1
|
White KH, Keepers K, Kane N, Lendemer JC. Discovery of New Genomic Configuration of Mating-Type Loci in the Largest Lineage of Lichen-Forming Fungi. Genome Biol Evol 2024; 16:evae094. [PMID: 38686438 PMCID: PMC11126327 DOI: 10.1093/gbe/evae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
The genetic architecture of mating-type loci in lichen-forming fungi has been characterized in very few taxa. Despite the limited data, and in contrast to all other major fungal lineages, arrangements that have both mating-type alleles in a single haploid genome have been hypothesized to be absent from the largest lineage of lichen-forming fungi, the Lecanoromycetes. We report the discovery of both mating-type alleles from the haploid genomes of three species within this group. Our results demonstrate that Lecanoromycetes are not an outlier among Ascomycetes.
Collapse
Affiliation(s)
- Kristin H White
- Department of Ecology and Evolution, University of Colorado, Boulder, CO 80309, USA
| | - Kyle Keepers
- Department of Ecology and Evolution, University of Colorado, Boulder, CO 80309, USA
| | - Nolan Kane
- Department of Ecology and Evolution, University of Colorado, Boulder, CO 80309, USA
| | - James C Lendemer
- Department of Botany, Research and Collections, CEC 3148, The New York State Museum, Albany, NY 12230, USA
| |
Collapse
|
2
|
Cohen AB, Cai G, Price DC, Molnar TJ, Zhang N, Hillman BI. The massive 340 megabase genome of Anisogramma anomala, a biotrophic ascomycete that causes eastern filbert blight of hazelnut. BMC Genomics 2024; 25:347. [PMID: 38580927 PMCID: PMC10998396 DOI: 10.1186/s12864-024-10198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 03/07/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND The ascomycete fungus Anisogramma anomala causes Eastern Filbert Blight (EFB) on hazelnut (Corylus spp.) trees. It is a minor disease on its native host, the American hazelnut (C. americana), but is highly destructive on the commercially important European hazelnut (C. avellana). In North America, EFB has historically limited commercial production of hazelnut to west of the Rocky Mountains. A. anomala is an obligately biotrophic fungus that has not been grown in continuous culture, rendering its study challenging. There is a 15-month latency before symptoms appear on infected hazelnut trees, and only a sexual reproductive stage has been observed. Here we report the sequencing, annotation, and characterization of its genome. RESULTS The genome of A. anomala was assembled into 108 scaffolds totaling 342,498,352 nt with a GC content of 34.46%. Scaffold N50 was 33.3 Mb and L50 was 5. Nineteen scaffolds with lengths over 1 Mb constituted 99% of the assembly. Telomere sequences were identified on both ends of two scaffolds and on one end of another 10 scaffolds. Flow cytometry estimated the genome size of A. anomala at 370 Mb. The genome exhibits two-speed evolution, with 93% of the assembly as AT-rich regions (32.9% GC) and the other 7% as GC-rich (57.1% GC). The AT-rich regions consist predominantly of repeats with low gene content, while 90% of predicted protein coding genes were identified in GC-rich regions. Copia-like retrotransposons accounted for more than half of the genome. Evidence of repeat-induced point mutation (RIP) was identified throughout the AT-rich regions, and two copies of the rid gene and one of dim-2, the key genes in the RIP mutation pathway, were identified in the genome. Consistent with its homothallic sexual reproduction cycle, both MAT1-1 and MAT1-2 idiomorphs were found. We identified a large suite of genes likely involved in pathogenicity, including 614 carbohydrate active enzymes, 762 secreted proteins and 165 effectors. CONCLUSIONS This study reveals the genomic structure, composition, and putative gene function of the important pathogen A. anomala. It provides insight into the molecular basis of the pathogen's life cycle and a solid foundation for studying EFB.
Collapse
Affiliation(s)
- Alanna B Cohen
- Department of Plant Biology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Graduate Program in Microbial Biology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Guohong Cai
- Crop Production and Pest Control Research Unit, USDA-ARS, West Lafayette, IN, 47907, USA.
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Dana C Price
- Department of Entomology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Center for Vector Biology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Thomas J Molnar
- Department of Plant Biology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Ning Zhang
- Department of Plant Biology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Graduate Program in Microbial Biology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Biochemistry and Microbiology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Bradley I Hillman
- Department of Plant Biology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Graduate Program in Microbial Biology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
3
|
Wilken PM, Lane FA, Steenkamp ET, Wingfield MJ, Wingfield BD. Unidirectional mating-type switching is underpinned by a conserved MAT1 locus architecture. Fungal Genet Biol 2024; 170:103859. [PMID: 38114017 DOI: 10.1016/j.fgb.2023.103859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Unidirectional mating-type switching is a form of homothallic reproduction known only in a small number of filamentous ascomycetes. Their ascospores can give rise to either self-sterile isolates that require compatible partners for subsequent sexual reproduction, or self-fertile individuals capable of completing this process in isolation. The limited studies previously conducted in these fungi suggest that the differences in mating specificity are determined by the architecture of the MAT1 locus. In self-fertile isolates that have not undergone unidirectional mating-type switching, the locus contains both MAT1-1 and MAT1-2 mating-type genes, typical of primary homothallism. In the self-sterile isolates produced after a switching event, the MAT1-2 genes are lacking from the locus, likely due to a recombination-mediated deletion of the MAT1-2 gene information. To determine whether these arrangements of the MAT1 locus support unidirectional mating-type switching in the Ceratocystidaceae, the largest known fungal assemblage capable of this reproduction strategy, a combination of genetic and genomic approaches were used. The MAT1 locus was annotated in representative species of Ceratocystis, Endoconidiophora, and Davidsoniella. In all cases, MAT1-2 genes interrupted the MAT1-1-1 gene in self-fertile isolates. The MAT1-2 genes were flanked by two copies of a direct repeat that accurately predicted the boundaries of the deletion event that would yield the MAT1 locus of self-sterile isolates. Although the relative position of the MAT1-2 gene region differed among species, it always disrupted the MAT1-1-1 gene and/or its expression in the self-fertile MAT1 locus. Following switching, this gene and/or its expression was restored in the self-sterile arrangement of the locus. This mirrors what has been reported in other species capable of unidirectional mating-type switching, providing the strongest support for a conserved MAT1 locus structure that is associated with this process. This study contributes to our understanding of the evolution of unidirectional mating-type switching.
Collapse
Affiliation(s)
- P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa.
| | - Frances A Lane
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| |
Collapse
|
4
|
Wilson AM, Coetzee MPA, Wingfield MJ, Wingfield BD. Needles in fungal haystacks: Discovery of a putative a-factor pheromone and a unique mating strategy in the Leotiomycetes. PLoS One 2023; 18:e0292619. [PMID: 37824487 PMCID: PMC10569646 DOI: 10.1371/journal.pone.0292619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
The Leotiomycetes is a hugely diverse group of fungi, accommodating a wide variety of important plant and animal pathogens, ericoid mycorrhizal fungi, as well as producers of antibiotics. Despite their importance, the genetics of these fungi remain relatively understudied, particularly as they don't include model taxa. For example, sexual reproduction and the genetic mechanisms that underly this process are poorly understood in the Leotiomycetes. We exploited publicly available genomic and transcriptomic resources to identify genes of the mating-type locus and pheromone response pathway in an effort to characterize the mating strategies and behaviors of 124 Leotiomycete species. Our analyses identified a putative a-factor mating pheromone in these species. This significant finding represents the first identification of this gene in Pezizomycotina species outside of the Sordariomycetes. A unique mating strategy was also discovered in Lachnellula species that appear to have lost the need for the primary MAT1-1-1 protein. Ancestral state reconstruction enabled the identification of numerous transitions between homothallism and heterothallism in the Leotiomycetes and suggests a heterothallic ancestor for this group. This comprehensive catalog of mating-related genes from such a large group of fungi provides a rich resource from which in-depth, functional studies can be conducted in these economically and ecologically important species.
Collapse
Affiliation(s)
- Andi M. Wilson
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Martin P. A. Coetzee
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Brenda D. Wingfield
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Wilson AM, Wingfield MJ, Wingfield BD. Structure and number of mating pheromone genes is closely linked to sexual reproductive strategy in Huntiella. BMC Genomics 2023; 24:261. [PMID: 37179314 PMCID: PMC10182648 DOI: 10.1186/s12864-023-09355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Huntiella resides in the Ceratocystidaceae, a family of fungi that accommodates important plant pathogens and insect-associated saprotrophs. Species in the genus have either heterothallic or unisexual (a form of homothallism) mating systems, providing an opportunity to investigate the genetic mechanisms that enable transitions between reproductive strategies in related species. Two newly sequenced Huntiella genomes are introduced in this study and comparative genomics and transcriptomics tools are used to investigate the differences between heterothallism and unisexuality across the genus. RESULTS Heterothallic species harbored up to seven copies of the a-factor pheromone, each of which possessed numerous mature peptide repeats. In comparison, unisexual Huntiella species had only two or three copies of this gene, each with fewer repeats. Similarly, while the heterothallic species expressed up to 12 copies of the mature α-factor pheromone, unisexual species had up to six copies. These significant differences imply that unisexual Huntiella species do not rely on a mating partner recognition system in the same way that heterothallic fungi do. CONCLUSION While it is suspected that mating type-independent pheromone expression is the mechanism allowing for unisexual reproduction in Huntiella species, our results suggest that the transition to unisexuality may also have been associated with changes in the genes governing the pheromone pathway. While these results are specifically related to Huntiella, they provide clues leading to a better understanding of sexual reproduction and the fluidity of mating strategies in fungi more broadly.
Collapse
Affiliation(s)
- Andi M Wilson
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa.
| | - Michael J Wingfield
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| | - Brenda D Wingfield
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| |
Collapse
|
6
|
Choi YJ, Jung S, Eom H, Hoang T, Han HG, Kim S, Ro HS. Structural Analysis of the A Mating Type Locus and Development of the Mating Type Marker of Agaricus bisporus var. bisporus. J Fungi (Basel) 2023; 9:jof9030284. [PMID: 36983452 PMCID: PMC10051438 DOI: 10.3390/jof9030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Karyotyping in Agaricus bisporus is crucial for both the isolation of homokaryotic strains and the confirmation of dikaryon establishment. For the verification of the karyotype, the A mating type loci of two homokaryotic strains, H39 and H97, were analyzed through comparative sequence analysis. The two loci showed major differences in two sequence regions designated as Region 1 and Region 2. H97 had a putative DNA transposon in Region 1 that had target site duplications (TSDs), terminal inverted repeats (TIRs), and a loop sequence, in contrast to H39, which only had the insertional target sequence. Homologous sequences of the transposon were discovered in the two different chromosomes of H97 and in one of H39, all of which have different TSDs but share high sequence homology in TIR. Region 2 shared three consensus sequences between H97 and H39. However, it was only from H97 that a large insertional sequence of unknown origin was discovered between the first and second consensus sequences. The difference in length in Region 1, employed for the verification of the A mating type, resulted in the successful verification of mating types in the heterokaryotic and homokaryotic strains. This length difference enables the discrimination between homo- and heterokaryotic spores by PCR. The present study suggests that the A mating type locus in A. bisporus H97 has evolved through transposon insertion, allowing the discrimination of the mating type, and thus the nuclear type, between A. bisporus H97 and H39.
Collapse
|
7
|
Vittorelli N, Rodríguez de la Vega RC, Snirc A, Levert E, Gautier V, Lalanne C, De Filippo E, Gladieux P, Guillou S, Zhang Y, Tejomurthula S, Grigoriev IV, Debuchy R, Silar P, Giraud T, Hartmann FE. Stepwise recombination suppression around the mating-type locus in an ascomycete fungus with self-fertile spores. PLoS Genet 2023; 19:e1010347. [PMID: 36763677 PMCID: PMC9949647 DOI: 10.1371/journal.pgen.1010347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/23/2023] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Recombination is often suppressed at sex-determining loci in plants and animals, and at self-incompatibility or mating-type loci in plants and fungi. In fungal ascomycetes, recombination suppression around the mating-type locus is associated with pseudo-homothallism, i.e. the production of self-fertile dikaryotic sexual spores carrying the two opposite mating types. This has been well studied in two species complexes from different families of Sordariales: Podospora anserina and Neurospora tetrasperma. However, it is unclear whether this intriguing association holds in other species. We show here that Schizothecium tetrasporum, a fungus from a third family in the order Sordariales, also produces mostly self-fertile dikaryotic spores carrying the two opposite mating types. This was due to a high frequency of second meiotic division segregation at the mating-type locus, indicating the occurrence of a single and systematic crossing-over event between the mating-type locus and the centromere, as in P. anserina. The mating-type locus has the typical Sordariales organization, plus a MAT1-1-1 pseudogene in the MAT1-2 haplotype. High-quality genome assemblies of opposite mating types and segregation analyses revealed a suppression of recombination in a region of 1.47 Mb around the mating-type locus. We detected three evolutionary strata, indicating a stepwise extension of recombination suppression. The three strata displayed no rearrangement or transposable element accumulation but gene losses and gene disruptions were present, and precisely at the strata margins. Our findings indicate a convergent evolution of self-fertile dikaryotic sexual spores across multiple ascomycete fungi. The particular pattern of meiotic segregation at the mating-type locus was associated with recombination suppression around this locus, that had extended stepwise. This association between pseudo-homothallism and recombination suppression across lineages and the presence of gene disruption at the strata limits are consistent with a recently proposed mechanism of sheltering deleterious alleles to explain stepwise recombination suppression.
Collapse
Affiliation(s)
- Nina Vittorelli
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
- Département de Biologie, École Normale Supérieure, PSL Université Paris, Paris, France
| | | | - Alodie Snirc
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Emilie Levert
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Valérie Gautier
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Christophe Lalanne
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Elsa De Filippo
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Sonia Guillou
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Yu Zhang
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Sravanthi Tejomurthula
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Robert Debuchy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Philippe Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Tatiana Giraud
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Fanny E. Hartmann
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Passer AR, Clancey SA, Shea T, David-Palma M, Averette AF, Boekhout T, Porcel BM, Nowrousian M, Cuomo CA, Sun S, Heitman J, Coelho MA. Obligate sexual reproduction of a homothallic fungus closely related to the Cryptococcus pathogenic species complex. eLife 2022; 11:e79114. [PMID: 35713948 PMCID: PMC9296135 DOI: 10.7554/elife.79114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
Fungi are enigmatic organisms that flourish in soil, on decaying plants, or during infection of animals or plants. Growing in myriad forms, from single-celled yeast to multicellular molds and mushrooms, fungi have also evolved a variety of strategies to reproduce. Normally, fungi reproduce in one of two ways: either they reproduce asexually, with one individual producing a new individual identical to itself, or they reproduce sexually, with two individuals of different 'mating types' contributing to produce a new individual. However, individuals of some species exhibit 'homothallism' or self-fertility: these individuals can produce reproductive cells that are universally compatible, and therefore can reproduce sexually with themselves or with any other cell in the population. Homothallism has evolved multiple times throughout the fungal kingdom, suggesting it confers advantage when population numbers are low or mates are hard to find. Yet some homothallic fungi been overlooked compared to heterothallic species, whose mating types have been well characterised. Understanding the genetic basis of homothallism and how it evolved in different species can provide insights into pathogenic species that cause fungal disease. With that in mind, Passer, Clancey et al. explored the genetic basis of homothallism in Cryptococcus depauperatus, a close relative of C. neoformans, a species that causes fungal infections in humans. A combination of genetic sequencing techniques and experiments were applied to analyse, compare, and manipulate C. depauperatus' genome to see how this species evolved self-fertility. Passer, Clancey et al. showed that C. depauperatus evolved the ability to reproduce sexually by itself via a unique evolutionary pathway. The result is a form of homothallism never reported in fungi before. C. depauperatus lost some of the genes that control mating in other species of fungi, and acquired genes from the opposing mating types of a heterothallic ancestor to become self-fertile. Passer, Clancey et al. also found that, unlike other Cryptococcus species that switch between asexual and sexual reproduction, C. depauperatus grows only as long, branching filaments called hyphae, a sexual form. The species reproduces sexually with itself throughout its life cycle and is unable to produce a yeast (asexual) form, in contrast to other closely related species. This work offers new insights into how different modes of sexual reproduction have evolved in fungi. It also provides another interesting case of how genome plasticity and evolutionary pressures can produce similar outcomes, homothallism, via different evolutionary paths. Lastly, assembling the complete genome of C. depauperatus will foster comparative studies between pathogenic and non-pathogenic Cryptococcus species.
Collapse
Affiliation(s)
- Andrew Ryan Passer
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Shelly Applen Clancey
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Terrance Shea
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity InstituteUtrechtNetherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of AmsterdamAmsterdamNetherlands
| | - Betina M Porcel
- Génomique Métabolique, CNRS, University Evry, Université Paris-SaclayEvryFrance
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität BochumBochumGermany
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
9
|
Onetto CA, Sosnowski MR, Van Den Heuvel S, Borneman AR. Population genomics of the grapevine pathogen Eutypa lata reveals evidence for population expansion and intraspecific differences in secondary metabolite gene clusters. PLoS Genet 2022; 18:e1010153. [PMID: 35363788 PMCID: PMC9007359 DOI: 10.1371/journal.pgen.1010153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/13/2022] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
Eutypa dieback of grapevine is an important disease caused by the generalist Ascomycete fungus Eutypa lata. Despite the relevance of this species to the global wine industry, its genomic diversity remains unknown, with only a single publicly available genome assembly. Whole-genome sequencing and comparative genomics was performed on forty Australian E. lata isolates to understand the genome evolution, adaptation, population size and structure of these isolates. Phylogenetic and linkage disequilibrium decay analyses provided evidence of extensive gene flow through sexual recombination between isolates obtained from different geographic locations and hosts. Investigation of the genetic diversity of these isolates suggested rapid population expansion, likely as a consequence of the recent growth of the Australian wine industry. Genomic regions affected by selective sweeps were shown to be enriched for genes associated with secondary metabolite clusters and included genes encoding proteins with a role in nutrient acquisition, degradation of host cell wall and metal and drug resistance, suggesting recent adaptation to both abiotic factors and potentially host genotypes. Genome synteny analysis using long-read genome assemblies showed significant intraspecific genomic plasticity with extensive chromosomal rearrangements impacting the secondary metabolite production potential of this species. Finally, k-mer based GWAS analysis identified a potential locus associated with mycelia recovery in canes of Vitis vinifera that will require further investigations. Eutypa dieback of grapevine, caused by the Ascomycete fungus Eutypa lata, is responsible for significant economic losses to the wine industry. Despite the worldwide prevalence of this pathogen, its genomic diversity remains unknown, with only a single publicly available genome assembly. This knowledge gap was addressed by performing whole-genome sequencing of 40 E. lata isolates sourced from different hosts and geographical locations around Australia. Investigation of the genetic diversity of this population showed a high degree of gene-flow and sexual recombination as well as demographic expansion. Through the inspection of signatures of selective sweeps, repeat-mediated chromosomal rearrangements, and pan-genomic elements, it was shown that this species has a highly dynamic secondary metabolite production potential that could have important implications for its pathogenicity and lifestyle. In addition, application of a k-mer based GWAS methodology, identified a potential locus associated with the growth of this species within canes of Vitis vinifera.
Collapse
Affiliation(s)
| | - Mark R. Sosnowski
- South Australian Research and Development Institute, Adelaide, Australia
- School of Wine, Food and Agriculture, The University of Adelaide, Adelaide, Australia
| | | | - Anthony R. Borneman
- The Australian Wine Research Institute, Adelaide, Australia
- School of Wine, Food and Agriculture, The University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
10
|
Yu C, Diao Y, Lu Q, Zhao J, Cui S, Xiong X, Lu A, Zhang X, Liu H. Comparative Genomics Reveals Evolutionary Traits, Mating Strategies, and Pathogenicity-Related Genes Variation of Botryosphaeriaceae. Front Microbiol 2022; 13:800981. [PMID: 35283828 PMCID: PMC8905617 DOI: 10.3389/fmicb.2022.800981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Botryosphaeriaceae, as a major family of the largest class of kingdom fungi Dothideomycetes, encompasses phytopathogens, saprobes, and endophytes. Many members of this family are opportunistic phytopathogens with a wide host range and worldwide geographical distribution, and can infect many economically important plants, including food crops and raw material plants for biofuel production. To date, however, little is known about the family evolutionary characterization, mating strategies, and pathogenicity-related genes variation from a comparative genome perspective. Here, we conducted a large-scale whole-genome comparison of 271 Dothideomycetes, including 19 species in Botryosphaeriaceae. The comparative genome analysis provided a clear classification of Botryosphaeriaceae in Dothideomycetes and indicated that the evolution of lifestyle within Dothideomycetes underwent four major transitions from non-phytopathogenic to phytopathogenic. Mating strategies analysis demonstrated that at least 3 transitions were found within Botryosphaeriaceae from heterothallism to homothallism. Additionally, pathogenicity-related genes contents in different genera varied greatly, indicative of genus-lineage expansion within Botryosphaeriaceae. These findings shed new light on evolutionary traits, mating strategies and pathogenicity-related genes variation of Botryosphaeriaceae.
Collapse
Affiliation(s)
- Chengming Yu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Yufei Diao
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Quan Lu
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Jiaping Zhao
- Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, China
| | - Shengnan Cui
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Xiong Xiong
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Anna Lu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Xingyao Zhang
- Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, China
| | - Huixiang Liu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Taian, China
| |
Collapse
|
11
|
Nagel JH, Wingfield MJ, Slippers B. Next-generation sequencing provides important insights into the biology and evolution of the Botryosphaeriaceae. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Dauphin B, de Freitas Pereira M, Kohler A, Grigoriev IV, Barry K, Na H, Amirebrahimi M, Lipzen A, Martin F, Peter M, Croll D. Cryptic genetic structure and copy-number variation in the ubiquitous forest symbiotic fungus Cenococcum geophilum. Environ Microbiol 2021; 23:6536-6556. [PMID: 34472169 PMCID: PMC9293092 DOI: 10.1111/1462-2920.15752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023]
Abstract
Ectomycorrhizal (ECM) fungi associated with plants constitute one of the most successful symbiotic interactions in forest ecosystems. ECM support trophic exchanges with host plants and are important factors for the survival and stress resilience of trees. However, ECM clades often harbour morpho-species and cryptic lineages, with weak morphological differentiation. How this relates to intraspecific genome variability and ecological functioning is poorly known. Here, we analysed 16 European isolates of the ascomycete Cenococcum geophilum, an extremely ubiquitous forest symbiotic fungus with no known sexual or asexual spore-forming structures but with a massively enlarged genome. We carried out whole-genome sequencing to identify single-nucleotide polymorphisms. We found no geographic structure at the European scale but divergent lineages within sampling sites. Evidence for recombination was restricted to specific cryptic lineages. Lineage differentiation was supported by extensive copy-number variation. Finally, we confirmed heterothallism with a single MAT1 idiomorph per genome. Synteny analyses of the MAT1 locus revealed substantial rearrangements and a pseudogene of the opposite MAT1 idiomorph. Our study provides the first evidence for substantial genome-wide structural variation, lineage-specific recombination and low continent-wide genetic differentiation in C. geophilum. Our study provides a foundation for targeted analyses of intra-specific functional variation in this major symbiosis.
Collapse
Affiliation(s)
| | - Maíra de Freitas Pereira
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.,INRAE, UMR 1136 INRAE-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE-Grand Est, Champenoux, France
| | - Annegret Kohler
- INRAE, UMR 1136 INRAE-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE-Grand Est, Champenoux, France
| | - Igor V Grigoriev
- Department of Plant and Microbial Biology, University of California, Berkeley, USA.,U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Hyunsoo Na
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Mojgan Amirebrahimi
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Francis Martin
- INRAE, UMR 1136 INRAE-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE-Grand Est, Champenoux, France
| | - Martina Peter
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
13
|
Elfstrand M, Chen J, Cleary M, Halecker S, Ihrmark K, Karlsson M, Davydenko K, Stenlid J, Stadler M, Durling MB. Comparative analyses of the Hymenoscyphus fraxineus and Hymenoscyphus albidus genomes reveals potentially adaptive differences in secondary metabolite and transposable element repertoires. BMC Genomics 2021; 22:503. [PMID: 34217229 PMCID: PMC8254937 DOI: 10.1186/s12864-021-07837-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/24/2021] [Indexed: 11/29/2022] Open
Abstract
Background The dieback epidemic decimating common ash (Fraxinus excelsior) in Europe is caused by the invasive fungus Hymenoscyphus fraxineus. In this study we analyzed the genomes of H. fraxineus and H. albidus, its native but, now essentially displaced, non-pathogenic sister species, and compared them with several other members of Helotiales. The focus of the analyses was to identify signals in the genome that may explain the rapid establishment of H. fraxineus and displacement of H. albidus. Results The genomes of H. fraxineus and H. albidus showed a high level of synteny and identity. The assembly of H. fraxineus is 13 Mb longer than that of H. albidus’, most of this difference can be attributed to higher dispersed repeat content (i.e. transposable elements [TEs]) in H. fraxineus. In general, TE families in H. fraxineus showed more signals of repeat-induced point mutations (RIP) than in H. albidus, especially in Long-terminal repeat (LTR)/Copia and LTR/Gypsy elements. Comparing gene family expansions and 1:1 orthologs, relatively few genes show signs of positive selection between species. However, several of those did appeared to be associated with secondary metabolite genes families, including gene families containing two of the genes in the H. fraxineus-specific, hymenosetin biosynthetic gene cluster (BGC). Conclusion The genomes of H. fraxineus and H. albidus show a high degree of synteny, and are rich in both TEs and BGCs, but the genomic signatures also indicated that H. albidus may be less well equipped to adapt and maintain its ecological niche in a rapidly changing environment. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07837-2.
Collapse
Affiliation(s)
- Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7026, SE-750 07, Uppsala, Sweden.
| | - Jun Chen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7026, SE-750 07, Uppsala, Sweden.,Systematic & Evolutionary Botany and Biodiversity group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Michelle Cleary
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, Box 49, SE-230 53, Alnarp, Sweden
| | - Sandra Halecker
- Dept. Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124, Braunschweig, Germany
| | - Katarina Ihrmark
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7026, SE-750 07, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7026, SE-750 07, Uppsala, Sweden
| | - Kateryna Davydenko
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7026, SE-750 07, Uppsala, Sweden.,Ukrainian research Institute of Forestry and Forest Melioration, 62458, Kharkov, Ukraine
| | - Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7026, SE-750 07, Uppsala, Sweden
| | - Marc Stadler
- Dept. Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124, Braunschweig, Germany
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7026, SE-750 07, Uppsala, Sweden
| |
Collapse
|
14
|
Ament-Velásquez SL, Tuovinen V, Bergström L, Spribille T, Vanderpool D, Nascimbene J, Yamamoto Y, Thor G, Johannesson H. The Plot Thickens: Haploid and Triploid-Like Thalli, Hybridization, and Biased Mating Type Ratios in Letharia. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:656386. [PMID: 37744149 PMCID: PMC10512270 DOI: 10.3389/ffunb.2021.656386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/24/2021] [Indexed: 09/26/2023]
Abstract
The study of the reproductive biology of lichen fungal symbionts has been traditionally challenging due to their complex lifestyles. Against the common belief of haploidy, a recent genomic study found a triploid-like signal in Letharia. Here, we infer the genome organization and reproduction in Letharia by analyzing genomic data from a pure culture and from thalli, and performing a PCR survey of the MAT locus in natural populations. We found that the read count variation in the four Letharia specimens, including the pure culture derived from a single sexual spore of L. lupina, is consistent with haploidy. By contrast, the L. lupina read counts from a thallus' metagenome are triploid-like. Characterization of the mating-type locus revealed a conserved heterothallic configuration across the genus, along with auxiliary genes that we identified. We found that the mating-type distributions are balanced in North America for L. vulpina and L. lupina, suggesting widespread sexual reproduction, but highly skewed in Europe for L. vulpina, consistent with predominant asexuality. Taken together, we propose that Letharia fungi are heterothallic and typically haploid, and provide evidence that triploid-like individuals are hybrids between L. lupina and an unknown Letharia lineage, reconciling classic systematic and genetic studies with recent genomic observations.
Collapse
Affiliation(s)
| | - Veera Tuovinen
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Linnea Bergström
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Toby Spribille
- Biological Sciences CW 405, University of Alberta, Edmonton, AB, Canada
| | - Dan Vanderpool
- Department of Biology, Indiana University, Bloomington, IN, United States
| | - Juri Nascimbene
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Yoshikazu Yamamoto
- Department of Bioproduction Science, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Göran Thor
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
|
16
|
Mateus ID, Rojas EC, Savary R, Dupuis C, Masclaux FG, Aletti C, Sanders IR. Coexistence of genetically different Rhizophagus irregularis isolates induces genes involved in a putative fungal mating response. THE ISME JOURNAL 2020; 14:2381-2394. [PMID: 32514118 PMCID: PMC7490403 DOI: 10.1038/s41396-020-0694-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/16/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are of great ecological importance because of their effects on plant growth. Closely related genotypes of the same AMF species coexist in plant roots. However, almost nothing is known about the molecular interactions occurring during such coexistence. We compared in planta AMF gene transcription in single and coinoculation treatments with two genetically different isolates of Rhizophagus irregularis in symbiosis independently on three genetically different cassava genotypes. Remarkably few genes were specifically upregulated when the two fungi coexisted. Strikingly, almost all of the genes with an identifiable putative function were known to be involved in mating in other fungal species. Several genes were consistent across host plant genotypes but more upregulated genes involved in putative mating were observed in host genotype (COL2215) compared with the two other host genotypes. The AMF genes that we observed to be specifically upregulated during coexistence were either involved in the mating pheromone response, in meiosis, sexual sporulation or were homologs of MAT-locus genes known in other fungal species. We did not observe the upregulation of the expected homeodomain genes contained in a putative AMF MAT-locus, but observed upregulation of HMG-box genes similar to those known to be involved in mating in Mucoromycotina species. Finally, we demonstrated that coexistence between the two fungal genotypes in the coinoculation treatments explained the number of putative mating response genes activated in the different plant host genotypes. This study demonstrates experimentally the activation of genes involved in a putative mating response and represents an important step towards the understanding of coexistence and sexual reproduction in these important plant symbionts.
Collapse
Affiliation(s)
- Ivan D Mateus
- Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland.
| | - Edward C Rojas
- Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland
| | - Romain Savary
- Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland
| | - Cindy Dupuis
- Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland
| | - Frédéric G Masclaux
- Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland
| | - Consolée Aletti
- Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland
| | - Ian R Sanders
- Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland.
| |
Collapse
|
17
|
Gupta S, Paul K, Kaur S. Diverse species in the genus Cryptococcus: Pathogens and their non-pathogenic ancestors. IUBMB Life 2020; 72:2303-2312. [PMID: 32897638 DOI: 10.1002/iub.2377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/14/2022]
Abstract
The genus Cryptococcus comprises of more than 30 species. It consists of clinically significant pathogenic Cryptococcus neoformans/Cryptococcus gattii species complex comprising of a minimum of seven species. These pathogens cost more than 200,000 lives annually by causing cryptococcal meningoencephalitis. The evolution of the pathogenic species from closely related non-pathogenic species of the Cryptococcus amylolentus complex is of particular importance and several advances have been made to understand their phylogenetic and genomic relationships. The current review briefly describes the sexual reproduction process followed by an individual description of the members focusing on their key attributes and virulence mechanisms of the pathogenic species. A special section on phylogenetic studies is aimed at understanding the evolutionary divergence of pathogens from non-pathogens. Recent findings from our group pertaining to parameters affecting codon usage bias in six pathogenic and three non-pathogenic ancestral species and their corroboration with existing phylogenetic reports are also included in the current review.
Collapse
Affiliation(s)
- Shelly Gupta
- Department of Biochemistry, Lovely Professional University, Kapurthala, India
| | - Karan Paul
- Department of Biochemistry, DAV University, Jalandhar, India
| | - Sukhmanjot Kaur
- Department of Biochemistry, Lovely Professional University, Kapurthala, India
| |
Collapse
|
18
|
Hosseini S, Meunier C, Nguyen D, Reimegård J, Johannesson H. Comparative analysis of genome-wide DNA methylation in Neurospora. Epigenetics 2020; 15:972-987. [PMID: 32228351 PMCID: PMC7518705 DOI: 10.1080/15592294.2020.1741758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
DNA methylation is an epigenetic mark that plays an important role in genetic regulation in eukaryotes. Major progress has been made in dissecting the molecular pathways that regulate DNA methylation. Yet, little is known about DNA methylation variation over evolutionary time. Here we present an investigation of the variation of DNA methylation and transposable element (TE) content in species of the filamentous ascomycetes Neurospora. We generated genome-wide DNA methylation data at single-base resolution, together with genomic TE content and gene expression data, of 10 individuals representing five closely related Neurospora species. We found that the methylation levels were low (ranging from 1.3% to 2.5%) and varied among the genomes in a species-specific way. Furthermore, we found that the TEs over 400 bp long were targeted by DNA methylation, and in all genomes, high methylation correlated with low GC, confirming a conserved link between DNA methylation and Repeat Induced Point (RIP) mutations in this group of fungi. Both TE content and DNA methylation pattern showed phylogenetic signal, and the species with the highest TE load (N. crassa) also exhibited the highest methylation level per TE. Our results suggest that DNA methylation is an evolvable trait and indicate that the genomes of Neurospora are shaped by an evolutionary arms race between TEs and host defence.
Collapse
Affiliation(s)
- Sara Hosseini
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Cécile Meunier
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department ECOBIO, UMR CNRS 6553, Université Rennes 1, Rennes, France
| | - Diem Nguyen
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Johan Reimegård
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Petters-Vandresen DAL, Rossi BJ, Groenewald JZ, Crous PW, Machado MA, Stukenbrock EH, Glienke C. Mating-type locus rearrangements and shifts in thallism states in Citrus-associated Phyllosticta species. Fungal Genet Biol 2020; 144:103444. [PMID: 32822858 DOI: 10.1016/j.fgb.2020.103444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/15/2022]
Abstract
Currently, eight Phyllosticta species are known to be associated with several Citrus hosts, incorporating diverse lifestyles: while some of them are endophytic (P. capitalensis and P. citribraziliensis), others are pathogenic (P. citriasiana, P. citricarpa, P. citrichinaensis and P. paracitricarpa). Sexual reproduction plays a key role in the interaction between these Phyllosticta species and their Citrus hosts, especially for the spread and persistence of the pathogenic species in the environment. Given this, differences in sexual reproduction strategies could be related to the differences in lifestyles. To evaluate this hypothesis, we characterized the mating-type loci of six Citrus-associated Phyllosticta species from whole genome assemblies. Mating-type genes in the Citrus-associated Phyllosticta species are highly variable in their sequence content, but the genomic locations and organization of the mating-type loci are conserved. Phyllosticta citriasiana, P. citribraziliensis, P. citricarpa and P. paracitricarpa are heterothallic, while P. capitalensis and P. citrichinaensis are homothallic. In addition, the P. citrichinaensis MAT1-2 idiomorph occurs in a separate location from the mating-type locus. Ancestral state reconstruction suggests that homothallism is the ancestral thallism state in Phyllosticta, with a shift to heterothallism in Phyllosticta species that are pathogenic to Citrus. Moreover, the homothallic strategies of P. capitalensis and P. citrichinaensis result from independent evolutionary events, as P. capitalensis locus likely represents the ancestral state, and P. citrichinaensis homothallism has risen through a reversion in a heterothallic ancestor and underwent remodelling events. As the pathogenic species P. citriasiana, P. citricarpa and P. paracitricarpa are heterothallic and incapable of selfing, disease management practices focused in preventing the occurrence of sexual reproduction could assist in the control of Citrus Black Spot and Citrus Tan Spot diseases. This study emphasizes the importance of studying Citrus-Phyllosticta interactions under evolutionary and genomic perspectives, as these approaches can provide valuable information about the association between Phyllosticta species and their hosts, and also serve as guidance for the improvement of disease management practices.
Collapse
Affiliation(s)
- Desirrê Alexia Lourenço Petters-Vandresen
- Laboratório de Bioprospecção e Genética Molecular de Microrganismos, Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil; Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Bruno Janoski Rossi
- Laboratório de Bioprospecção e Genética Molecular de Microrganismos, Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | | | - Pedro W Crous
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | | | - Eva H Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany; Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Chirlei Glienke
- Laboratório de Bioprospecção e Genética Molecular de Microrganismos, Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil.
| |
Collapse
|
20
|
Yong M, Yu J, Pan X, Yu M, Cao H, Qi Z, Du Y, Zhang R, Song T, Yin X, Chen Z, Liu W, Liu Y. MAT1-1-3, a Mating Type Gene in the Villosiclava virens, Is Required for Fruiting Bodies and Sclerotia Formation, Asexual Development and Pathogenicity. Front Microbiol 2020; 11:1337. [PMID: 32714294 PMCID: PMC7344243 DOI: 10.3389/fmicb.2020.01337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/25/2020] [Indexed: 12/29/2022] Open
Abstract
Villosiclava virens is the prevalent causative pathogen of rice false smut, a destructive rice disease. Mating-type genes play a vital role in the evolution of mating systems in fungi. Some fungi have lost MAT1-1-3, one of the mating-type genes, during evolution, whereas others still retain MAT1-1-3. However, how MAT1-1-3 regulates the sexual development of heterothallic V. virens remains unknown. Here, we generated the MAT1-1-3 mutants, which exhibited defects in vegetative growth, stress response, pathogenicity, sclerotia formation and fruiting body maturation. An artificial outcrossing inoculation assay showed that the Δmat1-1-3 mutant was unable to produce sclerotia. Unexpectedly, the Δmat1-1-3 mutant could form immature fruiting bodies without mating on potato sucrose agar medium (PSA) compared with the wild-type strain, most likely by activating the truncated MAT1-2-1 transcription to regulate the sexual development. Moreover, RNA-seq data showed that knockout of MAT1-1-3 results in misregulation of a subset of genes involved in sexual development, MAPK signaling, cell wall integrity, autophagy, epigenetic modification, and transcriptional regulation. Collectively, this study reveals that MAT1-1-3 is required for asexual and sexual development, and pathogenicity of V. virens, thereby provides new insights into the function of mating-type genes in the fungi life cycle and infection process.
Collapse
Affiliation(s)
- Mingli Yong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaole Yin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhiyi Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
21
|
Gargouri S, Balmas V, Burgess L, Paulitz T, Laraba I, Kim HS, Proctor RH, Busman M, Felker FC, Murray T, O'Donnell K. An endophyte of Macrochloa tenacissima (esparto or needle grass) from Tunisia is a novel species in the Fusarium redolens species complex. Mycologia 2020; 112:792-807. [PMID: 32552568 DOI: 10.1080/00275514.2020.1767493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we report on the morphological, molecular, and chemical characterization of a novel Fusarium species recovered from the roots and rhizosphere of Macrochloa tenacissima (halfa, esparto, or needle grass) in central Tunisia. Formally described here as F. spartum, this species is a member of the Fusarium redolens species complex but differs from the other two species within the complex, F. redolens and F. hostae, by its endophytic association with M. tenacissima and its genealogical exclusivity based on multilocus phylogenetic analyses. To assess their sexual reproductive mode, a polymerase chain reaction (PCR) assay was designed and used to screen the three strains of F. spartum, 51 of F. redolens, and 14 of F. hostae for mating type (MAT) idiomorph. Genetic architecture of the MAT locus in the former two species suggests that if they reproduce sexually, it is via obligate outcrossing. By comparison, results of the PCR assay indicated that 13/14 of the F. hostae strains possessed MAT1-1 and MAT1-2 idiomorphs and thus might be self-fertile or homothallic. However, when the F. hostae strains were selfed, 11 failed to produce perithecia and one only produced several small abortive perithecia. Cirrhi with ascospores, however, were only produced by 8/28 and 4/84 of the variable size perithecia, respectively, of F. hostae NRRL 29888 and 29890. The potential for the three F. redolens clade species to produce mycotoxins, pigments, and phytohormones was assessed by screening whole genome sequence data and by analyzing extracts on cracked maize kernel cultures via liquid chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Samia Gargouri
- Laboratoire de Protection des végétaux, Institut National de la Recherche Agronomique de Tunisie, Université de Carthage , Tunis, Tunisia
| | - Virgilio Balmas
- Dipartimento di Agraria, Università degli Studi di Sassari , Sassari, Italy
| | - Lester Burgess
- Sydney Institute of Agriculture, Faculty of Science, University of Sydney , Sydney, 2006, Australia
| | - Timothy Paulitz
- Wheat Health, Genetics and Quality Research Unit, Agricultural Research Service , US Department of Agriculture, Pullman, Washington 99164-6430
| | - Imane Laraba
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service , US Department of Agriculture, Peoria, Illinois 61604-3999
| | - Hye-Seon Kim
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service , US Department of Agriculture, Peoria, Illinois 61604-3999
| | - Robert H Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service , US Department of Agriculture, Peoria, Illinois 61604-3999
| | - Mark Busman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service , US Department of Agriculture, Peoria, Illinois 61604-3999
| | - Frederick C Felker
- Functional Food Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service , US Department of Agriculture, Peoria, Illinois 61604-3999
| | - Timothy Murray
- Department of Plant Pathology, Washington State University , Pullman, Washington 99164-6430
| | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service , US Department of Agriculture, Peoria, Illinois 61604-3999
| |
Collapse
|
22
|
Mating genes in Calonectria and evidence for a heterothallic ancestral state. Persoonia - Molecular Phylogeny and Evolution of Fungi 2020; 45:163-176. [PMID: 34456375 PMCID: PMC8375350 DOI: 10.3767/persoonia.2020.45.06] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/14/2020] [Indexed: 11/25/2022]
Abstract
The genus Calonectria includes many important plant pathogens with a wide global distribution. In order to better understand the reproductive biology of these fungi, we characterised the structure of the mating type locus and flanking genes using the genome sequences for seven Calonectria species. Primers to amplify the mating type genes in other species were also developed. PCR amplification of the mating type genes and multi-gene phylogenetic analyses were used to investigate the mating strategies and evolution of mating type in a collection of 70 Calonectria species residing in 10 Calonectria species complexes. Results showed that the organisation of the MAT locus and flanking genes is conserved. In heterothallic species, a novel MAT gene, MAT1-2-12 was identified in the MAT1-2 idiomorph; the MAT1-1 idiomorph, in most cases, contained the MAT1-1-3 gene. Neither MAT1-1-3 nor MAT1-2-12 was found in homothallic Calonectria (Ca.) hongkongensis, Ca. lateralis, Ca. pseudoturangicola and Ca. turangicola. Four different homothallic MAT locus gene arrangements were observed. Ancestral state reconstruction analysis provided evidence that the homothallic state was basal in Calonectria and this evolved from a heterothallic ancestor.
Collapse
|
23
|
Du XH, Wu D, Kang H, Wang H, Xu N, Li T, Chen K. Heterothallism and potential hybridization events inferred for twenty-two yellow morel species. IMA Fungus 2020; 11:4. [PMID: 32617256 PMCID: PMC7325075 DOI: 10.1186/s43008-020-0027-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/06/2020] [Indexed: 01/22/2023] Open
Abstract
Mating-type genes are central to sexual reproduction in ascomycete fungi and result in the establishment of reproductive barriers. Together with hybridization, they both play important roles in the evolution of fungi. Recently, potential hybridization events and MAT genes were separately found in the Elata Clade of Morchella. Herein, we characterized the MAT1-1-1 and MAT1-2-1 genes of twenty-two species in the Esculenta Clade, another main group in the genus Morchella, and proved heterothallism to be the predominant mating strategy among the twenty-two species tested. Ascospores of these species were multi-nuclear and had many mitochondrial nucleoids. The number of ascospore nuclei might be positively related with the species distribution range. Phylogenetic analyses of MAT1-1-1, MAT1-2-1, intergenic spacer (IGS), and partial histone acetyltransferase ELP3 (F1) were performed and compared with the species phylogeny framework derived from the ribosomal internal transcribed spacer region (ITS) and translation elongation factor 1-alpha (EF1-a) to evaluate their species delimitation ability and investigate potential hybridization events. Conflicting topologies among these genes genealogies and the species phylogeny were revealed and hybridization events were detected between several species. Different evolutionary patterns were suggested for MAT genes between the Esculenta and the Elata Clades. Complex evolutionary trajectories of MAT1-1-1, MAT1-2-1, F1 and IGS in the Esculenta Clade were highlighted. These findings contribute to a better understanding of the importance of hybridization and gene transfer in Morchella and especially for the appearance of reproductive modes during its evolutionary process.
Collapse
Affiliation(s)
- Xi-Hui Du
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Dongmei Wu
- Biotechnology Research Institute, Xinjiang Academy Agricultural Reclamation of Sciences, Shihezi, 832000 China
| | - Heng Kang
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Hanchen Wang
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Nan Xu
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Tingting Li
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Keliang Chen
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| |
Collapse
|
24
|
Lütkenhaus R, Traeger S, Breuer J, Carreté L, Kuo A, Lipzen A, Pangilinan J, Dilworth D, Sandor L, Pöggeler S, Gabaldón T, Barry K, Grigoriev IV, Nowrousian M. Comparative Genomics and Transcriptomics To Analyze Fruiting Body Development in Filamentous Ascomycetes. Genetics 2019; 213:1545-1563. [PMID: 31604798 PMCID: PMC6893386 DOI: 10.1534/genetics.119.302749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023] Open
Abstract
Many filamentous ascomycetes develop three-dimensional fruiting bodies for production and dispersal of sexual spores. Fruiting bodies are among the most complex structures differentiated by ascomycetes; however, the molecular mechanisms underlying this process are insufficiently understood. Previous comparative transcriptomics analyses of fruiting body development in different ascomycetes suggested that there might be a core set of genes that are transcriptionally regulated in a similar manner across species. Conserved patterns of gene expression can be indicative of functional relevance, and therefore such a set of genes might constitute promising candidates for functional analyses. In this study, we have sequenced the genome of the Pezizomycete Ascodesmis nigricans, and performed comparative transcriptomics of developing fruiting bodies of this fungus, the Pezizomycete Pyronema confluens, and the Sordariomycete Sordaria macrospora With only 27 Mb, the A. nigricans genome is the smallest Pezizomycete genome sequenced to date. Comparative transcriptomics indicated that gene expression patterns in developing fruiting bodies of the three species are more similar to each other than to nonsexual hyphae of the same species. An analysis of 83 genes that are upregulated only during fruiting body development in all three species revealed 23 genes encoding proteins with predicted roles in vesicle transport, the endomembrane system, or transport across membranes, and 13 genes encoding proteins with predicted roles in chromatin organization or the regulation of gene expression. Among four genes chosen for functional analysis by deletion in S. macrospora, three were shown to be involved in fruiting body formation, including two predicted chromatin modifier genes.
Collapse
Affiliation(s)
- Ramona Lütkenhaus
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Stefanie Traeger
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jan Breuer
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Laia Carreté
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - David Dilworth
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Laura Sandor
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, 37077 Göttingen, Germany
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Kerrie Barry
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
- Department of Plant and Microbial Biology, University of California Berkeley, California 94720
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
25
|
Hodgins KA, Yeaman S. Mating system impacts the genetic architecture of adaptation to heterogeneous environments. THE NEW PHYTOLOGIST 2019; 224:1201-1214. [PMID: 31505030 DOI: 10.1111/nph.16186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Self-fertilisation has consequences for variation across the genome as it reduces effective population size, effect recombination rates and pollen flow, with implications for local adaptation. We conducted simulations of divergent stabilising selection on a quantitative trait with drift, pollen flow, mutation, recombination and different outcrossing rates. We quantified trait divergence and the genetic architecture of adaptation. We conducted an FST outlier analysis to identify candidate loci and quantified the impact of mating system on detectability. Selfing promoted trait divergence mainly through reductions in pollen flow. Moreover, trait architecture became more diffuse with selfing. Average effect size of trait loci was lower, while the number of loci, and their clustering distance increased. The genetic architecture of selfers was also more diffuse than outcrossers for equivalent migration rates. However, when deleterious alleles were included, architectures became more concentrated in selfers, likely to be because of reductions in population size caused by mutational meltdown and impacts of background selection on Ne . Our simulations demonstrate that mating system has important impacts on adaptive divergence of traits and the genetic landscape underlying that divergence. Selfing has a significant effect on detectability of regions of the genome important for adaptation because of neutral divergence and diffuse trait architecture.
Collapse
Affiliation(s)
- Kathryn A Hodgins
- School of Biological Sciences, Monash University - Clayton Campus, Building 17, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, 507 Campus Drive NW, Calgary, AB, T2N 4S8, Canada
| |
Collapse
|
26
|
Heitman J. E Pluribus Unum: The Fungal Kingdom as a Rosetta Stone for Biology and Medicine. Genetics 2019; 213:1-7. [PMID: 31488591 PMCID: PMC6727799 DOI: 10.1534/genetics.119.302537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
THE Genetics Society of America's (GSA's) Edward Novitski Prize recognizes a single experimental accomplishment or a body of work in which an exceptional level of creativity, and intellectual ingenuity, has been used to design and execute scientific experiments to solve a difficult problem in genetics. The 2019 recipient is Joseph Heitman, who is recognized for his work on fungal pathogens of humans and for ingenious experiments using yeast to identify the molecular targets of widely used immunosuppressive drugs. The latter work, part of Heitman's postdoctoral research, proved to be a seminal contribution to the discovery of the conserved Target of Rapamycin (TOR) pathway. In his own research group, a recurring theme has been the linking of fundamental insights in fungal biology to medically important problems. His studies have included defining fungal mating-type loci, including their evolution and links to virulence, and illustrating convergent transitions from outcrossing to inbreeding in fungal pathogens of plants and animals. He has led efforts to establish new genetic and genomic methods for studying pathogenesis in Cryptococcus species. Heitman's group also discovered unisexual reproduction, a novel mode of fungal reproduction with implications for pathogen evolution and the origins of sexual reproduction.
Collapse
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
27
|
The mating system of the Eucalyptus canker pathogen Chrysoporthe austroafricana and closely related species. Fungal Genet Biol 2019; 123:41-52. [DOI: 10.1016/j.fgb.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 11/18/2022]
|
28
|
Robinson AJ, Natvig DO. Diverse members of the Xylariales lack canonical mating-type regions. Fungal Genet Biol 2019; 122:47-52. [PMID: 30557613 PMCID: PMC6321786 DOI: 10.1016/j.fgb.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
Abstract
A survey of genomes reported here for 10 isolates of Monosporascus species and an additional 25 genomes from other members of the Xylariales (representing 15 genera) available in public databases indicated that genes typically associated with MAT1-1 (mat A) or MAT1-2 (mat a) mating types are absent or have diverged greatly relative to counterparts in other Pezizomycotina. This was particularly surprising for isolates known to be homothallic, given that homothallic members of the Pezizomycotina typically possess a MAT1-1-1 (mat A-1) gene and one or both of two other closely-linked mating-type genes, MAT1-1-2 (mat A-2) and MAT1-1-3 (mat A-3), in addition to MAT1-2-1 (mat a-1). We failed to detect candidate genes for either MAT1-1-1 or MAT1-1-2 in any member of the Xylariales. Genes related to MAT1-2-1 and MAT1-1-3 are present in the genomes examined, but most appear to be orthologs of MATA_HMG (high-mobility group) genes with non-mating-type functions rather than orthologs of mating-type genes. Several MATA_HMG genes were found in genome positions that suggest they are derived from mating-type genes, but these genes are highly divergent relative to known MAT1-2-1 and MAT1-1-3 genes. The genomes examined represent substantial diversity within the order and include M. cannonballus, M. ibericus, Xylaria hypoxylon, X. striata, Daldinia eschscholzii, Eutypa lata, Rosellinia necatrix, Microdochium bolleyi and several others. We employed a number of avenues to search for homologs, including multiple BLAST approaches and examination of annotated genes adjacent to genes known to flank mating regions in other members of the Ascomycota. The results suggest that the mating regions have been lost from, or altered dramatically in, the Xylariales genomes examined and that mating and sexual development in these fungi are controlled differently than has been reported for members of the Pezizomycotina studied to date.
Collapse
Affiliation(s)
- Aaron J Robinson
- Department of Biology, University of New Mexico, Albuquerque, NM 87131 USA
| | - Donald O Natvig
- Department of Biology, University of New Mexico, Albuquerque, NM 87131 USA.
| |
Collapse
|
29
|
Svedberg J, Hosseini S, Chen J, Vogan AA, Mozgova I, Hennig L, Manitchotpisit P, Abusharekh A, Hammond TM, Lascoux M, Johannesson H. Convergent evolution of complex genomic rearrangements in two fungal meiotic drive elements. Nat Commun 2018; 9:4242. [PMID: 30315196 PMCID: PMC6185902 DOI: 10.1038/s41467-018-06562-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/12/2018] [Indexed: 12/31/2022] Open
Abstract
Meiotic drive is widespread in nature. The conflict it generates is expected to be an important motor for evolutionary change and innovation. In this study, we investigated the genomic consequences of two large multi-gene meiotic drive elements, Sk-2 and Sk-3, found in the filamentous ascomycete Neurospora intermedia. Using long-read sequencing, we generated the first complete and well-annotated genome assemblies of large, highly diverged, non-recombining regions associated with meiotic drive elements. Phylogenetic analysis shows that, even though Sk-2 and Sk-3 are located in the same chromosomal region, they do not form sister clades, suggesting independent origins or at least a long evolutionary separation. We conclude that they have in a convergent manner accumulated similar patterns of tandem inversions and dense repeat clusters, presumably in response to similar needs to create linkage between genes causing drive and resistance.
Collapse
Affiliation(s)
- Jesper Svedberg
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Sara Hosseini
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Jun Chen
- Department of Ecology and Genetics, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Aaron A Vogan
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Iva Mozgova
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO-Box 7080, SE-75007, Uppsala, Sweden
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, CZ-37981, Třeboň, Czech Republic
| | - Lars Hennig
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO-Box 7080, SE-75007, Uppsala, Sweden
| | | | - Anna Abusharekh
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Thomas M Hammond
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Martin Lascoux
- Department of Ecology and Genetics, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| |
Collapse
|
30
|
Simpson MC, Coetzee MPA, van der Nest MA, Wingfield MJ, Wingfield BD. Ceratocystidaceae exhibit high levels of recombination at the mating-type (MAT) locus. Fungal Biol 2018; 122:1184-1191. [PMID: 30449356 DOI: 10.1016/j.funbio.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/11/2018] [Accepted: 09/12/2018] [Indexed: 12/29/2022]
Abstract
Mating is central to many fungal life cycles and is controlled by genes at the mating-type (MAT) locus. These genes determine whether the fungus will be self-sterile (heterothallic) or self-fertile (homothallic). Species in the ascomycete family Ceratocystidaceae have different mating strategies, making them interesting to consider with regards to their MAT loci. The aim of this study was to compare the composition of the MAT locus flanking regions in 11 species of Ceratocystidaceae representing four genera. Genome assemblies for each species were examined to identify the MAT locus and determine the structure of the flanking regions. Large contigs containing the MAT locus were then functionally annotated and analysed for the presence of transposable elements. Genes typically flanking the MAT locus in sordariomycetes were found to be highly conserved in the Ceratocystidaceae. The different genera in the Ceratocystidaceae displayed little synteny outside of the immediate MAT locus flanking genes. Even though species ofCeratocystis did not show much synteny outside of the immediate MAT locus flanking genes, species of Huntiella and Endoconidiophora were comparatively syntenic. Due to the high number of transposable elements present in Ceratocystis MAT flanking regions, we hypothesise that Ceratocystis species may have undergone recombination in this region.
Collapse
Affiliation(s)
- Melissa C Simpson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Martin P A Coetzee
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
31
|
Serrato-Capuchina A, Matute DR. The Role of Transposable Elements in Speciation. Genes (Basel) 2018; 9:E254. [PMID: 29762547 PMCID: PMC5977194 DOI: 10.3390/genes9050254] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 01/20/2023] Open
Abstract
Understanding the phenotypic and molecular mechanisms that contribute to genetic diversity between and within species is fundamental in studying the evolution of species. In particular, identifying the interspecific differences that lead to the reduction or even cessation of gene flow between nascent species is one of the main goals of speciation genetic research. Transposable elements (TEs) are DNA sequences with the ability to move within genomes. TEs are ubiquitous throughout eukaryotic genomes and have been shown to alter regulatory networks, gene expression, and to rearrange genomes as a result of their transposition. However, no systematic effort has evaluated the role of TEs in speciation. We compiled the evidence for TEs as potential causes of reproductive isolation across a diversity of taxa. We find that TEs are often associated with hybrid defects that might preclude the fusion between species, but that the involvement of TEs in other barriers to gene flow different from postzygotic isolation is still relatively unknown. Finally, we list a series of guides and research avenues to disentangle the effects of TEs on the origin of new species.
Collapse
Affiliation(s)
- Antonio Serrato-Capuchina
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| | - Daniel R Matute
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| |
Collapse
|
32
|
Lopes A, Linaldeddu BT, Phillips AJL, Alves A. Mating type gene analyses in the genus Diplodia: From cryptic sex to cryptic species. Fungal Biol 2018; 122:629-638. [PMID: 29880198 DOI: 10.1016/j.funbio.2018.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/28/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
Abstract
Cryptic species are common in Diplodia, a genus that includes some well-known and economically important plant pathogens. Thus, species delimitation has been based on the phylogenetic species recognition approach using multigene genealogies. We assessed the potential of mating type (MAT) genes sequences as phylogenetic markers for species delimitation in the genus Diplodia. A PCR-based mating type diagnostic assay was developed that allowed amplification and sequencing of the MAT1-1-1 and MAT1-2-1 genes, and determination of the mating strategies used by different species. All species tested were shown to be heterothallic. Phylogenetic analyses were performed on both MAT genes and also, for comparative purposes, on concatenated sequences of the ribosomal internal transcribed spacer (ITS), translation elongation factor 1-alpha (tef1-α) and beta-tubulin (tub2). Individual phylogenies based on MAT genes clearly differentiated all species analysed and agree with the results obtained with the commonly used multilocus phylogenetic analysis approach. However, MAT genes genealogies were superior to multigene genealogies in resolving closely related cryptic species. The phylogenetic informativeness of each locus was evaluated revealing that MAT genes were the most informative loci followed by tef1-α. Hence, MAT genes can be successfully used to establish species boundaries in the genus Diplodia.
Collapse
Affiliation(s)
- Anabela Lopes
- Departamento de Biologia, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Benedetto T Linaldeddu
- Department of Land, Environment, Agriculture, and Forestry (TeSAF), University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Alan J L Phillips
- University of Lisbon, Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, 1749-016, Lisbon, Portugal
| | - Artur Alves
- Departamento de Biologia, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
33
|
Nagel JH, Wingfield MJ, Slippers B. Evolution of the mating types and mating strategies in prominent genera in the Botryosphaeriaceae. Fungal Genet Biol 2018. [PMID: 29530630 DOI: 10.1016/j.fgb.2018.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Little is known regarding mating strategies in the Botryosphaeriaceae. To understand sexual reproduction in this fungal family, the mating type genes of Botryosphaeria dothidea and Macrophomina phaseolina, as well as several species of Diplodia, Lasiodiplodia and Neofusicoccum were characterized from whole genome assemblies. Comparisons between the mating type loci of these fungi showed that the mating type genes are highly variable, but in most cases the organization of these genes is conserved. Of the species considered, nine were homothallic and seven were heterothallic. Mating type gene fragments were discovered flanking the mating type regions, which indicates both ongoing and ancestral recombination occurring within the mating type region. Ancestral reconstruction analysis further indicated that heterothallism is the ancestral state in the Botryosphaeriaceae and this is supported by the presence of mating type gene fragments in homothallic species. The results also show that at least five transitions from heterothallism to homothallism have taken place in the Botryosphaeriaceae. The study provides a foundation for comparison of mating type evolution between Botryosphaeriaceae and other fungi and also provides valuable markers for population biology studies in this family.
Collapse
Affiliation(s)
- Jan H Nagel
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0001, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0001, South Africa
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0001, South Africa.
| |
Collapse
|
34
|
Fungal species and their boundaries matter – Definitions, mechanisms and practical implications. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Wilken PM, Steenkamp ET, van der Nest MA, Wingfield MJ, de Beer ZW, Wingfield BD. Unexpected placement of the MAT1-1-2 gene in the MAT1-2 idiomorph of Thielaviopsis. Fungal Genet Biol 2018; 113:32-41. [PMID: 29409964 DOI: 10.1016/j.fgb.2018.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/20/2018] [Accepted: 01/29/2018] [Indexed: 01/24/2023]
Abstract
Sexual reproduction in the Ascomycota is controlled by genes encoded at the mating-type or MAT1 locus. The two allelic versions of this locus in heterothallic species, referred to as idiomorphs, are defined by the MAT1-1-1 (for the MAT1-1 idiomorph) and MAT1-2-1 (for the MAT1-2 idiomorph) genes. Both idiomorphs can contain additional genes, although the contents of each is typically specific to and conserved within particular Pezizomycotina lineages. Using full genome sequences, complemented with conventional PCR and Sanger sequencing, we compared the mating-type idiomorphs in heterothallic species of Thielaviopsis (Ceratocystidaceae). The analyses showed that the MAT1-1 idiomorph of T. punctulata, T. paradoxa, T. euricoi, T. ethacetica and T. musarum harboured only the expected MAT1-1-1 gene. In contrast, the MAT1-2 idiomorph of T. punctulata, T. paradoxa and T. euricoi encoded the MAT1-2-1, MAT1-2-7 and MAT1-1-2 genes. Of these, MAT1-2-1 and MAT1-2-7 are genes previously reported in this idiomorph, while MAT1-1-2 is known only in the MAT1-1 idiomorph. Phylogenetic analysis showed that the Thielaviopsis MAT1-1-2 groups with the known homologues of this gene in other Microascales, thus confirming its annotation. Previous work suggests that MAT1-1-2 is involved in fruiting body development, a role that would be unaffected by its idiomorphic position. This notion is supported by our findings for the MAT1 locus structure in Thielaviopsis species. This also serves as the first example of a MAT1-1-specific gene restricted to only the MAT1-2 idiomorph.
Collapse
Affiliation(s)
- P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa.
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| |
Collapse
|
36
|
Robicheau BM, Bunbury-Blanchette AL, LaButti K, Grigoriev IV, Walker AK. The homothallic mating-type locus of the conifer needle endophyte Phialocephala scopiformis DAOMC 229536 (order Helotiales). Fungal Biol 2017; 121:1011-1024. [PMID: 29122173 DOI: 10.1016/j.funbio.2017.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 08/11/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022]
Abstract
We describe the complete mating-type (MAT) locus for Phialocephala scopiformis Canadian Collection of Fungal Cultures (DAOMC) 229536 - a basal lineage within Vibrisseaceae. This strain is of interest due to its ability to produce the important antiinsectan rugulosin. We also provide some of the first insights into the genome structure and gene inventory of nonclavicipitalean endophytes. Sequence was obtained through shotgun sequencing of the entire P. scopiformis genome, and the MAT locus was then determined by comparing this genomic sequence to known MAT loci within the Phialocephala fortinii s.l.-Acephala applanata species complex. We also tested the relative levels of sequence conservation for MAT genes within Vibrisseaceae (n = 10), as well as within the Helotiales (n = 27). Our results: (1) show a homothallic gene arrangement for P. scopiformis [MAT1-1-1, MAT1-2-1, and MAT1-1-3 genes are present], (2) increase the genomic survey of homothallism within Vibrisseaceae, (3) confirm that P. scopiformis contains a unique S-adenosyl-l-methionine-dependent methyltransferase (SAM-Mtase) gene proximal to its MAT locus, while also lacking a cytoskeleton assembly control protein (sla2) gene, and (4) indicate that MAT1-1-1 is the more useful molecular marker amongst the MAT genes for phylogenetic reconstructions aimed at tracking evolutionary shifts in reproductive strategy and/or MAT loci gene composition within the Helotiales.
Collapse
Affiliation(s)
- Brent M Robicheau
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, Nova Scotia B4P 2R6, Canada.
| | | | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA; Department of Plant and Microbial Biology, UC Berkeley, 111 Koshland Hall, Berkeley, California 94720, USA
| | - Allison K Walker
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, Nova Scotia B4P 2R6, Canada
| |
Collapse
|
37
|
Abstract
This article provides an overview of sexual reproduction in the ascomycetes, a phylum of fungi that is named after the specialized sacs or "asci" that hold the sexual spores. They have therefore also been referred to as the Sac Fungi due to these characteristic structures that typically contain four to eight ascospores. Ascomycetes are morphologically diverse and include single-celled yeasts, filamentous fungi, and more complex cup fungi. The sexual cycles of many species, including those of the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe and the filamentous saprobes Neurospora crassa, Aspergillus nidulans, and Podospora anserina, have been examined in depth. In addition, sexual or parasexual cycles have been uncovered in important human pathogens such as Candida albicans and Aspergillus fumigatus, as well as in plant pathogens such as Fusarium graminearum and Cochliobolus heterostrophus. We summarize what is known about sexual fecundity in ascomycetes, examine how structural changes at the mating-type locus dictate sexual behavior, and discuss recent studies that reveal that pheromone signaling pathways can be repurposed to serve cellular roles unrelated to sex.
Collapse
|
38
|
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Timothy Y. James
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
39
|
James TY, Sun S, Li W, Heitman J, Kuo HC, Lee YH, Asiegbu FO, Olson Å. Polyporales genomes reveal the genetic architecture underlying tetrapolar and bipolar mating systems. Mycologia 2017; 105:1374-90. [DOI: 10.3852/13-162] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | | | | | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | - Åke Olson
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, S-75007 Uppsala, Sweden
| |
Collapse
|
40
|
Aylward J, Steenkamp ET, Dreyer LL, Roets F, Wingfield MJ, Wingfield BD. Genetic basis for high population diversity in Protea-associated Knoxdaviesia. Fungal Genet Biol 2016; 96:47-57. [DOI: 10.1016/j.fgb.2016.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/12/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022]
|
41
|
Metin B, Heitman J. Sexual Reproduction in Dermatophytes. Mycopathologia 2016; 182:45-55. [PMID: 27696123 DOI: 10.1007/s11046-016-0072-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/25/2016] [Indexed: 01/12/2023]
Abstract
Sexual reproduction is a rich source of genetic variation and commonly observed among fungi. Basically two different modes of sexual reproduction are observed in fungi, namely heterothallism where two compatible mating types are required to undergo mating and homothallism in which the organism is self-fertile. The genomic region governing the process of sexual reproduction and sex determination is called the mating type (MAT) locus. In filamentous ascomycetes including dermatophytes, the MAT locus harbors two different transcription factor genes in two different mating types. This review focuses on sexual reproduction and the structure of the MAT locus in dermatophytes. The reproductive modes and the observed mating types are summarized for different phylogenetic clades of dermatophytes. In addition, the question of whether or not unisexual reproduction, an interesting form of homothallism, may be the sexual reproduction mode especially in anthropophilic dermatophytes is raised.
Collapse
Affiliation(s)
- Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Halkali cad, No: 2, Halkali, 34303, Kucukcekmece, Istanbul, Turkey.
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
42
|
Mating type genes in the genus Neofusicoccum: Mating strategies and usefulness in species delimitation. Fungal Biol 2016; 121:394-404. [PMID: 28317541 DOI: 10.1016/j.funbio.2016.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/25/2016] [Indexed: 12/16/2022]
Abstract
The genus Neofusicoccum includes species with wide geographical and plant host distribution, some of them of economic importance. The genus currently comprises 27 species that are difficult to identify based on morphological features alone. Thus, species differentiation is based on phylogenetic species recognition using multigene genealogies. In this study, we characterised the mating type genes of Neofusicoccum species. Specific primers were designed to amplify and sequence MAT genes in several species and a PCR-based mating type diagnostic assay was developed. Homothallism was the predominant mating strategy among the species tested. Furthermore, the potential of mating type gene sequences for species delimitation was evaluated. Phylogenetic analyses were performed on both MAT genes and compared with multigene genealogies using sequences of the ribosomal internal transcribed spacer region, translation elongation factor 1-alpha and beta-tubulin. Phylogenies based on mating type genes could discriminate between the species analysed and are in concordance with the results obtained with the more conventional multilocus phylogenetic analysis approach. Thus, MAT genes represent a powerful tool to delimit cryptic species in the genus Neofusicoccum.
Collapse
|
43
|
Genetic Dissection of Sexual Reproduction in a Primary Homothallic Basidiomycete. PLoS Genet 2016; 12:e1006110. [PMID: 27327578 PMCID: PMC4915694 DOI: 10.1371/journal.pgen.1006110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/16/2016] [Indexed: 11/19/2022] Open
Abstract
In fungi belonging to the phylum Basidiomycota, sexual compatibility is usually determined by two genetically unlinked MAT loci, one of which encodes one or more pheromone receptors (P/R) and pheromone precursors, and the other comprehends at least one pair of divergently transcribed genes encoding homeodomain (HD) transcription factors. Most species are heterothallic, meaning that sexual reproduction requires mating between two sexually compatible individuals harboring different alleles at both MAT loci. However, some species are known to be homothallic, one individual being capable of completing the sexual cycle without mating with a genetically distinct partner. While the molecular underpinnings of the heterothallic life cycles of several basidiomycete model species have been dissected in great detail, much less is known concerning the molecular basis for homothallism. Following the discovery in available draft genomes of the homothallic basidiomycetous yeast Phaffia rhodozyma of P/R and HD genes, we employed available genetic tools to determine their role in sexual development. Two P/R clusters, each harboring one pheromone receptor and one pheromone precursor gene were found in close vicinity of each other and were shown to form two redundant P/R pairs, each receptor being activated by the pheromone encoded by the most distal pheromone precursor gene. The HD locus is apparently genetically unlinked to the P/R locus and encodes a single pair of divergently transcribed HD1 and HD2 transcription factors, both required for normal completion of the sexual cycle. Given the genetic makeup of P. rhodozyma MAT loci, we postulate that it is a primarily homothallic organism and we propose a model for the interplay of molecular interactions required for sexual development in this species. Phaffia rhodozyma is considered one of the most promising microbial source of the carotenoid astaxanthin. Further development of this yeast as an industrial organism will benefit from new insights regarding its sexual reproduction system. Some fungi are capable of sexual reproduction without the need for a sexually compatible partner, a behavior called homothallism. For some of these fungi, it was observed that they carried in a single individual all the genes normally determining sexual identity in two distinct sexually compatible individuals, but in most cases the role of these genes is still unclear. Here we examined in detail the homothallic sexual cycle of the yeast Phaffia rhodozyma that belongs to the Basidiomycota, which is the fungal lineage that also includes the mushrooms. Phaffia rhodozyma produces astaxanthin, a pigment with antioxidant properties used in the food and cosmetic industries and is accessible to genetic modifications, so far aimed mainly at improving astaxanthin production. Here we harnessed these genetic tools to dissect the self-fertile life cycle of this yeast and found that all genes normally involved in two-partner sexual reproduction are also required for self-fertile sex in P. rhodozyma and propose a model describing molecular interactions required to trigger sexual development. We also generated preferably outcrossing strains, which are potentially useful for further improvement of P. rhodozyma as an industrial organism.
Collapse
|
44
|
Limits to Adaptation in Partially Selfing Species. Genetics 2016; 203:959-74. [PMID: 27098913 DOI: 10.1534/genetics.116.188821] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/15/2016] [Indexed: 12/26/2022] Open
Abstract
In outcrossing populations, "Haldane's sieve" states that recessive beneficial alleles are less likely to fix than dominant ones, because they are less exposed to selection when rare. In contrast, selfing organisms are not subject to Haldane's sieve and are more likely to fix recessive types than outcrossers, as selfing rapidly creates homozygotes, increasing overall selection acting on mutations. However, longer homozygous tracts in selfers also reduce the ability of recombination to create new genotypes. It is unclear how these two effects influence overall adaptation rates in partially selfing organisms. Here, we calculate the fixation probability of beneficial alleles if there is an existing selective sweep in the population. We consider both the potential loss of the second beneficial mutation if it has a weaker advantage than the first one, and the possible replacement of the initial allele if the second mutant is fitter. Overall, loss of weaker adaptive alleles during a first selective sweep has a larger impact on preventing fixation of both mutations in highly selfing organisms. Furthermore, the presence of linked mutations has two opposing effects on Haldane's sieve. First, recessive mutants are disproportionally likely to be lost in outcrossers, so it is likelier that dominant mutations will fix. Second, with elevated rates of adaptive mutation, selective interference annuls the advantage in selfing organisms of not suffering from Haldane's sieve; outcrossing organisms are more able to fix weak beneficial mutations of any dominance value. Overall, weakened recombination effects can greatly limit adaptation in selfing organisms.
Collapse
|
45
|
Heitman J. Evolution of sexual reproduction: a view from the Fungal Kingdom supports an evolutionary epoch with sex before sexes. FUNGAL BIOL REV 2015; 29:108-117. [PMID: 26834823 DOI: 10.1016/j.fbr.2015.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sexual reproduction is conserved throughout each supergroup within the eukaryotic tree of life, and therefore thought to have evolved once and to have been present in the last eukaryotic common ancestor (LECA). Given the antiquity of sex, there are features of sexual reproduction that are ancient and ancestral, and thus shared in diverse extant organisms. On the other hand, the vast evolutionary distance that separates any given extant species from the LECA necessarily implies that other features of sex will be derived. While most types of sex we are familiar with involve two opposite sexes or mating types, recent studies in the fungal kingdom have revealed novel and unusual patterns of sexual reproduction, including unisexual reproduction. In this mode of reproduction a single mating type can on its own undergo self-fertile/homothallic reproduction, either with itself or with other members of the population of the same mating type. Unisexual reproduction has arisen independently as a derived feature in several different lineages. That a myriad of different types of sex determination and sex determinants abound in animals, plants, protists, and fungi suggests that sex specification itself may not be ancestral and instead may be a derived trait. If so, then the original form of sexual reproduction may have been unisexual, onto which sexes were superimposed as a later feature. In this model, unisexual reproduction is both an ancestral and a derived trait. In this review, we consider what is new and what is old about sexual reproduction from the unique vantage point of the fungal kingdom.
Collapse
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
46
|
Idnurm A, Hood ME, Johannesson H, Giraud T. Contrasted patterns in mating-type chromosomes in fungi: hotspots versus coldspots of recombination. FUNGAL BIOL REV 2015; 29:220-229. [PMID: 26688691 PMCID: PMC4680991 DOI: 10.1016/j.fbr.2015.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is striking that, while central to sexual reproduction, the genomic regions determining sex or mating-types are often characterized by suppressed recombination that leads to a decrease in the efficiency of selection, shelters genetic load, and inevitably contributes to their genic degeneration. Research on model and lesser-explored fungi has revealed similarities in recombination suppression of the genomic regions involved in mating compatibility across eukaryotes, but fungi also provide opposite examples of enhanced recombination in the genomic regions that determine their mating types. These contrasted patterns of genetic recombination (sensu lato, including gene conversion and ectopic recombination) in regions of the genome involved in mating compatibility point to important yet complex processes occurring in their evolution. A number of pieces in this puzzle remain to be solved, in particular on the unclear selective forces that may cause the patterns of recombination, prompting theoretical developments and experimental studies. This review thus points to fungi as a fascinating group for studying the various evolutionary forces at play in the genomic regions involved in mating compatibility.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, VIC 3010, Australia
| | - Michael E. Hood
- Department of Biology, Amherst College, Amherst, Massachusetts 01002 USA
| | - Hanna Johannesson
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Tatiana Giraud
- Laboratoire Ecologie, Systématique et Evolution, UMR 8079 CNRS-UPS-AgroParisTech, Bâtiment 360, Université Paris-Sud, 91405 Orsay cedex, France
| |
Collapse
|
47
|
Genetics of mating in members of the Chaetomiaceae as revealed by experimental and genomic characterization of reproduction in Myceliophthora heterothallica. Fungal Genet Biol 2015; 86:9-19. [PMID: 26608618 DOI: 10.1016/j.fgb.2015.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 01/01/2023]
Abstract
Members of the Chaetomiaceae are among the most studied fungi in industry and among the most reported in investigations of biomass degradation in both natural and laboratory settings. The family is recognized for production of carbohydrate-active enzymes and antibiotics. Thermophilic species are of special interest for their abilities to produce thermally stable enzymes and to be grown under conditions that are unsuitable for potential contaminant microorganisms. Such interests led to the recent acquisition of genome sequences from several members of the family, including thermophilic species, several of which are reported here for the first time. To date, however, thermophilic fungi in industry have served primarily as parts reservoirs and there has been no good genetic model for species in the family Chaetomiaceae or for thermophiles in general. We report here on the reproductive biology of the thermophile Myceliophthora heterothallica, which is heterothallic, unlike most described species in the family. We confirmed heterothallism genetically by following the segregation of mating type idiomorphs and other markers. We have expanded the number of known sexually-compatible individuals from the original isolates from Indiana and Germany to include several isolates from New Mexico. An interesting aspect of development in M. heterothallica is that ascocarp formation is optimal at approximately 30 °C, whereas vegetative growth is optimal at 45 °C. Genome sequences obtained from several strains, including isolates of each mating type, revealed mating-type regions whose genes are organized similarly to those of other members of the Sordariales, except for the presence of a truncated version of the mat A-1 (MAT1-1-1) gene in mating-type a (MAT1-2) strains. In M. heterothallica and other Chaetomiaceae, mating-type A (MAT1-1) strains have the full-length version of mat A-1 that is typical of mating-type A strains of diverse Ascomycota, whereas a strains have only the truncated version. This truncated mat A-1 has an intact open reading frame and a derived start codon that is not present in mat A-1 from A strains. The predicted protein contains a region that is conserved across diverse mat A-1 genes, but it lacks the major alpha1 domain, which characterizes proteins in this family and is known to be required for fertility in A strains from other Ascomycota. Finally, we have used genes from M. heterothallica to probe for mating genes in other homothallic and heterothallic members of the Chaetomiaceae. The majority of homothallic species examined have a typical mat A-1,2,3 (MAT1-1-1,2,3) region in addition to an unlinked mat a-1 (MAT1-2-1) gene, reflecting one type of homothallism commonly observed in diverse Ascomycota.
Collapse
|
48
|
Putman AI, Tredway LP, Carbone I. Characterization and distribution of mating-type genes of the turfgrass pathogen Sclerotinia homoeocarpa on a global scale. Fungal Genet Biol 2015; 81:25-40. [PMID: 26049125 DOI: 10.1016/j.fgb.2015.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 01/23/2023]
Abstract
Sclerotinia homoeocarpa F.T. Bennett is a filamentous member of Ascomycota that causes dollar spot, the most economically important disease of turfgrass worldwide. We sequenced and characterized the mating-type (MAT) locus of four recently-collected contemporary strains causing dollar spot, four historical type strains used to describe the fungus, and three species of Rutstroemiaceae. Moreover, we developed a multiplex PCR assay to screen 1019 contemporary isolates for mating-type. The organization of the MAT loci of all strains examined could be classified into one of four categories: (1) putatively heterothallic, as exemplified by all contemporary strains and three of four historical type strains; (2) putatively heterothallic with a deleted putative gene in the MAT1-2 idiomorph, as detected in strains from two recently-collected populations in the United Kingdom that show more similarity to historical strains; (3) putatively homothallic with close physical linkage between MAT1-1-1 and MAT1-2-1, as found in one historical type strain of S. homoeocarpa and two strains of Rutstroemia cuniculi; and (4) an unresolved but apparently homothallic organization in which strains contained both MAT1-1-1 and MAT1-2-1 but linkage between these genes and between the two flanking genes could not be confirmed, as identified in R. paludosa and Poculum henningsianum. In contemporary S. homoeocarpa populations there was no significant difference in the frequency of the two mating types in clone-corrected samples when analyzed on regional and local scales, suggesting sex may be possible in this pathogen. However, two isolates from Italy and twenty from California were heterokaryotic for both complete heterothallic MAT idiomorphs. Results from this study contribute to knowledge about mating systems in filamentous fungi and enhance our understanding of the evolution and biology of an important plant pathogen.
Collapse
Affiliation(s)
- Alexander I Putman
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695-7616, United States.
| | - Lane P Tredway
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695-7616, United States
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695-7244, United States
| |
Collapse
|
49
|
MpSaci is a widespread gypsy-Ty3 retrotransposon highly represented by non-autonomous copies in the Moniliophthora perniciosa genome. Curr Genet 2015; 61:185-202. [DOI: 10.1007/s00294-014-0469-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 11/21/2014] [Accepted: 12/22/2014] [Indexed: 11/25/2022]
|
50
|
Asexual propagation of a virulent clone complex in a human and feline outbreak of sporotrichosis. EUKARYOTIC CELL 2014; 14:158-69. [PMID: 25480940 DOI: 10.1128/ec.00153-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sporotrichosis is one of the most frequent subcutaneous fungal infections in humans and animals caused by members of the plant-associated, dimorphic genus Sporothrix. Three of the four medically important Sporothrix species found in Brazil have been considered asexual as no sexual stage has ever been reported in Sporothrix schenckii, Sporothrix brasiliensis, or Sporothrix globosa. We have identified the mating type (MAT) loci in the S. schenckii (strain 1099-18/ATCC MYA-4821) and S. brasiliensis (strain 5110/ATCC MYA-4823) genomes by using comparative genomic approaches to determine the mating type ratio in these pathogen populations. Our analysis revealed the presence of a MAT1-1 locus in S. schenckii while a MAT1-2 locus was found in S. brasiliensis representing genomic synteny to other Sordariomycetes. Furthermore, the components of the mitogen-activated protein kinase (MAPK)-pheromone pathway, pheromone processing enzymes, and meiotic regulators have also been identified in the two pathogens, suggesting the potential for sexual reproduction. The ratio of MAT1-1 to MAT1-2 was not significantly different from 1:1 for all three Sporothrix species, but the population of S. brasiliensis in the outbreaks originated from a single mating type. We also explored the population genetic structure of these pathogens using sequence data of two loci to improve our knowledge of the pattern of geographic distribution, genetic variation, and virulence phenotypes. Population genetics data showed significant population differentiation and clonality with a low level of haplotype diversity in S. brasiliensis isolates from different regions of sporotrichosis outbreaks in Brazil. In contrast, S. schenckii isolates demonstrated a high degree of genetic variability without significant geographic differentiation, indicating the presence of recombination. This study demonstrated that two species causing the same disease have contrasting reproductive strategies and genetic variability patterns.
Collapse
|