracking can lead to the long-term maintenance of functional polymorphism despite allele frequency change due to selection. Although adaptive tracking is likely a common process, we still have a limited understanding of aspects of its genetic architecture and its strength relative to other evolutionary forces such as drift. Drosophila melanogaster living in temperate regions evolve to track seasonal fluctuations and are an excellent system to tackle these gaps in knowledge. By sequencing orchard populations collected across multiple years, we characterized the genomic signal of seasonal demography and identified that the cosmopolitan inversion In(2L)t facilitates seasonal adaptive tracking and shows molecular footprints of selection. A meta-analysis of phenotypic studies shows that seasonal loci within In(2L)t are associated with behavior, life history, physiology, and morphological traits. We identify candidate loci and experimentally link them to phenotype. Our work contributes to our general understanding of fluctuating selection and highlights the evolutionary outcome and dynamics of contemporary selection on inversions.
Collapse
Affiliation(s)
- Joaquin C B Nunez
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
- Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405, USA
| | - Benedict A Lenhart
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Alyssa Bangerter
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Connor S Murray
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Giovanni R Mazzeo
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Yang Yu
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Taylor L Nystrom
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Courtney Tern
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Priscilla A Erickson
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
- Department of Biology, University of Richmond, 138 UR Drive, Richmond, VA 23173, USA
| | - Alan O Bergland
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| |
Collapse
|
18
|
Grandchamp A, Czuppon P, Bornberg-Bauer E. Quantification and modeling of turnover dynamics of de novo transcripts in Drosophila melanogaster. Nucleic Acids Res 2024; 52:274-287. [PMID: 38000384 PMCID: PMC10783523 DOI: 10.1093/nar/gkad1079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Most of the transcribed eukaryotic genomes are composed of non-coding transcripts. Among these transcripts, some are newly transcribed when compared to outgroups and are referred to as de novo transcripts. De novo transcripts have been shown to play a major role in genomic innovations. However, little is known about the rates at which de novo transcripts are gained and lost in individuals of the same species. Here, we address this gap and estimate the de novo transcript turnover rate with an evolutionary model. We use DNA long reads and RNA short reads from seven geographically remote samples of inbred individuals of Drosophila melanogaster to detect de novo transcripts that are gained on a short evolutionary time scale. Overall, each sampled individual contains around 2500 unspliced de novo transcripts, with most of them being sample specific. We estimate that around 0.15 transcripts are gained per year, and that each gained transcript is lost at a rate around 5× 10-5 per year. This high turnover of transcripts suggests frequent exploration of new genomic sequences within species. These rate estimates are essential to comprehend the process and timescale of de novo gene birth.
Collapse
Affiliation(s)
- Anna Grandchamp
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Peter Czuppon
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| |
Collapse
|
19
|
Desbiez-Piat A, Ressayre A, Marchadier E, Noly A, Remoué C, Vitte C, Belcram H, Bourgais A, Galic N, Le Guilloux M, Tenaillon MI, Dillmann C. Pervasive G × E interactions shape adaptive trajectories and the exploration of the phenotypic space in artificial selection experiments. Genetics 2023; 225:iyad186. [PMID: 37824828 DOI: 10.1093/genetics/iyad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Quantitative genetics models have shown that long-term selection responses depend on initial variance and mutational influx. Understanding limits of selection requires quantifying the role of mutational variance. However, correlative responses to selection on nonfocal traits can perturb the selection response on the focal trait; and generations are often confounded with selection environments so that genotype by environment (G×E) interactions are ignored. The Saclay divergent selection experiments (DSEs) on maize flowering time were used to track the fate of individual mutations combining genotyping data and phenotyping data from yearly measurements (DSEYM) and common garden experiments (DSECG) with four objectives: (1) to quantify the relative contribution of standing and mutational variance to the selection response, (2) to estimate genotypic mutation effects, (3) to study the impact of G×E interactions in the selection response, and (4) to analyze how trait correlations modulate the exploration of the phenotypic space. We validated experimentally the expected enrichment of fixed beneficial mutations with an average effect of +0.278 and +0.299 days to flowering, depending on the genetic background. Fixation of unfavorable mutations reached up to 25% of incoming mutations, a genetic load possibly due to antagonistic pleiotropy, whereby mutations fixed in the selection environment (DSEYM) turned to be unfavorable in the evaluation environment (DSECG). Global patterns of trait correlations were conserved across genetic backgrounds but exhibited temporal patterns. Traits weakly or uncorrelated with flowering time triggered stochastic exploration of the phenotypic space, owing to microenvironment-specific fixation of standing variants and pleiotropic mutational input.
Collapse
Affiliation(s)
- Arnaud Desbiez-Piat
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
- Université Montpellier, INRAE, Institut Agro Montpellier, LEPSE, Montpellier 34000, France
| | - Adrienne Ressayre
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Elodie Marchadier
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Alicia Noly
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institut of Plants Sciences Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Carine Remoué
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Clémentine Vitte
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Harry Belcram
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Aurélie Bourgais
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Nathalie Galic
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Martine Le Guilloux
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Maud I Tenaillon
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Christine Dillmann
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| |
Collapse
|
20
|
Ye Z, Wei W, Pfrender ME, Lynch M. Evolutionary Insights from a Large-Scale Survey of Population-Genomic Variation. Mol Biol Evol 2023; 40:msad233. [PMID: 37863047 PMCID: PMC10630549 DOI: 10.1093/molbev/msad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/11/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
The field of genomics has ushered in new methods for studying molecular-genetic variation in natural populations. However, most population-genomic studies still rely on small sample sizes (typically, <100 individuals) from single time points, leaving considerable uncertainties with respect to the behavior of relatively young (and rare) alleles and, owing to the large sampling variance of measures of variation, to the specific gene targets of unusually strong selection. Genomic sequences of ∼1,700 haplotypes distributed over a 10-year period from a natural population of the microcrustacean Daphnia pulex reveal evolutionary-genomic features at a refined scale, including previously hidden information on the behavior of rare alleles predicted by recent theory. Background selection, resulting from the recurrent introduction of deleterious alleles, appears to strongly influence the dynamics of neutral alleles, inducing indirect negative selection on rare variants and positive selection on common variants. Temporally fluctuating selection increases the persistence of nonsynonymous alleles with intermediate frequencies, while reducing standing levels of variation at linked silent sites. Combined with the results from an equally large metapopulation survey of the study species, classes of genes that are under strong positive selection can now be confidently identified in this key model organism. Most notable among rapidly evolving Daphnia genes are those associated with ribosomes, mitochondrial functions, sensory systems, and lifespan determination.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Wen Wei
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| | - Michael E Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
21
|
Shpak M, Ghanavi HR, Lange JD, Pool JE, Stensmyr MC. Genomes from historical Drosophila melanogaster specimens illuminate adaptive and demographic changes across more than 200 years of evolution. PLoS Biol 2023; 21:e3002333. [PMID: 37824452 PMCID: PMC10569592 DOI: 10.1371/journal.pbio.3002333] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
The ability to perform genomic sequencing on long-dead organisms is opening new frontiers in evolutionary research. These opportunities are especially notable in the case of museum collections, from which countless documented specimens may now be suitable for genomic analysis-if data of sufficient quality can be obtained. Here, we report 25 newly sequenced genomes from museum specimens of the model organism Drosophila melanogaster, including the oldest extant specimens of this species. By comparing historical samples ranging from the early 1800s to 1933 against modern-day genomes, we document evolution across thousands of generations, including time periods that encompass the species' initial occupation of northern Europe and an era of rapidly increasing human activity. We also find that the Lund, Sweden population underwent local genetic differentiation during the early 1800s to 1933 interval (potentially due to drift in a small population) but then became more similar to other European populations thereafter (potentially due to increased migration). Within each century-scale time period, our temporal sampling allows us to document compelling candidates for recent natural selection. In some cases, we gain insights regarding previously implicated selection candidates, such as ChKov1, for which our inferred timing of selection favors the hypothesis of antiviral resistance over insecticide resistance. Other candidates are novel, such as the circadian-related gene Ahcy, which yields a selection signal that rivals that of the DDT resistance gene Cyp6g1. These insights deepen our understanding of recent evolution in a model system, and highlight the potential of future museomic studies.
Collapse
Affiliation(s)
- Max Shpak
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | | | - Jeremy D. Lange
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Marcus C. Stensmyr
- Department of Biology, Lund University, Lund, Scania, Sweden
- Max Planck Center on Next Generation Insect Chemical Ecology, Lund, Sweden
| |
Collapse
|
22
|
Giesen A, Blanckenhorn WU, Schäfer MA, Shimizu KK, Shimizu-Inatsugi R, Misof B, Podsiadlowski L, Niehuis O, Lischer HEL, Aeschbacher S, Kapun M. Geographic Variation in Genomic Signals of Admixture Between Two Closely Related European Sepsid Fly Species. Evol Biol 2023; 50:395-412. [PMID: 37854269 PMCID: PMC10579158 DOI: 10.1007/s11692-023-09612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/28/2023] [Indexed: 10/20/2023]
Abstract
The extent of interspecific gene flow and its consequences for the initiation, maintenance, and breakdown of species barriers in natural systems remain poorly understood. Interspecific gene flow by hybridization may weaken adaptive divergence, but can be overcome by selection against hybrids, which may ultimately promote reinforcement. An informative step towards understanding the role of gene flow during speciation is to describe patterns of past gene flow among extant species. We investigate signals of admixture between allopatric and sympatric populations of the two closely related European dung fly species Sepsis cynipsea and S. neocynipsea (Diptera: Sepsidae). Based on microsatellite genotypes, we first inferred a baseline demographic history using Approximate Bayesian Computation. We then used genomic data from pooled DNA of natural and laboratory populations to test for past interspecific gene flow based on allelic configurations discordant with the inferred population tree (ABBA-BABA test with D-statistic). Comparing the detected signals of gene flow with the contemporary geographic relationship among interspecific pairs of populations (sympatric vs. allopatric), we made two contrasting observations. At one site in the French Cevennes, we detected an excess of past interspecific gene flow, while at two sites in Switzerland we observed lower signals of past microsatellite genotypes gene flow among populations in sympatry compared to allopatric populations. These results suggest that the species boundaries between these two species depend on the past and/or present eco-geographic context in Europe, which indicates that there is no uniform link between contemporary geographic proximity and past interspecific gene flow in natural populations. Supplementary Information The online version contains supplementary material available at 10.1007/s11692-023-09612-5.
Collapse
Affiliation(s)
- Athene Giesen
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin A. Schäfer
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Bernhard Misof
- Zoological Research Museum Alexander Koenig, Bonn, Germany
| | | | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University, Freiburg, Germany
| | - Heidi E. L. Lischer
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Simon Aeschbacher
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Kapun
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Division of Cell & Developmental Biology, Medical University of Vienna, Vienna, Austria
- Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| |
Collapse
|
23
|
Whitehouse LS, Schrider DR. Timesweeper: accurately identifying selective sweeps using population genomic time series. Genetics 2023; 224:iyad084. [PMID: 37157914 PMCID: PMC10324941 DOI: 10.1093/genetics/iyad084] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/25/2022] [Accepted: 04/25/2023] [Indexed: 05/10/2023] Open
Abstract
Despite decades of research, identifying selective sweeps, the genomic footprints of positive selection, remains a core problem in population genetics. Of the myriad methods that have been developed to tackle this task, few are designed to leverage the potential of genomic time-series data. This is because in most population genetic studies of natural populations, only a single period of time can be sampled. Recent advancements in sequencing technology, including improvements in extracting and sequencing ancient DNA, have made repeated samplings of a population possible, allowing for more direct analysis of recent evolutionary dynamics. Serial sampling of organisms with shorter generation times has also become more feasible due to improvements in the cost and throughput of sequencing. With these advances in mind, here we present Timesweeper, a fast and accurate convolutional neural network-based tool for identifying selective sweeps in data consisting of multiple genomic samplings of a population over time. Timesweeper analyzes population genomic time-series data by first simulating training data under a demographic model appropriate for the data of interest, training a one-dimensional convolutional neural network on said simulations, and inferring which polymorphisms in this serialized data set were the direct target of a completed or ongoing selective sweep. We show that Timesweeper is accurate under multiple simulated demographic and sampling scenarios, identifies selected variants with high resolution, and estimates selection coefficients more accurately than existing methods. In sum, we show that more accurate inferences about natural selection are possible when genomic time-series data are available; such data will continue to proliferate in coming years due to both the sequencing of ancient samples and repeated samplings of extant populations with faster generation times, as well as experimentally evolved populations where time-series data are often generated. Methodological advances such as Timesweeper thus have the potential to help resolve the controversy over the role of positive selection in the genome. We provide Timesweeper as a Python package for use by the community.
Collapse
Affiliation(s)
- Logan S Whitehouse
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Daniel R Schrider
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| |
Collapse
|
24
|
Barría A, Peñaloza C, Papadopoulou A, Mahmuddin M, Doeschl‐Wilson A, Benzie JAH, Houston RD, Wiener P. Genetic differentiation following recent domestication events: A study of farmed Nile tilapia ( Oreochromis niloticus) populations. Evol Appl 2023; 16:1220-1235. [PMID: 37360025 PMCID: PMC10286235 DOI: 10.1111/eva.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023] Open
Abstract
Nile tilapia (Oreochromis niloticus) is among the most farmed finfish worldwide, distributed across different environmental conditions. Its wide distribution has mainly been facilitated by several breeding programs and widespread dissemination of genetically improved strains. In the first Nile tilapia study exploiting a whole-genome pooled sequencing (Poolseq) approach, we identified the genetic structure and signatures of selection in diverse, farmed Nile tilapia populations, with a particular focus on the GIFT strain, developed in the 1980s, and currently managed by WorldFish (GIFTw). We also investigated important farmed strains from The Philippines and Africa. Using both SNP array data and Poolseq SNPs, we characterized the population structure of these samples. We observed the greatest separation between the Asian and African populations and greater admixture in the Asian populations than in the African ones. We also established that the SNP array data were able to successfully resolve relationships between these diverse Nile tilapia populations. The Poolseq data identified genomic regions with high levels of differentiation (F ST) between GIFTw and the other populations. Gene ontology terms associated with mesoderm development were significantly enriched in the genes located in these regions. A region on chromosome Oni06 was genetically differentiated in pairwise comparisons between GIFTw and all other populations. This region contains genes associated with muscle-related traits and overlaps with a previously published QTL for fillet yield, suggesting that these traits may have been direct targets for selection on GIFT. A nearby region was also identified using XP-EHH to detect genomic differentiation using the SNP array data. Genomic regions with high or extended homozygosity within each population were also identified. This study provides putative genomic landmarks associated with the recent domestication process in several Nile tilapia populations, which could help to inform their genetic management and improvement.
Collapse
Affiliation(s)
- Agustin Barría
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh Easter BushMidlothianUK
- Present address:
Benchmark Genetics Norway ASBergenNorway
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh Easter BushMidlothianUK
- Present address:
Benchmark GeneticsMidlothianUK
| | - Athina Papadopoulou
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh Easter BushMidlothianUK
- Center of Environment Fisheries and Aquaculture ScienceWeymouthUK
| | | | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh Easter BushMidlothianUK
| | - John A. H. Benzie
- WorldFishBayan LepasPenangMalaysia
- School of Biological Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh Easter BushMidlothianUK
- Benchmark GeneticsMidlothianUK
| | - Pamela Wiener
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh Easter BushMidlothianUK
| |
Collapse
|
25
|
Kapun M, Mitchell ED, Kawecki TJ, Schmidt P, Flatt T. An Ancestral Balanced Inversion Polymorphism Confers Global Adaptation. Mol Biol Evol 2023; 40:msad118. [PMID: 37220650 PMCID: PMC10234209 DOI: 10.1093/molbev/msad118] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Since the pioneering work of Dobzhansky in the 1930s and 1940s, many chromosomal inversions have been identified, but how they contribute to adaptation remains poorly understood. In Drosophila melanogaster, the widespread inversion polymorphism In(3R)Payne underpins latitudinal clines in fitness traits on multiple continents. Here, we use single-individual whole-genome sequencing, transcriptomics, and published sequencing data to study the population genomics of this inversion on four continents: in its ancestral African range and in derived populations in Europe, North America, and Australia. Our results confirm that this inversion originated in sub-Saharan Africa and subsequently became cosmopolitan; we observe marked monophyletic divergence of inverted and noninverted karyotypes, with some substructure among inverted chromosomes between continents. Despite divergent evolution of this inversion since its out-of-Africa migration, derived non-African populations exhibit similar patterns of long-range linkage disequilibrium between the inversion breakpoints and major peaks of divergence in its center, consistent with balancing selection and suggesting that the inversion harbors alleles that are maintained by selection on several continents. Using RNA-sequencing, we identify overlap between inversion-linked single-nucleotide polymorphisms and loci that are differentially expressed between inverted and noninverted chromosomes. Expression levels are higher for inverted chromosomes at low temperature, suggesting loss of buffering or compensatory plasticity and consistent with higher inversion frequency in warm climates. Our results suggest that this ancestrally tropical balanced polymorphism spread around the world and became latitudinally assorted along similar but independent climatic gradients, always being frequent in subtropical/tropical areas but rare or absent in temperate climates.
Collapse
Affiliation(s)
- Martin Kapun
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
- Natural History Museum Vienna, Zentrale Forschungslaboratorien, Vienna, Austria
| | - Esra Durmaz Mitchell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
26
|
Grandchamp A, Kühl L, Lebherz M, Brüggemann K, Parsch J, Bornberg-Bauer E. Population genomics reveals mechanisms and dynamics of de novo expressed open reading frame emergence in Drosophila melanogaster. Genome Res 2023; 33:872-890. [PMID: 37442576 PMCID: PMC10519401 DOI: 10.1101/gr.277482.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/06/2023] [Indexed: 07/15/2023]
Abstract
Novel genes are essential for evolutionary innovations and differ substantially even between closely related species. Recently, multiple studies across many taxa showed that some novel genes arise de novo, that is, from previously noncoding DNA. To characterize the underlying mutations that allowed de novo gene emergence and their order of occurrence, homologous regions must be detected within noncoding sequences in closely related sister genomes. So far, most studies do not detect noncoding homologs of de novo genes because of incomplete assemblies and annotations, and long evolutionary distances separating genomes. Here, we overcome these issues by searching for de novo expressed open reading frames (neORFs), the not-yet fixed precursors of de novo genes that emerged within a single species. We sequenced and assembled genomes with long-read technology and the corresponding transcriptomes from inbred lines of Drosophila melanogaster, derived from seven geographically diverse populations. We found line-specific neORFs in abundance but few neORFs shared by lines, suggesting a rapid turnover. Gain and loss of transcription is more frequent than the creation of ORFs, for example, by forming new start and stop codons. Consequently, the gain of ORFs becomes rate limiting and is frequently the initial step in neORFs emergence. Furthermore, transposable elements (TEs) are major drivers for intragenomic duplications of neORFs, yet TE insertions are less important for the emergence of neORFs. However, highly mutable genomic regions around TEs provide new features that enable gene birth. In conclusion, neORFs have a high birth-death rate, are rapidly purged, but surviving neORFs spread neutrally through populations and within genomes.
Collapse
Affiliation(s)
- Anna Grandchamp
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| | - Lucas Kühl
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Marie Lebherz
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Kathrin Brüggemann
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Munich, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
- Max Planck Institute for Biology Tübingen, Department of Protein Evolution, 72076 Tübingen, Germany
| |
Collapse
|
27
|
Ye Z, Wei W, Pfrender M, Lynch M. Evolutionary Insights from a Large-scale Survey of Population-genomic Variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539276. [PMID: 37205430 PMCID: PMC10187179 DOI: 10.1101/2023.05.03.539276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Results from data on > 1000 haplotypes distributed over a nine-year period from a natural population of the microcrustacean Daphnia pulex reveal evolutionary-genomic features at a refined scale, including key population-genetic properties that are obscured in studies with smaller sample sizes. Background selection, resulting from the recurrent introduction of deleterious alleles, appears to strongly influence the dynamics of neutral alleles, inducing indirect negative selection on rare variants and positive selection on common variants. Fluctuating selection increases the persistence of nonsynonymous alleles with intermediate frequencies, while reducing standing levels of variation at linked silent sites. Combined with the results from an equally large metapopulation survey of the study species, regions of gene structure that are under strong purifying selection and classes of genes that are under strong positive selection in this key species can be confidently identified. Most notable among rapidly evolving Daphnia genes are those associated with ribosomes, mitochondrial functions, sensory systems, and lifespan determination.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| | - Wen Wei
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| | - Michael Pfrender
- Department of Biological Sciences, Notre Dame University, Notre Dame, IN 46556
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
28
|
Hoedjes KM, Kostic H, Flatt T, Keller L. A Single Nucleotide Variant in the PPARγ-homolog Eip75B Affects Fecundity in Drosophila. Mol Biol Evol 2023; 40:7005670. [PMID: 36703226 PMCID: PMC9922802 DOI: 10.1093/molbev/msad018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Single nucleotide polymorphisms are the most common type of genetic variation, but how these variants contribute to the adaptation of complex phenotypes is largely unknown. Experimental evolution and genome-wide association studies have demonstrated that variation in the PPARγ-homolog Eip75B has associated with longevity and life-history differences in the fruit fly Drosophila melanogaster. Using RNAi knockdown, we first demonstrate that reduced expression of Eip75B in adult flies affects lifespan, egg-laying rate, and egg volume. We then tested the effects of a naturally occurring SNP within a cis-regulatory domain of Eip75B by applying two complementary approaches: a Mendelian randomization approach using lines of the Drosophila Genetic Reference Panel, and allelic replacement using precise CRISPR/Cas9-induced genome editing. Our experiments reveal that this natural polymorphism has a significant pleiotropic effect on fecundity and egg-to-adult viability, but not on longevity or other life-history traits. Our results provide a rare functional validation at the nucleotide level and identify a natural allelic variant affecting fitness and life-history adaptation.
Collapse
Affiliation(s)
| | - Hristina Kostic
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
29
|
Hoedjes KM, Kostic H, Keller L, Flatt T. Natural alleles at the Doa locus underpin evolutionary changes in Drosophila lifespan and fecundity. Proc Biol Sci 2022; 289:20221989. [PMID: 36350205 PMCID: PMC9653240 DOI: 10.1098/rspb.2022.1989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
'Evolve and resequence' (E&R) studies in Drosophila melanogaster have identified many candidate loci underlying the evolution of ageing and life history, but experiments that validate the effects of such candidates remain rare. In a recent E&R study we have identified several alleles of the LAMMER kinase Darkener of apricot (Doa) as candidates for evolutionary changes in lifespan and fecundity. Here, we use two complementary approaches to confirm a functional role of Doa in life-history evolution. First, we used transgenic RNAi to study the effects of Doa at the whole-gene level. Ubiquitous silencing of expression in adult flies reduced both lifespan and fecundity, indicating pleiotropic effects. Second, to characterize segregating variation at Doa, we examined four candidate single nucleotide polymorphisms (SNPs; Doa-1, -2, -3, -4) using a genetic association approach. Three candidate SNPs had effects that were qualitatively consistent with expectations based on our E&R study: Doa-2 pleiotropically affected both lifespan and late-life fecundity; Doa-1 affected lifespan (but not fecundity); and Doa-4 affected late-life fecundity (but not lifespan). Finally, the last candidate allele (Doa-3) also affected lifespan, but in the opposite direction from predicted.
Collapse
Affiliation(s)
- Katja M. Hoedjes
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hristina Kostic
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland,Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
30
|
Coughlan JM, Dagilis AJ, Serrato-Capuchina A, Elias H, Peede D, Isbell K, Castillo DM, Cooper BS, Matute DR. Patterns of Population Structure and Introgression Among Recently Differentiated Drosophila melanogaster Populations. Mol Biol Evol 2022; 39:msac223. [PMID: 36251862 PMCID: PMC9641974 DOI: 10.1093/molbev/msac223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite a century of genetic analysis, the evolutionary processes that have generated the patterns of exceptional genetic and phenotypic variation in the model organism Drosophila melanogaster remains poorly understood. In particular, how genetic variation is partitioned within its putative ancestral range in Southern Africa remains unresolved. Here, we study patterns of population genetic structure, admixture, and the spatial structuring of candidate incompatibility alleles across a global sample, including 223 new accessions, predominantly from remote regions in Southern Africa. We identify nine major ancestries, six that primarily occur in Africa and one that has not been previously described. We find evidence for both contemporary and historical admixture between ancestries, with admixture rates varying both within and between continents. For example, while previous work has highlighted an admixture zone between broadly defined African and European ancestries in the Caribbean and southeastern USA, we identify West African ancestry as the most likely African contributor. Moreover, loci showing the strongest signal of introgression between West Africa and the Caribbean/southeastern USA include several genes relating to neurological development and male courtship behavior, in line with previous work showing shared mating behaviors between these regions. Finally, while we hypothesized that potential incompatibility loci may contribute to population genetic structure across the range of D. melanogaster; these loci are, on average, not highly differentiated between ancestries. This work contributes to our understanding of the evolutionary history of a key model system, and provides insight into the partitioning of diversity across its range.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Andrius J Dagilis
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | | | - Hope Elias
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - David Peede
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Kristin Isbell
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - Dean M Castillo
- Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
31
|
Exposito-Alonso M, Booker TR, Czech L, Gillespie L, Hateley S, Kyriazis CC, Lang PLM, Leventhal L, Nogues-Bravo D, Pagowski V, Ruffley M, Spence JP, Toro Arana SE, Weiß CL, Zess E. Genetic diversity loss in the Anthropocene. Science 2022; 377:1431-1435. [PMID: 36137047 DOI: 10.1126/science.abn5642] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anthropogenic habitat loss and climate change are reducing species' geographic ranges, increasing extinction risk and losses of species' genetic diversity. Although preserving genetic diversity is key to maintaining species' adaptability, we lack predictive tools and global estimates of genetic diversity loss across ecosystems. We introduce a mathematical framework that bridges biodiversity theory and population genetics to understand the loss of naturally occurring DNA mutations with decreasing habitat. By analyzing genomic variation of 10,095 georeferenced individuals from 20 plant and animal species, we show that genome-wide diversity follows a mutations-area relationship power law with geographic area, which can predict genetic diversity loss from local population extinctions. We estimate that more than 10% of genetic diversity may already be lost for many threatened and nonthreatened species, surpassing the United Nations' post-2020 targets for genetic preservation.
Collapse
Affiliation(s)
- Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.,Department of Biology, Stanford University, Stanford, CA 94305, USA.,Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Tom R Booker
- Department of Zoology, University of British Columbia, Vancouver, Canada.,Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Lucas Czech
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Lauren Gillespie
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.,Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Shannon Hateley
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Christopher C Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | | | - Laura Leventhal
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.,Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - David Nogues-Bravo
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Megan Ruffley
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Jeffrey P Spence
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Sebastian E Toro Arana
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.,Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Clemens L Weiß
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Erin Zess
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Gossmann TI, Waxman D. Correcting Bias in Allele Frequency Estimates Due to an Observation Threshold: A Markov Chain Analysis. Genome Biol Evol 2022; 14:evac047. [PMID: 35349695 PMCID: PMC9016752 DOI: 10.1093/gbe/evac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
There are many problems in biology and related disciplines involving stochasticity, where a signal can only be detected when it lies above a threshold level, while signals lying below threshold are simply not detected. A consequence is that the detected signal is conditioned to lie above threshold, and is not representative of the actual signal. In this work, we present some general results for the conditioning that occurs due to the existence of such an observational threshold. We show that this conditioning is relevant, for example, to gene-frequency trajectories, where many loci in the genome are simultaneously measured in a given generation. Such a threshold can lead to severe biases of allele frequency estimates under purifying selection. In the analysis presented, within the context of Markov chains such as the Wright-Fisher model, we address two key questions: (1) "What is a natural measure of the strength of the conditioning associated with an observation threshold?" (2) "What is a principled way to correct for the effects of the conditioning?". We answer the first question in terms of a proportion. Starting with a large number of trajectories, the relevant quantity is the proportion of these trajectories that are above threshold at a later time and hence are detected. The smaller the value of this proportion, the stronger the effects of conditioning. We provide an approximate analytical answer to the second question, that corrects the bias produced by an observation threshold, and performs to reasonable accuracy in the Wright-Fisher model for biologically plausible parameter values.
Collapse
Affiliation(s)
- Toni I. Gossmann
- Department of Evolutionary Genetics, Bielefeld University, Konsequenz 45, 33501 Bielefeld, Germany
- Berlin Institute for Advanced Study, Wallotstrasse 19, 14193 Berlin, Germany
| | - David Waxman
- Centre for Computational Systems Biology, ISTBI, Fudan University, 220 Handan Road, Shanghai 20433, People’s Republic of China
| |
Collapse
|
33
|
Lange JD, Bastide H, Lack JB, Pool JE. A Population Genomic Assessment of Three Decades of Evolution in a Natural Drosophila Population. Mol Biol Evol 2021; 39:6491261. [PMID: 34971382 PMCID: PMC8826484 DOI: 10.1093/molbev/msab368] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Population genetics seeks to illuminate the forces shaping genetic variation, often based on a single snapshot of genomic variation. However, utilizing multiple sampling times to study changes in allele frequencies can help clarify the relative roles of neutral and non-neutral forces on short time scales. This study compares whole-genome sequence variation of recently collected natural population samples of Drosophila melanogaster against a collection made approximately 35 years prior from the same locality—encompassing roughly 500 generations of evolution. The allele frequency changes between these time points would suggest a relatively small local effective population size on the order of 10,000, significantly smaller than the global effective population size of the species. Some loci display stronger allele frequency changes than would be expected anywhere in the genome under neutrality—most notably the tandem paralogs Cyp6a17 and Cyp6a23, which are impacted by structural variation associated with resistance to pyrethroid insecticides. We find a genome-wide excess of outliers for high genetic differentiation between old and new samples, but a larger number of adaptation targets may have affected SNP-level differentiation versus window differentiation. We also find evidence for strengthening latitudinal allele frequency clines: northern-associated alleles have increased in frequency by an average of nearly 2.5% at SNPs previously identified as clinal outliers, but no such pattern is observed at random SNPs. This project underscores the scientific potential of using multiple sampling time points to investigate how evolution operates in natural populations, by quantifying how genetic variation has changed over ecologically relevant timescales.
Collapse
Affiliation(s)
- Jeremy D Lange
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Héloïse Bastide
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Justin B Lack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|