1
|
Benítez-Villaseñor A, Jost M, Granados Mendoza C, Wanke S, Meza-Lázaro RN, Peñafiel Cevallos M, Freire E, Magallón S. Exploring Structural Plastome Evolution in Asterales: Insights from Off-Target Hybrid Enrichment Data on the Small Single-Copy Region. J Mol Evol 2025; 93:111-123. [PMID: 39724205 DOI: 10.1007/s00239-024-10224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
The massive increase in the amount of plastid genome data have allowed researchers to address a variety of evolutionary questions within a wide range of plant groups. While plastome structure is generally conserved, some angiosperm lineages exhibit structural changes. Such is the case of the megadiverse order Asterales, where rearrangements in plastome structure have been documented. This study investigates the possibility of recovering plastid loci from off-target reads obtained through hybrid enrichment techniques. Our sampling includes 63 species from the eleven currently recognized families in Asterales derived from previously published studies. We assembled and annotated complete and partial plastomes using custom pipelines and estimate phylogenomic relationships. We retrieved plastid information from 60 of the 63 sampled species including a complete plastome from Tithonia tubaeformis (Asteraceae), circular partial (with gaps) plastomes from seven species, and non-circular partial plastomes from other 52 species. We focused on the small single-copy region because it could be recovered for over 29 species. Within the small single-copy region, we assessed intron losses and presence of putative pseudogenes. Comparative genomics revealed a relocated fragment of ~ 6500 bp in two Campanulaceae lineages (i. e. subfamily Lobelioideae and Pseudonemacladus oppositifolium), involving the genes rbcL, atpB, atpE, trnM-CAU, and trnV-UAC. Obtained phylogenetic hypotheses were congruent across the applied methods and consistent with previously published results. Our study demonstrates the feasibility of recovering plastid information, both complete and partial, from off-target hybrid enrichment data and provides insights on the structural plastome changes that have occurred throughout the evolution of the order Asterales.
Collapse
Affiliation(s)
- Adriana Benítez-Villaseñor
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, A. P. 70-153, C.P.04510, Ciudad de Mexico, México.
| | - Matthias Jost
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
- Goethe-University Frankfurt, Institute of Ecology, Evolution & Diversity, 60438, Frankfurt, Germany
| | - Carolina Granados Mendoza
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
- Institut Für Botanik, Technische Universität Dresden, Zellescher Weg 20B, 01217, Dresden, Germany
| | - Stefan Wanke
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
- Goethe-University Frankfurt, Institute of Ecology, Evolution & Diversity, 60438, Frankfurt, Germany
- Institut Für Botanik, Technische Universität Dresden, Zellescher Weg 20B, 01217, Dresden, Germany
- Senckenberg Forschungsinstitut Und Naturmuseum, Botanik Und Molekulare Evolutionsforschung, 60325, Frankfurt, Germany
| | - Rubi N Meza-Lázaro
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Marcia Peñafiel Cevallos
- Herbario Nacional del Ecuador (QCNE), Instituto Nacional de Biodiversidad, Quito, 170135, Ecuador
| | - Efraín Freire
- Herbario Nacional del Ecuador (QCNE), Instituto Nacional de Biodiversidad, Quito, 170135, Ecuador
| | - Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| |
Collapse
|
2
|
Hou Z, Yang S, He W, Lu T, Feng X, Zang L, Bai W, Chen X, Nie B, Li C, Wei M, Ma L, Han Z, Zou Q, Li W, Wang L. The haplotype-resolved genome of diploid Chrysanthemum indicum unveils new acacetin synthases genes and their evolutionary history. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38864745 DOI: 10.1111/tpj.16854] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/31/2024] [Accepted: 05/03/2024] [Indexed: 06/13/2024]
Abstract
Acacetin, a flavonoid compound, possesses a wide range of pharmacological effects, including antimicrobial, immune regulation, and anticancer effects. Some key steps in its biosynthetic pathway were largely unknown in flowering plants. Here, we present the first haplotype-resolved genome of Chrysanthemum indicum, whose dried flowers contain abundant flavonoids and have been utilized as traditional Chinese medicine. Various phylogenetic analyses revealed almost equal proportion of three tree topologies among three Chrysanthemum species (C. indicum, C. nankingense, and C. lavandulifolium), indicating that frequent gene flow among Chrysanthemum species or incomplete lineage sorting due to rapid speciation might contribute to conflict topologies. The expanded gene families in C. indicum were associated with oxidative functions. Through comprehensive candidate gene screening, we identified five flavonoid O-methyltransferase (FOMT) candidates, which were highly expressed in flowers and whose expressional levels were significantly correlated with the content of acacetin. Further experiments validated two FOMTs (CI02A009970 and CI03A006662) were capable of catalyzing the conversion of apigenin into acacetin, and these two genes are possibly responsible acacetin accumulation in disc florets and young leaves, respectively. Furthermore, combined analyses of ancestral chromosome reconstruction and phylogenetic trees revealed the distinct evolutionary fates of the two validated FOMT genes. Our study provides new insights into the biosynthetic pathway of flavonoid compounds in the Asteraceae family and offers a model for tracing the origin and evolutionary routes of single genes. These findings will facilitate in vitro biosynthetic production of flavonoid compounds through cellular and metabolic engineering and expedite molecular breeding of C. indicum cultivars.
Collapse
Affiliation(s)
- Zhuangwei Hou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Song Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Weijun He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Tingting Lu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Xunmeng Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Lanlan Zang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Wenhui Bai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Xueqing Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Bao Nie
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Cheng Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Min Wei
- China Resources Sanjiu Medical and Pharmaceutical Co., Ltd, Shenzhen, 518110, China
| | - Liangju Ma
- China Resources Sanjiu Medical and Pharmaceutical Co., Ltd, Shenzhen, 518110, China
| | - Zhengzhou Han
- China Resources Sanjiu Medical and Pharmaceutical Co., Ltd, Shenzhen, 518110, China
| | - Qingjun Zou
- China Resources Sanjiu Medical and Pharmaceutical Co., Ltd, Shenzhen, 518110, China
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China
| |
Collapse
|
3
|
Zhang N, Huang K, Xie P, Deng A, Tang X, Jiang M, Mo P, Yin H, Huang R, Liang J, He F, Liu Y, Hu H, Wang Y. Chloroplast genome analysis and evolutionary insights in the versatile medicinal plant Calendula officinalis L. Sci Rep 2024; 14:9662. [PMID: 38671173 PMCID: PMC11053094 DOI: 10.1038/s41598-024-60455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024] Open
Abstract
Calendula officinalis L.is a versatile medicinal plant with numerous applications in various fields. However, its chloroplast genome structure, features, phylogeny, and patterns of evolution and mutation remain largely unexplored. This study examines the chloroplast genome, phylogeny, codon usage bias, and divergence time of C. officinalis, enhancing our understanding of its evolution and adaptation. The chloroplast genome of C. officinalis is a 150,465 bp circular molecule with a G + C content of 37.75% and comprises 131 genes. Phylogenetic analysis revealed a close relationship between C. officinalis, C. arvensis, and Osteospermum ecklonis. A key finding is the similarity in codon usage bias among these species, which, coupled with the divergence time analysis, supports their close phylogenetic proximity. This similarity in codon preference and divergence times underscores a parallel evolutionary adaptation journey for these species, highlighting the intricate interplay between genetic evolution and environmental adaptation in the Asteraceae family. Moreover unique evolutionary features in C. officinalis, possibly associated with certain genes were identified, laying a foundation for future research into the genetic diversity and medicinal value of C. officinalis.
Collapse
Affiliation(s)
- Ningyun Zhang
- Agricultural Products Processing and Food Safety Key Laboratory of Hunan Higher Education, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Kerui Huang
- Agricultural Products Processing and Food Safety Key Laboratory of Hunan Higher Education, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China.
| | - Peng Xie
- Agricultural Products Processing and Food Safety Key Laboratory of Hunan Higher Education, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Aihua Deng
- Agricultural Products Processing and Food Safety Key Laboratory of Hunan Higher Education, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Xuan Tang
- Agricultural Products Processing and Food Safety Key Laboratory of Hunan Higher Education, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Ming Jiang
- Agricultural Products Processing and Food Safety Key Laboratory of Hunan Higher Education, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Ping Mo
- Agricultural Products Processing and Food Safety Key Laboratory of Hunan Higher Education, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Hanbin Yin
- Agricultural Products Processing and Food Safety Key Laboratory of Hunan Higher Education, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Rongjie Huang
- Agricultural Products Processing and Food Safety Key Laboratory of Hunan Higher Education, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Jiale Liang
- Agricultural Products Processing and Food Safety Key Laboratory of Hunan Higher Education, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Fuhao He
- Agricultural Products Processing and Food Safety Key Laboratory of Hunan Higher Education, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Yaping Liu
- Agricultural Products Processing and Food Safety Key Laboratory of Hunan Higher Education, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Haoliang Hu
- Agricultural Products Processing and Food Safety Key Laboratory of Hunan Higher Education, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China.
| | - Yun Wang
- Agricultural Products Processing and Food Safety Key Laboratory of Hunan Higher Education, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China.
| |
Collapse
|
4
|
Nguyen PAT, Khang DT, Nguyen PTT, Do HDK. The complete chloroplast genome of Elephantopus scaber L. (Vernonioideae, Asteraceae), a useful ethnomedicinal plant in asia. Mitochondrial DNA B Resour 2023; 8:936-941. [PMID: 37674912 PMCID: PMC10478624 DOI: 10.1080/23802359.2023.2252944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Elephantopus scaber L. is a useful medicinal plant and has been used as a traditional medicine for various diseases in Asia. In this study, we completed and characterized the chloroplast genome of E. scaber of which the length was 152,375 bp. This circular genome had a large-single copy (LSC, 83,520 bp), a small-single copy (SSC, 18,523 bp), and two inverted repeat regions (IR, 25,166 bp). There were 80 protein-coding genes, 30 tRNA genes, and four rRNA genes in the chloroplast genome of E. scaber. Phylogenetic analysis inferred from 80 protein-coding regions revealed a close relationship between E. scaber and Cyanthillium cinereum (L.) H.Rob. and a sister relationship between Vernonioideae and Cichorioideae subfamilies. The genomic data of E. scaber provide useful information to explore the molecular evolution of not only Elephantopus genus but also the Asteraceae family.
Collapse
Affiliation(s)
- Pham Anh Thi Nguyen
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| | - Do Tan Khang
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| | - Pham Thien Trang Nguyen
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Shen F, Qin Y, Wang R, Huang X, Wang Y, Gao T, He J, Zhou Y, Jiao Y, Wei J, Li L, Yang X. Comparative genomics reveals a unique nitrogen-carbon balance system in Asteraceae. Nat Commun 2023; 14:4334. [PMID: 37474573 PMCID: PMC10359422 DOI: 10.1038/s41467-023-40002-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
The Asteraceae (daisy family) is one of the largest families of plants. The genetic basis for its high biodiversity and excellent adaptability has not been elucidated. Here, we compare the genomes of 29 terrestrial plant species, including two de novo chromosome-scale genome assemblies for stem lettuce, a member of Asteraceae, and Scaevola taccada, a member of Goodeniaceae that is one of the closest outgroups of Asteraceae. We show that Asteraceae originated ~80 million years ago and experienced repeated paleopolyploidization. PII, the universal regulator of nitrogen-carbon (N-C) assimilation present in almost all domains of life, has conspicuously lost across Asteraceae. Meanwhile, Asteraceae has stepwise upgraded the N-C balance system via paleopolyploidization and tandem duplications of key metabolic genes, resulting in enhanced nitrogen uptake and fatty acid biosynthesis. In addition to suggesting a molecular basis for their ecological success, the unique N-C balance system reported for Asteraceae offers a potential crop improvement strategy.
Collapse
Affiliation(s)
- Fei Shen
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
| | - Yajuan Qin
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
| | - Rui Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Xin Huang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
| | - Ying Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, 100871, Beijing, China
| | - Tiangang Gao
- State Key Laboratory of Evolutionary and Systematic Botany, Institute of Botany, the Chinese Academy of Sciences, 100093, Beijing, China
| | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, 100871, Beijing, China
| | - Yuannian Jiao
- State Key Laboratory of Evolutionary and Systematic Botany, Institute of Botany, the Chinese Academy of Sciences, 100093, Beijing, China
| | - Jianhua Wei
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China.
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, 100871, Beijing, China.
| | - Xiaozeng Yang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China.
| |
Collapse
|
6
|
Senapati A, Chetri BK, Mitra S, Shelke RG, Rangan L. Decoding the complete chloroplast genome of Cissus quadrangularis: insights into molecular structure, comparative genome analysis and mining of mutational hotspot regions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:709-724. [PMID: 37363414 PMCID: PMC10284753 DOI: 10.1007/s12298-023-01312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/25/2023] [Accepted: 04/24/2023] [Indexed: 06/28/2023]
Abstract
Cissus quadrangularis L., a member of the Vitaceae family, is an important medicinal plant with widespread application in Indian traditional medicines. C. quadrangularis L. whole chloroplast genome of 160,404 bp was assembled using a genome skimming approach from the whole genome library. The assembled chloroplast genome contained a large single-copy region (88,987 bp), a small single-copy region (18,621 bp), and pairs of inverted repeat regions (26,398 bp). It also comprised 133 genes, including 37 tRNAs, eight rRNAs, and 88 protein-coding genes. Aside from that, we annotated three genes atpH, petB, and psbL, as well as one duplicated copy of the ycf1 gene in C. quadrangularis L. that had previously been missing from the annotation of compared Cissus chloroplast genomes. Five divergent hotspot regions such as petA_psbJ (0.1237), rps16_trnQ-UUG (0.0913), psbC_trnS-UGA (0.0847), rps15_ycf1 (0.0788), and rps2_rpoC2 (0.0788) were identified in the investigation that could aid in future species discrimination. Surprisingly, we found the overlapping genes ycf1 and ndhF on the IRb/SSC junction, rarely seen in angiosperms. The results of the phylogenetic study showed that the genomes of the Cissus species under study formed a single distinct clade. The detailed annotations given in this study could be useful in the future for genome annotations of Cissus species. The current findings of the study have the potential to serve as a useful resource for future research in the field of population genetics and the evolutionary relationships in the Cissus genus. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01312-w.
Collapse
Affiliation(s)
- Alok Senapati
- Applied Biodiversity Laboratory, O Block, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Bimal K. Chetri
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Sudip Mitra
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Rahul G. Shelke
- Applied Biodiversity Laboratory, O Block, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Latha Rangan
- Applied Biodiversity Laboratory, O Block, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| |
Collapse
|
7
|
Garrett N, Viruel J, Klimpert N, Soto Gomez M, Lam VKY, Merckx VSFT, Graham SW. Plastid phylogenomics and molecular evolution of Thismiaceae (Dioscoreales). AMERICAN JOURNAL OF BOTANY 2023; 110:e16141. [PMID: 36779918 DOI: 10.1002/ajb2.16141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Species in Thismiaceae can no longer photosynthesize and instead obtain carbon from soil fungi. Here we infer Thismiaceae phylogeny using plastid genome data and characterize the molecular evolution of this genome. METHODS We assembled five Thismiaceae plastid genomes from genome skimming data, adding to previously published data for phylogenomic inference. We investigated plastid-genome structural changes, considering locally colinear blocks (LCBs). We also characterized possible shifts in selection pressure in retained genes by considering changes in the ratio of nonsynonymous to synonymous changes (ω). RESULTS Thismiaceae experienced two major pulses of gene loss around the early diversification of the family, with subsequent scattered gene losses across descendent lineages. In addition to massive size reduction, Thismiaceae plastid genomes experienced occasional inversions, and there were likely two independent losses of the plastid inverted repeat (IR) region. Retained plastid genes remain under generally strong purifying selection (ω << 1), with significant and sporadic weakening or strengthening in several instances. The bifunctional trnE-UUC gene of Thismia huangii may retain a secondary role in heme biosynthesis, despite a probable loss of functionality in protein translation. Several cis-spliced group IIA introns have been retained, despite the loss of the plastid intron maturase, matK. CONCLUSIONS We infer that most gene losses in Thismiaceae occurred early and rapidly, following the initial loss of photosynthesis in its stem lineage. As a species-rich, fully mycoheterotrophic lineage, Thismiaceae provide a model system for uncovering the unique and divergent ways in which plastid genomes evolve in heterotrophic plants.
Collapse
Affiliation(s)
- Natalie Garrett
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Juan Viruel
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Nathaniel Klimpert
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | | - Vivienne K Y Lam
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Vincent S F T Merckx
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098, XH, Amsterdam, The Netherlands
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Jin G, Li W, Song F, Yang L, Wen Z, Feng Y. Comparative analysis of complete Artemisia subgenus Seriphidium (Asteraceae: Anthemideae) chloroplast genomes: insights into structural divergence and phylogenetic relationships. BMC PLANT BIOLOGY 2023; 23:136. [PMID: 36899296 PMCID: PMC9999589 DOI: 10.1186/s12870-023-04113-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Artemisia subg. Seriphidium, one of the most species-diverse groups within Artemisia, grows mainly in arid or semi-arid regions in temperate climates. Some members have considerable medicinal, ecological, and economic value. Previous studies on this subgenus have been limited by a dearth of genetic information and inadequate sampling, hampering our understanding of their phylogenetics and evolutionary history. We therefore sequenced and compared the chloroplast genomes of this subgenus, and evaluated their phylogenetic relationships. RESULTS We newly sequenced 18 chloroplast genomes of 16 subg. Seriphidium species and compared them with one previously published taxon. The chloroplast genomes, at 150,586-151,256 bp in length, comprised 133 genes, including 87 protein-coding genes, 37 tRNA genes, 8 rRNA genes, and one pseudogene, with GC content of 37.40-37.46%. Comparative analysis showed that genomic structures and gene order were relatively conserved, with only some variation in IR borders. A total of 2203 repeats (1385 SSRs and 818 LDRs) and 8 highly variable loci (trnK - rps16, trnE - ropB, trnT, ndhC - trnV, ndhF, rpl32 - trnL, ndhG - ndhI and ycf1) were detected in subg. Seriphidium chloroplast genomes. Phylogenetic analysis of the whole chloroplast genomes based on maximum likelihood and Bayesian inference analyses resolved subg. Seriphidium as polyphyletic, and segregated into two main clades, with the monospecific sect. Minchunensa embedded within sect. Seriphidium, suggesting that the whole chloroplast genomes can be used as molecular markers to infer the interspecific relationship of subg. Seriphidium taxa. CONCLUSION Our findings reveal inconsistencies between the molecular phylogeny and traditional taxonomy of the subg. Seriphidium and provide new insights into the evolutionary development of this complex taxon. Meanwhile, the whole chloroplast genomes with sufficiently polymorphic can be used as superbarcodes to resolve interspecific relationships in subg. Seriphidium.
Collapse
Affiliation(s)
- Guangzhao Jin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Wenjun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Feng Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lei Yang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Zhibin Wen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Ying Feng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
9
|
Yu J, Li J, Zuo Y, Qin Q, Zeng S, Rennenberg H, Deng H. Plastome variations reveal the distinct evolutionary scenarios of plastomes in the subfamily Cereoideae (Cactaceae). BMC PLANT BIOLOGY 2023; 23:132. [PMID: 36882685 PMCID: PMC9993602 DOI: 10.1186/s12870-023-04148-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/01/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND The cactus family (Cactaceae) has been reported to have evolved a minimal photosynthetic plastome size, with the loss of inverted-repeat (IR) regions and NDH gene suites. However, there are very limited genomic data on the family, especially Cereoideae, the largest subfamily of cacti. RESULTS In the present study, we assembled and annotated 35 plastomes, 33 of which were representatives of Cereoideae, alongside 2 previously published plastomes. We analyzed the organelle genomes of 35 genera in the subfamily. These plastomes have variations rarely observed in those of other angiosperms, including size differences (with ~ 30 kb between the shortest and longest), dramatic dynamic changes in IR boundaries, frequent plastome inversions, and rearrangements. These results suggested that cacti have the most complex plastome evolution among angiosperms. CONCLUSION These results provide unique insight into the dynamic evolutionary history of Cereoideae plastomes and refine current knowledge of the relationships within the subfamily.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
- No. 2 Tiansheng Road, Beibei District, Chongqing, 400716 China
| | - Jingling Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
| | - Youwei Zuo
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, 400715 China
| | - Qiulin Qin
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
| | - Siyuan Zeng
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology, College of Resources and Environment, Southwest University, Chongqing, 400715 China
| | - Hongping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, 400715 China
- No. 2 Tiansheng Road, Beibei District, Chongqing, 400716 China
| |
Collapse
|
10
|
Li ZZ, Lehtonen S, Chen JM. The dynamic history of plastome structure across aquatic subclass Alismatidae. BMC PLANT BIOLOGY 2023; 23:125. [PMID: 36869282 PMCID: PMC9985265 DOI: 10.1186/s12870-023-04125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The rapidly increasing availability of complete plastomes has revealed more structural complexity in this genome under different taxonomic levels than expected, and this complexity provides important evidence for understanding the evolutionary history of angiosperms. To explore the dynamic history of plastome structure across the subclass Alismatidae, we sampled and compared 38 complete plastomes, including 17 newly assembled, representing all 12 recognized families of Alismatidae. RESULT We found that plastomes size, structure, repeat elements, and gene content were highly variable across the studied species. Phylogenomic relationships among families were reconstructed and six main patterns of variation in plastome structure were revealed. Among these, the inversion from rbcL to trnV-UAC (Type I) characterized a monophyletic lineage of six families, but independently occurred also in Caldesia grandis. Three independent ndh gene loss events were uncovered across the Alismatidae. In addition, we detected a positive correlation between the number of repeat elements and the size of plastomes and IR in Alismatidae. CONCLUSION In our study, ndh complex loss and repeat elements likely contributed to the size of plastomes in Alismatidae. Also, the ndh loss was more likely related to IR boundary changes than the adaptation of aquatic habits. Based on existing divergence time estimation, the Type I inversion may have occurred during the Cretaceous-Paleogene in response to the extreme paleoclimate changes. Overall, our findings will not only allow exploring the evolutionary history of Alismatidae plastome, but also provide an opportunity to test if similar environmental adaptations result in convergent restructuring in plastomes.
Collapse
Affiliation(s)
- Zhi-Zhong Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Samuli Lehtonen
- Herbarium, Biodiversity Unit, University of Turku, Turku, 20014, Finland.
| | - Jin-Ming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
11
|
Zhong W, Du X, Wang X, Cao L, Mu Z, Zhong G. Comparative analyses of five complete chloroplast genomes from the endemic genus Cremanthodium (Asteraceae) in Himalayan and adjacent areas. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:409-420. [PMID: 37033762 PMCID: PMC10073364 DOI: 10.1007/s12298-023-01292-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Cremanthodium Benth. is an endemic genus in the Himalayas and adjacent areas. Some plants of the genus are traditional medicinal plants in Tibetan medicine. In this study, the chloroplast genomes of five species (Cremanthodium arnicoides (DC. ex Royle) Good, Cremanthodium brunneopilosum S. W. Liu, Cremanthodium ellisii (Hook. f.) Kitam., Cremanthodium nervosum S. W. Liu, and Cremanthodium rhodocephalum Diels) were collected for sequencing. The sequencing results showed that the size of the chloroplast genome ranged from 150,985 to 151,284 bp and possessed a typical quadripartite structure containing one large single copy (LSC) region (83,326-83,369 bp), one small single copy (SSC) region (17,956-18,201 bp), and a pair of inverted repeats (IR) regions (24,830-24,855 bp) in C. arnicoides, C. brunneopilosum, C. ellisii, C. nervosum, and C. rhodocephalum. The chloroplast genomes encoded an equal number of genes, of which 88 were protein-coding genes, 37 were transfer ribonucleic acid genes, and eight were ribosomal ribonucleic acid genes, and were highly similar in overall size, genome structure, gene content, and order. In comparison with other species in the Asteraceae family, their chloroplast genomes share similarities but show some structural variations. There was no obvious expansion or contraction in the LSC, SSC or IR regions among the five species, indicating that the chloroplast gene structure of the genus was highly conserved. Collinearity analysis showed that there was no gene rearrangement. The results of the phylogenetic tree showed that the whole chloroplast genomes of the five species were closely related, and the plants of this genus were grouped into one large cluster with Ligularia Cass. and Farfugium Lindl.
Collapse
Affiliation(s)
- Weihong Zhong
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaolang Du
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Nanchang, People’s Republic of China
| | - Xiaoyun Wang
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Nanchang, People’s Republic of China
| | - Lan Cao
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Nanchang, People’s Republic of China
| | - Zejing Mu
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Nanchang, People’s Republic of China
| | - Guoyue Zhong
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Nanchang, People’s Republic of China
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Nanchang, People’s Republic of China
| |
Collapse
|
12
|
Yan K, Ran J, Bao S, Li Y, Islam R, Zhang N, Zhao W, Ma Y, Sun C. The Complete Chloroplast Genome Sequence of Eupatorium fortunei: Genome Organization and Comparison with Related Species. Genes (Basel) 2022; 14:64. [PMID: 36672805 PMCID: PMC9859021 DOI: 10.3390/genes14010064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Eupatorium fortunei Turcz, a perennial herb of the Asteraceae family, is one of the horticultural and medicinal plants used for curing various diseases and is widely distributed in China and other Asian countries. It possesses antibacterial, antimetastatic, antiangiogenic, and antioxidant properties along with anticancer potential. However, the intrageneric classification and phylogenetic relationships within Eupatorium have long been controversial due to the lack of high-resolution molecular markers, and the complete chloroplast (cp) genome sequencing has not been reported with new evolutionary insights. In the present study, E. fortunei was used as an experimental material, and its genome was sequenced using high-throughput sequencing technology. We assembled the complete cp genome, and a systematic analysis was conducted for E. fortunei, acquiring the correspondence of its NCBI accession number (OK545755). The results showed that the cp genome of E. fortunei is a typical tetrad structure with a total length of 152,401 bp, and the genome encodes 133 genes. Analysis of the complete cp genomes of 20 Eupatorieae shows that the number of simple sequence repeats (SSRs) ranged from 19 to 36 while the number of long sequence repeats was 50 in all cases. Eleven highly divergent regions were identified and are potentially useful for the DNA barcoding of Eupatorieae. Phylogenetic analysis among 22 species based on protein-coding genes strongly supported that E. fortunei is more closely related to Praxelis clematidea and belongs to the same branch. The genome assembly and analysis of the cp genome of E. fortunei will facilitate the identification, taxonomy, and utilization of E. fortunei as well as provide more accurate evidence for the taxonomic identification and localization of Asteraceae plants.
Collapse
Affiliation(s)
- Kan Yan
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730030, China
| | - Juan Ran
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730030, China
| | - Songming Bao
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730030, China
| | - Yimeng Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Rehmat Islam
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Nai Zhang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730030, China
| | - Wei Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yanni Ma
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730030, China
| | - Chao Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou 730101, China
| |
Collapse
|
13
|
Duan N, Deng L, Zhang Y, Shi Y, Liu B. Comparative and phylogenetic analysis based on chloroplast genome of Heteroplexis (Compositae), a protected rare genus. BMC PLANT BIOLOGY 2022; 22:605. [PMID: 36550394 PMCID: PMC9773445 DOI: 10.1186/s12870-022-04000-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Heteroplexis Chang is an endangered genus endemic to China with important ecological and medicinal value. However, due to the lack of genetic data, our conservation strategies have repeatedly been delayed by controversial phylogenetic (molecular) relationships within the genera. In this study, we reported three new Heteroplexis chloroplast (cp.) genomes (H. vernonioides, H. impressinervia and H. microcephala) to clarify phylogenetic relationships between species allocated in this genus and other related Compositae. RESULTS All three new cp. genomes were highly conserved, showing the classic four regions. Size ranged from 152,984 - 153,221 bp and contained 130 genes (85 protein-coding genes, 37 tRNA, eight rRNA) and two pseudogenes. By comparative genomic and phylogenetic analyses, we found a large-scale inversion of the entire large single-copy (LSC) region in H. vernonioides, H. impressinervia and H. microcephala, being experimentally verified by PCR. The inverted repeat (IR) regions showed high similarity within the five Heteroplexis plastomes, showing small-size contractions. Phylogenetic analyses did not support the monophyly of Heteroplexis genus, whereas clustered the five species within two differentiated clades within Aster genus. These phylogenetic analyses suggested that the five Heteroplexis species might be subsumed into the Aster genus. CONCLUSION Our results enrich the data on the cp. genomes of the genus Heteroplexis, providing valuable genetic resources for future studies on the taxonomy, phylogeny, and evolution of Aster genus.
Collapse
Affiliation(s)
- Na Duan
- Department of Life Sciences, Changzhi University, 046011, Changzhi, Shanxi, China
- Institute of Loess Plateau, Shanxi University, 030006, Taiyuan, Shanxi, China
| | - Lili Deng
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, 541006, Guilin, Guangxi, China
| | - Ying Zhang
- Institute of Loess Plateau, Shanxi University, 030006, Taiyuan, Shanxi, China
| | - YanCai Shi
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, 541006, Guilin, Guangxi, China.
| | - Bingbing Liu
- Institute of Loess Plateau, Shanxi University, 030006, Taiyuan, Shanxi, China.
| |
Collapse
|
14
|
Liang J, Chen R, Zhang F, Wang Q, Yang Y, Lv M, Yan S, Gao S. Full-length chloroplast genome of Dongxiang wild rice reveals small single-copy region switching. FRONTIERS IN PLANT SCIENCE 2022; 13:929352. [PMID: 36247578 PMCID: PMC9559570 DOI: 10.3389/fpls.2022.929352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Background Plant chloroplast DNA (cpDNA) typically has a circular structure, including a large single-copy region (LSC), a small single-copy region (SSC) and two inverted repeats (IR1 and IR2). The organization of these four elementary regions LSC-IR1-SSC-IR2 is highly conserved across all plant cpDNAs. Very few structural variations (SVs) occurring at the elementary-region level have been reported. Results In the present study, we assembled the full-length cpDNA of Dongxiang wild rice line 159 (DXWR159). Using the long PacBio subreads, we discovered a large inversion of SSC and a large duplication of IR in DXWR159 cpDNAs. Significantly, we reported for the first time forward and reverse SSCs of cpDNAs in similar proportions and named the frequent inversion of a whole SSC as SSC switching. Conclusions Our study helps researchers to correctly assemble the chloroplast genomes. Our recombination model explained the formation of large SVs in cpDNAs and provided insights into a novel scientific question that if there are common mechanisms in the formation or translocation of all kinds of transposon-like elements (TLEs). We propose that: (1) large inversion is the most accepted mutation type of SVs in cpDNAs; (2) SSC switching ubiquitous occurs in plant cpDNAs; and (3) further investigation of molecular mechanism underlying SSC switching may reveal new driving forces for large SVs.
Collapse
Affiliation(s)
| | - Rui Chen
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
- Tianjin Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Qian Wang
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yingxia Yang
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Mingjie Lv
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Shuangyong Yan
- Tianjin Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Shan Gao
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
15
|
Yin X, Huang F, Liu X, Guo J, Cui N, Liang C, Lian Y, Deng J, Wu H, Yin H, Jiang G. Phylogenetic analysis based on single-copy orthologous proteins in highly variable chloroplast genomes of Corydalis. Sci Rep 2022; 12:14241. [PMID: 35987818 PMCID: PMC9392791 DOI: 10.1038/s41598-022-17721-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
Corydalis is one of the few lineages that have been reported to have extensive large-scale chloroplast genome (cp-genome) rearrangements. In this study, novel cp-genome rearrangements of Corydalis pinnata, C. mucronate, and C. sheareri are described. C. pinnata is a narrow endemic species only distributed at Qingcheng Mountain in southwest China. Two independent relocations of the same four genes (trnM-CAU-rbcL) were found relocated from the typically posterior part of the large single-copy region to the front of it. A uniform inversion of an 11-14-kb segment (ndhB-trnR-ACG) was found in the inverted repeat region; and extensive losses of accD, clpP, and trnV-UAC genes were detected in all cp-genomes of all three species of Corydalis. In addition, a phylogenetic tree was reconstructed based on 31 single-copy orthologous proteins in 27 cp-genomes. This study provides insights into the evolution of cp-genomes throughout the genus Corydalis and also provides a reference for further studies on the taxonomy, identification, phylogeny, and genetic transformation of other lineages with extensive rearrangements in cp-genomes.
Collapse
Affiliation(s)
- Xianmei Yin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Feng Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Xiaofen Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Jiachen Guo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Ning Cui
- Central Laboratory, Shandong Academy of Chinese Medicine, Jinan, 250014, China
| | - Conglian Liang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yan Lian
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Jingjing Deng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Hao Wu
- Central Laboratory, Shandong Academy of Chinese Medicine, Jinan, 250014, China
| | - Hongxiang Yin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China.
| | - Guihua Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China.
| |
Collapse
|
16
|
Hatami E, Jones KE, Kilian N. New Insights Into the Relationships Within Subtribe Scorzonerinae (Cichorieae, Asteraceae) Using Hybrid Capture Phylogenomics (Hyb-Seq). FRONTIERS IN PLANT SCIENCE 2022; 13:851716. [PMID: 35873957 PMCID: PMC9298463 DOI: 10.3389/fpls.2022.851716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Subtribe Scorzonerinae (Cichorieae, Asteraceae) contains 12 main lineages and approximately 300 species. Relationships within the subtribe, either at inter- or intrageneric levels, were largely unresolved in phylogenetic studies to date, due to the lack of phylogenetic signal provided by traditional Sanger sequencing markers. In this study, we employed a phylogenomics approach (Hyb-Seq) that targets 1,061 nuclear-conserved ortholog loci designed for Asteraceae and obtained chloroplast coding regions as a by-product of off-target reads. Our objectives were to evaluate the potential of the Hyb-Seq approach in resolving the phylogenetic relationships across the subtribe at deep and shallow nodes, investigate the relationships of major lineages at inter- and intrageneric levels, and examine the impact of the different datasets and approaches on the robustness of phylogenetic inferences. We analyzed three nuclear datasets: exon only, excluding all potentially paralogous loci; exon only, including loci that were only potentially paralogous in 1-3 samples; exon plus intron regions (supercontigs); and the plastome CDS region. Phylogenetic relationships were reconstructed using both multispecies coalescent and concatenation (Maximum Likelihood and Bayesian analyses) approaches. Overall, our phylogenetic reconstructions recovered the same monophyletic major lineages found in previous studies and were successful in fully resolving the backbone phylogeny of the subtribe, while the internal resolution of the lineages was comparatively poor. The backbone topologies were largely congruent among all inferences, but some incongruent relationships were recovered between nuclear and plastome datasets, which are discussed and assumed to represent cases of cytonuclear discordance. Considering the newly resolved phylogenies, a new infrageneric classification of Scorzonera in its revised circumscription is proposed.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Katy E. Jones
- Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin, Berlin, Germany
| | - Norbert Kilian
- Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
17
|
Walliser B, Marinovic S, Kornpointner C, Schlosser C, Abouelnasr M, Hutabarat OS, Haselmair-Gosch C, Molitor C, Stich K, Halbwirth H. The (Bio)chemical Base of Flower Colour in Bidens ferulifolia. PLANTS (BASEL, SWITZERLAND) 2022; 11:1289. [PMID: 35631713 PMCID: PMC9145775 DOI: 10.3390/plants11101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
Bidens ferulifolia is a yellow flowering plant, originating from Mexico, which is increasingly popular as an ornamental plant. In the past few years, new colour combinations ranging from pure yellow over yellow-red, white-red, pure white and purple have emerged on the market. We analysed 16 Bidens ferulifolia genotypes to provide insight into the (bio)chemical base underlying the colour formation, which involves flavonoids, anthochlors and carotenoids. In all but purple and white genotypes, anthochlors were the prevalent pigments, primarily derivatives of okanin, a 6'-deoxychalcone carrying an unusual 2'3'4'-hydroxylation pattern in ring A. The presence of a cytochrome-P450-dependent monooxygenase introducing the additional hydroxyl group in position 3' of both isoliquiritigenin and butein was demonstrated for the first time. All genotypes accumulate considerable amounts of the flavone luteolin. Red and purple genotypes additionally accumulate cyanidin-type anthocyanins. Acyanic genotypes lack flavanone 3-hydroxylase and/or dihydroflavonol 4-reductase activity, which creates a bottleneck in the anthocyanin pathway. The carotenoid spectrum was analysed in two Bidens genotypes and showed strong variation between the two cultivars. In comparison to anthochlors, carotenoids were present in much lower concentrations. Carotenoid monoesters, as well as diesters, were determined for the first time in B. ferulifolia flower extracts.
Collapse
Affiliation(s)
- Benjamin Walliser
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
| | - Silvija Marinovic
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
| | - Christoph Kornpointner
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
| | - Christopher Schlosser
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
| | - Mustafa Abouelnasr
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
| | - Olly Sanny Hutabarat
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
- Department of Agricultural Technology, Hasanuddin University, Makassar 90245, Indonesia
| | - Christian Haselmair-Gosch
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
| | - Christian Molitor
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
| | - Karl Stich
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
| | - Heidi Halbwirth
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria; (B.W.); (S.M.); (C.K.); (C.S.); (M.A.); (O.S.H.); (C.H.-G.); (C.M.); (K.S.)
| |
Collapse
|
18
|
Claude SJ, Park S, Park S. Gene loss, genome rearrangement, and accelerated substitution rates in plastid genome of Hypericum ascyron (Hypericaceae). BMC PLANT BIOLOGY 2022; 22:135. [PMID: 35321651 PMCID: PMC8941745 DOI: 10.1186/s12870-022-03515-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/08/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Comparative genomic analysis exhibits dynamic evolution of plastid genome (plastome) in the clusioid clade of Malpighiales, which comprise five families, including multiple inversions and gene losses. Little is known about the plastome evolution in Hypericaceae, a large family in the clade. Only the plastome of one species, Cratoxylum cochinchinense, has been published. RESULTS We generated a complete plastome sequence for Hypericum ascyron, providing the first complete plastome from the tribe Hypericeae (Hypericaceae). The H. ascyron plastome exhibits dynamic changes in gene and intron content, structure, and sequence divergence compared to the C. cochinchinense plastome from the tribe Cratoxyleae (Hypericaceae). Transcriptome data determined the evolutionary fate of the missing plastid genes infA, rps7, rps16, rpl23, and rpl32 in H. ascyron. Putative functional transfers of infA, rps7, and rpl32 were detected to the nucleus, whereas rps16 and rpl23 were substituted by nuclear-encoded homologs. The plastid rpl32 was integrated into the nuclear-encoded SODcp gene. Our findings suggested that the transferred rpl32 had undergone subfunctionalization by duplication rather than alternative splicing. The H. ascyron plastome rearrangements involved seven inversions, at least three inverted repeat (IR) boundary shifts, which generated gene relocations and duplications. Accelerated substitution rates of plastid genes were observed in the H. ascyron plastome compared with that of C. cochinchinense plastid genes. The higher substitution rates in the accD and clpP were correlated with structural change, including a large insertion of amino acids and losses of two introns, respectively. In addition, we found evidence of positive selection of the clpP, matK, and rps3 genes in the three branches related to H. ascyron. In particular, the matK gene was repeatedly under selection within the family Hypericaceae. Selective pressure in the H. ascyron matK gene was associated with the loss of trnK-UUU and relocation into the IR region. CONCLUSIONS The Hypericum ascyron plastome sequence provides valuable information for improving the understanding of plastome evolution among the clusioid of the Malpighiales. Evidence for intracellular gene transfer from the plastid to the nucleus was detected in the nuclear transcriptome, providing insight into the evolutionary fate of plastid genes in Hypericaceae.
Collapse
Affiliation(s)
- Sivagami-Jean Claude
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| | - Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| |
Collapse
|
19
|
Samigullin T, Logacheva M, Terentieva E, Degtjareva G, Pimenov M, Valiejo-Roman C. Plastid Phylogenomic Analysis of Tordylieae Tribe (Apiaceae, Apioideae). PLANTS (BASEL, SWITZERLAND) 2022; 11:709. [PMID: 35270181 PMCID: PMC8912408 DOI: 10.3390/plants11050709] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022]
Abstract
Based on the nrDNA ITS sequence data, the Tordylieae tribe is recognized as monophyletic with three major lineages: the subtribe Tordyliinae, the Cymbocarpum clade, and the Lefebvrea clade. Recent phylogenomic investigations showed incongruence between the nuclear and plastid genome evolution in the tribe. To assess phylogenetic relations and structure evolution of plastomes in Tordylieae, we generated eleven complete plastome sequences using the genome skimming approach and compared them with the available data from this tribe and close relatives. Newly assembled plastomes had lengths ranging from 141,148 to 150,103 base pairs and contained 122-127 genes, including 79-82 protein-coding genes, 35-37 tRNAs, and 8 rRNAs. We observed substantial differences in the inverted repeat length and gene content, accompanied by a complex picture of multiple JLA and JLB shifts. In concatenated phylogenetic analyses, Tordylieae plastomes formed at least three not closely related lineages with plastomes of the Lefebvrea clade as a sister group to plastomes from the Selineae tribe. The newly obtained data have increased our knowledge on the range of plastome variability in Apiaceae.
Collapse
Affiliation(s)
- Tahir Samigullin
- Department of Evolutionary Biochemistry, A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Leninskie Gory 1–40, 119992 Moscow, Russia; (M.L.); (C.V.-R.)
| | - Maria Logacheva
- Department of Evolutionary Biochemistry, A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Leninskie Gory 1–40, 119992 Moscow, Russia; (M.L.); (C.V.-R.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia
| | - Elena Terentieva
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119992 Moscow, Russia; (E.T.); (G.D.); (M.P.)
| | - Galina Degtjareva
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119992 Moscow, Russia; (E.T.); (G.D.); (M.P.)
| | - Michael Pimenov
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119992 Moscow, Russia; (E.T.); (G.D.); (M.P.)
| | - Carmen Valiejo-Roman
- Department of Evolutionary Biochemistry, A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Leninskie Gory 1–40, 119992 Moscow, Russia; (M.L.); (C.V.-R.)
| |
Collapse
|
20
|
Moghaddam M, Ohta A, Shimizu M, Terauchi R, Kazempour-Osaloo S. The complete chloroplast genome of Onobrychis gaubae (Fabaceae-Papilionoideae): comparative analysis with related IR-lacking clade species. BMC PLANT BIOLOGY 2022; 22:75. [PMID: 35183127 PMCID: PMC8858513 DOI: 10.1186/s12870-022-03465-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/14/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND Plastome (Plastid genome) sequences provide valuable markers for surveying evolutionary relationships and population genetics of plant species. Papilionoideae (papilionoids) has different nucleotide and structural variations in plastomes, which makes it an ideal model for genome evolution studies. Therefore, by sequencing the complete chloroplast genome of Onobrychis gaubae in this study, the characteristics and evolutionary patterns of plastome variations in IR-loss clade were compared. RESULTS In the present study, the complete plastid genome of O. gaubae, endemic to Iran, was sequenced using Illumina paired-end sequencing and was compared with previously known genomes of the IRLC species of legumes. The O. gaubae plastid genome was 122,688 bp in length and included a large single-copy (LSC) region of 81,486 bp, a small single-copy (SSC) region of 13,805 bp and one copy of the inverted repeat (IRb) of 29,100 bp. The genome encoded 110 genes, including 76 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosome RNA (rRNA) genes and possessed 83 simple sequence repeats (SSRs) and 50 repeated structures with the highest proportion in the LSC. Comparative analysis of the chloroplast genomes across IRLC revealed three hotspot genes (ycf1, ycf2, clpP) which could be used as DNA barcode regions. Moreover, seven hypervariable regions [trnL(UAA)-trnT(UGU), trnT(GGU)-trnE(UUC), ycf1, ycf2, ycf4, accD and clpP] were identified within Onobrychis, which could be used to distinguish the Onobrychis species. Phylogenetic analyses revealed that O. gaubae is closely related to Hedysarum. The complete O. gaubae genome is a valuable resource for investigating evolution of Onobrychis species and can be used to identify related species. CONCLUSIONS Our results reveal that the plastomes of the IRLC are dynamic molecules and show multiple gene losses and inversions. The identified hypervariable regions could be used as molecular markers for resolving phylogenetic relationships and species identification and also provide new insights into plastome evolution across IRLC.
Collapse
Affiliation(s)
- Mahtab Moghaddam
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154, Tehran, Iran.
| | - Atsushi Ohta
- Graduate School of Agriculture, Kyoto University, Kyoto, 617-0001, Japan
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Kitakami, Iwate, 024-0003, Japan
| | - Ryohei Terauchi
- Graduate School of Agriculture, Kyoto University, Kyoto, 617-0001, Japan
- Iwate Biotechnology Research Center, Kitakami, Iwate, 024-0003, Japan
| | - Shahrokh Kazempour-Osaloo
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154, Tehran, Iran.
| |
Collapse
|
21
|
de Lima Ferreira P, Batista R, Andermann T, Groppo M, Bacon CD, Antonelli A. Target sequence capture of Barnadesioideae (Compositae) demonstrates the utility of low coverage loci in phylogenomic analyses. Mol Phylogenet Evol 2022; 169:107432. [DOI: 10.1016/j.ympev.2022.107432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/21/2021] [Accepted: 01/14/2022] [Indexed: 11/26/2022]
|
22
|
Jo IH, Han S, Shim D, Ryu H, Hyun TK, Lee Y, Kim D, So YS, Chung JW. Complete Chloroplast Genome of the Inverted Repeat-Lacking Species Vicia bungei and Development of Polymorphic Simple Sequence Repeat Markers. FRONTIERS IN PLANT SCIENCE 2022; 13:891783. [PMID: 35651765 PMCID: PMC9149428 DOI: 10.3389/fpls.2022.891783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Vicia bungei is an economically important forage crop in South Korea and China. Although detailed genetic and genomic data can improve population genetic studies, conservation efforts, and improved breeding of crops, few such data are available for Vicia species in general and none at all for V. bungei. Therefore, the main objectives of this study were to sequence, assemble, and annotate V. bungei chloroplast genome and to identify simple sequence repeats (SSRs) as polymorphic genetic markers. RESULTS The whole-genome sequence of V. bungei was generated using an Illumina MiSeq platform. De novo assembly of complete chloroplast genome sequences was performed for the low-coverage sequence using CLC Genome Assembler with a 200-600-bp overlap size. Vicia bungei chloroplast genome was 130,796-bp long. The genome lacked an inverted repeat unit and thus resembled those of species in the inverted repeat-lacking clade within Fabaceae. Genome annotation using Dual OrganellarGenoMe Annotator (DOGMA) identified 107 genes, comprising 75 protein-coding, 28 transfer RNA, and 4 ribosomal RNA genes. In total, 432 SSRs were detected in V. bungei chloroplast genome, including 64 mononucleotides, 14 dinucleotides, 5 trinucleotides, 4 tetranucleotides, 233 pentanucleotides, 90 hexanucleotides, and 14 complex repeated motifs. These were used to develop 232 novel chloroplast SSR markers, 39 of which were chosen at random to test amplification and genetic diversity in Vicia species (20 accessions from seven species). The unweighted pair group method with arithmetic mean cluster analysis identified seven clusters at the interspecies level and intraspecific differences within clusters. CONCLUSION The complete chloroplast genome sequence of V. bungei was determined. This reference genome should facilitate chloroplast resequencing and future searches for additional genetic markers using population samples. The novel chloroplast genome resources and SSR markers will greatly contribute to the conservation of the genus Vicia and facilitate genetic and evolutionary studies of this genus and of other higher plants.
Collapse
Affiliation(s)
- Ick-Hyun Jo
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, South Korea
| | - Seahee Han
- Division of Botany, Honam National Institute of Biological Resources, Mokpo, South Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju, South Korea
| | - Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, South Korea
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, South Korea
| | - Daeil Kim
- Department of Horticulture, Chungbuk National University, Cheongju, South Korea
| | - Yoon-Sup So
- Department of Crop Science, Chungbuk National University, Cheongju, South Korea
- *Correspondence: Yoon-Sup So,
| | - Jong-Wook Chung
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, South Korea
- Jong-Wook Chung,
| |
Collapse
|
23
|
Raman G, Nam GH, Park S. Extensive reorganization of the chloroplast genome of Corydalis platycarpa: A comparative analysis of their organization and evolution with other Corydalis plastomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1043740. [PMID: 37090468 PMCID: PMC10115153 DOI: 10.3389/fpls.2022.1043740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 05/03/2023]
Abstract
Introduction The chloroplast (cp) is an autonomous plant organelle with an individual genome that encodes essential cellular functions. The genome architecture and gene content of the cp is highly conserved in angiosperms. The plastome of Corydalis belongs to the Papaveraceae family, and the genome is comprised of unusual rearrangements and gene content. Thus far, no extensive comparative studies have been carried out to understand the evolution of Corydalis chloroplast genomes. Methods Therefore, the Corydalis platycarpa cp genome was sequenced, and wide-scale comparative studies were conducted using publicly available twenty Corydalis plastomes. Results Comparative analyses showed that an extensive genome rearrangement and IR expansion occurred, and these events evolved independently in the Corydalis species. By contrast, the plastomes of its closely related subfamily Papaveroideae and other Ranunculales taxa are highly conserved. On the other hand, the synapomorphy characteristics of both accD and the ndh gene loss events happened in the common ancestor of the Corydalis and sub-clade of the Corydalis lineage, respectively. The Corydalis-sub clade species (ndh lost) are distributed predominantly in the Qinghai-Tibetan plateau (QTP) region. The phylogenetic analysis and divergence time estimation were also employed for the Corydalis species. Discussion The divergence time of the ndh gene in the Corydalis sub-clade species (44.31 - 15.71 mya) coincides very well with the uplift of the Qinghai-Tibet Plateau in Oligocene and Miocene periods, and maybe during this period, it has probably triggered the radiation of the Corydalis species. Conclusion To the best of the authors' knowledge, this is the first large-scale comparative study of Corydalis plastomes and their evolution. The present study may provide insights into the plastome architecture and the molecular evolution of Corydalis species.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - Gi-Heum Nam
- Plants Resource Division, Biological Resources Research Department, National Institute of Biological Resources, Seo-gu, Incheon, Republic of Korea
- *Correspondence: SeonJoo Park, ; Gi-Heum Nam,
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
- *Correspondence: SeonJoo Park, ; Gi-Heum Nam,
| |
Collapse
|
24
|
Pascual-Díaz JP, Garcia S, Vitales D. Plastome Diversity and Phylogenomic Relationships in Asteraceae. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122699. [PMID: 34961169 PMCID: PMC8705268 DOI: 10.3390/plants10122699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Plastid genomes are in general highly conserved given their slow evolutionary rate, and thus large changes in their structure are unusual. However, when specific rearrangements are present, they are often phylogenetically informative. Asteraceae is a highly diverse family whose evolution is long driven by polyploidy (up to 48x) and hybridization, both processes usually complicating systematic inferences. In this study, we generated one of the most comprehensive plastome-based phylogenies of family Asteraceae, providing information about the structure, genetic diversity and repeat composition of these sequences. By comparing the whole-plastome sequences obtained, we confirmed the double inversion located in the long single-copy region, for most of the species analyzed (with the exception of basal tribes), a well-known feature for Asteraceae plastomes. We also showed that genome size, gene order and gene content are highly conserved along the family. However, species representative of the basal subfamily Barnadesioideae-as well as in the sister family Calyceraceae-lack the pseudogene rps19 located in one inverted repeat. The phylogenomic analysis conducted here, based on 63 protein-coding genes, 30 transfer RNA genes and 21 ribosomal RNA genes from 36 species of Asteraceae, were overall consistent with the general consensus for the family's phylogeny while resolving the position of tribe Senecioneae and revealing some incongruences at tribe level between reconstructions based on nuclear and plastid DNA data.
Collapse
Affiliation(s)
- Joan Pere Pascual-Díaz
- Institut Botànic de Barcelona (IBB-CSIC), Passeig del Migdia s/n, 08038 Barcelona, Spain;
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC), Passeig del Migdia s/n, 08038 Barcelona, Spain;
| | - Daniel Vitales
- Institut Botànic de Barcelona (IBB-CSIC), Passeig del Migdia s/n, 08038 Barcelona, Spain;
- Laboratori de Botànica–Unitat Associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| |
Collapse
|
25
|
Sata H, Shimizu M, Iwasaki T, Ikeda H, Soejima A, Kozhevnikov AE, Kozhevnikova ZV, Im HT, Jang SK, Azuma T, Nagano AJ, Fujii N. Phylogeography of the East Asian grassland plant, Viola orientalis (Violaceae), inferred from plastid and nuclear restriction site-associated DNA sequencing data. JOURNAL OF PLANT RESEARCH 2021; 134:1181-1198. [PMID: 34595677 DOI: 10.1007/s10265-01339-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/18/2021] [Indexed: 05/23/2023]
Abstract
To elucidate the origin and migration history of the "Mansen elements," a group of temperate grassland plants mainly distributed in northeastern Asia, phylogeographic analyses based on chloroplast DNA markers and double-digest restriction site-associated DNA sequencing (ddRAD-seq) data were performed on Viola orientalis, one of the representative species of the group. Phylogenetic analyses using ddRAD-seq data revealed that the populations of V. orientalis were clustered into five clades, among which the continental clades made of populations from Russia and Korea diverged more than 100,000 years earlier than the Japanese clades. The Japanese clade likely diverged during the last glacial period, followed by a further post-glacial divergence into the Kyushu and the Honshu subclades. Our study demonstrated that V. orientalis originated in the continental area of northeastern Asia and, during the last glacial period, has spread southward through the Korean Peninsula across the Japanese Islands. This finding supports the previously proposed evolutionary hypothesis regarding the origin and migration routes of the Mansen elements.
Collapse
Affiliation(s)
- Haruna Sata
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan
| | - Midori Shimizu
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan
| | - Takaya Iwasaki
- Natural Science Division, Faculty of Core Research, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Hajime Ikeda
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Akiko Soejima
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan
| | - Andrey E Kozhevnikov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Zoya V Kozhevnikova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Hyoung-Tak Im
- Department of Biological Science, Chonnam National University, Gwangju, 61186, South Korea
| | - Su-Kil Jang
- East Coast Research Institute of Life Science, Gangneung-Wonju National University, Jukheon-gil 7, Gangneung city, Gangwon-do, 25457, South Korea
| | - Takayuki Azuma
- Botanic Garden, Field Science Center for Northern Biosphere, Hokkaido University, N3W8, Chuo-ku, Sapporo, Hokkaido, 060-0003, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
| | - Noriyuki Fujii
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan.
- Course of Biological Science, Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan.
| |
Collapse
|
26
|
Sata H, Shimizu M, Iwasaki T, Ikeda H, Soejima A, Kozhevnikov AE, Kozhevnikova ZV, Im HT, Jang SK, Azuma T, Nagano AJ, Fujii N. Phylogeography of the East Asian grassland plant, Viola orientalis (Violaceae), inferred from plastid and nuclear restriction site-associated DNA sequencing data. JOURNAL OF PLANT RESEARCH 2021; 134:1181-1198. [PMID: 34595677 DOI: 10.1007/s10265-021-01339-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
To elucidate the origin and migration history of the "Mansen elements," a group of temperate grassland plants mainly distributed in northeastern Asia, phylogeographic analyses based on chloroplast DNA markers and double-digest restriction site-associated DNA sequencing (ddRAD-seq) data were performed on Viola orientalis, one of the representative species of the group. Phylogenetic analyses using ddRAD-seq data revealed that the populations of V. orientalis were clustered into five clades, among which the continental clades made of populations from Russia and Korea diverged more than 100,000 years earlier than the Japanese clades. The Japanese clade likely diverged during the last glacial period, followed by a further post-glacial divergence into the Kyushu and the Honshu subclades. Our study demonstrated that V. orientalis originated in the continental area of northeastern Asia and, during the last glacial period, has spread southward through the Korean Peninsula across the Japanese Islands. This finding supports the previously proposed evolutionary hypothesis regarding the origin and migration routes of the Mansen elements.
Collapse
Affiliation(s)
- Haruna Sata
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan
| | - Midori Shimizu
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan
| | - Takaya Iwasaki
- Natural Science Division, Faculty of Core Research, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Hajime Ikeda
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Akiko Soejima
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan
| | - Andrey E Kozhevnikov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Zoya V Kozhevnikova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Hyoung-Tak Im
- Department of Biological Science, Chonnam National University, Gwangju, 61186, South Korea
| | - Su-Kil Jang
- East Coast Research Institute of Life Science, Gangneung-Wonju National University, Jukheon-gil 7, Gangneung city, Gangwon-do, 25457, South Korea
| | - Takayuki Azuma
- Botanic Garden, Field Science Center for Northern Biosphere, Hokkaido University, N3W8, Chuo-ku, Sapporo, Hokkaido, 060-0003, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
| | - Noriyuki Fujii
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan.
- Course of Biological Science, Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan.
| |
Collapse
|
27
|
Escobari B, Borsch T, Quedensley TS, Gruenstaeudl M. Plastid phylogenomics of the Gynoxoid group (Senecioneae, Asteraceae) highlights the importance of motif-based sequence alignment amid low genetic distances. AMERICAN JOURNAL OF BOTANY 2021; 108:2235-2256. [PMID: 34636417 DOI: 10.1002/ajb2.1775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
PREMISE The genus Gynoxys and relatives form a species-rich lineage of Andean shrubs and trees with low genetic distances within the sunflower subtribe Tussilaginineae. Previous molecular phylogenetic investigations of the Tussilaginineae have included few, if any, representatives of this Gynoxoid group or reconstructed ambiguous patterns of relationships for it. METHODS We sequenced complete plastid genomes of 21 species of the Gynoxoid group and related Tussilaginineae and conducted detailed comparisons of the phylogenetic relationships supported by the gene, intron, and intergenic spacer partitions of these genomes. We also evaluated the impact of manual, motif-based adjustments of automatic DNA sequence alignments on phylogenetic tree inference. RESULTS Our results indicate that the inclusion of all plastid genome partitions is needed to infer well-supported phylogenetic trees of the Gynoxoid group. Whole plastome-based tree inference suggests that the genera Gynoxys and Nordenstamia are polyphyletic and form the core clade of the Gynoxoid group. This clade is sister to a clade of Aequatorium and Paragynoxys and also includes some but not all representatives of Paracalia. CONCLUSIONS The concatenation and combined analysis of all plastid genome partitions and the construction of manually-curated, motif-based DNA sequence alignments are found to be instrumental in the recovery of well-supported relationships of the Gynoxoid group. We demonstrate that the correct assessment of homology in genome-level plastid sequence data sets is crucial for subsequent phylogeny reconstruction and that the manual post-processing of multiple sequence alignments improves the reliability of such reconstructions amid low genetic distances between taxa.
Collapse
Affiliation(s)
- Belen Escobari
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, 14195, Germany
- Herbario Nacional de Bolivia, Universidad Mayor de San Andres, Casilla, La Paz, 10077, Bolivia
| | - Thomas Borsch
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, 14195, Germany
- Institut für Biologie, Systematische Botanik und Pflanzengeographie, Freie Universität Berlin, Berlin, 14195, Germany
| | - Taylor S Quedensley
- Department of Biology, Texas Christian University, Fort Worth, TX, 76109, USA
| | - Michael Gruenstaeudl
- Institut für Biologie, Systematische Botanik und Pflanzengeographie, Freie Universität Berlin, Berlin, 14195, Germany
| |
Collapse
|
28
|
Abdullah, Mehmood F, Heidari P, Rahim A, Ahmed I, Poczai P. Pseudogenization of the chloroplast threonine (trnT-GGU) gene in the sunflower family (Asteraceae). Sci Rep 2021; 11:21122. [PMID: 34702873 PMCID: PMC8548347 DOI: 10.1038/s41598-021-00510-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 10/05/2021] [Indexed: 01/22/2023] Open
Abstract
The chloroplast genome evolves through the course of evolution. Various types of mutational events are found within the chloroplast genome, including insertions-deletions (InDels), substitutions, inversions, gene rearrangement, and pseudogenization of genes. The pseudogenization of the chloroplast threonine (trnT-GGU) gene was previously reported in Cryptomeria japonica (Cupressaceae), Pelargonium × hortorum (Geraniaceae), and Anaphalis sinica and Leontopodium leiolepis of the tribe Gnaphalieae (Asteroideae, Asteraceae). Here, we performed a broad analysis of the trnT-GGU gene among the species of 13 subfamilies of Asteraceae and found this gene as a pseudogene in core Asteraceae (Gymnarrhenoideae, Cichorioideae, Corymbioideae, and Asteroideae), which was linked to an insertion event within the 5' acceptor stem and is not associated with ecological factors such as habit, habitat, and geographical distribution of the species. The pseudogenization of trnT-GGU was not predicted in codon usage, indicating that the superwobbling phenomenon occurs in core Asteraceae in which a single transfer RNA (trnT-UGU) decodes all four codons of threonine. To the best of our knowledge, this is the first evidence of a complete clade of a plant species using the superwobbling phenomenon for translation.
Collapse
Affiliation(s)
- Abdullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Furrukh Mehmood
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Parviz Heidari
- Faculty of Agriculture, Shahrood University of Technology, 3619995161, Shahrood, Iran
| | - Abdur Rahim
- Government Degree College Nowshera, Abdul Wali Khan University, Mardan, KPK, Pakistan
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, 45710, Pakistan
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, 00014, Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, 00065, Helsinki, Finland.
| |
Collapse
|
29
|
Charboneau JLM, Cronn RC, Liston A, Wojciechowski MF, Sanderson MJ. Plastome Structural Evolution and Homoplastic Inversions in Neo-Astragalus (Fabaceae). Genome Biol Evol 2021; 13:evab215. [PMID: 34534296 PMCID: PMC8486006 DOI: 10.1093/gbe/evab215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 12/23/2022] Open
Abstract
The plastid genomes of photosynthetic green plants have largely maintained conserved gene content and order as well as structure over hundreds of millions of years of evolution. Several plant lineages, however, have departed from this conservation and contain many plastome structural rearrangements, which have been associated with an abundance of repeated sequences both overall and near rearrangement endpoints. We sequenced the plastomes of 25 taxa of Astragalus L. (Fabaceae), a large genus in the inverted repeat-lacking clade of legumes, to gain a greater understanding of the connection between repeats and plastome inversions. We found plastome repeat structure has a strong phylogenetic signal among these closely related taxa mostly in the New World clade of Astragalus called Neo-Astragalus. Taxa without inversions also do not differ substantially in their overall repeat structure from four taxa each with one large-scale inversion. For two taxa with inversion endpoints between the same pairs of genes, differences in their exact endpoints indicate the inversions occurred independently. Our proposed mechanism for inversion formation suggests the short inverted repeats now found near the endpoints of the four inversions may be there as a result of these inversions rather than their cause. The longer inverted repeats now near endpoints may have allowed the inversions first mediated by shorter microhomologous sequences to propagate, something that should be considered in explaining how any plastome rearrangement becomes fixed regardless of the mechanism of initial formation.
Collapse
Affiliation(s)
- Joseph L M Charboneau
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Richard C Cronn
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, Oregon, USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | | | - Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
30
|
Cauz-Santos LA, da Costa ZP, Callot C, Cauet S, Zucchi MI, Bergès H, van den Berg C, Vieira MLC. A Repertory of Rearrangements and the Loss of an Inverted Repeat Region in Passiflora Chloroplast Genomes. Genome Biol Evol 2021; 12:1841-1857. [PMID: 32722748 PMCID: PMC7586853 DOI: 10.1093/gbe/evaa155] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Chloroplast genomes (cpDNA) in angiosperms are usually highly conserved. Although rearrangements have been observed in some lineages, such as Passiflora, the mechanisms that lead to rearrangements are still poorly elucidated. In the present study, we obtained 20 new chloroplast genomes (18 species from the genus Passiflora, and Dilkea retusa and Mitostemma brevifilis from the family Passifloraceae) in order to investigate cpDNA evolutionary history in this group. Passiflora cpDNAs vary in size considerably, with ∼50 kb between shortest and longest. Large inverted repeat (IR) expansions were identified, and at the extreme opposite, the loss of an IR was detected for the first time in Passiflora, a rare event in angiosperms. The loss of an IR region was detected in Passiflora capsularis and Passiflora costaricensis, a species in which occasional biparental chloroplast inheritance has previously been reported. A repertory of rearrangements such as inversions and gene losses were detected, making Passiflora one of the few groups with complex chloroplast genome evolution. We also performed a phylogenomic study based on all the available cp genomes and our analysis implies that there is a need to reconsider the taxonomic classifications of some species in the group.
Collapse
Affiliation(s)
- Luiz Augusto Cauz-Santos
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Zirlane Portugal da Costa
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Caroline Callot
- Centre National de Ressources Génomiques Végétales, INRA, Auzeville, Castanet-Tolosan, France
| | - Stéphane Cauet
- Centre National de Ressources Génomiques Végétales, INRA, Auzeville, Castanet-Tolosan, France
| | - Maria Imaculada Zucchi
- Polo Regional de Desenvolvimento Tecnológico do Centro Sul, Agência Paulista de Tecnologia dos Agronegócios, Piracicaba, SP, Brazil
| | - Hélène Bergès
- Centre National de Ressources Génomiques Végétales, INRA, Auzeville, Castanet-Tolosan, France
| | - Cássio van den Berg
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil.,Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, BA, Brazil
| | - Maria Lucia Carneiro Vieira
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
31
|
Ren C, Wang L, Nie ZL, Johnson G, Yang QE, Wen J. Development and phylogenetic utilities of a new set of single-/low-copy nuclear genes in Senecioneae (Asteraceae), with new insights into the tribal position and the relationships within subtribe Tussilagininae. Mol Phylogenet Evol 2021; 162:107202. [PMID: 33992786 DOI: 10.1016/j.ympev.2021.107202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 11/26/2022]
Abstract
The tribe Senecioneae is one of the largest tribes in Asteraceae, with a nearly cosmopolitan distribution. Despite great efforts devoted to elucidate the evolution of Senecioneae, many questions still remain concerning the systematics of this group, from the tribal circumscription and position to species relationships in many genera. The hybridization-based target enrichment method of next-generation sequencing has been accepted as a promising approach to resolve phylogenetic problems. We herein develop a set of single-/low-copy genes for Senecioneae, and test their phylogenetic utilities. Our results demonstrate that these genes work highly efficiently for Senecioneae, with a high average gene recovery of 98.8% across the tribe and recovering robust phylogenetic hypotheses at different levels. In particular, the delimitation of the Senecioneae has been confirmed to include Abrotanella and exclude Doronicum, with the former sister to core Senecioneae and the latter shown to be more closely related to Calenduleae. Moreover, Doronicum and Calenduleae are inferred to be the closest relatives of Senecioneae, which is a new hypothesis well supported by statistical topology tests, morphological evidence, and the profile of pyrrolizidine alkaloids, a special kind of chemical characters generally used to define Senecioneae. Furthermore, this study suggests a complex reticulation history in the diversification of Senecioneae, accounting for the prevalence of polyploid groups in the tribe. With subtribe Tussilagininae s.str. as a case study showing a more evident pattern of gene duplication, we further explored reconstructing the phylogeny in the groups with high ploidy levels. Our results also demonstrate that tree topologies based on sorted paralogous copies are stable across different methods of phylogenetic inference, and more congruent with the morphological evidence and the results of previous phylogenetic studies.
Collapse
Affiliation(s)
- Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Long Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Ze-Long Nie
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Gabriel Johnson
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Qin-Er Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; Key Laboratory of Digital Botanical Garden of Guangdong Province, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China.
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA.
| |
Collapse
|
32
|
Ren F, Wang L, Li Y, Zhuo W, Xu Z, Guo H, Liu Y, Gao R, Song J. Highly variable chloroplast genome from two endangered Papaveraceae lithophytes Corydalis tomentella and Corydalis saxicola. Ecol Evol 2021; 11:4158-4171. [PMID: 33976800 PMCID: PMC8093665 DOI: 10.1002/ece3.7312] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 01/27/2023] Open
Abstract
The increasingly wide application of chloroplast (cp) genome super-barcode in taxonomy and the recent breakthrough in cp genetic engineering make the development of new cp gene resources urgent and significant. Corydalis is recognized as the most genotypes complicated and taxonomically challenging plant taxa in Papaveraceae. However, there currently are few reports about cp genomes of the genus Corydalis. In this study, we sequenced four complete cp genomes of two endangered lithophytes Corydalis saxicola and Corydalis tomentella in Corydalis, conducted a comparison of these cp genomes among each other as well as with others of Papaveraceae. The cp genomes have a large genome size of 189,029-190,247 bp, possessing a quadripartite structure and with two highly expanded inverted repeat (IR) regions (length: 41,955-42,350 bp). Comparison between the cp genomes of C. tomentella, C. saxicola, and Papaveraceae species, five NADH dehydrogenase-like genes (ndhF, ndhD, ndhL, ndhG, and ndhE) with psaC, rpl32, ccsA, and trnL-UAG normally located in the SSC region have migrated to IRs, resulting in IR expansion and gene duplication. An up to 9 kb inversion involving five genes (rpl23, ycf2, ycf15, trnI-CAU, and trnL-CAA) was found within IR regions. The accD gene was found to be absent and the ycf1 gene has shifted from the IR/SSC border to the SSC region as a single copy. Phylogenetic analysis based on the sequences of common CDS showed that the genus Corydalis is quite distantly related to the other genera of Papaveraceae, it provided a new clue for recent advocacy to establish a separate Fumariaceae family. Our results revealed one special cp genome structure in Papaveraceae, provided a useful resources for classification of the genus Corydalis, and will be valuable for understanding Papaveraceae evolutionary relationships.
Collapse
Affiliation(s)
- Fengming Ren
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Medicinal Biological Technology Research CenterChongqing Institute of Medicinal Plant CultivationBio‐Resource Research and Utilization Joint Key Laboratory Sichuan and ChongqingChongqingChina
| | | | - Ying Li
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Engineering Research Center of Chinese Medicine ResourceMinistry of EducationBeijingChina
| | - Wei Zhuo
- Medicinal Biological Technology Research CenterChongqing Institute of Medicinal Plant CultivationBio‐Resource Research and Utilization Joint Key Laboratory Sichuan and ChongqingChongqingChina
| | - Zhichao Xu
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Engineering Research Center of Chinese Medicine ResourceMinistry of EducationBeijingChina
| | | | - Yan Liu
- Medicinal Biological Technology Research CenterChongqing Institute of Medicinal Plant CultivationBio‐Resource Research and Utilization Joint Key Laboratory Sichuan and ChongqingChongqingChina
| | - Ranran Gao
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
| | - Jingyuan Song
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Engineering Research Center of Chinese Medicine ResourceMinistry of EducationBeijingChina
| |
Collapse
|
33
|
Omotayo AO, Aremu AO. Marama bean [Tylosema esculentum (Burch.) A. Schreib.]: an indigenous plant with potential for food, nutrition, and economic sustainability. Food Funct 2021; 12:2389-2403. [PMID: 33646215 DOI: 10.1039/d0fo01937b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Developing countries need to explore undervalued indigenous plants to fully enhance their food and nutrition security, health, and economic viability. This review explores the nutritional, phytochemical, and economic potential of marama bean (Tylosema esculentum, Fabaceae), a non-nodulating indigenous legume that can be cultivated in and is well-adapted to dry or low moisture conditions. Marama bean is popularly referred to as 'green gold' due to the considerable value derived from its above ground and underground organs. The seeds have nutritional value comparable to legumes such as groundnut and soybean. In addition, the seeds are a rich source of phytochemicals such as phenolic acids, phytosterols, flavonoids, behenic acid and griffonilide while carbohydrates are abundant in the tubers. Based on the existing literature, marama bean remains poorly explored, mainly anecdotal with limited scientific evidence available to support its nutritional and medicinal uses as well as economic benefits. This has been ascribed to a shortage of clear research goals and limited resources specifically directed to this underutilized indigenous plant. From an economic and commercial perspective, the high phytochemical content suggests the possibility of developing a functional health drink and associated value-added products. However, efficient cultivation protocols for marama bean, especially to ensure the sustainable supply of the plant material, remain crucial. Furthermore, novel approaches, especially the use of molecular techniques that can facilitate rapid selection of desired traits in marama, are recommended. These anticipated improved agronomical traits will enhance the commercial and economical potential of marama and also contribute to rural-urban food-nutrition sustainability globally.
Collapse
Affiliation(s)
- Abiodun Olusola Omotayo
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2790, North West Province, South Africa.
| | | |
Collapse
|
34
|
Loeuille B, Thode V, Siniscalchi C, Andrade S, Rossi M, Pirani JR. Extremely low nucleotide diversity among thirty-six new chloroplast genome sequences from Aldama (Heliantheae, Asteraceae) and comparative chloroplast genomics analyses with closely related genera. PeerJ 2021; 9:e10886. [PMID: 33665028 PMCID: PMC7912680 DOI: 10.7717/peerj.10886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/12/2021] [Indexed: 01/23/2023] Open
Abstract
Aldama (Heliantheae, Asteraceae) is a diverse genus in the sunflower family. To date, nearly 200 Asteraceae chloroplast genomes have been sequenced, but the plastomes of Aldama remain undescribed. Plastomes in Asteraceae usually show little sequence divergence, consequently, our hypothesis is that species of Aldama will be overall conserved. In this study, we newly sequenced 36 plastomes of Aldama and of five species belonging to other Heliantheae genera selected as outgroups (i.e., Dimerostemma asperatum, Helianthus tuberosus, Iostephane heterophylla, Pappobolus lanatus var. lanatus, and Tithonia diversifolia). We analyzed the structure and gene content of the assembled plastomes and performed comparative analyses within Aldama and with other closely related genera. As expected, Aldama plastomes are very conserved, with the overall gene content and orientation being similar in all studied species. The length of the plastome is also consistent and the junction between regions usually contain the same genes and have similar lengths. A large ∼20 kb and a small ∼3 kb inversion were detected in the Large Single Copy (LSC) regions of all assembled plastomes, similarly to other Asteraceae species. The nucleotide diversity is very low, with only 1,509 variable sites in 127,466 bp (i.e., 1.18% of the sites in the alignment of 36 Aldama plastomes, with one of the IRs removed, is variable). Only one gene, rbcL, shows signatures of positive selection. The plastomes of the selected outgroups feature a similar gene content and structure compared to Aldama and also present the two inversions in the LSC region. Deletions of different lengths were observed in the gene ycf2. Multiple SSRs were identified for the sequenced Aldama and outgroups. The phylogenetic analysis shows that Aldama is not monophyletic due to the position of the Mexican species A. dentata. All Brazilian species form a strongly supported clade. Our results bring new understandings into the evolution and diversity of plastomes at the species level.
Collapse
Affiliation(s)
- Benoit Loeuille
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Verônica Thode
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carolina Siniscalchi
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States of America
| | - Sonia Andrade
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - José Rubens Pirani
- Departamento de Botânica, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Xu X, Wang D. Comparative Chloroplast Genomics of Corydalis Species (Papaveraceae): Evolutionary Perspectives on Their Unusual Large Scale Rearrangements. FRONTIERS IN PLANT SCIENCE 2021; 11:600354. [PMID: 33584746 PMCID: PMC7873532 DOI: 10.3389/fpls.2020.600354] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/21/2020] [Indexed: 05/08/2023]
Abstract
The chloroplast genome (plastome) of angiosperms (particularly photosynthetic members) is generally highly conserved, although structural rearrangements have been reported in a few lineages. In this study, we revealed Corydalis to be another unusual lineage with extensive large-scale plastome rearrangements. In the four newly sequenced Corydalis plastomes that represent all the three subgenera of Corydalis, we detected (1) two independent relocations of the same five genes (trnV-UAC-rbcL) from the typically posterior part of the large single-copy (LSC) region to the front, downstream of either the atpH gene in Corydalis saxicola or the trnK-UUU gene in both Corydalis davidii and Corydalis hsiaowutaishanensis; (2) relocation of the rps16 gene from the LSC region to the inverted repeat (IR) region in Corydalis adunca; (3) uniform inversion of an 11-14 kb segment (ndhB-trnR-ACG) in the IR region of all the four Corydalis species (the same below); (4) expansions (>10 kb) of IR into the small single-copy (SSC) region and corresponding contractions of SSC region; and (5) extensive pseudogenizations or losses of 13 genes (accD, clpP, and 11 ndh genes). In addition, we also found that the four Corydalis plastomes exhibited elevated GC content in both gene and intergenic regions and high number of dispersed repeats. Phylogenomic analyses generated a well-supported topology that was consistent with the result of previous studies based on a few DNA markers but contradicted with the morphological character-based taxonomy to some extent. This study provided insights into the evolution of plastomes throughout the three Corydalis subgenera and will be of value for further study on taxonomy, phylogeny, and evolution of Corydalis.
Collapse
Affiliation(s)
- Xiaodong Xu
- School of Life Sciences, Central China Normal University, Key Laboratory for Geographical Process Analysis and Simulation, Wuhan, China
| | - Dong Wang
- School of Life Sciences, Central China Normal University, Key Laboratory for Geographical Process Analysis and Simulation, Wuhan, China
- Bio-Resources Key Laboratory of Shaanxi Province, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
36
|
Jung J, Do HDK, Hyun J, Kim C, Kim JH. Comparative analysis and implications of the chloroplast genomes of three thistles ( Carduus L., Asteraceae). PeerJ 2021; 9:e10687. [PMID: 33520461 PMCID: PMC7811785 DOI: 10.7717/peerj.10687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/11/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Carduus, commonly known as plumeless thistles, is a genus in the Asteraceae family that exhibits both medicinal value and invasive tendencies. However, the genomic data of Carduus (i.e., complete chloroplast genomes) have not been sequenced. METHODS We sequenced and assembled the chloroplast genome (cpDNA) sequences of three Carduus species using the Illumina Miseq sequencing system and Geneious Prime. Phylogenetic relationships between Carduus and related taxa were reconstructed using Maximum Likelihood and Bayesian Inference analyses. In addition, we used a single nucleotide polymorphism (SNP) in the protein coding region of the matK gene to develop molecular markers to distinguish C. crispus from C. acanthoides and C. tenuiflorus. RESULTS The cpDNA sequences of C. crispus, C. acanthoides, and C. tenuiflorus ranged from 152,342 bp to 152,617 bp in length. Comparative genomic analysis revealed high conservation in terms of gene content (including 80 protein-coding, 30 tRNA, and four rRNA genes) and gene order within the three focal species and members of subfamily Carduoideae. Despite their high similarity, the three species differed with respect to the number and content of repeats in the chloroplast genome. Additionally, eight hotspot regions, including psbI-trnS_GCU, trnE_UUC-rpoB, trnR_UCU-trnG_UCC, psbC-trnS_UGA, trnT_UGU-trnL_UAA, psbT-psbN, petD-rpoA, and rpl16-rps3, were identified in the study species. Phylogenetic analyses inferred from 78 protein-coding and non-coding regions indicated that Carduus is polyphyletic, suggesting the need for additional studies to reconstruct relationships between thistles and related taxa. Based on a SNP in matK, we successfully developed a molecular marker and protocol for distinguishing C. crispus from the other two focal species. Our study provides preliminary chloroplast genome data for further studies on plastid genome evolution, phylogeny, and development of species-level markers in Carduus.
Collapse
Affiliation(s)
- Joonhyung Jung
- Department of Life Science, Gachon University, Seongnam, Gyeonggi, Korea
| | - Hoang Dang Khoa Do
- Department of Life Science, Gachon University, Seongnam, Gyeonggi, Korea
- Nguyen Tat Thanh Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - JongYoung Hyun
- Department of Life Science, Gachon University, Seongnam, Gyeonggi, Korea
| | - Changkyun Kim
- Department of Life Science, Gachon University, Seongnam, Gyeonggi, Korea
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, Gyeonggi, Korea
| |
Collapse
|
37
|
Park KT, Park S. Phylogenomic Analyses of Hepatica Species and Comparative Analyses Within Tribe Anemoneae (Ranunculaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:638580. [PMID: 34149746 PMCID: PMC8211876 DOI: 10.3389/fpls.2021.638580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/01/2021] [Indexed: 05/15/2023]
Abstract
Hepatica is a small genus of Ranunculaceae with medicinal and horticultural value. We characterized nine complete chloroplast (cp) genomes of Hepatica, which ranged from 159,549 to 161,081 bp in length and had a typical quadripartite structure with a large single-copy region (LSC; 80,270-81,249 bp), a small single-copy region (SSC; 17,029-17,838 bp), and two copies of inverted repeat (IR; 31,008-31,100 bp). The cp genomes of Hepatica possess 76 protein-coding genes (PCGs), 29 tRNAs, and four rRNA genes. Comparative analyses revealed a conserved ca. 5-kb IR expansion in Hepatica and other Anemoneae; moreover, multiple inversion events occurred in Hepatica and its relatives. Analyses of selection pressure (dN/dS) showed that most of the PCGs are highly conserved except for rpl20 and rpl22 in Hepatica falconeri, Hepatica americana, and Hepatica acutiloba. Two genes (rps16 and infA) were identified as pseudogenes in Hepatica. In contrast, rpl32 gene was completely lost. The phylogenetic analyses based on 76 PCGs resolved the phylogeny of Hepatica and its related genera. Non-monophyly of Anemone s.l. indicates that Hepatica should be reclassified as an independent genus. In addition, Hepatica nobilis var. japonica is not closely related to H. nobilis.
Collapse
|
38
|
Liao M, Gao XF, Zhang JY, Deng HN, Xu B. Comparative Chloroplast Genomics of Sophora Species: Evolution and Phylogenetic Relationships in the Early-Diverging Legume Subfamily Papilionoideae (Fabaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:778933. [PMID: 34975964 PMCID: PMC8716937 DOI: 10.3389/fpls.2021.778933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/08/2021] [Indexed: 05/04/2023]
Abstract
The taxonomy and evolutionary history of Sophora L., a genus with high economic and medicinal value, remain uncertain due to the absence of genetic resource (especially in China) and low polymorphism of molecular markers. Our aim was to elucidate the molecular evolution and phylogenetic relationships in chloroplast genomes of Sophora species in the early-diverging legume subfamily Papilionoideae (Fabaceae). We reported nine Sophora chloroplast genome from China using Illumina sequencing. We performed a series of analyses with previously published genomes of Sophora species to investigate their genomic characteristics, identified simple sequence repeats, large repeat sequences, tandem repeats, and highly polymorphic loci. The genomes were 152,953-158,087 bp in length, and contained 111-113 unique genes, including 76-78 protein coding, 31 tRNA, and 4 rRNA. The expansion of inverted repeat boundary of Sophora resulted in rps12 entering into the LSC region and loss of trnT-CGU gene in some species. Also, we found an approximately 23 kb inversion between trnC-GCA and trnF-GAA within the genus. In addition, we identified seven highly polymorphic loci (pi (π) > 0.035) suitable for inferring the phylogeny of Sophora species. Among these, three regions also co-occurred with large repeat sequences and support use of repeats as a proxy for the identification of polymorphic loci. Based on whole chloroplast genome and protein-coding sequences data-set, a well-supported phylogenetic tree of Sophora and related taxa showed that this genus is monophyletic, but sect. Disamaea and sect. Sophora, are incongruent with traditional taxonomic classifications based on fruit morphology. Our finding provides significant genetic resources to support further investigation into the phylogenetic relationship and evolution of the genus Sophora.
Collapse
Affiliation(s)
- Min Liao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Fen Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jun-Yi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Heng-Ning Deng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Bo Xu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Bo Xu,
| |
Collapse
|
39
|
Liu Q, Li X, Li M, Xu W, Schwarzacher T, Heslop-Harrison JS. Comparative chloroplast genome analyses of Avena: insights into evolutionary dynamics and phylogeny. BMC PLANT BIOLOGY 2020; 20:406. [PMID: 32878602 PMCID: PMC7466839 DOI: 10.1186/s12870-020-02621-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 08/25/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Oat (Avena sativa L.) is a recognized health-food, and the contributions of its different candidate A-genome progenitor species remain inconclusive. Here, we report chloroplast genome sequences of eleven Avena species, to examine the plastome evolutionary dynamics and analyze phylogenetic relationships between oat and its congeneric wild related species. RESULTS The chloroplast genomes of eleven Avena species (size range of 135,889-135,998 bp) share quadripartite structure, comprising of a large single copy (LSC; 80,014-80,132 bp), a small single copy (SSC; 12,575-12,679 bp) and a pair of inverted repeats (IRs; 21,603-21,614 bp). The plastomes contain 131 genes including 84 protein-coding genes, eight ribosomal RNAs and 39 transfer RNAs. The nucleotide sequence diversities (Pi values) range from 0.0036 (rps19) to 0.0093 (rpl32) for ten most polymorphic genes and from 0.0084 (psbH-petB) to 0.0240 (petG-trnW-CCA) for ten most polymorphic intergenic regions. Gene selective pressure analysis shows that all protein-coding genes have been under purifying selection. The adjacent position relationships between tandem repeats, insertions/deletions and single nucleotide polymorphisms support the evolutionary importance of tandem repeats in causing plastome mutations in Avena. Phylogenomic analyses, based on the complete plastome sequences and the LSC intermolecular recombination sequences, support the monophyly of Avena with two clades in the genus. CONCLUSIONS Diversification of Avena plastomes is explained by the presence of highly diverse genes and intergenic regions, LSC intermolecular recombination, and the co-occurrence of tandem repeat and indels or single nucleotide polymorphisms. The study demonstrates that the A-genome diploid-polyploid lineage maintains two subclades derived from different maternal ancestors, with A. longiglumis as the first diverging species in clade I. These genome resources will be helpful in elucidating the chloroplast genome structure, understanding the evolutionary dynamics at genus Avena and family Poaceae levels, and are potentially useful to exploit plastome variation in making hybrids for plant breeding.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- Center for Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.
| | - Xiaoyu Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingzhi Li
- Independent Researcher, Guangzhou, China
| | - Wenkui Xu
- Independent Researcher, Guangzhou, China
| | - Trude Schwarzacher
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - John Seymour Heslop-Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
40
|
Kim GB, Lim CE, Kim JS, Kim K, Lee JH, Yu HJ, Mun JH. Comparative chloroplast genome analysis of Artemisia (Asteraceae) in East Asia: insights into evolutionary divergence and phylogenomic implications. BMC Genomics 2020; 21:415. [PMID: 32571207 PMCID: PMC7310033 DOI: 10.1186/s12864-020-06812-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/08/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Artemisia in East Asia includes a number of economically important taxa that are widely used for food, medicinal, and ornamental purposes. The identification of taxa, however, has been hampered by insufficient diagnostic morphological characteristics and frequent natural hybridization. Development of novel DNA markers or barcodes with sufficient resolution to resolve taxonomic issues of Artemisia in East Asia is significant challenge. RESULTS To establish a molecular basis for taxonomic identification and comparative phylogenomic analysis of Artemisia, we newly determined 19 chloroplast genome (plastome) sequences of 18 Artemisia taxa in East Asia, de novo-assembled and annotated the plastomes of two taxa using publicly available Illumina reads, and compared them with 11 Artemisia plastomes reported previously. The plastomes of Artemisia were 150,858-151,318 base pairs (bp) in length and harbored 87 protein-coding genes, 37 transfer RNAs, and 8 ribosomal RNA genes in conserved order and orientation. Evolutionary analyses of whole plastomes and 80 non-redundant protein-coding genes revealed that the noncoding trnH-psbA spacer was highly variable in size and nucleotide sequence both between and within taxa, whereas the coding sequences of accD and ycf1 were under weak positive selection and relaxed selective constraints, respectively. Phylogenetic analysis of the whole plastomes based on maximum likelihood and Bayesian inference analyses yielded five groups of Artemisia plastomes clustered in the monophyletic subgenus Dracunculus and paraphyletic subgenus Artemisia, suggesting that the whole plastomes can be used as molecular markers to infer the chloroplast haplotypes of Artemisia taxa. Additionally, analysis of accD and ycf1 hotspots enabled the development of novel markers potentially applicable across the family Asteraceae with high discriminatory power. CONCLUSIONS The complete sequences of the Artemisia plastomes are sufficiently polymorphic to be used as super-barcodes for this genus. It will facilitate the development of new molecular markers and study of the phylogenomic relationships of Artemisia species in the family Asteraceae.
Collapse
Affiliation(s)
- Goon-Bo Kim
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 17058 Korea
| | - Chae Eun Lim
- National Institute of Biological Resources, Incheon, 22689 Korea
| | - Jin-Seok Kim
- National Institute of Biological Resources, Incheon, 22689 Korea
| | - Kyeonghee Kim
- National Institute of Biological Resources, Incheon, 22689 Korea
| | - Jeong Hoon Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Chungbuk, 27709 Korea
| | - Hee-Ju Yu
- Department of Life Science, the Catholic University of Korea, Bucheon, 14662 Korea
| | - Jeong-Hwan Mun
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 17058 Korea
| |
Collapse
|
41
|
Shen J, Zhang X, Landis JB, Zhang H, Deng T, Sun H, Wang H. Plastome Evolution in Dolomiaea (Asteraceae, Cardueae) Using Phylogenomic and Comparative Analyses. FRONTIERS IN PLANT SCIENCE 2020; 11:376. [PMID: 32351518 PMCID: PMC7174903 DOI: 10.3389/fpls.2020.00376] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/16/2020] [Indexed: 05/24/2023]
Abstract
Dolomiaea is a medicinally important genus of Asteraceae endemic to alpine habitats of the Qinghai-Tibet Plateau (QTP) and adjacent areas. Despite significant medicinal value, genomic resources of Dolomiaea are still lacking, impeding our understanding of its evolutionary history. Here, we sequenced and annotated plastomes of four Dolomiaea species. All analyzed plastomes share the gene content and structure of most Asteraceae plastomes, indicating the conservation of plastome evolutionary history of Dolomiaea. Eight highly divergent regions (rps16-trnQ, trnC-petN, trnE-rpoB, trnT-trnL-trnF, psbE-petL, ndhF-rpl32-trnL, rps15-ycf1, and ycf1), along with a total of 51-61 simple sequence repeats (SSRs) were identified as valuable molecular markers for further species delimitation and population genetic studies. Phylogenetic analyses confirmed the evolutionary position of Dolomiaea as a clade within the subtribe Saussureinae, while revealing the discordance between the molecular phylogeny and morphological treatment. Our analysis also revealed that the plastid genes, rpoC2 and ycf1, which are rarely used in Asteraceae phylogenetic inference, exhibit great phylogenetic informativeness and promise in further phylogenetic studies of tribe Cardueae. Analysis for signatures of selection identified four genes that contain sites undergoing positive selection (atpA, ndhF, rbcL, and ycf4). These genes may play important roles in the adaptation of Dolomiaea to alpine environments. Our study constitutes the first investigation on the sequence and structural variation, phylogenetic utility and positive selection of plastomes of Dolomiaea, which will facilitate further studies of its taxonomy, evolution and conservation.
Collapse
Affiliation(s)
- Jun Shen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jacob B. Landis
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Tao Deng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
42
|
Scheunert A, Dorfner M, Lingl T, Oberprieler C. Can we use it? On the utility of de novo and reference-based assembly of Nanopore data for plant plastome sequencing. PLoS One 2020; 15:e0226234. [PMID: 32208422 PMCID: PMC7092973 DOI: 10.1371/journal.pone.0226234] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
The chloroplast genome harbors plenty of valuable information for phylogenetic research. Illumina short-read data is generally used for de novo assembly of whole plastomes. PacBio or Oxford Nanopore long reads are additionally employed in hybrid approaches to enable assembly across the highly similar inverted repeats of a chloroplast genome. Unlike for PacBio, plastome assemblies based solely on Nanopore reads are rarely found, due to their high error rate and non-random error profile. However, the actual quality decline connected to their use has rarely been quantified. Furthermore, no study has employed reference-based assembly using Nanopore reads, which is common with Illumina data. Using Leucanthemum Mill. as an example, we compared the sequence quality of seven chloroplast genome assemblies of the same species, using combinations of two sequencing platforms and three analysis pipelines. In addition, we assessed the factors which might influence Nanopore assembly quality during sequence generation and bioinformatic processing. The consensus sequence derived from de novo assembly of Nanopore data had a sequence identity of 99.59% compared to Illumina short-read de novo assembly. Most of the errors detected were indels (81.5%), and a large majority of them is part of homopolymer regions. The quality of reference-based assembly is heavily dependent upon the choice of a close-enough reference. When using a reference with 0.83% sequence divergence from the studied species, mapping of Nanopore reads results in a consensus comparable to that from Nanopore de novo assembly, and of only slightly inferior quality compared to a reference-based assembly with Illumina data. For optimal de novo assembly of Nanopore data, appropriate filtering of contaminants and chimeric sequences, as well as employing moderate read coverage, is essential. Based on these results, we conclude that Nanopore long reads are a suitable alternative to Illumina short reads in plastome phylogenomics. Few errors remain in the finalized assembly, which can be easily masked in phylogenetic analyses without loss in analytical accuracy. The easily applicable and cost-effective technology might warrant more attention by researchers dealing with plant chloroplast genomes.
Collapse
Affiliation(s)
- Agnes Scheunert
- Evolutionary and Systematic Botany Group, Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
| | - Marco Dorfner
- Evolutionary and Systematic Botany Group, Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
| | - Thomas Lingl
- Evolutionary and Systematic Botany Group, Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
| | - Christoph Oberprieler
- Evolutionary and Systematic Botany Group, Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
| |
Collapse
|
43
|
Yu T, Huang BH, Zhang Y, Liao PC, Li JQ. Chloroplast genome of an extremely endangered conifer Thuja sutchuenensis Franch.: gene organization, comparative and phylogenetic analysis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:409-418. [PMID: 32205919 PMCID: PMC7078402 DOI: 10.1007/s12298-019-00736-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/24/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Thuja sutchuenensis is a critically endangered tertiary relict species of Cupressaceae from southwestern China. We sequenced the complete chloroplast (cp) genome of T. sutchuenensis, showing the genome content of 129,776 bp, 118 unique genes including 82 unique protein-coding genes, 32 tRNA genes, and 4 rRNA genes. The genome structures, gene order, and GC content are similar to other typical gymnosperm cp genomes. Thirty-eight simple sequence repeats were identified in the T. sutchuenensis cp genome. We also found an apparent inversion between trnT and psbK between genera Thuja and Thujopsis. In addition, positive selection signals were detected in seven genes with high Ka/Ks ratios. The reconstructed phylogeny based on locally collinear blocks of cp genomes among 21 gymnosperms species is similar to previous inferences. We also inferred a Late-Miocene divergence between T. sutchuenensis and T. standishii, according to the dating of ~ 11.05 Mya by cp genomes. These results will be helpful for future studies of Cupressaceae phylogeny as well as studies in population genetics, systematics, and cp genetic engineering.
Collapse
Affiliation(s)
- Tao Yu
- Forestry College, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083 China
| | - Bing-Hong Huang
- School of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd., Sec. 4, Taipei, 116 Taiwan
| | - Yuyang Zhang
- Forestry College, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083 China
| | - Pei-Chun Liao
- School of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd., Sec. 4, Taipei, 116 Taiwan
| | - Jun-Qing Li
- Forestry College, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083 China
| |
Collapse
|
44
|
Liao YY, Liu Y, Liu X, Lü TF, Mbichi RW, Wan T, Liu F. The complete chloroplast genome of Myriophyllum spicatum reveals a 4-kb inversion and new insights regarding plastome evolution in Haloragaceae. Ecol Evol 2020; 10:3090-3102. [PMID: 32211179 PMCID: PMC7083656 DOI: 10.1002/ece3.6125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 09/11/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
Myriophyllum, among the most species-rich genera of aquatic angiosperms with ca. 68 species, is an extensively distributed hydrophyte lineage in the cosmopolitan family Haloragaceae. The chloroplast (cp) genome is useful in the study of genetic evolution, phylogenetic analysis, and molecular dating of controversial taxa. Here, we sequenced and assembled the whole chloroplast genome of Myriophyllum spicatum L. and compared it to other species in the order Saxifragales. The complete chloroplast genome sequence of M. spicatum is 158,858 bp long and displays a quadripartite structure with two inverted repeats (IR) separating the large single copy (LSC) region from the small single copy (SSC) region. Based on sequence identification and the phylogenetic analysis, a 4-kb phylogenetically informative inversion between trnE-trnC in Myriophyllum was determined, and we have placed this inversion on a lineage specific to Myriophyllum and its close relatives. The divergence time estimation suggested that the trnE-trnC inversion possibly occurred between the upper Cretaceous (72.54 MYA) and middle Eocene (47.28 MYA) before the divergence of Myriophyllum from its most recent common ancestor. The unique 4-kb inversion might be caused by an occurrence of nonrandom recombination associated with climate changes around the K-Pg boundary, making it interesting for future evolutionary investigations.
Collapse
Affiliation(s)
- Yi-Ying Liao
- Key Laboratory of Southern Subtropical Plant Diversity Fairy Lake Botanical Garden Shenzhen China
| | - Yu Liu
- Key Laboratory of Southern Subtropical Plant Diversity Fairy Lake Botanical Garden Shenzhen China
| | - Xing Liu
- Laboratory of Plant Systematics and Evolutionary Biology College of Life Science Wuhan University Wuhan China
| | - Tian-Feng Lü
- Laboratory of Plant Systematics and Evolutionary Biology College of Life Science Wuhan University Wuhan China
| | - Ruth Wambui Mbichi
- Sino-Africa Joint Research Centre Chinese Academy of Science Wuhan China
| | - Tao Wan
- Key Laboratory of Southern Subtropical Plant Diversity Fairy Lake Botanical Garden Shenzhen China
| | - Fan Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China
| |
Collapse
|
45
|
Jo S, Kim YK, Cheon SH, Fan Q, Kim KJ. Characterization of 20 complete plastomes from the tribe Laureae (Lauraceae) and distribution of small inversions. PLoS One 2019; 14:e0224622. [PMID: 31675370 PMCID: PMC6824564 DOI: 10.1371/journal.pone.0224622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/17/2019] [Indexed: 01/24/2023] Open
Abstract
Lindera Thunb. (Lauraceae) consists of approximately 100 species, mainly distributed in the temperate and tropical regions of East Asia. In this study, we report 20 new, complete plastome sequences including 17 Lindera species and three related species, Actinodaphne lancifolia, Litsea japonica and Sassafras tzumu. The complete plastomes of Lindera range from 152,502 bp (L. neesiana) to 154,314 bp (L. erythrocarpa) in length. Eleven small inversion (SI) sites are documented among the plastomes. Six of the 11 SI sites are newly reported and they locate in rpoB-trnC, psbC-trnS, petA-psbJ, rpoA and ycf2 regions. The distribution patterns of SIs are useful for species identification. An average of 83 simple sequence repeats (SSRs) were detected in each plastome. The mono-SSRs accounted for 72.7% of total SSRs, followed by di- (12.4%), tetra- (9.4%), tri- (4.2%), and penta-SSRs (1.3%). Of these SSRs, 64.6% were distributed in an intergenic spacer (IGS) region. In addition, 79.8% of the SSRs are located in a large single copy (LSC) region. In contrast, almost no SSRs are distributed in inverted repeat (IR) regions. The SSR loci are useful to identifying species but the phylogenetic value is low because the majority of them show autapomorphic status or highly homoplastic characteristics. The nucleotide diversity (Pi) values also indicated the conserved nature of the IR region compared to LSC and small single copy (SSC) regions. Five spacer regions with high Pi values, trnH-psbA, petA-psbJ and ndhF-rpl32, rpl32-trnL and Ψycf1-ndhF, have a potential use for the molecular identification study of Lindera and related species. Lindera species form a paraphyletic group in the plastome tree because of the inclusion of related genera such as Actinodaphne, Laurus, Litsea and Neolitsea. A former member of tribe Laureae, Sassafras, forms a clade with the tribe Cinnamomeae. The SIs do not affect the phylogenetic relationship of Laureae. This result indicated that ancient plastome captures may have contribute to the mixed intergeneric relationship of Laureae. Alternatively, the result may indicate that the morphological characters defined the genera of Lauraceae originated for several times.
Collapse
Affiliation(s)
- Sangjin Jo
- School of Life Sciences, Korea University, Seoul, Korea
| | - Young-Kee Kim
- School of Life Sciences, Korea University, Seoul, Korea
| | - Se-Hwan Cheon
- School of Life Sciences, Korea University, Seoul, Korea
| | - Qiang Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ki-Joong Kim
- School of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
46
|
Cho MS, Kim JH, Kim CS, Mejías JA, Kim SC. Sow Thistle Chloroplast Genomes: Insights into the Plastome Evolution and Relationship of Two Weedy Species, Sonchus asper and Sonchus oleraceus (Asteraceae). Genes (Basel) 2019; 10:genes10110881. [PMID: 31683955 PMCID: PMC6895928 DOI: 10.3390/genes10110881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 11/23/2022] Open
Abstract
Prickly sow thistle, Sonchus asper (L.) Hill, and common sow thistle, Sonchus oleraceus L., are noxious weeds. Probably originating from the Mediterranean region, they have become widespread species. They share similar morphology and are closely related. However, they differ in their chromosome numbers and the precise relationship between them remains uncertain. Understanding their chloroplast genome structure and evolution is an important initial step toward determining their phylogenetic relationships and analyzing accelerating plant invasion processes on a global scale. We assembled four accessions of chloroplast genomes (two S. asper and two S. oleraceus) by the next generation sequencing approach and conducted comparative genomic analyses. All the chloroplast genomes were highly conserved. Their sizes ranged from 151,808 to 151,849 bp, containing 130 genes including 87 coding genes, 6 rRNA genes, and 37 tRNA genes. Phylogenetic analysis based on the whole chloroplast genome sequences showed that S. asper shares a recent common ancestor with S. oleraceus and suggested its likely involvement in a possible amphidiploid origin of S. oleraceus. In total, 79 simple sequence repeats and highly variable regions were identified as the potential chloroplast markers to determine genetic variation and colonization patterns of Sonchus species.
Collapse
Affiliation(s)
- Myong-Suk Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | - Jin Hyeong Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | - Chang-Seok Kim
- Highland Agriculture Research Institute, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Gangwon-do 25342, Korea.
| | - José A Mejías
- Department of Plant Biology and Ecology, Universidad de Sevilla, 41004 Seville, Spain.
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| |
Collapse
|
47
|
He J, Yao M, Lyu RD, Lin LL, Liu HJ, Pei LY, Yan SX, Xie L, Cheng J. Structural variation of the complete chloroplast genome and plastid phylogenomics of the genus Asteropyrum (Ranunculaceae). Sci Rep 2019; 9:15285. [PMID: 31653891 PMCID: PMC6814708 DOI: 10.1038/s41598-019-51601-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/29/2019] [Indexed: 11/09/2022] Open
Abstract
Two complete chloroplast genome sequences of Asteropyrum, as well as those of 25 other species from Ranunculaceae, were assembled using both Illumina and Sanger sequencing methods to address the structural variation of the cp genome and the controversial systematic position of the genus. Synteny and plastome structure were compared across the family. The cp genomes of the only two subspecies of Asteropyrum were found to be differentiated with marked sequence variation and different inverted repeat-single copy (IR-SC) borders. The plastomes of both subspecies contains 112 genes. However, the IR region of subspecies peltatum carries 27 genes, whereas that of subspecies cavaleriei has only 25 genes. Gene inversions, transpositions, and IR expansion-contraction were very commonly detected in Ranunculaceae. The plastome of Asteropyrum has the longest IR regions in the family, but has no gene inversions or transpositions. Non-coding regions of the cp genome were not ideal markers for inferring the generic relationships of the family, but they may be applied to interpret species relationship within the genus. Plastid phylogenomic analysis using complete cp genome with Bayesian method and partitioned modeling obtained a fully resolved phylogenetic framework for Ranunculaceae. Asteropyrum was detected to be sister to Caltha, and diverged early from subfamily Ranunculoideae.
Collapse
Affiliation(s)
- Jian He
- Beijing Forestry University, Beijing, 100083, China
| | - Min Yao
- Beijing Forestry University, Beijing, 100083, China
| | - Ru-Dan Lyu
- Beijing Forestry University, Beijing, 100083, China
| | - Le-Le Lin
- Beijing Forestry University, Beijing, 100083, China
| | - Hui-Jie Liu
- Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Lin-Ying Pei
- Beijing Forestry University Forest Science Co. Ltd., Beijing, 100083, China
| | - Shuang-Xi Yan
- Henan Agricultural University, Zhengzhou, 450002, China
| | - Lei Xie
- Beijing Forestry University, Beijing, 100083, China.
| | - Jin Cheng
- Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
48
|
Plastid phylogenomic insights into the evolution of the Caprifoliaceae s.l. (Dipsacales). Mol Phylogenet Evol 2019; 142:106641. [PMID: 31605813 DOI: 10.1016/j.ympev.2019.106641] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022]
Abstract
The family Caprifoliaceae s.l. is an asterid angiosperm clade of ca. 960 species, most of which are distributed in temperate regions of the northern hemisphere. Recent studies show that the family comprises seven major clades: Linnaeoideae, Zabelia, Morinoideae, Dipsacoideae, Valerianoideae, Caprifolioideae, and Diervilloideae. However, its phylogeny at the subfamily or genus level remains controversial, and the backbone relationships among subfamilies are incompletely resolved. In this study, we utilized complete plastome sequencing to resolve the relationships among the subfamilies of the Caprifoliaceae s.l. and clarify several long-standing controversies. We generated and analyzed plastomes of 48 accessions of Caprifoliaceae s.l., representing 44 species, six subfamilies and one genus. Combined with available Caprifoliaceae s.l. plastomes on GenBank and 12 outgroups, we analyzed a final dataset of 68 accessions. Genome structure was strongly conserved in general, although the boundaries between the Inverted Repeat were found to have contracted across Caprifoliaceae s.l. to exclude rpl2, rps19, and ycf1, all or parts of which are typically present in the IR of most angiosperms. The ndhF gene was found to have been inverted in all plastomes of Adoxaceae. Phylogenomic analyses of 68 complete plastomes yielded a highly supported topology that strongly supported the monophyly of Zabelia and its sister relationship to Morinoideae. Moreover, a clade of Valerianoideae + Dipsacoideae was recovered as sister to a clade of Linnaeoideae + Zabelia + Morinoideae clade, and Heptacodium was sister to remaining Caprifolioideae. The Diervilloideae and Caprifolioideae were successively sister to all other Caprifoliaceae s.l. Major lineages of Caprifoliaceae s.l. were estimated to have diverged from the Upper Cretaceous to the Eocene (50-100 Ma), whereas within-genus diversification was dated to the Oligocene and later, concomitant with global cooling and drying. Our results demonstrate the power of plastid phylogenomics in improving estimates of phylogeny among genera and subfamilies, and provide new insights into plastome evolution across Caprifoliaceae s.l.
Collapse
|
49
|
Nakano M, Taniguchi K, Masuda Y, Kozuka T, Aruga Y, Han J, Motohara K, Nakata M, Sumitomo K, Hisamatsu T, Nakano Y, Yagi M, Hirakawa H, Isobe SN, Shirasawa K, Nagashima Y, Na H, Chen L, Liang G, Chen R, Kusaba M. A pure line derived from a self-compatible Chrysanthemum seticuspe mutant as a model strain in the genus Chrysanthemum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110174. [PMID: 31481216 DOI: 10.1016/j.plantsci.2019.110174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
Asteraceae is the largest family of angiosperms, comprising approximately 24,000 species. Molecular genetic studies of Asteraceae are essential for understanding plant diversity. Chrysanthemum morifolium is the most industrially important ornamental species in Asteraceae. Most cultivars of C. morifolium are autohexaploid and self-incompatible. These properties are major obstacles to the genetic analysis and modern breeding of C. morifolium. Furthermore, high genome heterogeneity complicates molecular biological analyses. In this study, we developed a model strain in the genus Chrysanthemum. C. seticuspe is a diploid species with a similar flowering property and morphology to C. morifolium and can be subjected to Agrobacterium-mediated transformation. We isolated a natural self-compatible mutant of C. seticuspe and established a pure line through repeated selfing and selection. The resultant strain, named Gojo-0, was favorable for genetic analyses, including isolation of natural and induced mutants, and facilitated molecular biological analysis, including whole genome sequencing, owing to the simplicity and homogeneity of its genome. Interspecific hybridization with Chrysanthemum species was possible, enabling molecular genetic analysis of natural interspecific variations. The accumulation of research results and resources using Gojo-0 as a platform is expected to promote molecular genetic studies on the genus Chrysanthemum and the genetic improvement of chrysanthemum cultivars.
Collapse
Affiliation(s)
- Michiharu Nakano
- Graduate school of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Kenji Taniguchi
- Graduate school of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Yu Masuda
- Graduate school of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Toshiaki Kozuka
- Graduate school of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Yuki Aruga
- Graduate school of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Jin Han
- Graduate school of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Koichiro Motohara
- Graduate school of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Masashi Nakata
- Botanic Gardens of Toyama, Kamikutsuwada 42, Fuchu-machi, Toyama, 939-2713, Japan
| | - Katsuhiko Sumitomo
- Institute of Vegetable and Floriculture Sciences, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-0852, Japan
| | - Tamotsu Hisamatsu
- Institute of Vegetable and Floriculture Sciences, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-0852, Japan
| | - Yoshihiro Nakano
- Institute of Vegetable and Floriculture Sciences, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-0852, Japan
| | - Masafumi Yagi
- Institute of Vegetable and Floriculture Sciences, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-0852, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, 292-0818, Japan
| | - Sachiko N Isobe
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, 292-0818, Japan
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, 292-0818, Japan
| | - Yumi Nagashima
- Graduate school of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Haiyan Na
- College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Li Chen
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Guolu Liang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Ruiyan Chen
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Makoto Kusaba
- Graduate school of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.
| |
Collapse
|
50
|
Lin N, Zhang X, Deng T, Zhang J, Meng A, Wang H, Sun H, Sun Y. Plastome sequencing of Myripnois dioica and comparison within Asteraceae. PLANT DIVERSITY 2019; 41:315-322. [PMID: 31934676 PMCID: PMC6951274 DOI: 10.1016/j.pld.2019.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Myripnois is a monotypic shrub genus in the daisy family constricted to northern China. Although wild populations of Myripnois dioica are relatively rare, this plant may potentially be cultured as a fine ornamental. In the present study, we sequenced the complete plastome of M. dioica, generating the first plastome sequences of the subfamily Pertyoideae. The plastome of M. dioica has a typical quadripartite circular structure. A large ∼20-kb and a small ∼3-kb inversion were detected in the large single copy (LSC) region and shared by other Asteraceae species. Plastome phylogenomic analyses based on 78 Asteraceae species and three outgroups revealed four groups, corresponding to four Asteraceae subfamilies: Asteroideae, Cichorioideae, Pertyoideae and Carduoideae. Among these four subfamilies, Pertyoideae is sister to Asteroideae + Cichorioideae; Carduoideae is the most basal clade. In addition, we characterized 13 simple sequence repeats (SSRs) that may be useful in future studies on population genetics.
Collapse
Affiliation(s)
- Nan Lin
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Deng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Jianwen Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Aiping Meng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yanxia Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| |
Collapse
|