1
|
Okawa K, Kijima M, Ishii M, Nanako M, Yasumura Y, Sakaguchi M, Kimura M, Uehara M, Tabata E, Bauer PO, Oyama F. Hyperactivation of human acidic chitinase (Chia) for potential medical use. J Biol Chem 2024:108100. [PMID: 39706263 DOI: 10.1016/j.jbc.2024.108100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Accumulation of environmental chitin in the lungs can lead to pulmonary fibrosis, characterized by inflammatory infiltration and fibrosis in acidic chitinase (Chia)-deficient mice. Transgenic expression of Chia in these mice ameliorated the symptoms, indicating the potential of enzyme supplementation as a promising therapeutic strategy for related lung diseases. This study focuses on utilizing hyperactivated human Chia, which exhibits low activity. We achieved significant activation of human Chia by incorporating nine amino acids derived from the crab-eating monkey (Macaca fascicularis) Chia, known for its robust chitin-degrading activity. The modified human Chia retained high activity across a broad pH spectrum and exhibited enhanced thermal stability. The amino acid substitutions associated with hyperactivation of human Chia activity occurred species-specifically in monkey Chia. This discovery highlights the potential of hyperactivated Chia in treating pulmonary diseases resulting from chitin accumulation in human lungs.
Collapse
Affiliation(s)
- Kazuaki Okawa
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Masashi Kijima
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Mana Ishii
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Maeda Nanako
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Yudai Yasumura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Masahiro Kimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan; School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, 192-0982, Japan
| | - Maiko Uehara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan; Japan Society for the Promotion of Science (PD), Tokyo, 102-0083, Japan
| | - Peter O Bauer
- Bioinova a.s., Videnska 1083, Prague, 142 00, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan.
| |
Collapse
|
2
|
Jung H, Kim DH, Díaz RE, White JM, Rucknagel S, Mosby L, Wang Y, Reddy S, Winkler ES, Hassan AO, Ying B, Diamond MS, Locksley RM, Fraser JS, Van Dyken SJ. An ILC2-chitinase circuit restores lung homeostasis after epithelial injury. Sci Immunol 2024; 9:eadl2986. [PMID: 39423283 DOI: 10.1126/sciimmunol.adl2986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/15/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
Environmental exposures increase the risk for severe lung disease, but specific drivers of persistent epithelial injury and immune dysfunction remain unclear. Here, we identify a feedback circuit triggered by chitin, a common component of airborne particles, that affects lung health after epithelial injury. In mice, epithelial damage disrupts lung chitinase activity, leading to environmental chitin accumulation, impaired epithelial renewal, and group 2 innate lymphoid cell (ILC2) activation. ILC2s, in turn, restore homeostasis by inducing acidic mammalian chitinase (AMCase) in regenerating epithelial cells and promoting chitin degradation, epithelial differentiation, and inflammatory resolution. Mice lacking AMCase or ILC2s fail to clear chitin and exhibit increased mortality and impaired epithelial regeneration after injury. These effects are ameliorated by chitinase replacement therapy, demonstrating that chitin degradation is crucial for recovery after various forms of lung perturbation. Thus, the ILC2-chitinase response circuit may serve as a target for alleviating persistent postinjury lung epithelial and immune dysfunction.
Collapse
Affiliation(s)
- Haerin Jung
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Do-Hyun Kim
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Roberto Efraín Díaz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - J Michael White
- Department of Pathology & Immunology, Washington University Gnotobiotic Core Facility, Washington University School of Medicine, St. Louis, MO, USA
| | - Summer Rucknagel
- Department of Pathology & Immunology, Washington University Gnotobiotic Core Facility, Washington University School of Medicine, St. Louis, MO, USA
| | - Lauryn Mosby
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yilin Wang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanjana Reddy
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Emma S Winkler
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard M Locksley
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Steven J Van Dyken
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Díaz RE, Ecker AK, Correy GJ, Asthana P, Young ID, Faust B, Thompson MC, Seiple IB, Van Dyken S, Locksley RM, Fraser JS. Structural characterization of ligand binding and pH-specific enzymatic activity of mouse Acidic Mammalian Chitinase. eLife 2024; 12:RP89918. [PMID: 38884443 PMCID: PMC11182645 DOI: 10.7554/elife.89918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Abstract
Chitin is an abundant biopolymer and pathogen-associated molecular pattern that stimulates a host innate immune response. Mammals express chitin-binding and chitin-degrading proteins to remove chitin from the body. One of these proteins, Acidic Mammalian Chitinase (AMCase), is an enzyme known for its ability to function under acidic conditions in the stomach but is also active in tissues with more neutral pHs, such as the lung. Here, we used a combination of biochemical, structural, and computational modeling approaches to examine how the mouse homolog (mAMCase) can act in both acidic and neutral environments. We measured kinetic properties of mAMCase activity across a broad pH range, quantifying its unusual dual activity optima at pH 2 and 7. We also solved high-resolution crystal structures of mAMCase in complex with oligomeric GlcNAcn, the building block of chitin, where we identified extensive conformational ligand heterogeneity. Leveraging these data, we conducted molecular dynamics simulations that suggest how a key catalytic residue could be protonated via distinct mechanisms in each of the two environmental pH ranges. These results integrate structural, biochemical, and computational approaches to deliver a more complete understanding of the catalytic mechanism governing mAMCase activity at different pH. Engineering proteins with tunable pH optima may provide new opportunities to develop improved enzyme variants, including AMCase, for therapeutic purposes in chitin degradation.
Collapse
Affiliation(s)
- Roberto Efraín Díaz
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Andrew K Ecker
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Galen J Correy
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Pooja Asthana
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Iris D Young
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Bryan Faust
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Biophysics Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Michael C Thompson
- Chemistry and Chemical Biology Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Chemistry and Chemical Biology, University of California, MercedMercedUnited States
| | - Ian B Seiple
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Steven Van Dyken
- Department of Pathology and Immunology, Washington University School of Medicine in St LouisSt LouisUnited States
| | - Richard M Locksley
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
- Department of Microbiology and Immunology, University of California, San FranciscoSan FranciscoUnited States
- University of California, Howard Hughes Medical Institute, San FranciscoSan FranciscoUnited States
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
4
|
Suzuki K, Okawa K, Ohkura M, Kanaizumi T, Kobayashi T, Takahashi K, Takei H, Otsuka M, Tabata E, Bauer PO, Oyama F. Evolutionary insights into sequence modifications governing chitin recognition and chitinase inactivity in YKL-40 (HC-gp39, CHI3L1). J Biol Chem 2024; 300:107365. [PMID: 38750795 PMCID: PMC11190707 DOI: 10.1016/j.jbc.2024.107365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 06/07/2024] Open
Abstract
YKL-40, also known as human cartilage glycoprotein-39 (HC-gp39) or CHI3L1, shares structural similarities with chitotriosidase (CHIT1), an active chitinase, but lacks chitinase activity. Despite being a biomarker for inflammatory disorders and cancer, the reasons for YKL-40's inert chitinase function have remained elusive. This study reveals that the loss of chitinase activity in YKL-40 has risen from multiple sequence modifications influencing its chitin affinity. Contrary to the common belief associating the lack of chitinase activity with amino acid substitutions in the catalytic motif, attempts to activate YKL-40 by creating two amino acid mutations in the catalytic motif (MT-YKL-40) proved ineffective. Subsequent exploration that included creating chimeras of MT-YKL-40 and CHIT1 catalytic domains (CatDs) identified key exons responsible for YKL-40 inactivation. Introducing YKL-40 exons 3, 6, or 8 into CHIT1 CatD resulted in chitinase inactivation. Conversely, incorporating CHIT1 exons 3, 6, and 8 into MT-YKL-40 led to its activation. Our recombinant proteins exhibited properly formed disulfide bonds, affirming a defined structure in active molecules. Biochemical and evolutionary analysis indicated that the reduced chitinase activity of MT-YKL-40 correlates with specific amino acids in exon 3. M61I and T69W substitutions in CHIT1 CatD diminished chitinase activity and increased chitin binding. Conversely, substituting I61 with M and W69 with T in MT-YKL-40 triggered chitinase activity while reducing the chitin-binding activity. Thus, W69 plays a crucial role in a unique subsite within YKL-40. These findings emphasize that YKL-40, though retaining the structural framework of a mammalian chitinase, has evolved to recognize chitin while surrendering chitinase activity.
Collapse
Affiliation(s)
- Keita Suzuki
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Kazuaki Okawa
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Masashi Ohkura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Tomoki Kanaizumi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Takaki Kobayashi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Koro Takahashi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Hiromu Takei
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Momo Otsuka
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan; Research Fellow of Japan Society for the Promotion of Science (PD), Chiyoda-ku, Tokyo, Japan
| | | | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan.
| |
Collapse
|
5
|
Kim DH, Wang Y, Jung H, Field RL, Zhang X, Liu TC, Ma C, Fraser JS, Brestoff JR, Van Dyken SJ. A type 2 immune circuit in the stomach controls mammalian adaptation to dietary chitin. Science 2023; 381:1092-1098. [PMID: 37676935 PMCID: PMC10865997 DOI: 10.1126/science.add5649] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Dietary fiber improves metabolic health, but host-encoded mechanisms for digesting fibrous polysaccharides are unclear. In this work, we describe a mammalian adaptation to dietary chitin that is coordinated by gastric innate immune activation and acidic mammalian chitinase (AMCase). Chitin consumption causes gastric distension and cytokine production by stomach tuft cells and group 2 innate lymphoid cells (ILC2s) in mice, which drives the expansion of AMCase-expressing zymogenic chief cells that facilitate chitin digestion. Although chitin influences gut microbial composition, ILC2-mediated tissue adaptation and gastrointestinal responses are preserved in germ-free mice. In the absence of AMCase, sustained chitin intake leads to heightened basal type 2 immunity, reduced adiposity, and resistance to obesity. These data define an endogenous metabolic circuit that enables nutrient extraction from an insoluble dietary constituent by enhancing digestive function.
Collapse
Affiliation(s)
- Do-Hyun Kim
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yilin Wang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Haerin Jung
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachael L. Field
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xinya Zhang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ta-Chiang Liu
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Changqing Ma
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan R. Brestoff
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven J. Van Dyken
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
Tabata E, Kobayashi I, Morikawa T, Kashimura A, Bauer PO, Oyama F. Evolutionary activation of acidic chitinase in herbivores through the H128R mutation in ruminant livestock. iScience 2023; 26:107254. [PMID: 37502259 PMCID: PMC10368815 DOI: 10.1016/j.isci.2023.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/04/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Placental mammals' ancestors were insectivores, suggesting that modern mammals may have inherited the ability to digest insects. Acidic chitinase (Chia) is a crucial enzyme hydrolyzing significant component of insects' exoskeleton in many species. On the other hand, herbivorous animal groups, such as cattle, have extremely low chitinase activity compared to omnivorous species, e.g., mice. The low activity of cattle Chia has been attributed to R128H mutation. The presence of either of these amino acids correlates with the feeding behavior of different bovid species with R and H determining the high and low enzymatic activity, respectively. Evolutionary analysis indicated that selective constraints were relaxed in 67 herbivorous Chia in Cetartiodactyla. Despite searching for another Chia paralog that could compensate for the reduced chitinase activity, no active paralogs were found in this order. Herbivorous animals' Chia underwent genetic alterations and evolved into a molecule with low activity due to the chitin-free diet.
Collapse
Affiliation(s)
- Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
- Research Fellow of Japan Society for the Promotion of Science (PD), Koujimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Ikuto Kobayashi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Takuya Morikawa
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Akinori Kashimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Peter O. Bauer
- Bioinova a.s., Videnska 1083, 142 00 Prague, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| |
Collapse
|
7
|
Okawa K, Tabata E, Kida Y, Uno K, Suzuki H, Kamaya M, Bauer PO, Oyama F. Irreversible evolutionary loss of chitin-degrading ability in the chitinase-like protein Ym1 under positive selection in rodents. Protein Sci 2023; 32:e4620. [PMID: 36883357 PMCID: PMC10031810 DOI: 10.1002/pro.4620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ym1 (chitinase-like 3, Chil3) expressed in mice is a nonenzymatic chitinase-like protein, which shows 67% identity with mouse acidic chitinase (Chia). Similar to Chia, Ym1 is overexpressed in asthma and parasitic infections in mouse lungs. Due to the lack of chitin-degrading activity, the biomedical role of Ym1 under these pathophysiological conditions remains to be determined. In this study, we investigated what region and amino acid changes in Ym1 resulted in the loss of enzymatic activity. Replacing two amino acids at the catalytic motif to obtain a Chia-like sequence (N136D and Q140E; MT-Ym1) did not activate the protein. We conducted a comparative study of Ym1 and Chia. We found that three protein segments-(i) the catalytic motif residues, (ii) exons 6 and 7, and (iii) exon 10-are responsible for chitinase activity loss in Ym1. We show that replacing each of these three segments in Chia that are also involved in substrate recognition and binding by the Ym1 sequence can fully abolish the enzymatic activity. In addition, we show that there have been extensive gene duplication events at the Ym1 locus specific to the rodent lineages. Consistent with this result, Ym1 orthologs from the rodent genome were under positive selection when analyzed through the CODEML program. These data suggest that numerous amino acid substitutions in the regions involved in the chitin recognition, binding, and degradation ability of the ancestor Ym1 molecule lead to the irreversible inactivation of the protein.
Collapse
Affiliation(s)
- Kazuaki Okawa
- Department of Chemistry and Life ScienceKogakuin UniversityTokyoJapan
| | - Eri Tabata
- Department of Chemistry and Life ScienceKogakuin UniversityTokyoJapan
- Japan Society for the Promotion of Science (PD)TokyoJapan
| | - Yuta Kida
- Department of Chemistry and Life ScienceKogakuin UniversityTokyoJapan
| | - Kyohei Uno
- Department of Chemistry and Life ScienceKogakuin UniversityTokyoJapan
| | - Hidetoshi Suzuki
- Department of Chemistry and Life ScienceKogakuin UniversityTokyoJapan
| | - Minori Kamaya
- Department of Applied ChemistryKogakuin UniversityTokyoJapan
| | | | - Fumitaka Oyama
- Department of Chemistry and Life ScienceKogakuin UniversityTokyoJapan
| |
Collapse
|
8
|
Uehara M, Takasaki C, Wakita S, Sugahara Y, Tabata E, Matoska V, Bauer PO, Oyama F. Crab-Eating Monkey Acidic Chitinase (CHIA) Efficiently Degrades Chitin and Chitosan under Acidic and High-Temperature Conditions. Molecules 2022; 27:409. [PMID: 35056724 PMCID: PMC8781735 DOI: 10.3390/molecules27020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Chitooligosaccharides, the degradation products of chitin and chitosan, possess anti-bacterial, anti-tumor, and anti-inflammatory activities. The enzymatic production of chitooligosaccharides may increase the interest in their potential biomedical or agricultural usability in terms of the safety and simplicity of the manufacturing process. Crab-eating monkey acidic chitinase (CHIA) is an enzyme with robust activity in various environments. Here, we report the efficient degradation of chitin and chitosan by monkey CHIA under acidic and high-temperature conditions. Monkey CHIA hydrolyzed α-chitin at 50 °C, producing N-acetyl-d-glucosamine (GlcNAc) dimers more efficiently than at 37 °C. Moreover, the degradation rate increased with a longer incubation time (up to 72 h) without the inactivation of the enzyme. Five substrates (α-chitin, colloidal chitin, P-chitin, block-type, and random-type chitosan substrates) were exposed to monkey CHIS at pH 2.0 or pH 5.0 at 50 °C. P-chitin and random-type chitosan appeared to be the best sources of GlcNAc dimers and broad-scale chitooligosaccharides, respectively. In addition, the pattern of the products from the block-type chitosan was different between pH conditions (pH 2.0 and pH 5.0). Thus, monkey CHIA can degrade chitin and chitosan efficiently without inactivation under high-temperature or low pH conditions. Our results show that certain chitooligosaccharides are enriched by using different substrates under different conditions. Therefore, the reaction conditions can be adjusted to obtain desired oligomers. Crab-eating monkey CHIA can potentially become an efficient tool in producing chitooligosaccharide sets for agricultural and biomedical purposes.
Collapse
Affiliation(s)
- Maiko Uehara
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (M.U.); (C.T.); (S.W.); (Y.S.); (E.T.)
| | - Chinatsu Takasaki
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (M.U.); (C.T.); (S.W.); (Y.S.); (E.T.)
| | - Satoshi Wakita
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (M.U.); (C.T.); (S.W.); (Y.S.); (E.T.)
| | - Yasusato Sugahara
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (M.U.); (C.T.); (S.W.); (Y.S.); (E.T.)
| | - Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (M.U.); (C.T.); (S.W.); (Y.S.); (E.T.)
- Japan Society for the Promotion of Science (PD), Tokyo 102-0083, Japan
| | - Vaclav Matoska
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, 150 00 Prague, Czech Republic; (V.M.); (P.O.B.)
| | - Peter O. Bauer
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, 150 00 Prague, Czech Republic; (V.M.); (P.O.B.)
- Bioinova JSC, Videnska 1083, 142 20 Prague, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (M.U.); (C.T.); (S.W.); (Y.S.); (E.T.)
| |
Collapse
|
9
|
Toson ESA, Saad EA, Omar HAER. Occupational exposure to gasoline in gasoline station male attendants promotes M1 polarization in macrophages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6399-6413. [PMID: 34449021 DOI: 10.1007/s11356-021-16019-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Several studies have reported the toxicological implications of exposure to petroleum hydrocarbon fumes in animal models. There is little documentation on the effect of such exposure on oxidative stress levels and immune response. To our knowledge, no documentation of M1 polarization in macrophages in gasoline station male attendants. Therefore, this study aimed to evaluate the harmful effects of gasoline vapors in 62 male attendants (16-70 years) compared to 29 age- and sex-matched-unexposed controls. The attendants were recruited from Damietta governorate gasoline stations. Gasoline exposure induced a significant increase in tumor necrosis factor-α (TNF-α) level (p < 0.05) as well as a slight but non-significant increase in the activity of acidic mammalian chitinase (AMCase) (p > 0.05). Further TNF-α/AMCase ratio was significantly increased (p < 0.01) in sera of the attendants when compared to those of the healthy controls. Also, the total leucocytic and lymphocytic counts were significantly increased (p < 0.01 and p < 0.001, respectively). On contrary, neutrophils to lymphocytes ratio (NLR) and platelets to lymphocytes ratio (PLR) were significantly decreased (p < 0.05 and p < 0.001, respectively). In addition, significant reduction in hemoglobin (Hb) concentration, plasma glutathione reduced form (GSH), and catalase, as well as superoxide dismutase (SOD) activities in red blood cells were observed in the exposed attendants. As a result, malondialdehyde (MDA), nitric oxide (NO) levels, and NO/AMCase ratio were significantly increased (p < 0.05). In conclusion, this study inferred that prolonged gasoline exposure can mediate immune activation, especially M1 macrophages polarization, possibly via oxidative stress-mediated mechanism.
Collapse
Affiliation(s)
- El-Shahat A Toson
- Chemistry Department, Faculty of Science, Damietta University, New Damietta, Damietta, 34517, Egypt
| | - Entsar A Saad
- Chemistry Department, Faculty of Science, Damietta University, New Damietta, Damietta, 34517, Egypt
| | - Hadeer Abd El-Raouf Omar
- Chemistry Department, Faculty of Science, Damietta University, New Damietta, Damietta, 34517, Egypt.
| |
Collapse
|
10
|
A Helminth-Derived Chitinase Structurally Similar to Mammalian Chitinase Displays Immunomodulatory Properties in Inflammatory Lung Disease. J Immunol Res 2021; 2021:6234836. [PMID: 34869783 PMCID: PMC8639245 DOI: 10.1155/2021/6234836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Immunomodulation of airway hyperreactivity by excretory-secretory (ES) products of the first larval stage (L1) of the gastrointestinal nematode Trichuris suis is reported by us and others. Here, we aimed to identify the proteins accounting for the modulatory effects of the T. suis L1 ES proteins and studied six selected T. suis L1 proteins for their immunomodulatory efficacy in a murine OVA-induced allergic airway disease model. In particular, an enzymatically active T. suis chitinase mediated amelioration of clinical signs of airway hyperreactivity, primarily associated with suppression of eosinophil recruitment into the lung, the associated chemokines, and increased numbers of RELMα+ interstitial lung macrophages. While there is no indication of T. suis chitinase directly interfering with dendritic cell activation or antigen presentation to CD4 T cells, treatment of allergic mice with the worm chitinase influenced the hosts' own chitinase activity in the inflamed lung. The three-dimensional structure of the T. suis chitinase as determined by high-resolution X-ray crystallography revealed high similarities to mouse acidic mammalian chitinase (AMCase) but a unique ability of T. suis chitinase to form dimers. Our data indicate that the structural similarities between the parasite and host chitinase contribute to the disease-ameliorating effect of the helminth-derived chitinase on allergic lung inflammation.
Collapse
|
11
|
Tabata E, Itoigawa A, Koinuma T, Tayama H, Kashimura A, Sakaguchi M, Matoska V, Bauer PO, Oyama F. Noninsect-Based Diet Leads to Structural and Functional Changes of Acidic Chitinase in Carnivora. Mol Biol Evol 2021; 39:6432054. [PMID: 34897517 PMCID: PMC8789059 DOI: 10.1093/molbev/msab331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Acidic chitinase (Chia) digests the chitin of insects in the omnivorous stomach and the chitinase activity in carnivorous Chia is significantly lower than that of the omnivorous enzyme. However, mechanistic and evolutionary insights into the functional changes in Chia remain unclear. Here we show that a noninsect-based diet has caused structural and functional changes in Chia during the course of evolution in Carnivora. By creating mouse-dog chimeric Chia proteins and modifying the amino acid sequences, we revealed that F214L and A216G substitutions led to the dog enzyme activation. In 31 Carnivora, Chia was present as a pseudogene with stop codons in the open reading frame (ORF) region. Importantly, the Chia proteins of skunk, meerkat, mongoose, and hyena, which are insect-eating species, showed high chitinolytic activity. The cat Chia pseudogene product was still inactive even after ORF restoration. However, the enzyme was activated by matching the number and position of Cys residues to an active form and by introducing five meerkat Chia residues. Mutations affecting the Chia conformation and activity after pseudogenization have accumulated in the common ancestor of Felidae due to functional constraints. Evolutionary analysis indicates that Chia genes are under relaxed selective constraint in species with noninsect-based diets except for Canidae. These results suggest that there are two types of inactivating processes in Carnivora and that dietary changes affect the structure and activity of Chia.
Collapse
Affiliation(s)
- Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science (PD), Tokyo, Japan
| | - Akihiro Itoigawa
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Aichi, Japan
| | - Takumi Koinuma
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
| | - Hiroshi Tayama
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
| | - Akinori Kashimura
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
| | | | - Vaclav Matoska
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Prague, Czech Republic
| | - Peter O Bauer
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Prague, Czech Republic
- Bioinova JSC, Prague, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
- Corresponding author: E-mail:
| |
Collapse
|
12
|
Wakita S, Sugahara Y, Nakamura M, Kobayashi S, Matsuda K, Takasaki C, Kimura M, Kida Y, Uehara M, Tabata E, Hiraoka K, Seki S, Matoska V, Bauer PO, Oyama F. Mouse Acidic Chitinase Effectively Degrades Random-Type Chitosan to Chitooligosaccharides of Variable Lengths under Stomach and Lung Tissue pH Conditions. Molecules 2021; 26:molecules26216706. [PMID: 34771117 PMCID: PMC8587675 DOI: 10.3390/molecules26216706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Chitooligosaccharides exhibit several biomedical activities, such as inflammation and tumorigenesis reduction in mammals. The mechanism of the chitooligosaccharides’ formation in vivo has been, however, poorly understood. Here we report that mouse acidic chitinase (Chia), which is widely expressed in mouse tissues, can produce chitooligosaccharides from deacetylated chitin (chitosan) at pH levels corresponding to stomach and lung tissues. Chia degraded chitin to produce N-acetyl-d-glucosamine (GlcNAc) dimers. The block-type chitosan (heterogenous deacetylation) is soluble at pH 2.0 (optimal condition for mouse Chia) and was degraded into chitooligosaccharides with various sizes ranging from di- to nonamers. The random-type chitosan (homogenous deacetylation) is soluble in water that enables us to examine its degradation at pH 2.0, 5.0, and 7.0. Incubation of these substrates with Chia resulted in the more efficient production of chitooligosaccharides with more variable sizes was from random-type chitosan than from the block-type form of the molecule. The data presented here indicate that Chia digests chitosan acquired by homogenous deacetylation of chitin in vitro and in vivo. The degradation products may then influence different physiological or pathological processes. Our results also suggest that bioactive chitooligosaccharides can be obtained conveniently using homogenously deacetylated chitosan and Chia for various biomedical applications.
Collapse
Affiliation(s)
- Satoshi Wakita
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Yasusato Sugahara
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Masayuki Nakamura
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Syunsuke Kobayashi
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Kazuhisa Matsuda
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Chinatsu Takasaki
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Masahiro Kimura
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
- Japan Society for the Promotion of Science (PD), Tokyo 102-0083, Japan
| | - Yuta Kida
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Maiko Uehara
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
- Japan Society for the Promotion of Science (PD), Tokyo 102-0083, Japan
| | - Koji Hiraoka
- Department of Environmental Chemistry, Kogakuin University, Tokyo 192-0015, Japan; (K.H.); (S.S.)
| | - Shiro Seki
- Department of Environmental Chemistry, Kogakuin University, Tokyo 192-0015, Japan; (K.H.); (S.S.)
| | - Vaclav Matoska
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, 150 00 Prague, Czech Republic; (V.M.); (P.O.B.)
| | - Peter O. Bauer
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, 150 00 Prague, Czech Republic; (V.M.); (P.O.B.)
- Bioinova JSC, Videnska 1083, 142 20 Prague, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
- Correspondence:
| |
Collapse
|
13
|
Robust chitinolytic activity of crab-eating monkey (Macaca fascicularis) acidic chitinase under a broad pH and temperature range. Sci Rep 2021; 11:15470. [PMID: 34326426 PMCID: PMC8322401 DOI: 10.1038/s41598-021-95010-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Diet of the crab-eating monkey (Macaca fascicularis) consists of both plants and animals, including chitin-containing organisms such as crabs and insects. This omnivorous monkey has a high expression of acidic chitinase (CHIA) in the stomach and here, we report on its enzymatic properties under different conditions. When we compared with Mus musculus CHIA (Mm-CHIA), Macaca fascicularis CHIA (Mf-CHIA) exhibits higher chitinolytic activity at broad pH (1.0–7.0) and temperature (30–70 ℃) range. Interestingly, at its optimum pH (5.0), Mf-CHIA showed the highest activity at 65 °C while maintaining it at robust levels between 50 and 70 °C. The degradation efficiency of Mf-CHIA was superior to Mm-CHIA toward both polymeric chitin as well as an artificial chromogenic substrate. Our results show that unique features of Mf-CHIA including its thermostability warrant the nomination of this enzyme for potential agricultural and biomedical applications.
Collapse
|
14
|
Chitinases and Chitinase-Like Proteins as Therapeutic Targets in Inflammatory Diseases, with a Special Focus on Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms22136966. [PMID: 34203467 PMCID: PMC8268069 DOI: 10.3390/ijms22136966] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
Chitinases belong to the evolutionarily conserved glycosyl hydrolase family 18 (GH18). They catalyze degradation of chitin to N-acetylglucosamine by hydrolysis of the β-(1-4)-glycosidic bonds. Although mammals do not synthesize chitin, they possess two enzymatically active chitinases, i.e., chitotriosidase (CHIT1) and acidic mammalian chitinase (AMCase), as well as several chitinase-like proteins (YKL-40, YKL-39, oviductin, and stabilin-interacting protein). The latter lack enzymatic activity but still display oligosaccharides-binding ability. The physiologic functions of chitinases are still unclear, but they have been shown to be involved in the pathogenesis of various human fibrotic and inflammatory disorders, particularly those of the lung (idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, sarcoidosis, and asthma) and the gastrointestinal tract (inflammatory bowel diseases (IBDs) and colon cancer). In this review, we summarize the current knowledge about chitinases, particularly in IBDs, and demonstrate that chitinases can serve as prognostic biomarkers of disease progression. Moreover, we suggest that the inhibition of chitinase activity may be considered as a novel therapeutic strategy for the treatment of IBDs.
Collapse
|
15
|
Hu C, Ma Z, Zhu J, Fan Y, Tuo B, Li T, Liu X. Physiological and pathophysiological roles of acidic mammalian chitinase (CHIA) in multiple organs. Biomed Pharmacother 2021; 138:111465. [PMID: 34311522 DOI: 10.1016/j.biopha.2021.111465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Acidic mammalian chitinase (CHIA) belongs to the 18-glycosidase family and is expressed in epithelial cells and certain immune cells (such as neutrophils and macrophages) in various organs. Under physiological conditions, as a hydrolase, CHIA can degrade chitin-containing pathogens, participate in Type 2 helper T (Th2)-mediated inflammation, and enhance innate and adaptive immunity to pathogen invasion. Under pathological conditions, such as rhinitis, ocular conjunctivitis, asthma, chronic atrophic gastritis, type 2 diabetes, and pulmonary interstitial fibrosis, CHIA expression is significantly changed. In addition, studies have shown that CHIA has an anti-apoptotic effect, promotes epithelial cell proliferation and maintains organ integrity, and these effects are not related to chitinase degradation. CHIA can also be used as a biomolecular marker in diseases such as chronic atrophic gastritis, dry eye, and acute kidney damage caused by sepsis. Analysis of the authoritative TCGA database shows that CHIA expression in gastric adenocarcinoma, liver cancer, renal clear cell carcinoma and other tumors is significantly downregulated compared with that in normal tissues, but the specific mechanism is unclear. This review is based on all surveys conducted to date and summarizes the expression patterns and functional diversity of CHIA in various organs. Understanding the physiological and pathophysiological relevance of CHIA in multiple organs opens new possibilities for disease treatment.
Collapse
Affiliation(s)
- Chunli Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China
| | - Yi Fan
- Endoscopy center, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Endoscopy center, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China
| | - Taolang Li
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China.
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Endoscopy center, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China.
| |
Collapse
|
16
|
Kimura M, Watanabe T, Sekine K, Ishizuka H, Ikejiri A, Sakaguchi M, Kamaya M, Yamanaka D, Matoska V, Bauer PO, Oyama F. Comparative functional analysis between human and mouse chitotriosidase: Substitution at amino acid 218 modulates the chitinolytic and transglycosylation activity. Int J Biol Macromol 2020; 164:2895-2902. [PMID: 32853624 DOI: 10.1016/j.ijbiomac.2020.08.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 01/07/2023]
Abstract
Chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase) have been attracting research interest due to their involvement in various pathological conditions such as Gaucher's disease and asthma, respectively. Both enzymes are highly expressed in mice, while the level of AMCase mRNA was low in human tissues. In addition, the chitinolytic activity of the recombinant human AMCase was significantly lower than that of the mouse counterpart. Here, we revealed a substantially higher chitinolytic and transglycosylation activity of human Chit1 against artificial and natural chitin substrates as compared to the mouse enzyme. We found that the substitution of leucine (L) by tryptophan (W) at position 218 markedly reduced both activities in human Chit1. Conversely, the L218W substitution in mouse Chit1 increased the activity of the enzyme. These results suggest that Chit1 may compensate for the low of AMCase activity in humans, while in mice, highly active AMCase may supplements low Chit1 activity.
Collapse
Affiliation(s)
- Masahiro Kimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan; Research Fellow of Japan Society for the Promotion of Science (PD), Koujimachi, Chiyoda-ku, Tokyo 102-0083, Japan; Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Takashi Watanabe
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Kazutaka Sekine
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Hitomi Ishizuka
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Aoi Ikejiri
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Minori Kamaya
- Department of Applied Chemistry, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Vaclav Matoska
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, Prague 150 00, Czech Republic
| | - Peter O Bauer
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, Prague 150 00, Czech Republic; Bioinova Ltd., Videnska 1083, Prague 142 20, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
| |
Collapse
|
17
|
Przysucha N, Górska K, Krenke R. Chitinases and Chitinase-Like Proteins in Obstructive Lung Diseases - Current Concepts and Potential Applications. Int J Chron Obstruct Pulmon Dis 2020; 15:885-899. [PMID: 32368034 PMCID: PMC7185641 DOI: 10.2147/copd.s236640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/10/2020] [Indexed: 01/14/2023] Open
Abstract
Chitinases, enzymes that cleave chitin’s chain to low molecular weight chitooligomers, are widely distributed in nature. Mammalian chitinases belong to the 18-glycosyl-hydrolase family and can be divided into two groups: true chitinases with enzymatic activity (AMCase and chitotriosidase) and chitinase-like proteins (CLPs) molecules which can bind to chitin or chitooligosaccharides but lack enzymatic activity (eg, YKL-40). Chitinases are thought to be part of an innate immunity against chitin-containing parasites and fungal infections. Both groups of these hydrolases are lately evaluated also as chemical mediators or biomarkers involved in airway inflammation and fibrosis. The aim of this article is to present the current knowledge on the potential role of human chitinases and CLPs in the pathogenesis, diagnosis, and course of obstructive lung diseases. We also assessed the potential role of chitinase and CLPs inhibitors as therapeutic targets in chronic obstructive pulmonary disease and asthma.
Collapse
Affiliation(s)
- Natalia Przysucha
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Górska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Rafal Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Barad BA, Liu L, Diaz RE, Basilio R, Van Dyken SJ, Locksley RM, Fraser JS. Differences in the chitinolytic activity of mammalian chitinases on soluble and insoluble substrates. Protein Sci 2020; 29:966-977. [PMID: 31930591 PMCID: PMC7096708 DOI: 10.1002/pro.3822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
Chitin is an abundant polysaccharide used by many organisms for structural rigidity and water repulsion. As such, the insoluble crystalline structure of chitin poses significant challenges for enzymatic degradation. Acidic mammalian chitinase, a processive glycosyl hydrolase, is the primary enzyme involved in the degradation of environmental chitin in mammalian lungs. Mutations to acidic mammalian chitinase have been associated with asthma, and genetic deletion in mice increases morbidity and mortality with age. We initially set out to reverse this phenotype by engineering hyperactive acidic mammalian chitinase variants. Using a screening approach with commercial fluorogenic substrates, we identified mutations with consistent increases in activity. To determine whether the activity increases observed were consistent with more biologically relevant chitin substrates, we developed new assays to quantify chitinase activity with insoluble chitin, and identified a one-pot fluorogenic assay that is sufficiently sensitive to quantify changes to activity due to the addition or removal of a carbohydrate-binding domain. We show that the activity increases from our directed evolution screen were lost when insoluble substrates were used. In contrast, naturally occurring gain-of-function mutations gave similar results with oligomeric and insoluble substrates. We also show that activity differences between acidic mammalian chitinase and chitotriosidase are reduced with insoluble substrate, suggesting that previously reported activity differences with oligomeric substrates may have been driven by differential substrate specificity. These results highlight the need for assays against physiological substrates when engineering metabolic enzymes, and provide a new one-pot assay that may prove to be broadly applicable to engineering glycosyl hydrolases.
Collapse
Affiliation(s)
- Benjamin A. Barad
- Department of Bioengineering and Therapeutic SciencesUniversity of CaliforniaSan FranciscoCalifornia
- Biophysics Graduate ProgramUniversity of CaliforniaSan FranciscoCalifornia
| | - Lin Liu
- Department of Bioengineering and Therapeutic SciencesUniversity of CaliforniaSan FranciscoCalifornia
| | - Roberto E. Diaz
- Department of Bioengineering and Therapeutic SciencesUniversity of CaliforniaSan FranciscoCalifornia
- Tetrad Graduate ProgramUniversity of CaliforniaSan FranciscoCalifornia
| | - Ralp Basilio
- Department of Bioengineering and Therapeutic SciencesUniversity of CaliforniaSan FranciscoCalifornia
- Science Education Partnership High School Intern Program, University of CaliforniaSan FranciscoCalifornia
| | - Steven J. Van Dyken
- Department of Pathology and ImmunologyWashington University School of Medicine in St. LouisSt. LouisMissouri
| | - Richard M. Locksley
- Department of MedicineUniversity of CaliforniaSan FranciscoCalifornia
- Department of Microbiology and ImmunologyUniversity of CaliforniaSan FranciscoCalifornia
- Howard Hughes Medical InstituteSan FranciscoCalifornia
| | - James S. Fraser
- Department of Bioengineering and Therapeutic SciencesUniversity of CaliforniaSan FranciscoCalifornia
| |
Collapse
|
19
|
Kimura M, Umeyama T, Wakita S, Okawa K, Sakaguchi M, Matoska V, Bauer PO, Oyama F. Direct comparison of chitinolytic properties and determination of combinatory effects of mouse chitotriosidase and acidic mammalian chitinase. Int J Biol Macromol 2019; 134:882-890. [DOI: 10.1016/j.ijbiomac.2019.05.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/06/2019] [Accepted: 05/16/2019] [Indexed: 01/31/2023]
|
20
|
Sakornsakolpat P, Prokopenko D, Lamontagne M, Reeve NF, Guyatt AL, Jackson VE, Shrine N, Qiao D, Bartz TM, Kim DK, Lee MK, Latourelle JC, Li X, Morrow JD, Obeidat M, Wyss AB, Bakke P, Barr RG, Beaty TH, Belinsky SA, Brusselle GG, Crapo JD, de Jong K, DeMeo DL, Fingerlin TE, Gharib SA, Gulsvik A, Hall IP, Hokanson JE, Kim WJ, Lomas DA, London SJ, Meyers DA, O'Connor GT, Rennard SI, Schwartz DA, Sliwinski P, Sparrow D, Strachan DP, Tal-Singer R, Tesfaigzi Y, Vestbo J, Vonk JM, Yim JJ, Zhou X, Bossé Y, Manichaikul A, Lahousse L, Silverman EK, Boezen HM, Wain LV, Tobin MD, Hobbs BD, Cho MH. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat Genet 2019; 51:494-505. [PMID: 30804561 PMCID: PMC6546635 DOI: 10.1038/s41588-018-0342-2] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/20/2018] [Indexed: 11/09/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is the leading cause of respiratory mortality worldwide. Genetic risk loci provide new insights into disease pathogenesis. We performed a genome-wide association study in 35,735 cases and 222,076 controls from the UK Biobank and additional studies from the International COPD Genetics Consortium. We identified 82 loci associated with P < 5 × 10-8; 47 of these were previously described in association with either COPD or population-based measures of lung function. Of the remaining 35 new loci, 13 were associated with lung function in 79,055 individuals from the SpiroMeta consortium. Using gene expression and regulation data, we identified functional enrichment of COPD risk loci in lung tissue, smooth muscle, and several lung cell types. We found 14 COPD loci shared with either asthma or pulmonary fibrosis. COPD genetic risk loci clustered into groups based on associations with quantitative imaging features and comorbidities. Our analyses provide further support for the genetic susceptibility and heterogeneity of COPD.
Collapse
Affiliation(s)
- Phuwanat Sakornsakolpat
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Dmitry Prokopenko
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Maxime Lamontagne
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Quebec, Canada
| | - Nicola F Reeve
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Anna L Guyatt
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Victoria E Jackson
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Nick Shrine
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Dandi Qiao
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Deog Kyeom Kim
- Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Mi Kyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Raleigh, NC, USA
| | - Jeanne C Latourelle
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Xingnan Li
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Jarrett D Morrow
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ma'en Obeidat
- University of British Columbia Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Annah B Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Raleigh, NC, USA
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - R Graham Barr
- Department of Medicine, College of Physicians and Surgeons and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Guy G Brusselle
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - James D Crapo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Kim de Jong
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Tasha E Fingerlin
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
- Department of Biostatistics and Informatics, University of Colorado Denver, Aurora, CO, USA
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Amund Gulsvik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ian P Hall
- Division of Respiratory Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham, UK
| | - John E Hokanson
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - David A Lomas
- UCL Respiratory, University College London, London, UK
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Raleigh, NC, USA
| | | | - George T O'Connor
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Stephen I Rennard
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Clinical Discovery Unit, AstraZeneca, Cambridge, UK
| | - David A Schwartz
- Department of Medicine, School of Medicine, University of Colorado Denver, Aurora, CO, USA
- Department of Immunology, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Pawel Sliwinski
- 2nd Department of Respiratory Medicine, Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - David Sparrow
- VA Boston Healthcare System and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - David P Strachan
- Population Health Research Institute, St. George's University of London, London, UK
| | | | | | - Jørgen Vestbo
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Jae-Joon Yim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Quebec, Canada
- Department of Molecular Medicine, Laval University, Québec, Québec, Canada
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Lies Lahousse
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - H Marike Boezen
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Louise V Wain
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Martin D Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Brian D Hobbs
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
21
|
Tabata E, Kashimura A, Uehara M, Wakita S, Sakaguchi M, Sugahara Y, Yurimoto T, Sasaki E, Matoska V, Bauer PO, Oyama F. High expression of acidic chitinase and chitin digestibility in the stomach of common marmoset (Callithrix jacchus), an insectivorous nonhuman primate. Sci Rep 2019; 9:159. [PMID: 30655565 PMCID: PMC6336882 DOI: 10.1038/s41598-018-36477-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022] Open
Abstract
Chitin is a polymer of N-acetyl-D-glucosamine (GlcNAc) and a main constituent of insects' exoskeleton. Insects are rich in protein with high energy conversion efficiency. Recently, we have reported that acidic chitinases (Chia) act as digestive enzymes in mouse, pig and chicken (omnivorous) but not in dog (carnivorous) and bovine (herbivorous), indicating that feeding behavior affects Chia expression levels, and determines chitin digestibility in the particular animals. Common marmoset (Callithrix jacchus) belongs to New World monkey family and provides a potential bridge between mouse models and human diseases. Common marmoset is an insectivorous nonhuman primate with unknown expression levels and enzymatic functions of the Chia homologue, CHIA. Here, we report that common marmoset highly expresses pepsin-, trypsin- and chymotrypsin-resistant CHIA in the stomach. We show that CHIA is most active at pH 2.0 and degrades chitin and mealworm shells into GlcNAc dimers under gastrointestinal conditions. Although common marmoset and crab-eating monkey (Old World monkey) have two CHIA genes in their genomes, they primarily express one gene in the stomach. Thus, this study is the first to investigate expression levels and enzymatic functions of CHIA in a New World primate, contributing to the understanding of dietary adaptation and digestion in this taxon.
Collapse
Affiliation(s)
- Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan.,Research Fellow of Japan Society for the Promotion of Science (DC1), Koujimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Akinori Kashimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Maiko Uehara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Satoshi Wakita
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Yasusato Sugahara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Terumi Yurimoto
- Central Institute for Experimental Animals, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan
| | - Vaclav Matoska
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, Prague, 150 00, Czech Republic
| | - Peter O Bauer
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, Prague, 150 00, Czech Republic.,Bioinova Ltd., Videnska 1083, Prague, 142 20, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan.
| |
Collapse
|
22
|
Steven J. VD, Richard M. L. Chitins and chitinase activity in airway diseases. J Allergy Clin Immunol 2018; 142:364-369. [PMID: 29959948 PMCID: PMC6078791 DOI: 10.1016/j.jaci.2018.06.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 01/04/2023]
Abstract
Chitin, one of the most abundant biopolymers on Earth, is bound and degraded by chitinases, specialized enzymes that are similarly widespread in nature. Chitin catabolism affects global carbon and nitrogen cycles through a host of diverse biological processes, but recent work has focused attention on systems of chitin recognition and degradation conserved in mammals, connecting an ancient pathway of polysaccharide processing to human diseases influenced by persistent immune triggering. Here we review current advances in our understanding of how chitin-chitinase interactions affect mucosal immune feedback mechanisms essential to maintaining homeostasis and organ health.
Collapse
Affiliation(s)
- Van Dyken Steven J.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO USA.
| | - Locksley Richard M.
- Howard Hughes Medical Institute, Departments of Medicine and Microbiology / Immuology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Ma JE, Li LM, Jiang HY, Zhang XJ, Li J, Li GY, Chen JP. Acidic mammalian chitinase gene is highly expressed in the special oxyntic glands of Manis javanica. FEBS Open Bio 2018; 8:1247-1255. [PMID: 30087830 PMCID: PMC6070644 DOI: 10.1002/2211-5463.12461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/09/2018] [Accepted: 06/04/2018] [Indexed: 11/17/2022] Open
Abstract
The Malayan pangolin (Manis javanica) is a mammal that feeds primarily on ants and termites, which contain the energy‐rich carbohydrate chitin. Chitin is digestible by endogenous enzymes of the typical mammalian gastrointestinal tract, especially the acidic mammalian chitinase (AMCase). The objective of this research was to determine whether AMCase activity is expressed in the stomach of M. javanica. The stomach tissues were divided into three parts: the gastric sack, the oxyntic glands, and the pyloric musculature, which were assayed by conventional RT‐PCR, quantitative reverse transcriptase‐coupled PCR (qPCR) and western blot. Information regarding 3D structural models of AMCase was also obtained. In conclusion, acidic mammalian chitinase is highly expressed in the oxyntic glands of the M. javanica species.
Collapse
Affiliation(s)
- Jing-E Ma
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Lin-Miao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Hai-Ying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Xiu-Juan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Juan Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Guan-Yu Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Jin-Ping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| |
Collapse
|
24
|
Uehara M, Tabata E, Ishii K, Sawa A, Ohno M, Sakaguchi M, Matoska V, Bauer PO, Oyama F. Chitinase mRNA Levels Determined by QPCR in Crab-Eating Monkey (Macaca fascicularis) Tissues: Species-Specific Expression of Acidic Mammalian Chitinase and Chitotriosidase. Genes (Basel) 2018; 9:genes9050244. [PMID: 29747453 PMCID: PMC5977184 DOI: 10.3390/genes9050244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022] Open
Abstract
Mice and humans express two active chitinases: acidic mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Both chitinases are thought to play important roles in specific pathophysiological conditions. The crab-eating monkey (Macaca fascicularis) is one of the most frequently used nonhuman primate models in basic and applied biomedical research. Here, we performed gene expression analysis of two chitinases in normal crab-eating monkey tissues by way of quantitative real-time polymerase chain reaction (qPCR) using a single standard DNA molecule. Levels of AMCase and CHIT1 messenger RNAs (mRNAs) were highest in the stomach and the lung, respectively, when compared to other tissues. Comparative gene expression analysis of mouse, monkey, and human using monkey–mouse–human hybrid standard DNA showed that the AMCase mRNA levels were exceptionally high in mouse and monkey stomachs while very low in the human stomach. As for the CHIT1 mRNA, we detected higher levels in the monkey lung when compared with those of mouse and human. The differences of mRNA expression between the species in the stomach tissues were basically reflecting the levels of the chitinolytic activities. These results indicate that gene expression of AMCase and CHIT1 differs between mammalian species and requiring special attention in handling data in chitinase-related studies in particular organisms.
Collapse
Affiliation(s)
- Maiko Uehara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
| | - Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
- Japan Society for the Promotion of Science (DC1), Koujimachi, Chiyoda-ku, Tokyo 102-0083, Japan.
| | - Kazuhiro Ishii
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166A, Baltimore, MD 21287, USA.
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166A, Baltimore, MD 21287, USA.
| | - Misa Ohno
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
| | - Vaclav Matoska
- Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, 150 00 Prague, Czech Republic.
| | - Peter O Bauer
- Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, 150 00 Prague, Czech Republic.
- Bioinova Ltd., 142 20 Prague, Czech Republic.
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
| |
Collapse
|
25
|
Janiak MC. No Evidence of Copy Number Variation in Acidic Mammalian Chitinase Genes (CHIA) in New World and Old World Monkeys. INT J PRIMATOL 2018. [DOI: 10.1007/s10764-018-0037-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Yuasa M, Okamura T, Kimura M, Honda S, Shin Y, Kawakita M, Oyama F, Sakaguchi M. Two trehalose-hydrolyzing enzymes from Crenarchaeon Sulfolobus acidocaldarius exhibit distinct activities and affinities toward trehalose. Appl Microbiol Biotechnol 2018; 102:4445-4455. [PMID: 29574614 DOI: 10.1007/s00253-018-8915-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/01/2018] [Accepted: 03/03/2018] [Indexed: 01/08/2023]
Abstract
Two archaeal trehalase-like genes, Saci1250 and Saci1816, belonging to glycoside hydrolase family 15 (GH15) from the acidophilic Crenarchaeon Sulfolobus acidocaldarius were expressed in Escherichia coli. The gene products showed trehalose-hydrolyzing activities, and the names SaTreH1 and SaTreH2 were assigned to Saci1816 and Saci1250 gene products, respectively. These newly identified enzymes functioned within a narrow range of acidic pH values at elevated temperatures, which is similar to the behavior of Euryarchaeota Thermoplasma trehalases. SaTreH1 displayed high KM and kcat values, whereas SaTreH2 had lower KM and kcat values despite a high degree of identity in their primary structures. A mutation analysis indicated that two glutamic acid residues in SaTreH1, E374 and E574, may be involved in trehalase catalysis because SaTreH1 E374Q and E574Q showed greatly reduced trehalose-hydrolyzing activities. Additional mutations substituting G573 and H575 residues with serine and glutamic acid residues, respectively, to mimic the TVN1315 sequence resulted in a decrease in trehalase activity and thermal stability. Taken together, the results indicated that Crenarchaea trehalases adopt active site structures that are similar to Euryarchaeota enzymes but have distinct molecular features. The identification of these trehalases could extend our understanding of the relationships between the structure and function of GH15 trehalases as well as other family enzymes and will provide insights into archaeal trehalose metabolism.
Collapse
Affiliation(s)
- Mitsuhiro Yuasa
- Department of Chemistry and Life Science, Kogakuin University, 2,665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan
| | - Takeshi Okamura
- Department of Chemistry and Life Science, Kogakuin University, 2,665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan
| | - Masahiro Kimura
- Department of Chemistry and Life Science, Kogakuin University, 2,665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan
| | - Shotaro Honda
- Department of Chemistry and Life Science, Kogakuin University, 2,665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan
| | - Yongchol Shin
- Department of Chemistry and Life Science, Kogakuin University, 2,665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan
| | - Masao Kawakita
- Department of Chemistry and Life Science, Kogakuin University, 2,665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan.,Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kami-kitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, 2,665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, 2,665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan.
| |
Collapse
|
27
|
Acidic Chitinase-Chitin Complex Is Dissociated in a Competitive Manner by Acetic Acid: Purification of Natural Enzyme for Supplementation Purposes. Int J Mol Sci 2018; 19:ijms19020362. [PMID: 29370114 PMCID: PMC5855584 DOI: 10.3390/ijms19020362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 01/09/2023] Open
Abstract
Acidic chitinase (Chia) has been implicated in asthma, allergic inflammations, and food processing. We have purified Chia enzymes with striking acid stability and protease resistance from chicken and pig stomach tissues using a chitin column and 8 M urea (urea-Chia). Here, we report that acetic acid is a suitable agent for native Chia purification from the stomach tissues using a chitin column (acetic acid-Chia). Chia protein can be eluted from a chitin column using 0.1 M acetic acid (pH 2.8), but not by using Gly-HCl (pH 2.5) or sodium acetate (pH 4.0 or 5.5). The melting temperatures of Chia are not affected substantially in the elution buffers, as assessed by differential scanning fluorimetry. Interestingly, acetic acid appears to be more effective for Chia-chitin dissociation than do other organic acids with similar structures. We propose a novel concept of this dissociation based on competitive interaction between chitin and acetic acid rather than on acid denaturation. Acetic acid-Chia also showed similar chitinolytic activity to urea-Chia, indicating that Chia is extremely stable against acid, proteases, and denaturing agents. Both acetic acid- and urea-Chia seem to have good potential for supplementation or compensatory purposes in agriculture or even biomedicine.
Collapse
|
28
|
Tabata E, Kashimura A, Kikuchi A, Masuda H, Miyahara R, Hiruma Y, Wakita S, Ohno M, Sakaguchi M, Sugahara Y, Matoska V, Bauer PO, Oyama F. Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Sci Rep 2018; 8:1461. [PMID: 29362395 PMCID: PMC5780506 DOI: 10.1038/s41598-018-19940-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/10/2018] [Indexed: 01/04/2023] Open
Abstract
Chitin, a polymer of N-acetyl-D-glucosamine (GlcNAc), functions as a major structural component in chitin-containing organism including crustaceans, insects and fungi. Recently, we reported that acidic chitinase (Chia) is highly expressed in mouse, chicken and pig stomach tissues and that it can digest chitin in the respective gastrointestinal tracts (GIT). In this study, we focus on major livestock and domestic animals and show that the levels of Chia mRNA in their stomach tissues are governed by the feeding behavior. Chia mRNA levels were significantly lower in the bovine (herbivores) and dog (carnivores) stomach than those in mouse, pig and chicken (omnivores). Consistent with the mRNA levels, Chia protein was very low in bovine stomach. In addition, the chitinolytic activity of E. coli-expressed bovine and dog Chia enzymes were moderately but significantly lower compared with those of the omnivorous Chia enzymes. Recombinant bovine and dog Chia enzymes can degrade chitin substrates under the artificial GIT conditions. Furthermore, genomes of some herbivorous animals such as rabbit and guinea pig do not contain functional Chia genes. These results indicate that feeding behavior affects Chia expression levels as well as chitinolytic activity of the enzyme, and determines chitin digestibility in the particular animals.
Collapse
Affiliation(s)
- Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Akinori Kashimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Azusa Kikuchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Hiromasa Masuda
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Ryo Miyahara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Yusuke Hiruma
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Satoshi Wakita
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Misa Ohno
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Yasusato Sugahara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Vaclav Matoska
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, Prague, 150 00, Czech Republic
| | - Peter O Bauer
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, Prague, 150 00, Czech Republic
- Bioinova Ltd., Videnska 1083, Prague, 142 20, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan.
| |
Collapse
|
29
|
Tabata E, Kashimura A, Wakita S, Ohno M, Sakaguchi M, Sugahara Y, Imamura Y, Seki S, Ueda H, Matoska V, Bauer PO, Oyama F. Protease resistance of porcine acidic mammalian chitinase under gastrointestinal conditions implies that chitin-containing organisms can be sustainable dietary resources. Sci Rep 2017; 7:12963. [PMID: 29021549 PMCID: PMC5636921 DOI: 10.1038/s41598-017-13526-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022] Open
Abstract
Chitin, a polymer of N-acetyl-D-glucosamine (GlcNAc), is a major structural component in chitin-containing organism including crustaceans, insects and fungi. Mammals express two chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). Here, we report that pig AMCase is stable in the presence of other digestive proteases and functions as chitinolytic enzyme under the gastrointestinal conditions. Quantification of chitinases expression in pig tissues using quantitative real-time PCR showed that Chit1 mRNA was highly expressed in eyes, whereas the AMCase mRNA was predominantly expressed in stomach at even higher levels than the housekeeping genes. AMCase purified from pig stomach has highest activity at pH of around 2–4 and remains active at up to pH 7.0. It was resistant to robust proteolytic activities of pepsin at pH 2.0 and trypsin and chymotrypsin at pH 7.6. AMCase degraded polymeric chitin substrates including mealworm shells to GlcNAc dimers. Furthermore, we visualized chitin digestion of fly wings by endogenous AMCase and pepsin in stomach extract. Thus, pig AMCase can function as a protease resistant chitin digestive enzyme at broad pH range present in stomach as well as in the intestine. These results indicate that chitin-containing organisms may be a sustainable feed ingredient in pig diet.
Collapse
Affiliation(s)
- Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Akinori Kashimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Satoshi Wakita
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Misa Ohno
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Yasusato Sugahara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Yasutada Imamura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Shiro Seki
- Department of Environmental Chemistry, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Hitoshi Ueda
- Department of Integrative Biology, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Vaclav Matoska
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, Prague, 150 00, Czech Republic
| | - Peter O Bauer
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, Prague, 150 00, Czech Republic.,Bioinova Ltd., Videnska 1083, Prague, 142 20, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan.
| |
Collapse
|
30
|
Wakita S, Kobayashi S, Kimura M, Kashimura A, Honda S, Sakaguchi M, Sugahara Y, Kamaya M, Matoska V, Bauer PO, Oyama F. Mouse acidic mammalian chitinase exhibits transglycosylation activity at somatic tissue pH. FEBS Lett 2017; 591:3310-3318. [DOI: 10.1002/1873-3468.12798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Satoshi Wakita
- Department of Chemistry and Life Science; Kogakuin University; Hachioji Tokyo Japan
| | - Shunsuke Kobayashi
- Department of Chemistry and Life Science; Kogakuin University; Hachioji Tokyo Japan
| | - Masahiro Kimura
- Department of Chemistry and Life Science; Kogakuin University; Hachioji Tokyo Japan
| | - Akinori Kashimura
- Department of Chemistry and Life Science; Kogakuin University; Hachioji Tokyo Japan
| | - Shotaro Honda
- Department of Chemistry and Life Science; Kogakuin University; Hachioji Tokyo Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science; Kogakuin University; Hachioji Tokyo Japan
| | - Yasusato Sugahara
- Department of Chemistry and Life Science; Kogakuin University; Hachioji Tokyo Japan
| | - Minori Kamaya
- Department of Applied Chemistry; Kogakuin University; Hachioji Tokyo Japan
| | - Vaclav Matoska
- Laboratory of Molecular Diagnostics; Department of Clinical Biochemistry, Hematology and Immunology; Homolka Hospital; Prague Czech Republic
| | - Peter O. Bauer
- Laboratory of Molecular Diagnostics; Department of Clinical Biochemistry, Hematology and Immunology; Homolka Hospital; Prague Czech Republic
- Bioinova Ltd.; Prague Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science; Kogakuin University; Hachioji Tokyo Japan
| |
Collapse
|
31
|
Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Sci Rep 2017; 7:6662. [PMID: 28751762 PMCID: PMC5532213 DOI: 10.1038/s41598-017-07146-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022] Open
Abstract
Chitin, a polymer of N-acetyl-D-glucosamine (GlcNAc), functions as a major structural component in crustaceans, insects and fungi and is the second most abundant polysaccharide in the nature. Although these chitin-containing organisms have been suggested as novel animal feed resources, chitin has long been considered as indigestible fibers in the animal body. Recently, we reported that acidic chitinase (Chia) is a protease-resistant major glycosidase in mouse gastrointestinal tract (GIT) and that it digests chitin in the mouse stomach. However, the physiological role of Chia in other animals including poultry remains unknown. Here, we report that Chia can function as a digestive enzyme that breaks down chitin-containing organisms in chicken GIT. Chia mRNA is predominantly expressed in the glandular stomach tissue in normal chicken. We also show that chicken Chia has a robust chitinolytic activity at pH 2.0 and is highly resistant to proteolysis by pepsin and trypsin/chymotrypsin under conditions mimicking GIT. Chia degraded shells of mealworm larvae in the presence of digestive proteases and produced (GlcNAc)2. Thus, functional similarity of chicken Chia with the mouse enzyme suggests that chitin-containing organisms can be used for alternative poultry diets not only as whole edible resources but also as enhancers of their nutritional value.
Collapse
|
32
|
Van Dyken SJ, Liang HE, Naikawadi RP, Woodruff PG, Wolters PJ, Erle DJ, Locksley RM. Spontaneous Chitin Accumulation in Airways and Age-Related Fibrotic Lung Disease. Cell 2017; 169:497-509.e13. [PMID: 28431248 DOI: 10.1016/j.cell.2017.03.044] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/22/2017] [Accepted: 03/28/2017] [Indexed: 01/21/2023]
Abstract
The environmentally widespread polysaccharide chitin is degraded and recycled by ubiquitous bacterial and fungal chitinases. Although vertebrates express active chitinases from evolutionarily conserved loci, their role in mammalian physiology is unclear. We show that distinct lung epithelial cells secrete acidic mammalian chitinase (AMCase), which is required for airway chitinase activity. AMCase-deficient mice exhibit premature morbidity and mortality, concomitant with accumulation of environmentally derived chitin polymers in the airways and expression of pro-fibrotic cytokines. Over time, these mice develop spontaneous pulmonary fibrosis, which is ameliorated by restoration of lung chitinase activity by genetic or therapeutic approaches. AMCase-deficient epithelial cells express fibrosis-associated gene sets linked with cell stress pathways. Mice with lung fibrosis due to telomere dysfunction and humans with interstitial lung disease also accumulate excess chitin polymers in their airways. These data suggest that altered chitin clearance could exacerbate fibrogenic pathways in the setting of lung diseases characterized by epithelial cell dysfunction.
Collapse
Affiliation(s)
- Steven J Van Dyken
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hong-Erh Liang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ram P Naikawadi
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Prescott G Woodruff
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David J Erle
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
33
|
Wakita S, Kimura M, Kato N, Kashimura A, Kobayashi S, Kanayama N, Ohno M, Honda S, Sakaguchi M, Sugahara Y, Bauer PO, Oyama F. Improved fluorescent labeling of chitin oligomers: Chitinolytic properties of acidic mammalian chitinase under somatic tissue pH conditions. Carbohydr Polym 2017; 164:145-153. [PMID: 28325311 DOI: 10.1016/j.carbpol.2017.01.095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/03/2017] [Accepted: 01/29/2017] [Indexed: 12/17/2022]
Abstract
Acidic mammalian chitinase (AMCase) has been implicated in various pathophysiological conditions including asthma, allergic inflammation and food processing. AMCase is most active at pH 2.0, and its activity gradually decreases to up to pH 8. Here we analyzed chitin degradation by AMCase in weak acidic to neutral conditions by fluorophore-assisted carbohydrate electrophoresis established originally for oligosaccharides analysis. We found that specific fragments with slower-than-expected mobility as defined by chitin oligosaccharide markers were generated at pH 5.0∼8.0 as by-products of the reaction. We established an improved method for chitin oligosaccharides suppressing this side reaction by pre-acidification of the fluorophore-labeling reaction mixture. Our improved method specifically detects chitin oligosaccharides and warrants quantification of up to 50nmol of the material. Using this strategy, we found that AMCase produced dimer of N-acetyl-d-glucosamine (GlcNAc) at strong acidic to neutral condition. Moreover, we found that AMCase generates (GlcNAc)2 as well as (GlcNAc)3 under physiological conditions.
Collapse
Affiliation(s)
- Satoshi Wakita
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Masahiro Kimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Naoki Kato
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Akinori Kashimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Shunsuke Kobayashi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Naoto Kanayama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Misa Ohno
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Shotaro Honda
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Yasusato Sugahara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Peter O Bauer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Bioinova Ltd., Prague 142 20, Czechia
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan.
| |
Collapse
|
34
|
Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system. Sci Rep 2016; 6:37756. [PMID: 27883045 PMCID: PMC5121897 DOI: 10.1038/srep37756] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/31/2016] [Indexed: 11/25/2022] Open
Abstract
Chitinases are enzymes that hydrolyze chitin, a polymer of β-1, 4-linked N-acetyl-D-glucosamine (GlcNAc). Chitin has long been considered as a source of dietary fiber that is not digested in the mammalian digestive system. Here, we provide evidence that acidic mammalian chitinase (AMCase) can function as a major digestive enzyme that constitutively degrades chitin substrates and produces (GlcNAc)2 fragments in the mouse gastrointestinal environment. AMCase was resistant to endogenous pepsin C digestion and remained active in the mouse stomach extract at pH 2.0. The AMCase mRNA levels were much higher than those of four major gastric proteins and two housekeeping genes and comparable to the level of pepsinogen C in the mouse stomach tissues. Furthermore, AMCase was expressed in the gastric pepsinogen-synthesizing chief cells. The enzyme was also stable and active in the presence of trypsin and chymotrypsin at pH 7.6, where pepsin C was completely degraded. Mouse AMCase degraded polymeric colloidal and crystalline chitin substrates in the gastrointestinal environments in presence of the proteolytic enzymes. Thus, AMCase can function as a protease-resistant major glycosidase under the conditions of stomach and intestine and degrade chitin substrates to produce (GlcNAc)2, a source of carbon, nitrogen and energy.
Collapse
|