1
|
Metzger DCH, Earhart ML, Schulte PM. Genomic and Epigenomic Influences on Resilience across Scales: Lessons from the Responses of Fish to Environmental Stressors. Integr Comp Biol 2024; 64:853-866. [PMID: 38632046 PMCID: PMC11445785 DOI: 10.1093/icb/icae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024] Open
Abstract
Understanding the factors that influence the resilience of biological systems to environmental change is a pressing concern in the face of increasing human impacts on ecosystems and the organisms that inhabit them. However, most considerations of biological resilience have focused at the community and ecosystem levels, whereas here we discuss how including consideration of processes occurring at lower levels of biological organization may provide insights into factors that influence resilience at higher levels. Specifically, we explore how processes at the genomic and epigenomic levels may cascade up to influence resilience at higher levels. We ask how the concepts of "resistance," or the capacity of a system to minimize change in response to a disturbance, and "recovery," or the ability of a system to return to its original state following a disturbance and avoid tipping points and resulting regime shifts, map to these lower levels of biological organization. Overall, we suggest that substantial changes at these lower levels may be required to support resilience at higher levels, using selected examples of genomic and epigenomic responses of fish to climate-change-related stressors such as high temperature and hypoxia at the levels of the genome, epigenome, and organism.
Collapse
Affiliation(s)
- David C H Metzger
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Madison L Earhart
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
2
|
Falah G, Kurolap A, Paperna T, Ekhilevitch N, Moustafa N, Damouny-Naoum N, Amir Y, Sharvit L, Moghrabi R, Hassoun G, Fares F, Baris Feldman H, Atzmon G. The d3GHR carrier epigenome in Druze clan longevity. Sci Rep 2024; 14:21419. [PMID: 39271799 PMCID: PMC11399368 DOI: 10.1038/s41598-024-72240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
The Druze are a distinct group known for their close community, traditions, and consanguineous marriages, dating back to the eleventh century. This practice has led to unique genetic variations, impacting both pathology and gene-associated phenotypes. Some Druze clans, particularly those with exceptional long-lived family heads (ELLI), attracted attention. Given that the bulk of these ELLI were men, the d3GHR polymorphism was the first obvious possibility. Among the 73 clan members, 8.2% carried the d3GHR isoform, with nearly 11% being males. There was a significant age-related increase (p = 0.04) in this isoform among males, leading to examination of potential environmental mediators affecting gene regulation among these carriers during life (namely epigenetic). We focused on DNA methylation due to its crucial role in gene regulation, development, and disease progression. We analyzed DNA samples from 14 clan members with different GHR genotypes, finding a significant (p < 0.05) negative correlation between DNA methylation levels and age. Employing a biological age clock, we observed a significant + 4.229 years favoring the d3GHR group over the WT and heterozygous groups. In conclusion, this study highlights the advantage of d3GHR carriers among this unique Druze clan and underscores the importance of genotype-environment interaction in epigenetic regulation and its impact on health.
Collapse
Affiliation(s)
- Ghadeer Falah
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Alina Kurolap
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tamar Paperna
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Nina Ekhilevitch
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Nivin Moustafa
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | | | - Yam Amir
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Lital Sharvit
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Rihan Moghrabi
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Gamal Hassoun
- Institute of Allergy, Clinical Immunology & AIDS, Rambam Health Care Campus, Haifa, Israel
| | - Fuad Fares
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Hagit Baris Feldman
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Atzmon
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Ma J, Shi K, Zhang W, Han S, Wu Z, Wang M, Zhang H, Sun J, Wang N, Chang M, Shi X, Tan S, Wang W, Zang S, Sha Z. The survival, gene expression, and DNA methylation of Paralichthys olivaceus impacted by the decay of green tide and bacterial infection in both laboratory and field simulation experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173427. [PMID: 38797400 DOI: 10.1016/j.scitotenv.2024.173427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
The recurring appearance of Ulva prolifera green tides has become a pressing environmental issue, especially for marine transportation, tourism, and aquaculture in the stage of decomposition. An abundance of decaying U. prolifera leads to water acidification, hypoxia and pathogenic microorganism proliferation, threatening marine germplasm resources, particularly benthic organisms with weak escape ability. Epigenetic modification is considered to be one of the molecular mechanisms involved in the plastic adaptive response to environmental changes. However, few studies concerning the specific impact of decaying green tide on benthic animals at the epigenetic level. In this study, decomposing algal effluents of U. prolifera, sediments containing uncorrupted U. prolifera, pathogenic microorganism were considered as impact factors, to reveal the effect of decaying U. prolifera on marine economic benthic species, Paralichthys olivaceus, using both field and laboratory simulation experiments. Field simulation experiment showed higher mortality rates and serious histopathological damage than the laboratory simulation experiment. And both the decaying U. prolifera and the sediment containing U. prolifera were harmful to P. olivaceus. Genome-wide DNA methylation and transcription correlation analyses showed that the response of P. olivaceus to green tide stress and bacterial infection was mainly mediated by immune signaling pathways such as PI3K-Akt signaling pathway. DNA methylation regulates the expression of immune-related genes involved in the PI3K-Akt signaling pathway, which enables P. olivaceus to adapt to the adverse environmental stresses by resisting apoptosis. In summary, this research analyzed the potential role of P. olivaceus in decaying U. prolifera, which is of great significance for understanding the impact of decaying green tide on marine commercial fish and also provides some theoretical guidance for the proliferation and release of fish seedlings.
Collapse
Affiliation(s)
- Jie Ma
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Kunpeng Shi
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Weijun Zhang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Sen Han
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhendong Wu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Muyuan Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Haibo Zhang
- National Marine Environmental Monitoring Center, Dalian 116000, China
| | - Jiacheng Sun
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Ningning Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Mengyang Chang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xiaoyong Shi
- Marine Hazard Mitigation Center, Ministry of Natural Resources, Beijing 100194, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Wenwen Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Shaoqing Zang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
4
|
Habibi E, Miller MR, Schreier A, Campbell MA, Hung TC, Gille D, Baerwald M, Finger AJ. Single generation epigenetic change in captivity and reinforcement in subsequent generations in a delta smelt (Hypomesus transpacificus) conservation hatchery. Mol Ecol 2024; 33:e17449. [PMID: 38967124 DOI: 10.1111/mec.17449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
A refugial population of the endangered delta smelt (Hypomesus transpacificus) has been maintained at the Fish Conservation and Culture Laboratory (FCCL) at UC Davis since 2008. Despite intense genetic management, fitness differences between wild and cultured fish have been observed at the FCCL. To investigate the molecular underpinnings of hatchery domestication, we used whole-genome bisulfite sequencing to quantify epigenetic differences between wild and hatchery-origin delta smelt. Differentially methylated regions (DMRs) were identified from 104 individuals by comparing the methylation patterns in different generations of hatchery fish (G1, G2, G3) with their wild parents (G0). We discovered a total of 132 significant DMRs (p < .05) between G0 and G1, 132 significant DMRs between G0 and G2, and 201 significant DMRs between G0 and G3. Our results demonstrate substantial differences in methylation patterns emerged between the wild and hatchery-reared fish in the early generations in the hatchery, with a higher proportion of hypermethylated DMRs in hatchery-reared fish. The rearing environment was found to be a stronger predictor of individual clustering based on methylation patterns than family, sex or generation. Our study indicates a reinforcement of the epigenetic status with successive generations in the hatchery environment, as evidenced by an increase in methylation in hypermethylated DMRs and a decrease in methylation in hypomethylated DMRs over time. Lastly, our results demonstrated heterogeneity in inherited methylation pattern in families across generations. These insights highlight the long-term consequences of hatchery practices on the epigenetic landscape, potentially impacting wild fish populations.
Collapse
Affiliation(s)
- Ensieh Habibi
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Michael R Miller
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Andrea Schreier
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Matthew A Campbell
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Tien-Chieh Hung
- Fish Conservation and Culture Laboratory, Biological and Agricultural Engineering Department, University of California Davis, Davis, California, USA
| | - Daphne Gille
- California Department of Water Resources, Division of Integrated Science and Engineering, West Sacramento, California, USA
| | - Melinda Baerwald
- California Department of Water Resources, Division of Integrated Science and Engineering, West Sacramento, California, USA
| | - Amanda J Finger
- Department of Animal Science, University of California Davis, Davis, California, USA
| |
Collapse
|
5
|
Zetzsche J, Fallet M. To live or let die? Epigenetic adaptations to climate change-a review. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae009. [PMID: 39139701 PMCID: PMC11321362 DOI: 10.1093/eep/dvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Anthropogenic activities are responsible for a wide array of environmental disturbances that threaten biodiversity. Climate change, encompassing temperature increases, ocean acidification, increased salinity, droughts, and floods caused by frequent extreme weather events, represents one of the most significant environmental alterations. These drastic challenges pose ecological constraints, with over a million species expected to disappear in the coming years. Therefore, organisms must adapt or face potential extinctions. Adaptations can occur not only through genetic changes but also through non-genetic mechanisms, which often confer faster acclimatization and wider variability ranges than their genetic counterparts. Among these non-genetic mechanisms are epigenetics defined as the study of molecules and mechanisms that can perpetuate alternative gene activity states in the context of the same DNA sequence. Epigenetics has received increased attention in the past decades, as epigenetic mechanisms are sensitive to a wide array of environmental cues, and epimutations spread faster through populations than genetic mutations. Epimutations can be neutral, deleterious, or adaptative and can be transmitted to subsequent generations, making them crucial factors in both long- and short-term responses to environmental fluctuations, such as climate change. In this review, we compile existing evidence of epigenetic involvement in acclimatization and adaptation to climate change and discuss derived perspectives and remaining challenges in the field of environmental epigenetics. Graphical Abstract.
Collapse
Affiliation(s)
- Jonas Zetzsche
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| |
Collapse
|
6
|
Xie S, Jiang L, Song W, Zheng J, Liu Y, Chen S, Yan X. Skeletal muscle feature of different populations in large yellow croaker ( Larimichthys crocea): from an epigenetic point of view. Front Mol Biosci 2024; 11:1403861. [PMID: 39015478 PMCID: PMC11249746 DOI: 10.3389/fmolb.2024.1403861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/04/2024] [Indexed: 07/18/2024] Open
Abstract
Fish skeletal muscle is composed of well-defined fiber types. In order to identify potential candidate genes affecting muscle growth and development under epigenetic regulation. Bisulfite sequencing was utilized to analyze and compare the muscle DNA methylation profiles of Larimichthys crocea inhabiting different environments. The results revealed that DNA methylation in L. crocea was predominantly CG methylation, with 2,396 differentially methylated regions (DMRs) identified through comparisons among different populations. The largest difference in methylation was observed between the ZhouShan and JinMen wild populations, suggesting that L. crocea may have undergone selection and domestication. Additionally, GO and KEGG enrichment analysis of differentially methylated genes (DMGs) revealed 626 enriched GO functional categories, including various muscle-related genes such as myh10, myf5, myf6, ndufv1, klhl31, map3k4, syn2b, sostdc1a, bag4, and hsp90ab. However, significant enrichment in KEGG pathways was observed only in the JinMen and XiangShan populations of L. crocea. Therefore, this study provides a theoretical foundation for a better understanding of the epigenetic regulation of skeletal muscle growth and development in L. crocea under different environmental conditions.
Collapse
Affiliation(s)
- Shangwei Xie
- National Engineering Research Center of Marine Facilities Aquaculture, College of Fisheries, Zhejiang Ocean University, Zhoushan, Zhejiang Province, China
- Nanji Archipelago National Marine Nature Reserve Administration, Wenzhou, Zhejiang Province, China
| | - Lihua Jiang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Fisheries, Zhejiang Ocean University, Zhoushan, Zhejiang Province, China
| | - Weihua Song
- National Engineering Research Center of Marine Facilities Aquaculture, College of Fisheries, Zhejiang Ocean University, Zhoushan, Zhejiang Province, China
| | - Jialang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, College of Fisheries, Zhejiang Ocean University, Zhoushan, Zhejiang Province, China
| | - Yifan Liu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Fisheries, Zhejiang Ocean University, Zhoushan, Zhejiang Province, China
| | - Shun Chen
- National Engineering Research Center of Marine Facilities Aquaculture, College of Fisheries, Zhejiang Ocean University, Zhoushan, Zhejiang Province, China
| | - Xiaojun Yan
- National Engineering Research Center of Marine Facilities Aquaculture, College of Fisheries, Zhejiang Ocean University, Zhoushan, Zhejiang Province, China
| |
Collapse
|
7
|
Baduel P, Sammarco I, Barrett R, Coronado‐Zamora M, Crespel A, Díez‐Rodríguez B, Fox J, Galanti D, González J, Jueterbock A, Wootton E, Harney E. The evolutionary consequences of interactions between the epigenome, the genome and the environment. Evol Appl 2024; 17:e13730. [PMID: 39050763 PMCID: PMC11266121 DOI: 10.1111/eva.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/30/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024] Open
Abstract
The epigenome is the suite of interacting chemical marks and molecules that helps to shape patterns of development, phenotypic plasticity and gene regulation, in part due to its responsiveness to environmental stimuli. There is increasing interest in understanding the functional and evolutionary importance of this sensitivity under ecologically realistic conditions. Observations that epigenetic variation abounds in natural populations have prompted speculation that it may facilitate evolutionary responses to rapid environmental perturbations, such as those occurring under climate change. A frequent point of contention is whether epigenetic variants reflect genetic variation or are independent of it. The genome and epigenome often appear tightly linked and interdependent. While many epigenetic changes are genetically determined, the converse is also true, with DNA sequence changes influenced by the presence of epigenetic marks. Understanding how the epigenome, genome and environment interact with one another is therefore an essential step in explaining the broader evolutionary consequences of epigenomic variation. Drawing on results from experimental and comparative studies carried out in diverse plant and animal species, we synthesize our current understanding of how these factors interact to shape phenotypic variation in natural populations, with a focus on identifying similarities and differences between taxonomic groups. We describe the main components of the epigenome and how they vary within and between taxa. We review how variation in the epigenome interacts with genetic features and environmental determinants, with a focus on the role of transposable elements (TEs) in integrating the epigenome, genome and environment. And we look at recent studies investigating the functional and evolutionary consequences of these interactions. Although epigenetic differentiation in nature is likely often a result of drift or selection on stochastic epimutations, there is growing evidence that a significant fraction of it can be stably inherited and could therefore contribute to evolution independently of genetic change.
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'Ecole Normale SupérieurePSL University, CNRSParisFrance
| | - Iris Sammarco
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzechia
| | - Rowan Barrett
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | | | | | | | - Janay Fox
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | - Dario Galanti
- Institute of Evolution and Ecology (EvE)University of TuebingenTübingenGermany
| | | | - Alexander Jueterbock
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Eric Wootton
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | - Ewan Harney
- Institute of Evolutionary BiologyCSIC, UPFBarcelonaSpain
- School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
8
|
Chain FJJ, Meyer BS, Heckwolf MJ, Franzenburg S, Eizaguirre C, Reusch TBH. Epigenetic diversity of genes with copy number variations among natural populations of the three-spined stickleback. Evol Appl 2024; 17:e13753. [PMID: 39006007 PMCID: PMC11246597 DOI: 10.1111/eva.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/11/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Duplicated genes provide the opportunity for evolutionary novelty and adaptive divergence. In many cases, having more gene copies increases gene expression, which might facilitate adaptation to stressful or novel environments. Conversely, overexpression or misexpression of duplicated genes can be detrimental and subject to negative selection. In this scenario, newly duplicate genes may evade purifying selection if they are epigenetically silenced, at least temporarily, leading them to persist in populations as copy number variations (CNVs). In animals and plants, younger gene duplicates tend to have higher levels of DNA methylation and lower levels of gene expression, suggesting epigenetic regulation could promote the retention of gene duplications via expression repression or silencing. Here, we test the hypothesis that DNA methylation variation coincides with young duplicate genes that are segregating as CNVs in six populations of the three-spined stickleback that span a salinity gradient from 4 to 30 PSU. Using reduced-representation bisulfite sequencing, we found DNA methylation and CNV differentiation outliers rarely overlapped. Whereas lineage-specific genes and young duplicates were found to be highly methylated, just two gene CNVs showed a significant association between promoter methylation level and copy number, suggesting that DNA methylation might not interact with CNVs in our dataset. If most new duplications are regulated for dosage by epigenetic mechanisms, our results do not support a strong contribution from DNA methylation soon after duplication. Instead, our results are consistent with a preference to duplicate genes that are already highly methylated.
Collapse
Affiliation(s)
- Frédéric J J Chain
- Department of Biological Sciences University of Massachusetts Lowell Lowell Massachusetts USA
| | - Britta S Meyer
- Marine Evolutionary Ecology GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany
- Present address: Research Unit for Evolutionary Immunogenomics, Department of Biology University of Hamburg Hamburg Germany
| | - Melanie J Heckwolf
- Marine Evolutionary Ecology GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany
- Present address: Fish Ecology and Evolution, Leibniz Centre for Tropical Marine Research Bremen Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University Kiel Germany
| | - Christophe Eizaguirre
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany
| |
Collapse
|
9
|
Mojica EA, Fu Y, Kültz D. Salinity-responsive histone PTMs identified in the gills and gonads of Mozambique tilapia (Oreochromis mossambicus). BMC Genomics 2024; 25:586. [PMID: 38862901 PMCID: PMC11167857 DOI: 10.1186/s12864-024-10471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Histone post-translational modifications (PTMs) are epigenetic marks that can be induced by environmental stress and elicit heritable patterns of gene expression. To investigate this process in an ecological context, we characterized the influence of salinity stress on histone PTMs within the gills, kidney, and testes of Mozambique tilapia (Oreochromis mossambicus). A total of 221 histone PTMs were quantified in each tissue sample and compared between freshwater-adapted fish exposed to salinity treatments that varied in intensity and duration. RESULTS Four salinity-responsive histone PTMs were identified in this study. When freshwater-adapted fish were exposed to seawater for two hours, the relative abundance of H1K16ub significantly increased in the gills. Long-term salinity stress elicited changes in both the gills and testes. When freshwater-adapted fish were exposed to a pulse of severe salinity stress, where salinity gradually increased from freshwater to a maximum of 82.5 g/kg, the relative abundance of H1S1ac significantly decreased in the gills. Under the same conditions, the relative abundance of both H3K14ac and H3K18ub decreased significantly in the testes of Mozambique tilapia. CONCLUSIONS This study demonstrates that salinity stress can alter histone PTMs in the gills and gonads of Mozambique tilapia, which, respectively, signify a potential for histone PTMs to be involved in salinity acclimation and adaptation in euryhaline fishes. These results thereby add to a growing body of evidence that epigenetic mechanisms may be involved in such processes.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Sciences & Genome Center, University of California - Davis, One Shields Ave., Meyer Hall, Davis, CA, 95616, USA
| | - Yuhan Fu
- Department of Animal Sciences & Genome Center, University of California - Davis, One Shields Ave., Meyer Hall, Davis, CA, 95616, USA
| | - Dietmar Kültz
- Department of Animal Sciences & Genome Center, University of California - Davis, One Shields Ave., Meyer Hall, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Zhang W, Zhang L, Feng Y, Lin D, Yang Z, Zhang Z, Ma Y. Genome-wide profiling of DNA methylome and transcriptome reveals epigenetic regulation of Urechis unicinctus response to sulfide stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172238. [PMID: 38582121 DOI: 10.1016/j.scitotenv.2024.172238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Sulfide is a well-known environmental pollutant that can have detrimental effects on most organisms. However, few metazoans living in sulfide-rich environments have developed mechanisms to tolerate and adapt to sulfide stress. Epigenetic mechanisms, including DNA methylation, have been shown to play a vital role in environmental stress adaptation. Nevertheless, the precise function of DNA methylation in biological sulfide adaptation remains unclear. Urechis unicinctus, a benthic organism inhabiting sulfide-rich intertidal environments, is an ideal model organism for studying adaptation to sulfide environments. In this study, we conducted a comprehensive analysis of the DNA methylome and transcriptome of U. unicinctus after exposure to 50 μM sulfide. The results revealed dynamic changes in the DNA methylation (5-methylcytosine) landscape in response to sulfide stress, with U. unicinctus exhibiting elevated DNA methylation levels following stress exposure. Integrating differentially expressed genes (DEGs) and differentially methylated regions (DMRs), we identified a crucial role of gene body methylation in predicting gene expression. Furthermore, using a DNA methyltransferase inhibitor, we validated the involvement of DNA methylation in the sulfide stress response and the gene regulatory network influenced by DNA methylation. The results indicated that by modulating DNA methylation levels during sulfide stress, the expression of glutathione S-transferase, glutamyl aminopeptidase, and cytochrome c oxidase could be up-regulated, thereby facilitating the metabolism and detoxification of exogenous sulfides. Moreover, DNA methylation was found to regulate and enhance the oxidative phosphorylation pathway, including NADH dehydrogenase, isocitrate dehydrogenase, and ATP synthase. Additionally, DNA methylation influenced the regulation of Cytochrome P450 and macrophage migration inhibitory factor, both of which are closely associated with oxidative stress and stress resistance. Our findings not only emphasize the role of DNA methylation in sulfide adaptation but also provide novel insights into the potential mechanisms through which marine organisms adapt to environmental changes.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Yuxin Feng
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Dawei Lin
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Zhi Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China; Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
11
|
Ren X, Zhao J, Hu J. Non-concordant epigenetic and transcriptional responses to acute thermal stress in western mosquitofish (Gambusia affinis). Mol Ecol 2024:e17332. [PMID: 38529738 DOI: 10.1111/mec.17332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Climate change is intensifying the frequency and severity of extreme temperatures. Understanding the molecular mechanisms underlying the ability to cope with acute thermal stress is key for predicting species' responses to extreme temperature events. While many studies have focused on the individual roles of gene expression, post-transcriptional processes and epigenetic modifications in response to acute thermal stress, the relative contribution of these molecular mechanisms remains unclear. The wide range of thermal limits of western mosquitofish (Gambusia affinis) provides an opportunity to explore this interplay. Here, we quantified changes in gene expression, alternative splicing, DNA methylation and microRNA (miRNA) expression in muscle tissue dissected from mosquitofish immediately after reaching high (CTmax) or low thermal limit (CTmin). Although the numbers of genes showing expression and splicing changes in response to acute temperature stress were small, we found a possibly larger and non-redundant role of splicing compared to gene expression, with more genes being differentially spliced (DSGs) than differentially expressed (DEGs), and little overlap between DSGs and DEGs. We also identified a small proportion of CpGs showing significant methylation change (i.e. differentially methylated cytosines, DMCs) in fish at thermal limits; however, there was no overlap between DEGs and genes annotated with DMCs in both CTmax and CTmin experiments. The weak interplay between epigenetic modifications and gene expression was further supported by our discoveries of no differentially expressed miRNAs. These findings provide novel insights into the relative role of different molecular mechanisms underlying immediate responses to extreme temperatures and demonstrate non-concordant responses of epigenetic and transcriptional mechanisms to acute temperature stress.
Collapse
Affiliation(s)
- Xingyue Ren
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Junjie Zhao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| |
Collapse
|
12
|
Kundu S, Ray A, Das Gupta S, Biswas A, Roy S, Kumar Tiwari N, Kumar VS, Das BK. Environmental bisphenol A disrupts methylation of steroidogenic genes in the ovary of Paradise threadfin Polynemus paradiseus via abnormal DNA methylation: Implications for human exposure and health risk assessment. CHEMOSPHERE 2024; 351:141236. [PMID: 38237780 DOI: 10.1016/j.chemosphere.2024.141236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Bisphenol A, endocrine-disrupting chemicals (EDCs) impacting disease development via epigenetic modifications, is crucial in transcriptional regulation. However, ecotoxicology's limited exploration of epigenetics prompted our study's objective: examining the extended exposure of riverine Bisphenol A (BPA), a potent EDC, on DNA methylation during female paradise threadfin (Polynemus paradiseus) reproductive maturation. Assessing BPA contamination in riverine water, we collected fish samples from two locations with distinct contamination levels. In the highly contaminated region (Hc), we observed elevated DNA methylation in aromatase (7.5-fold), 20β-HSD (3-fold), and FSHR (2-fold) genes. Hormone receptor investigation highlighted an escalating connection between transcriptional hyper-methylation and contamination levels. Additionally, our study revealed a positive correlation between oocyte growth and global DNA methylation, suggesting BPA's potential to modify DNA methylation in female paradise threadfins. This effect likely occurs through changes in hormone receptor expression, persisting throughout oocyte maturation. Notably, our research, the first of its kind in estuarine areas, confirmed BPA contamination in paradise threadfins, raising concerns about potential health risks for humans.
Collapse
Affiliation(s)
- Sourav Kundu
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Archisman Ray
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Subhadeep Das Gupta
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Ayan Biswas
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Shreya Roy
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Nitish Kumar Tiwari
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - V Santhana Kumar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, West Bengal, India.
| |
Collapse
|
13
|
Li Y, Xu W, Wang J, Liu H, Liu J, Zhang L, Hou R, Shen F, Liu Y, Cai K. Giant pandas in captivity undergo short-term adaptation in nerve-related pathways. BMC ZOOL 2024; 9:4. [PMID: 38383502 PMCID: PMC10880213 DOI: 10.1186/s40850-024-00195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Behaviors in captive animals, including changes in appetite, activity level, and social interaction, are often seen as adaptive responses. However, these behaviors may become progressively maladaptive, leading to stress, anxiety, depression, and other negative reactions in animals. RESULTS In this study, we investigated the whole-genome sequencing data of 39 giant panda individuals, including 11 in captivity and 28 in the wild. To eliminate the mountain range effect and focus on the factor of captivity only, we first performed a principal component analysis. We then enumerated the 21,474,180 combinations of wild giant pandas (11 chosen from 28) and calculated their distances from the 11 captive individuals. The 11 wild individuals with the closest distances were used for the subsequent analysis. The linkage disequilibrium (LD) patterns demonstrated that the population was almost eliminated. We identified 505 robust selected genomic regions harboring at least one SNP, and the absolute frequency difference was greater than 0.6 between the two populations. GO analysis revealed that genes in these regions were mainly involved in nerve-related pathways. Furthermore, we identified 22 GO terms for which the selection strength significantly differed between the two populations, and there were 10 nerve-related pathways among them. Genes in the differentially abundant regions were involved in nerve-related pathways, indicating that giant pandas in captivity underwent minor genomic selection. Additionally, we investigated the relationship between genetic variation and chromatin conformation structures. We found that nucleotide diversity (θπ) in the captive population was correlated with chromatin conformation structures, which included A/B compartments, topologically associated domains (TADs) and TAD-cliques. For each GO term, we then compared the expression level of genes regulated by the above four factors (AB index, TAD intactness, TAD clique and PEI) with the corresponding genomic background. The retained 10 GO terms were all coordinately regulated by the four factors, and three of them were associated with nerve-related pathways. CONCLUSIONS This study revealed that giant pandas in captivity undergo short-term adaptation in nerve-related pathways. Furthermore, it provides new insights into the molecular mechanism of gene expression regulation under short-term adaptation to environmental change.
Collapse
Affiliation(s)
- Yan Li
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Wei Xu
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Juan Wang
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Hong Liu
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Jiawen Liu
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Liang Zhang
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Fujun Shen
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Yuliang Liu
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China
| | - Kailai Cai
- Chengdu Research Base of Giant Panda Breeding, Panda Avenue, Northern Suburb, Chengdu, China.
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, Panda Avenue, Northern Suburb, Chengdu, China.
| |
Collapse
|
14
|
Venney CJ, Mérot C, Normandeau E, Rougeux C, Laporte M, Bernatchez L. Epigenetic and Genetic Differentiation Between Coregonus Species Pairs. Genome Biol Evol 2024; 16:evae013. [PMID: 38271269 PMCID: PMC10849188 DOI: 10.1093/gbe/evae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Phenotypic diversification is classically associated with genetic differentiation and gene expression variation. However, increasing evidence suggests that DNA methylation is involved in evolutionary processes due to its phenotypic and transcriptional effects. Methylation can increase mutagenesis and could lead to increased genetic divergence between populations experiencing different environmental conditions for many generations, though there has been minimal empirical research on epigenetically induced mutagenesis in diversification and speciation. Whitefish, freshwater members of the salmonid family, are excellent systems to study phenotypic diversification and speciation due to the repeated divergence of benthic-limnetic species pairs serving as natural replicates. Here we investigate whole genome genetic and epigenetic differentiation between sympatric benthic-limnetic species pairs in lake and European whitefish (Coregonus clupeaformis and Coregonus lavaretus) from four lakes (N = 64). We found considerable, albeit variable, genetic and epigenetic differences between species pairs. All SNP types were enriched at CpG sites supporting the mutagenic nature of DNA methylation, though C>T SNPs were most common. We also found an enrichment of overlaps between outlier SNPs with the 5% highest FST between species and differentially methylated loci. This could possibly represent differentially methylated sites that have caused divergent genetic mutations between species, or divergent selection leading to both genetic and epigenetic variation at these sites. Our results support the hypothesis that DNA methylation contributes to phenotypic divergence and mutagenesis during whitefish speciation.
Collapse
Affiliation(s)
- Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Claire Mérot
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- UMR 6553 Ecobio, OSUR, CNRS, Université de Rennes, Rennes, France
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Clément Rougeux
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Ministère des Forêts, de la Faune et des Parcs (MFFP), Québec, Québec, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| |
Collapse
|
15
|
Yu X, Yu K, Chen B, Liao Z, Liang J, Qin Z, Gao X. Metabolic and immune costs balance during natural acclimation of corals in fluctuating environments. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106284. [PMID: 38048660 DOI: 10.1016/j.marenvres.2023.106284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Epigenetic modifications based on DNA methylation can rapidly improve the potential of corals to adapt to environmental pressures by increasing their phenotypic plasticity, a factor important for scleractinian corals to adapt to future global warming. However, the extent to which corals develop similar adaptive mechanisms and their specific adaptation processes remain unclear. Here, to reveal the regulatory mechanism by which DNA methylation improves thermal tolerance in Pocillopora damicornis under fluctuating environments, we analyzed genome-wide DNA methylation signatures in P. damicornis and compared the differences in the methylation and transcriptional responses of P. damicornis from fluctuating and stable environments using whole-genome bisulfite sequencing and nanopore-based RNA sequencingtranscriptome sequencing. We discovered low methylation levels in P. damicornis (average methylation 4.14%), with CpG accounting for 74.88%, CHH for 13.27%, and CHG for 11.85% of this methylation. However, methylation levels did not change between coral samples from the fluctuating and stable environments. The varied methylation levels in different regions of the gene revealed that the overall methylation level of the gene body was relatively high and showed a bimodal methylation pattern. Methylation occurs primarily in exons rather than introns within the gene body In P. damicornis, there was only a weak correlation between methylation and transcriptional changes at the individual gene level, and the methylation and gene expression levels generally exhibited a bell-shaped relationship, which we speculate may be due to the specificity of cnidarian species. Correlation analysis between methylation levels and the transcriptome revealed that the highest proportion of the top 20 enriched KEGG pathways was related to immunity. Additionally, P. damicornis collected from a high-temperature pool had a lower metabolic rate than those collected from a low-temperature pool. We hypothesize that the dynamic balance of energy-expenditure costs between immunity and metabolism is an important strategy for increasing P. damicornis tolerance. The fluctuating environment of high-temperature pools may increase the heat tolerance in corals by increasing their immunity and thus lowering their metabolism.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xu Gao
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
16
|
Chen Y, Ni P, Fu R, Murphy KJ, Wyeth RC, Bishop CD, Huang X, Li S, Zhan A. (Epi)genomic adaptation driven by fine geographical scale environmental heterogeneity after recent biological invasions. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2772. [PMID: 36316814 DOI: 10.1002/eap.2772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Elucidating processes and mechanisms involved in rapid local adaptation to varied environments is a poorly understood but crucial component in management of invasive species. Recent studies have proposed that genetic and epigenetic variation could both contribute to ecological adaptation, yet it remains unclear on the interplay between these two components underpinning rapid adaptation in wild animal populations. To assess their respective contributions to local adaptation, we explored epigenomic and genomic responses to environmental heterogeneity in eight recently colonized ascidian (Ciona intestinalis) populations at a relatively fine geographical scale. Based on MethylRADseq data, we detected strong patterns of local environment-driven DNA methylation divergence among populations, significant epigenetic isolation by environment (IBE), and a large number of local environment-associated epigenetic loci. Meanwhile, multiple genetic analyses based on single nucleotide polymorphisms (SNPs) showed genomic footprints of divergent selection. In addition, for five genetically similar populations, we detected significant methylation divergence and local environment-driven methylation patterns, indicating the strong effects of local environments on epigenetic variation. From a functional perspective, a majority of functional genes, Gene Ontology (GO) terms, and biological pathways were largely specific to one of these two types of variation, suggesting partial independence between epigenetic and genetic adaptation. The methylation quantitative trait loci (mQTL) analysis showed that the genetic variation explained only 18.67% of methylation variation, further confirming the autonomous relationship between these two types of variation. Altogether, we highlight the complementary interplay of genetic and epigenetic variation involved in local adaptation, which may jointly promote populations' rapid adaptive capacity and successful invasions in different environments. The findings here provide valuable insights into interactions between invaders and local environments to allow invasive species to rapidly spread, thus contributing to better prediction of invasion success and development of management strategies.
Collapse
Affiliation(s)
- Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ping Ni
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ruiying Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Kieran J Murphy
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Russell C Wyeth
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Cory D Bishop
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Venney CJ, Anastasiadi D, Wellenreuther M, Bernatchez L. The Evolutionary Complexities of DNA Methylation in Animals: From Plasticity to Genetic Evolution. Genome Biol Evol 2023; 15:evad216. [PMID: 38015807 PMCID: PMC10701099 DOI: 10.1093/gbe/evad216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/22/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
The importance of DNA methylation in plastic responses to environmental change and evolutionary dynamics is increasingly recognized. Here, we provide a Perspective piece on the diverse roles of DNA methylation on broad evolutionary timescales, including (i) short-term transient acclimation, (ii) stable phenotypic evolution, and (iii) genomic evolution. We show that epigenetic responses vary along a continuum, ranging from short-term acclimatory responses in variable environments within a generation to long-term modifications in populations and species. DNA methylation thus unlocks additional potential for organisms to rapidly acclimate to their environment over short timeframes. If these changes affect fitness, they can circumvent the need for adaptive changes at the genome level. However, methylation has a complex reciprocal relationship with genetic variation as it can be genetically controlled, yet it can also induce point mutations and contribute to genomic evolution. When habitats remain constant over many generations, or populations are separated across habitats, initially plastic phenotypes can become hardwired through epigenetically facilitated mutagenesis. It remains unclear under what circumstances plasticity contributes to evolutionary outcomes, and when plastic changes will become permanently encoded into genotype. We highlight how studies investigating the evolution of epigenetic plasticity need to carefully consider how plasticity in methylation state could evolve among different evolutionary scenarios, the possible phenotypic outcomes, its effects on genomic evolution, and the proximate energetic and ultimate fitness costs of methylation. We argue that accumulating evidence suggests that DNA methylation can contribute toward evolution on various timescales, spanning a continuum from acclimatory plasticity to genomic evolution.
Collapse
Affiliation(s)
- Clare J Venney
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, Québec, QC, Canada
| | - Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, Nelson, New Zealand
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, Nelson, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, Québec, QC, Canada
| |
Collapse
|
18
|
Roberts WR, Ruck EC, Downey KM, Pinseel E, Alverson AJ. Resolving Marine-Freshwater Transitions by Diatoms Through a Fog of Gene Tree Discordance. Syst Biol 2023; 72:984-997. [PMID: 37335140 DOI: 10.1093/sysbio/syad038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023] Open
Abstract
Despite the obstacles facing marine colonists, most lineages of aquatic organisms have colonized and diversified in freshwaters repeatedly. These transitions can trigger rapid morphological or physiological change and, on longer timescales, lead to increased rates of speciation and extinction. Diatoms are a lineage of ancestrally marine microalgae that have diversified throughout freshwater habitats worldwide. We generated a phylogenomic data set of genomes and transcriptomes for 59 diatom taxa to resolve freshwater transitions in one lineage, the Thalassiosirales. Although most parts of the species tree were consistently resolved with strong support, we had difficulties resolving a Paleocene radiation, which affected the placement of one freshwater lineage. This and other parts of the tree were characterized by high levels of gene tree discordance caused by incomplete lineage sorting and low phylogenetic signal. Despite differences in species trees inferred from concatenation versus summary methods and codons versus amino acids, traditional methods of ancestral state reconstruction supported six transitions into freshwaters, two of which led to subsequent species diversification. Evidence from gene trees, protein alignments, and diatom life history together suggest that habitat transitions were largely the product of homoplasy rather than hemiplasy, a condition where transitions occur on branches in gene trees not shared with the species tree. Nevertheless, we identified a set of putatively hemiplasious genes, many of which have been associated with shifts to low salinity, indicating that hemiplasy played a small but potentially important role in freshwater adaptation. Accounting for differences in evolutionary outcomes, in which some taxa became locked into freshwaters while others were able to return to the ocean or become salinity generalists, might help further distinguish different sources of adaptive mutation in freshwater diatoms.
Collapse
Affiliation(s)
- Wade R Roberts
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Elizabeth C Ruck
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kala M Downey
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Eveline Pinseel
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
19
|
Blondeau-Bidet E, Banousse G, L'Honoré T, Farcy E, Cosseau C, Lorin-Nebel C. The role of salinity on genome-wide DNA methylation dynamics in European sea bass gills. Mol Ecol 2023; 32:5089-5109. [PMID: 37526137 DOI: 10.1111/mec.17089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
Epigenetic modifications, like DNA methylation, generate phenotypic diversity in fish and ultimately lead to adaptive evolutionary processes. Euryhaline marine species that migrate between salinity-contrasted habitats have received little attention regarding the role of salinity on whole-genome DNA methylation. Investigation of salinity-induced DNA methylation in fish will help to better understand the potential role of this process in salinity acclimation. Using whole-genome bisulfite sequencing, we compared DNA methylation patterns in European sea bass (Dicentrarchus labrax) juveniles in seawater and after freshwater transfer. We targeted the gill as a crucial organ involved in plastic responses to environmental changes. To investigate the function of DNA methylation in gills, we performed RNAseq and assessed DNA methylome-transcriptome correlations. We showed a negative correlation between gene expression levels and DNA methylation levels in promoters, first introns and first exons. A significant effect of salinity on DNA methylation dynamics with an overall DNA hypomethylation in freshwater-transferred fish compared to seawater controls was demonstrated. This suggests a role of DNA methylation changes in salinity acclimation. Genes involved in key functions as metabolism, ion transport and transepithelial permeability (junctional complexes) were differentially methylated and expressed between salinity conditions. Expression of genes involved in mitochondrial metabolism (tricarboxylic acid cycle) was increased, whereas the expression of DNA methyltransferases 3a was repressed. This study reveals novel links between DNA methylation, mainly in promoters and first exons/introns, and gene expression patterns following salinity change.
Collapse
Affiliation(s)
| | | | - Thibaut L'Honoré
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Emilie Farcy
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Céline Cosseau
- IHPE, Université Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, Perpignan, France
| | | |
Collapse
|
20
|
Jahan K, Nie H, Yan X. Revealing the potential regulatory relationship between HSP70, HSP90 and HSF genes under temperature stress. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108607. [PMID: 36758653 DOI: 10.1016/j.fsi.2023.108607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/04/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Heat Shock Protein (HSPs) gene family members play fundamental roles in different environmental stress tolerances, protect the structure and function of cells, and perform a significant task in cellular homeostasis. In this study, we conducted a genome-wide identification, evolutionary relationship analysis and gene expression analysis of the HSP70, HSP90, and HSF gene families in Ruditapes philippinarum. We identified 83 RpHSP70, 6 RpHSP90, and 3 RpHSF genes in R. philippinarum. The structural characteristics, chromosomal localization, and the gene structure map were constructed to reveal the characteristics of protein structures. Furthermore, the expression profiling of transcriptome data showed the expression pattern of HSP70, HSP90 and HSF genes in Manila clam from different populations, and under high and low temperature stress. In addition, we performed protein-protein interaction network analysis between HSP70, HSP90, and HSF gene family which enabled us to recognize the regulatory relationship between the two HSP gene families and the HSF gene family. Furthermore, the predicted sub-cellular location revealed a diversified subcellular distribution of HSP70, HSP90, and HSF proteins, which may be directly or indirectly associated with functional diversification under heat stress condition.
Collapse
Affiliation(s)
- Kifat Jahan
- College of Fisheries and Life Science, Dalian Ocean University, 116023, Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023, Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023, Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023, Dalian, China.
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023, Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023, Dalian, China
| |
Collapse
|
21
|
Venney CJ, Cayuela H, Rougeux C, Laporte M, Mérot C, Normandeau E, Leitwein M, Dorant Y, Præbel K, Kenchington E, Clément M, Sirois P, Bernatchez L. Genome-wide DNA methylation predicts environmentally driven life history variation in a marine fish. Evolution 2023; 77:186-198. [PMID: 36622671 DOI: 10.1093/evolut/qpac028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/21/2022] [Accepted: 11/16/2022] [Indexed: 01/10/2023]
Abstract
Epigenetic modifications are thought to be one of the molecular mechanisms involved in plastic adaptive responses to environmental variation. However, studies reporting associations between genome-wide epigenetic changes and habitat-specific variations in life history traits (e.g., lifespan, reproduction) are still scarce, likely due to the recent application of methylome resequencing methods to non-model species. In this study, we examined associations between whole genome DNA methylation and environmentally driven life history variation in 2 lineages of a marine fish, the capelin (Mallotus villosus), from North America and Europe. In both lineages, capelin harbor 2 contrasting life history tactics (demersal vs. beach-spawning). Performing whole genome and methylome sequencing, we showed that life history tactics are associated with epigenetic changes in both lineages, though the effect was stronger in European capelin. Genetic differentiation between the capelin harboring different life history tactics was negligible, but we found genome-wide methylation changes in both lineages. We identified 9,125 European and 199 North American differentially methylated regions (DMRs) due to life history. Gene ontology (GO) enrichment analysis for both lineages revealed an excess of terms related to neural function. Our results suggest that environmental variation causes important epigenetic changes that are associated with contrasting life history tactics in lineages with divergent genetic backgrounds, with variable importance of genetic variation in driving epigenetic variation. Our study emphasizes the potential role of genome-wide epigenetic variation in adaptation to environmental variation.
Collapse
Affiliation(s)
- Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Hugo Cayuela
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,University of Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Clément Rougeux
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Claire Mérot
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Maëva Leitwein
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Yann Dorant
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Kim Præbel
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ellen Kenchington
- Department of Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | - Marie Clément
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute of Memorial University of Newfoundland, St. John's, NL, Canada.,Labrador Institute, Memorial University of Newfoundland, Happy Valley-Goose Bay, NL, Canada
| | - Pascal Sirois
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| |
Collapse
|
22
|
Strickland K, Räsänen K, Kristjánsson BK, Phillips JS, Einarsson A, Snorradóttir RG, Bartrons M, Jónsson ZO. Genome-phenotype-environment associations identify signatures of selection in a panmictic population of threespine stickleback. Mol Ecol 2023; 32:1708-1725. [PMID: 36627230 DOI: 10.1111/mec.16845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023]
Abstract
Adaptive genetic divergence occurs when selection imposed by the environment causes the genomic component of the phenotype to differentiate. However, genomic signatures of natural selection are usually identified without information on which trait is responding to selection by which selective agent(s). Here, we integrate whole-genome sequencing with phenomics and measures of putative selective agents to assess the extent of adaptive divergence in threespine stickleback occupying the highly heterogeneous lake Mývatn, NE Iceland. We find negligible genome wide divergence, yet multiple traits (body size, gill raker structure and defence traits) were divergent along known ecological gradients (temperature, predatory bird densities and water depth). SNP based heritability of all measured traits was high (h2 = 0.42-0.65), indicating adaptive potential for all traits. Environment-association analyses further identified thousands of loci putatively involved in selection, related to genes linked to, for instance, neuron development and protein phosphorylation. Finally, we found that loci linked to water depth were concurrently associated with pelvic spine length variation - supporting the conclusion that divergence in pelvic spine length occurred in the face of gene flow. Our results suggest that whilst there is substantial genetic variation in the traits measured, phenotypic divergence of Mývatn stickleback is mostly weakly associated with environmental gradients, potentially as a result of substantial gene flow. Our study illustrates the value of integrative studies that combine genomic assays of multivariate trait variation with landscape genomics.
Collapse
Affiliation(s)
- Kasha Strickland
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland
| | - Katja Räsänen
- Department of Aquatic Ecology, EAWAG and Institute of Integrative Biology, ETH, Zurich, Switzerland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | - Joseph S Phillips
- Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland.,Department of Biology, Creighton University, Omaha, Nebraska, USA
| | | | - Ragna G Snorradóttir
- Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland
| | - Mireia Bartrons
- Aquatic Ecology Group, University of Vic (UVic-UCC), Catalonia, Spain
| | | |
Collapse
|
23
|
Zhao Y, Hu J, Wu J, Li Z. ChIP-seq profiling of H3K4me3 and H3K27me3 in an invasive insect, Bactrocera dorsalis. Front Genet 2023; 14:1108104. [PMID: 36911387 PMCID: PMC9996634 DOI: 10.3389/fgene.2023.1108104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: While it has been suggested that histone modifications can facilitate animal responses to rapidly changing environments, few studies have profiled whole-genome histone modification patterns in invasive species, leaving the regulatory landscape of histone modifications in invasive species unclear. Methods: Here, we screen genome-wide patterns of two important histone modifications, trimethylated Histone H3 Lysine 4 (H3K4me3) and trimethylated Histone H3 Lysine 27 (H3K27me3), in adult thorax muscles of a notorious invasive pest, the Oriental fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), using Chromatin Immunoprecipitation with high-throughput sequencing (ChIP-seq). Results: We identified promoters featured by the occupancy of H3K4me3, H3K27me3 or bivalent histone modifications that were respectively annotated with unique genes key to muscle development and structure maintenance. In addition, we found H3K27me3 occupied the entire body of genes, where the average enrichment was almost constant. Transcriptomic analysis indicated that H3K4me3 is associated with active gene transcription, and H3K27me3 is mostly associated with transcriptional repression. Importantly, we identified genes and putative motifs modified by distinct histone modification patterns that may possibly regulate flight activity. Discussion: These findings provide the first evidence of histone modification signature in B. dorsalis, and will be useful for future studies of epigenetic signature in other invasive insect species.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiajiao Wu
- Technology Center of Guangzhou Customs, Guangzhou, China
| | - Zhihong Li
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Hu J, Barrett RDH. The role of plastic and evolved DNA methylation in parallel adaptation of threespine stickleback (Gasterosteus aculeatus). Mol Ecol 2022; 32:1581-1591. [PMID: 36560898 DOI: 10.1111/mec.16832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Repeated phenotypic patterns among populations undergoing parallel evolution in similar environments provide support for the deterministic role of natural selection. Epigenetic modifications can mediate plastic and evolved phenotypic responses to environmental change and might make important contributions to parallel adaptation. While many studies have explored the genetic basis of repeated phenotypic divergence, the role of epigenetic processes during parallel adaptation remains unclear. The parallel evolution of freshwater ecotypes of threespine stickleback fish (Gasterosteus aculeatus) following colonization of thousands of lakes and streams from the ocean is a classic example of parallel phenotypic and genotypic adaptation. To investigate epigenetic modifications during parallel adaptation of threespine stickleback, we reanalysed three independent data sets that investigated DNA methylation variation between marine and freshwater ecotypes. Although we found widespread methylation differentiation between ecotypes, there was no significant tendency for CpG sites associated with repeated methylation differentiation across studies to be parallel versus nonparallel. To next investigate the role of plastic versus evolved changes in methylation during freshwater adaptation, we explored if CpG sites exhibiting methylation plasticity during salinity change were more likely to also show evolutionary divergence in methylation between ecotypes. The directions of divergence between ecotypes were generally in the opposite direction to those observed for plasticity when ecotypes were challenged with non-native salinity conditions, suggesting that most plastic responses are likely to be maladaptive during colonization of new environments. Finally, we found a greater number of CpG sites showing evolved changes when ancestral marine ecotypes are acclimated to freshwater environments, whereas plastic changes predominate when derived freshwater ecotypes transition back to their ancestral marine environments. These findings provide evidence for an epigenetic contribution to parallel adaptation and demonstrate the contrasting roles of plastic and evolved methylation differences during adaptation to new environments.
Collapse
Affiliation(s)
- Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Rowan D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Smith C, Zięba G, Spence R, Przybylski M. Spatial heterogeneity in pH, body size and habitat size generates ecological opportunity in an evolutionary radiation. JOURNAL OF FISH BIOLOGY 2022; 101:1501-1508. [PMID: 36134556 DOI: 10.1111/jfb.15221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Much of the biological diversity we see today is thought to be the product of evolutionary radiation, the rapid proliferation of species from a single ancestor into multiple discrete forms. Spatial heterogeneity in environmental variables has been proposed as creating the necessary ecological opportunity to stimulate evolutionary radiation. Nonetheless, the ecological mechanisms generating and maintaining diversity in spatially heterogeneous environments are not fully understood. The authors investigated the role of strong spatial heterogeneity in generating ecological opportunity in an evolutionary radiation of freshwater populations of the three-spined stickleback (Gasterosteus aculeatus L.) on the island of North Uist using a spatially explicit Bayesian model. The authors identified pH, loch surface area and body size as predictors of variance in the number of lateral plates that comprise anti-predator armour in G. aculeatus. An East-West gradient of pH, a product of the distinctive environment of North Uist, generates a robust selective environment facilitating G. aculeatus evolutionary radiation. Larger lochs were associated with atypical phenotypes, possibly related to larger population sizes and greater selection efficiency. An association between pH and lateral plate number is likely an effect of body size, with a positive relationship between body size and lateral plate number that is mediated by swimming efficiency in G. aculeatus.
Collapse
Affiliation(s)
- Carl Smith
- Department of Ecology & Vertebrate Zoology, University of Łódź, Łódź, Poland
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Grzegorz Zięba
- Department of Ecology & Vertebrate Zoology, University of Łódź, Łódź, Poland
| | - Rowena Spence
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Mirosław Przybylski
- Department of Ecology & Vertebrate Zoology, University of Łódź, Łódź, Poland
| |
Collapse
|
26
|
Nedoluzhko A, Orlova SY, Kurnosov DS, Orlov AM, Galindo-Villegas J, Rastorguev SM. Genomic Signatures of Freshwater Adaptation in Pacific Herring ( Clupea pallasii). Genes (Basel) 2022; 13:genes13101856. [PMID: 36292743 PMCID: PMC9601299 DOI: 10.3390/genes13101856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022] Open
Abstract
Pacific herring (Clupea pallasii) is an essential target of commercial fishing in the North Pacific Ocean. Previous studies have suggested the existence of marine and lake ecological forms of this species within its range. The lake ecological form of herring has a shortened life cycle, spending the winter and spawning in brackish waters near the shoreline without long migrations for feeding; it also has a relatively smaller body size than the marine form. Genetic-based studies have shown that brackish water Pacific herring not only can be distinguished as a separate lake ecological form but possibly has its genetic legacy. Here, as part of an ongoing study, using ddRAD-sequencing data for marine and lake ecological forms from a total of 54 individuals and methods of comparative bioinformatics, we describe genomic signatures of freshwater adaptivity in Pacific herring. In total, 253 genes containing discriminating SNPs were found, and part of those genes was organized into genome clusters, also known as “genomic islands of divergence”. Moreover, the Tajima’s D test showed that these loci are under directional selection in the lake populations of the Pacific herring. Yet, most discriminating loci between the lake and marine ecological forms of Pacific herring do not intersect (by gene name) with those in other known marine fish species with known freshwater/brackish populations. However, some are associated with the same physiological trait—osmoregulation.
Collapse
Affiliation(s)
- Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, 191187 Saint Petersburg, Russia
- Limited Liability Company ELGENE, 109029 Moscow, Russia
| | - Svetlana Yu. Orlova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 107140 Moscow, Russia
- Laboratory of Genetic Basis of Identification, Vavilov Institute of General Genetics of the Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (S.Y.O.); (J.G.-V.); (S.M.R.)
| | - Denis S. Kurnosov
- Research Group of Intraspecific Differentiation, Russian Federal Research Institute of Fisheries and Oceanography, Pacific Branch (TINRO), 690091 Vladivostok, Russia
| | - Alexei M. Orlov
- Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology of the Russian Academy of Sciences, 117218 Moscow, Russia
- Laboratory of Behavior of Lower Vertebrates, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
- Department of Ichthyology and Hydrobiology, Tomsk State University, 634050 Tomsk, Russia
- Laboratory of Marine Biology, Caspian Institute of Biological Resources, Russian Academy of Sciences, 367000 Makhachkala, Russia
| | - Jorge Galindo-Villegas
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
- Correspondence: (S.Y.O.); (J.G.-V.); (S.M.R.)
| | - Sergey M. Rastorguev
- Limited Liability Company ELGENE, 109029 Moscow, Russia
- Kurchatov Center for Genomic Research, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Correspondence: (S.Y.O.); (J.G.-V.); (S.M.R.)
| |
Collapse
|
27
|
Yao M, Zhang S, Lu Q, Chen X, Zhang SY, Kong Y, Zhao J. Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward. Mol Ecol 2022; 31:5132-5164. [PMID: 35972241 DOI: 10.1111/mec.16659] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)-based biomonitoring provides robust, efficient, and cost-effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries.
Collapse
Affiliation(s)
- Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Shan Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Qi Lu
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Xiaoyu Chen
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Si-Yu Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Yueqiao Kong
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Jindong Zhao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
28
|
Chapelle V, Silvestre F. Population Epigenetics: The Extent of DNA Methylation Variation in Wild Animal Populations. EPIGENOMES 2022; 6:31. [PMID: 36278677 PMCID: PMC9589984 DOI: 10.3390/epigenomes6040031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Population epigenetics explores the extent of epigenetic variation and its dynamics in natural populations encountering changing environmental conditions. In contrast to population genetics, the basic concepts of this field are still in their early stages, especially in animal populations. Epigenetic variation may play a crucial role in phenotypic plasticity and local adaptation as it can be affected by the environment, it is likely to have higher spontaneous mutation rate than nucleotide sequences do, and it may be inherited via non-mendelian processes. In this review, we aim to bring together natural animal population epigenetic studies to generate new insights into ecological epigenetics and its evolutionary implications. We first provide an overview of the extent of DNA methylation variation and its autonomy from genetic variation in wild animal population. Second, we discuss DNA methylation dynamics which create observed epigenetic population structures by including basic population genetics processes. Then, we highlight the relevance of DNA methylation variation as an evolutionary mechanism in the extended evolutionary synthesis. Finally, we suggest new research directions by highlighting gaps in the knowledge of the population epigenetics field. As for our results, DNA methylation diversity was found to reveal parameters that can be used to characterize natural animal populations. Some concepts of population genetics dynamics can be applied to explain the observed epigenetic structure in natural animal populations. The set of recent advancements in ecological epigenetics, especially in transgenerational epigenetic inheritance in wild animal population, might reshape the way ecologists generate predictive models of the capacity of organisms to adapt to changing environments.
Collapse
Affiliation(s)
- Valentine Chapelle
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth, and Environment, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | | |
Collapse
|
29
|
Nedoluzhko A, Sharko F, Tsygankova S, Boulygina E, Slobodova N, Teslyuk A, Galindo-Villegas J, Rastorguev S. Intergeneric hybridization of two stickleback species leads to introgression of membrane-associated genes and invasive TE expansion. Front Genet 2022; 13:863547. [PMID: 36092944 PMCID: PMC9452749 DOI: 10.3389/fgene.2022.863547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
Interspecific hybridization has occurred relatively frequently during the evolution of vertebrates. This process usually abolishes reproductive isolation between the parental species. Moreover, it results in the exchange of genetic material and can lead to hybridogenic speciation. Hybridization between species has predominately been observed at the interspecific level, whereas intergeneric hybridization is rarer. Here, using whole-genome sequencing analysis, we describe clear and reliable signals of intergeneric introgression between the three-spined stickleback (Gasterosteus aculeatus) and its distant mostly freshwater relative the nine-spined stickleback (Pungitius pungitius) that inhabit northwestern Russia. Through comparative analysis, we demonstrate that such introgression phenomena apparently take place in the moderate-salinity White Sea basin, although it is not detected in Japanese sea stickleback populations. Bioinformatical analysis of the sites influenced by introgression showed that they are located near transposable elements, whereas those in protein-coding sequences are mostly found in membrane-associated and alternative splicing-related genes.
Collapse
Affiliation(s)
- Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, Saint Petersburg, Russia
- Limited Liability Company ELGENE, Moscow, Russia
| | - Fedor Sharko
- Limited Liability Company ELGENE, Moscow, Russia
- Laboratory of Vertebrate Genomics and Epigenomics, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Laboratory of Bioinformatics and Big Data Analysis, Kurchatov Center for Genomic Research, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Svetlana Tsygankova
- Laboratory of Eukaryotic Genomics, Kurchatov Center for Genomic Research, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Eugenia Boulygina
- Laboratory of Eukaryotic Genomics, Kurchatov Center for Genomic Research, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Natalia Slobodova
- Laboratory of Eukaryotic Genomics, Kurchatov Center for Genomic Research, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Anton Teslyuk
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Jorge Galindo-Villegas
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- *Correspondence: Jorge Galindo-Villegas, ; Sergey Rastorguev,
| | - Sergey Rastorguev
- Limited Liability Company ELGENE, Moscow, Russia
- Laboratory of Bioinformatics and Big Data Analysis, Kurchatov Center for Genomic Research, National Research Center “Kurchatov Institute”, Moscow, Russia
- *Correspondence: Jorge Galindo-Villegas, ; Sergey Rastorguev,
| |
Collapse
|
30
|
De Kort H, Toivainen T, Van Nieuwerburgh F, Andrés J, Hytönen TP, Honnay O. Signatures of polygenic adaptation align with genome-wide methylation patterns in wild strawberry plants. THE NEW PHYTOLOGIST 2022; 235:1501-1514. [PMID: 35575945 DOI: 10.1111/nph.18225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Epigenetic inheritance can drive adaptive evolution independently of DNA sequence variation. However, to what extent epigenetic variation represents an autonomous evolutionary force remains largely elusive. Through gene ontology and comparative analyses of genomic and epigenomic variation of wild strawberry plants raised in distinct drought settings, we characterised genome-wide covariation between single nucleotide polymorphisms (SNPs) and differentially methylated cytosines (DMCs). Covariation between SNPs and DMCs was independent of genomic proximity, but instead associated with fitness-related processes such as stress responses, genome regulation and reproduction. We expected this functional SNP-DMC covariation to be driven by adaptive evolution canalising SNP and DMC variation, but instead observed significantly lower covariation with DMCs for adaptive rather than for neutral SNPs. Drought-induced DMCs frequently co-varied with tens of SNPs, suggesting high genomic redundancy as a broad potential basis for polygenic adaptation of gene expression. Our findings suggest that stress-responsive DMCs initially co-vary with many SNPs under increased environmental stress, and that natural selection acting upon several of these SNPs subsequently reduces standing covariation with stress-responsive DMCs. Our study supports DNA methylation profiles that represent complex quantitative traits rather than autonomous evolutionary forces. We provide a conceptual framework for polygenic regulation and adaptation shaping genome-wide methylation patterns in plants.
Collapse
Affiliation(s)
- Hanne De Kort
- Plant Conservation and Population Biology, University of Leuven, Kasteelpark Arenberg 31-2435, BE-3001, Leuven, Belgium
| | - Tuomas Toivainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | | | - Javier Andrés
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Timo P Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Olivier Honnay
- Plant Conservation and Population Biology, University of Leuven, Kasteelpark Arenberg 31-2435, BE-3001, Leuven, Belgium
| |
Collapse
|
31
|
Liu S, Tengstedt ANB, Jacobsen MW, Pujolar JM, Jónsson B, Lobón-Cervià J, Bernatchez L, Hansen MM. Genome-wide methylation in the panmictic European eel (Anguilla anguilla). Mol Ecol 2022; 31:4286-4306. [PMID: 35767387 DOI: 10.1111/mec.16586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
The role of methylation in adaptive, developmental and speciation processes has attracted considerable interest, but interpretation of results is complicated by diffuse boundaries between genetic and non-genetic variation. We studied whole genome genetic and methylation variation in the European eel, distributed from subarctic to subtropical environments, but with panmixia precluding genetically based local adaptation beyond single-generation responses. Overall methylation was 70.9%, with hypomethylation predominantly found in promoters and first exons. Redundancy analyses involving juvenile glass eels showed 0.06% and 0.03% of the variance at SNPs to be explained by localities and environmental variables, respectively, with GO terms of genes associated with outliers primarily involving neural system functioning. For CpGs 2.98% and 1.36% of variance was explained by localities and environmental variables. Differentially methylated regions particularly included genes involved in developmental processes, with hox clusters featuring prominently. Life stage (adult versus glass eels) was the most important source of inter-individual variation in methylation, likely reflecting both ageing and developmental processes. Demethylation of transposable elements relative to pure European eel was observed in European X American eel hybrids, possibly representing postzygotic barriers in this system characterized by prolonged speciation and ongoing gene flow. Whereas the genetic data are consistent with a role of single-generation selective responses, the methylation results underpin the importance of epigenetics in the life cycle of eels and suggests interactions between local environments, development and phenotypic variation mediated by methylation variation. Eels are remarkable by having retained eight hox clusters, and the results suggest important roles of methylation at hox genes for adaptive processes.
Collapse
Affiliation(s)
- Shenglin Liu
- Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Magnus W Jacobsen
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Jose Martin Pujolar
- Centre for Gelatinous Plankton Ecology and Evolution, National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bjarni Jónsson
- North West Iceland Nature Center, Iceland.,The Icelandic Parliament, Reykjavík, Iceland
| | | | - Louis Bernatchez
- IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, Canada
| | | |
Collapse
|
32
|
Jahan K, Yin Z, Zhang Y, Yan X, Nie H. Gene Co-Expression Network Analysis Reveals the Correlation Patterns Among Genes in Different Temperature Stress Adaptation of Manila Clam. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:542-554. [PMID: 35482153 DOI: 10.1007/s10126-022-10117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The Manila clam (Ruditapes philippinarum) is one of the most important aquaculture species and widely distributed along the coasts of China, Japan, and Korea. Due to its wide distribution, it can tolerate a wide range of temperature. Studying the gene expression profiles of clam gills had found differentially expressed genes (DEGs) and pathway involved in temperature stress tolerance. A systematic study of cellular response to temperature stress may provide insights into the mechanism of acquired tolerance. Here, weighted gene co-expression network analysis (WGCNA) was carried out using RNA-seq data from gill transcriptome in response to high and low temperature stress. There are a total 32 gene modules, of which 18 gene modules were identified as temperature-related modules. Blue module was one significantly correlated with temperature which was associated with cellular metabolism, apoptosis pathway, ER stress, and others.
Collapse
Affiliation(s)
- Kifat Jahan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Zhihui Yin
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yanming Zhang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
33
|
L E E CE, Downey K, Colby RS, Freire CA, Nichols S, Burgess MN, Judy KJ. Recognizing salinity threats in the climate crisis. Integr Comp Biol 2022; 62:441-460. [PMID: 35640911 DOI: 10.1093/icb/icac069] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
Climate change is causing habitat salinity to transform at unprecedented rates across the globe. While much of the research on climate change has focused on rapid shifts in temperature, far less attention has focused on the effects of changes in environmental salinity. Consequently, predictive studies on the physiological, evolutionary, and migratory responses of organisms and populations to the threats of salinity change are relatively lacking. This omission represents a major oversight, given that salinity is among the most important factors that define biogeographic boundaries in aquatic habitats. In this perspective, we briefly touch on responses of organisms and populations to rapid changes in salinity occurring on contemporary time scales. We then discuss factors that might confer resilience to certain taxa, enabling them to survive rapid salinity shifts. Next, we consider approaches for predicting how geographic distributions will shift in response to salinity change. Finally, we identify additional data that are needed to make better predictions in the future. Future studies on climate change should account for the multiple environmental factors that are rapidly changing, especially habitat salinity.
Collapse
Affiliation(s)
- Carol Eunmi L E E
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA
| | - Kala Downey
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Rebecca Smith Colby
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Carolina A Freire
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Sarah Nichols
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK.,Department of Life Sciences, Natural History Museum, London, UK
| | - Michael N Burgess
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Kathryn J Judy
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
34
|
Yin Z, Nie H, Jiang K, Yan X. Molecular Mechanisms Underlying Vibrio Tolerance in Ruditapes philippinarum Revealed by Comparative Transcriptome Profiling. Front Immunol 2022; 13:879337. [PMID: 35615362 PMCID: PMC9125321 DOI: 10.3389/fimmu.2022.879337] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
The clam Ruditapes philippinarum is an important species in the marine aquaculture industry in China. However, in recent years, the aquaculture of R. philippinarum has been negatively impacted by various bacterial pathogens. In this study, the transcriptome libraries of R. philippinarum showing different levels of resistance to challenge with Vibrio anguillarum were constructed and RNA-seq was performed using the Illumina sequencing platform. Host immune factors were identified that responded to V. anguillarum infection, including C-type lectin domain, glutathione S-transferase 9, lysozyme, methyltransferase FkbM domain, heat shock 70 kDa protein, Ras-like GTP-binding protein RHO, C1q, F-box and BTB/POZ domain protein zf-C2H2. Ten genes were selected and verified by RT-qPCR, and nine of the gene expression results were consistent with those of RNA-seq. The lectin gene in the phagosome pathway was expressed at a significantly higher level after V. anguillarum infection, which might indicate the role of lectin in the immune response to V. anguillarum. Comparing the results from R. philippinarum resistant and nonresistant to V. anguillarum increases our understanding of the resistant genes and key pathways related to Vibrio challenge in this species. The results obtained here provide a reference for future immunological research focusing on the response of R. philippinarum to V. anguillarum infection.
Collapse
Affiliation(s)
- Zhihui Yin
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Kunyin Jiang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| |
Collapse
|
35
|
Gao Y, Chen Y, Li S, Huang X, Hu J, Bock DG, MacIsaac HJ, Zhan A. Complementary genomic and epigenomic adaptation to environmental heterogeneity. Mol Ecol 2022; 31:3598-3612. [PMID: 35560847 DOI: 10.1111/mec.16500] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 12/01/2022]
Abstract
While adaptation is commonly thought to result from selection on DNA sequence-based variation, recent studies have highlighted an analogous epigenetic component as well. However, the relative roles of these mechanisms in facilitating population persistence under environmental heterogeneity remain unclear. To address the underlying genetic and epigenetic mechanisms and their relationship during environmental adaptation, we screened the genomes and epigenomes of nine global populations of a predominately sessile marine invasive tunicate, Botryllus schlosseri, using reduced-representation methods. We detected clear population differentiation at the genetic and epigenetic levels. Patterns of genetic and epigenetic structure were significantly influenced by local environmental variables. Among these variables, minimum annual sea surface temperature was identified as the top explanatory variable for both genetic and epigenetic variation. However, patterns of population structure driven by genetic and epigenetic variation were somewhat distinct, suggesting possible autonomy of epigenetic variation. We found both shared and specific genes and biological pathways among genetic and epigenetic loci associated with environmental factors, consistent with complementary and independent contributions of genetic and epigenetic variation to environmental adaptation in this system. Collectively, these mechanisms may facilitate population persistence under environmental change and sustain successful invasions across novel environments.
Collapse
Affiliation(s)
- Yangchun Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Dan G Bock
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Hugh J MacIsaac
- School of Ecology and Environmental Science, Yunnan University, Yunnan, 650091, China.,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
36
|
Abstract
Epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs are increasingly targeted in studies of natural populations. Here, I review some of the insights gained from this research, examine some of the methods currently in use and discuss some of the challenges that researchers working on natural populations are likely to face when probing epigenetic mechanisms. While studies supporting the involvement of epigenetic mechanisms in generating phenotypic variation in natural populations are amassing, many of these studies are currently correlative in nature. Thus, while empirical data point to widespread contributions of epigenetic mechanisms in generating phenotypic variation, there are still concerns as to whether epigenetic variation is instead ultimately controlled by genetic variation. Disentangling these two sources of variation will be a key to resolving the debate about the importance of epigenetic mechanisms, and studies on natural populations that partition the relative contribution of genetic and epigenetic factors to phenotypic variation can play an important role in this debate.
Collapse
Affiliation(s)
- Arild Husby
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden.,Centre for Biodiversity Dynamics, Norwegian University for Science and Technology, Trondheim, Norway
| |
Collapse
|
37
|
Fellous A, Wegner KM, John U, Mark FC, Shama LNS. Windows of opportunity: Ocean warming shapes temperature-sensitive epigenetic reprogramming and gene expression across gametogenesis and embryogenesis in marine stickleback. GLOBAL CHANGE BIOLOGY 2022; 28:54-71. [PMID: 34669228 DOI: 10.1111/gcb.15942] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Rapid climate change is placing many marine species at risk of local extinction. Recent studies show that epigenetic mechanisms (e.g. DNA methylation, histone modifications) can facilitate both within and transgenerational plasticity to cope with changing environments. However, epigenetic reprogramming (erasure and re-establishment of epigenetic marks) during gamete and early embryo development may hinder transgenerational epigenetic inheritance. Most of our knowledge about reprogramming stems from mammals and model organisms, whereas the prevalence and extent of reprogramming among non-model species from wild populations is rarely investigated. Moreover, whether reprogramming dynamics are sensitive to changing environmental conditions is not well known, representing a key knowledge gap in the pursuit to identify mechanisms underlying links between parental exposure to changing climate patterns and environmentally adapted offspring phenotypes. Here, we investigated epigenetic reprogramming (DNA methylation/hydroxymethylation) and gene expression across gametogenesis and embryogenesis of marine stickleback (Gasterosteus aculeatus) under three ocean warming scenarios (ambient, +1.5 and +4°C). We found that parental acclimation to ocean warming led to dynamic and temperature-sensitive reprogramming throughout offspring development. Both global methylation/hydroxymethylation and expression of genes involved in epigenetic modifications were strongly and differentially affected by the increased warming scenarios. Comparing transcriptomic profiles from gonads, mature gametes and early embryonic stages showed sex-specific accumulation and temperature sensitivity of several epigenetic actors. DNA methyltransferase induction was primarily maternally inherited (suggesting maternal control of remethylation), whereas induction of several histone-modifying enzymes was shaped by both parents. Importantly, massive, temperature-specific changes to the epigenetic landscape occurred in blastula, a critical stage for successful embryo development, which could, thus, translate to substantial consequences for offspring phenotype resilience in warming environments. In summary, our study identified key stages during gamete and embryo development with temperature-sensitive reprogramming and epigenetic gene regulation, reflecting potential 'windows of opportunity' for adaptive epigenetic responses under future climate change.
Collapse
Affiliation(s)
- Alexandre Fellous
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, List, Germany
| | - K Mathias Wegner
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, List, Germany
| | - Uwe John
- Ecological Chemistry Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
| | - Felix C Mark
- Integrative Ecophysiology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Lisa N S Shama
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, List, Germany
| |
Collapse
|
38
|
Wellband K, Roth D, Linnansaari T, Curry RA, Bernatchez L. Environment-driven reprogramming of gamete DNA methylation occurs during maturation and is transmitted intergenerationally in Atlantic Salmon. G3 (BETHESDA, MD.) 2021; 11:jkab353. [PMID: 34849830 PMCID: PMC8664423 DOI: 10.1093/g3journal/jkab353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
An epigenetic basis for transgenerational plasticity in animals is widely theorized, but convincing empirical support is limited by taxa-specific differences in the presence and role of epigenetic mechanisms. In teleost fishes, DNA methylation generally does not undergo extensive reprogramming and has been linked with environmentally induced intergenerational effects, but solely in the context of early life environmental differences. Using whole-genome bisulfite sequencing, we demonstrate that differential methylation of sperm occurs in response to captivity during the maturation of Atlantic Salmon (Salmo salar), a species of major economic and conservation significance. We show that adult captive exposure further induces differential methylation in an F1 generation that is associated with fitness-related phenotypic differences. Some genes targeted with differential methylation were consistent with genes differential methylated in other salmonid fishes experiencing early-life hatchery rearing, as well as genes under selection in domesticated species. Our results support a mechanism of transgenerational plasticity mediated by intergenerational inheritance of DNA methylation acquired late in life for salmon. To our knowledge, this is the first-time environmental variation experienced later in life has been directly demonstrated to influence gamete DNA methylation in fish.
Collapse
Affiliation(s)
- Kyle Wellband
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - David Roth
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Tommi Linnansaari
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - R Allen Curry
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
39
|
Weber AAT, Rajkov J, Smailus K, Egger B, Salzburger W. Speciation dynamics and extent of parallel evolution along a lake-stream environmental contrast in African cichlid fishes. SCIENCE ADVANCES 2021; 7:eabg5391. [PMID: 34731007 PMCID: PMC8565912 DOI: 10.1126/sciadv.abg5391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding the dynamics of speciation is a central topic in evolutionary biology. Here, we investigated how morphological and genomic differentiation accumulated along the speciation continuum in the African cichlid fish Astatotilapia burtoni. While morphological differentiation was continuously distributed across different lake-stream population pairs, we found that there were two categories with respect to genomic differentiation, suggesting a “gray zone” of speciation at ~0.1% net nucleotide divergence. Genomic differentiation was increased in the presence of divergent selection and drift compared to drift alone. The quantification of phenotypic and genetic parallelism in four cichlid species occurring along a lake-stream environmental contrast revealed parallel and antiparallel components in rapid adaptive divergence, and morphological convergence in species replicates inhabiting the same environments. Furthermore, we show that the extent of parallelism was higher when ancestral populations were more similar. Our study highlights the complementary roles of divergent selection and drift on speciation and parallel evolution.
Collapse
|
40
|
Crotti M, Yohannes E, Winfield IJ, Lyle AA, Adams CE, Elmer KR. Rapid adaptation through genomic and epigenomic responses following translocations in an endangered salmonid. Evol Appl 2021; 14:2470-2489. [PMID: 34745338 PMCID: PMC8549615 DOI: 10.1111/eva.13267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying the molecular mechanisms facilitating adaptation to new environments is a key question in evolutionary biology, especially in the face of current rapid and human-induced changes. Translocations have become an important tool for species conservation, but the attendant small population sizes and new ecological pressures might affect phenotypic and genotypic variation and trajectories dramatically and in unknown ways. In Scotland, the European whitefish (Coregonus lavaretus) is native to only two lakes and vulnerable to extirpation. Six new refuge populations were established over the last 30 years as a conservation measure. In this study, we examined whether there is a predictable ecological and evolutionary response of these fishes to translocation. We found eco-morphological differences, as functional traits relating to body shape differed between source and refuge populations. Dual isotopic analyses suggested some ecological release, with the diets in refuge populations being more diverse than in source populations. Analyses of up to 9117 genome-mapped SNPs showed that refuge populations had reduced genetic diversity and elevated inbreeding and relatedness relative to source populations, though genomic differentiation was low (F ST = 0.002-0.030). We identified 14 genomic SNPs that showed shared signals of a selective response to translocations, including some located near or within genes involved in the immune system, nervous system and hepatic functions. Analysis of up to 120,897 epigenomic loci identified a component of consistent differential methylation between source and refuge populations. We found that epigenomic variation and genomic variation were associated with morphological variation, but we were not able to infer an effect of population age because the patterns were also linked with the methodology of the translocations. These results show that conservation-driven translocations affect evolutionary potential by impacting eco-morphological, genomic and epigenomic components of diversity, shedding light on acclimation and adaptation process in these contexts.
Collapse
Affiliation(s)
- Marco Crotti
- Institute of BiodiversityAnimal Health & Comparative MedicineCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| | - Elizabeth Yohannes
- Limnological InstituteUniversity of KonstanzKonstanzGermany
- Present address:
Max‐Planck Institute of Animal BehaviorAm Obstberg 1D‐78315RadolfzellGermany
- Present address:
University of KonstanzKonstanzGermany
| | - Ian J. Winfield
- Lake Ecosystems GroupUK Centre for Ecology & HydrologyLancaster Environment CentreBailrigg, LancasterUK
| | - Alex A. Lyle
- Scottish Centre for Ecology and the Natural EnvironmentUniversity of GlasgowRowardennanUK
| | - Colin E. Adams
- Institute of BiodiversityAnimal Health & Comparative MedicineCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
- Scottish Centre for Ecology and the Natural EnvironmentUniversity of GlasgowRowardennanUK
| | - Kathryn R. Elmer
- Institute of BiodiversityAnimal Health & Comparative MedicineCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
41
|
Abstract
The repeated adaptation of oceanic threespine sticklebacks to fresh water has made it a premier organism to study parallel evolution. These small fish have multiple distinct ecotypes that display a wide range of diverse phenotypic traits. Ecotypes are easily crossed in the laboratory, and families are large and develop quickly enough for quantitative trait locus analyses, positioning the threespine stickleback as a versatile model organism to address a wide range of biological questions. Extensive genomic resources, including linkage maps, a high-quality reference genome, and developmental genetics tools have led to insights into the genomic basis of adaptation and the identification of genomic changes controlling traits in vertebrates. Recently, threespine sticklebacks have been used as a model system to identify the genomic basis of highly complex traits, such as behavior and host-microbiome and host-parasite interactions. We review the latest findings and new avenues of research that have led the threespine stickleback to be considered a supermodel of evolutionary genomics.
Collapse
Affiliation(s)
- Kerry Reid
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794, USA;
| | - Michael A Bell
- University of California Museum of Paleontology, Berkeley, California 94720, USA
| | - Krishna R Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794, USA;
| |
Collapse
|
42
|
Badad O, Lakhssassi N, Zaid N, El Baze A, Zaid Y, Meksem J, Lightfoot DA, Tombuloglu H, Zaid EH, Unver T, Meksem K. Genome Wide MeDIP-Seq Profiling of Wild and Cultivated Olives Trees Suggests DNA Methylation Fingerprint on the Sensory Quality of Olive Oil. PLANTS 2021; 10:plants10071405. [PMID: 34371608 PMCID: PMC8309279 DOI: 10.3390/plants10071405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/31/2022]
Abstract
Secondary metabolites are particularly important to humans due to their pharmaceutical properties. Moreover, secondary metabolites are key compounds in climate change adaptation in long-living trees. Recently, it has been described that the domestication of Olea subspecies had no major selection signature on coding variants and was mainly related to changes in gene expression. In addition, the phenotypic plasticity in Olea subspecies was linked to the activation of transposable elements in the genes neighboring. Here, we investigated the imprint of DNA methylation in the unassigned fraction of the phenotypic plasticity of the Olea subspecies, using methylated DNA immuno-precipitation sequencing (MeDIP-seq) for a high-resolution genome-wide DNA methylation profiling of leaves and fruits during fruit development in wild and cultivated olives from Turkey. Notably, the methylation profiling showed a differential DNA methylation in secondary metabolism responsible for the sensory quality of olive oil. Here, we highlight for the first time the imprint of DNA methylation in modulating the activity of the Linoleate 9S lipoxygenase in the biosynthesis of volatile aromatic compounds. Unprecedently, the current study reveals the methylation status of the olive genome during fruit ripening.
Collapse
Affiliation(s)
- Oussama Badad
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (O.B.); (N.L.); (A.E.B.); (D.A.L.)
- Department of Biology, Faculty of Sciences, Mohammed V University, Rabat 10000, Morocco; (N.Z.); (Y.Z.); (E.H.Z.)
| | - Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (O.B.); (N.L.); (A.E.B.); (D.A.L.)
| | - Nabil Zaid
- Department of Biology, Faculty of Sciences, Mohammed V University, Rabat 10000, Morocco; (N.Z.); (Y.Z.); (E.H.Z.)
| | - Abdelhalim El Baze
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (O.B.); (N.L.); (A.E.B.); (D.A.L.)
| | - Younes Zaid
- Department of Biology, Faculty of Sciences, Mohammed V University, Rabat 10000, Morocco; (N.Z.); (Y.Z.); (E.H.Z.)
- Research Center, Abulcasis University of Health Sciences, Rabat 10000, Morocco
| | - Jonas Meksem
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA;
| | - David A Lightfoot
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (O.B.); (N.L.); (A.E.B.); (D.A.L.)
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - El Houcine Zaid
- Department of Biology, Faculty of Sciences, Mohammed V University, Rabat 10000, Morocco; (N.Z.); (Y.Z.); (E.H.Z.)
| | - Turgay Unver
- Ficus Biotechnology, Ostim OSB Mah, 100. Yil Blv, No:55, Yenimahalle, Ankara 06000, Turkey
- Correspondence: (T.U.); (K.M.)
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (O.B.); (N.L.); (A.E.B.); (D.A.L.)
- Correspondence: (T.U.); (K.M.)
| |
Collapse
|
43
|
Nedoluzhko A, Mjelle R, Renström M, Skjærven KH, Piferrer F, Fernandes JMO. The first mitochondrial 5-methylcytosine map in a non-model teleost (Oreochromis niloticus) reveals extensive strand-specific and non-CpG methylation. Genomics 2021; 113:3050-3057. [PMID: 34245830 DOI: 10.1016/j.ygeno.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/16/2021] [Accepted: 07/05/2021] [Indexed: 12/26/2022]
Abstract
DNA methylation is one of the main epigenetic mechanisms that regulate gene expression in a manner that depends on the genomic context and varies considerably across taxa. This DNA modification was first found in nuclear genomes of eukaryote several decades ago and it has also been described in mitochondrial DNA. It has recently been shown that mitochondrial DNA is extensively methylated in mammals and other vertebrates. Our current knowledge of mitochondrial DNA methylation in fish is very limited, especially in non-model teleosts. In this study, using whole-genome bisulfite sequencing, we determined methylation patterns within non-CpG (CH) and CpG (CG) contexts in the mitochondrial genome of Nile tilapia, a non-model teleost of high economic importance. Our results demonstrate the presence of mitochondrial DNA methylation in this species predominantly within a non-CpG context, similarly to mammals. We found a strand-specific distribution of methylation, in which highly methylated cytosines were located on the minus strand. The D-loop region had the highest mean methylation level among all mitochondrial loci. Our data provide new insights into the potential role of epigenetic mechanisms in regulating metabolic flexibility of mitochondria in fish, with implications in various biological processes, such as growth and development.
Collapse
Affiliation(s)
- Artem Nedoluzhko
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Robin Mjelle
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maria Renström
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | | |
Collapse
|
44
|
McNew SM, Boquete MT, Espinoza‐Ulloa S, Andres JA, Wagemaker NCAM, Knutie SA, Richards CL, Clayton DH. Epigenetic effects of parasites and pesticides on captive and wild nestling birds. Ecol Evol 2021; 11:7713-7729. [PMID: 34188846 PMCID: PMC8216931 DOI: 10.1002/ece3.7606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Anthropogenic changes to the environment challenge animal populations to adapt to new conditions and unique threats. While the study of adaptation has focused on genetic variation, epigenetic mechanisms may also be important. DNA methylation is sensitive to environmental stressors, such as parasites and pesticides, which may affect gene expression and phenotype. We studied the effects of an invasive ectoparasite, Philornis downsi, on DNA methylation of Galápagos mockingbirds (Mimus parvulus). We used the insecticide permethrin to manipulate P. downsi presence in nests of free-living mockingbirds and tested for effects of parasitism on nestling mockingbirds using epiGBS, a reduced-representation bisulfite sequencing (RRBS) approach. To distinguish the confounding effects of insecticide exposure, we conducted a matching experiment exposing captive nestling zebra finches (Taeniopygia guttata) to permethrin. We used zebra finches because they were the closest model organism to mockingbirds that we could breed in controlled conditions. We identified a limited number of differentially methylated cytosines (DMCs) in parasitized versus nonparasitized mockingbirds, but the number was not more than expected by chance. In contrast, we saw clear effects of permethrin on methylation in captive zebra finches. DMCs in zebra finches paralleled documented effects of permethrin exposure on vertebrate cellular signaling and endocrine function. Our results from captive birds indicate a role for epigenetic processes in mediating sublethal nontarget effects of pyrethroid exposure in vertebrates. Environmental conditions in the field were more variable than the laboratory, which may have made effects of both parasitism and permethrin harder to detect in mockingbirds. RRBS approaches such as epiGBS may be a cost-effective way to characterize genome-wide methylation profiles. However, our results indicate that ecological epigenetic studies in natural populations should consider the number of cytosines interrogated and the depth of sequencing in order to have adequate power to detect small and variable effects.
Collapse
Affiliation(s)
- Sabrina M. McNew
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
- Cornell Lab of OrnithologyCornell UniversityIthacaNYUSA
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
| | - M. Teresa Boquete
- Department of Integrative BiologyUniversity of South FloridaTampaFLUSA
- Department of Evolutionary EcologyEstación Biológica de DoñanaCSICSevillaSpain
| | - Sebastian Espinoza‐Ulloa
- Department of BiologyUniversity of SaskatchewanSaskatoonSKCanada
- Facultad de MedicinaPontifica Universidad Católica del EcuadorQuitoEcuador
| | - Jose A. Andres
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
- Department of BiologyUniversity of SaskatchewanSaskatoonSKCanada
| | | | - Sarah A. Knutie
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsCTUSA
| | | | - Dale H. Clayton
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
45
|
Liang J, Zhang K, Yang J, Li X, Li Q, Wang Y, Cai W, Teng H, Sun Z. A new approach to decode DNA methylome and genomic variants simultaneously from double strand bisulfite sequencing. Brief Bioinform 2021; 22:6289882. [PMID: 34058751 PMCID: PMC8575003 DOI: 10.1093/bib/bbab201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic and epigenetic contributions to various diseases and biological processes have been well-recognized. However, simultaneous identification of single-nucleotide variants (SNVs) and DNA methylation levels from traditional bisulfite sequencing data is still challenging. Here, we develop double strand bisulfite sequencing (DSBS) for genome-wide accurate identification of SNVs and DNA methylation simultaneously at a single-base resolution by using one dataset. Locking Watson and Crick strand together by hairpin adapter followed by bisulfite treatment and massive parallel sequencing, DSBS simultaneously sequences the bisulfite-converted Watson and Crick strand in one paired-end read, eliminating the strand bias of bisulfite sequencing data. Mutual correction of read1 and read2 can estimate the amplification and sequencing errors, and enables our developed computational pipeline, DSBS Analyzer (https://github.com/tianguolangzi/DSBS), to accurately identify SNV and DNA methylation. Additionally, using DSBS, we provide a genome-wide hemimethylation landscape in the human cells, and reveal that the density of DNA hemimethylation sites in promoter region and CpG island is lower than that in other genomic regions. The cost-effective new approach, which decodes DNA methylome and genomic variants simultaneously, will facilitate more comprehensive studies on numerous diseases and biological processes driven by both genetic and epigenetic variations.
Collapse
Affiliation(s)
| | | | - Jie Yang
- Institute of Genomic Medicine, Wenzhou Medical University, Beijing 100101, China
| | - Xianfeng Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinglan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanshi Cai
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Huajing Teng
- Corresponding author: Zhongsheng Sun, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beichen West Road, Chao Yang District, Beijing 100101, China. Tel.: +86 10 64864959; Fax: +86 10 84504120. ; Huajing Teng, Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Road, Haidian District, Beijing 100142, China. Tel.: +86 10 88196505.
| | - Zhongsheng Sun
- Corresponding author: Zhongsheng Sun, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beichen West Road, Chao Yang District, Beijing 100101, China. Tel.: +86 10 64864959; Fax: +86 10 84504120. ; Huajing Teng, Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Road, Haidian District, Beijing 100142, China. Tel.: +86 10 88196505.
| |
Collapse
|
46
|
Kern C, Wang Y, Xu X, Pan Z, Halstead M, Chanthavixay G, Saelao P, Waters S, Xiang R, Chamberlain A, Korf I, Delany ME, Cheng HH, Medrano JF, Van Eenennaam AL, Tuggle CK, Ernst C, Flicek P, Quon G, Ross P, Zhou H. Functional annotations of three domestic animal genomes provide vital resources for comparative and agricultural research. Nat Commun 2021; 12:1821. [PMID: 33758196 PMCID: PMC7988148 DOI: 10.1038/s41467-021-22100-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
Gene regulatory elements are central drivers of phenotypic variation and thus of critical importance towards understanding the genetics of complex traits. The Functional Annotation of Animal Genomes consortium was formed to collaboratively annotate the functional elements in animal genomes, starting with domesticated animals. Here we present an expansive collection of datasets from eight diverse tissues in three important agricultural species: chicken (Gallus gallus), pig (Sus scrofa), and cattle (Bos taurus). Comparative analysis of these datasets and those from the human and mouse Encyclopedia of DNA Elements projects reveal that a core set of regulatory elements are functionally conserved independent of divergence between species, and that tissue-specific transcription factor occupancy at regulatory elements and their predicted target genes are also conserved. These datasets represent a unique opportunity for the emerging field of comparative epigenomics, as well as the agricultural research community, including species that are globally important food resources.
Collapse
Affiliation(s)
- Colin Kern
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Xiaoqin Xu
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Zhangyuan Pan
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Michelle Halstead
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ganrea Chanthavixay
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Susan Waters
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ruidong Xiang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Amanda Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Ian Korf
- Genome Center, University of California, Davis, Davis, CA, USA
| | - Mary E Delany
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Hans H Cheng
- USDA-ARS, Avian Disease and Oncology Laboratory, East Lansing, MI, USA
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | | | - Chris K Tuggle
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Catherine Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Gerald Quon
- Department of Molecular and Cellular Biology, University of California, David, Davis, CA, USA
| | - Pablo Ross
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
47
|
Hu J, Wuitchik SJS, Barry TN, Jamniczky HA, Rogers SM, Barrett RDH. Heritability of DNA methylation in threespine stickleback (Gasterosteus aculeatus). Genetics 2021; 217:1-15. [PMID: 33683369 PMCID: PMC8045681 DOI: 10.1093/genetics/iyab001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Epigenetic mechanisms underlying phenotypic change are hypothesized to contribute to population persistence and adaptation in the face of environmental change. To date, few studies have explored the heritability of intergenerationally stable methylation levels in natural populations, and little is known about the relative contribution of cis- and trans-regulatory changes to methylation variation. Here, we explore the heritability of DNA methylation, and conduct methylation quantitative trait loci (meQTLs) analysis to investigate the genetic architecture underlying methylation variation between marine and freshwater ecotypes of threespine stickleback (Gasterosteus aculeatus). We quantitatively measured genome-wide DNA methylation in fin tissue using reduced representation bisulfite sequencing of F1 and F2 crosses, and their marine and freshwater source populations. We identified cytosines (CpG sites) that exhibited stable methylation levels across generations. We found that additive genetic variance explained an average of 24-35% of the methylation variance, with a number of CpG sites possibly autonomous from genetic control. We also detected both cis- and trans-meQTLs, with only trans-meQTLs overlapping with previously identified genomic regions of high differentiation between marine and freshwater ecotypes. Finally, we identified the genetic architecture underlying two key CpG sites that were differentially methylated between ecotypes. These findings demonstrate a potential role for DNA methylation in facilitating adaptation to divergent environments and improve our understanding of the heritable basis of population epigenomic variation.
Collapse
Affiliation(s)
- Juntao Hu
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Institute of Biodiversity Science, Fudan University, Shanghai 200438, China
- Redpath Museum and Department of Biology, McGill University, Montreal, QC H3A 0C4, Canada
| | - Sara J S Wuitchik
- Informatics Group, Harvard University, Cambridge, MA 02138, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Tegan N Barry
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Heather A Jamniczky
- Department of Cell Biology and Anatomy, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sean M Rogers
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Rowan D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, QC H3A 0C4, Canada
| |
Collapse
|
48
|
Nedoluzhko A, Sharko F, Tsygankova S, Boulygina E, Ibragimova A, Teslyuk A, Galindo-Villegas J, Rastorguev S. Genomic evidence supports the introgression between two sympatric stickleback species inhabiting the White Sea basin. Heliyon 2021; 7:e06160. [PMID: 33604473 PMCID: PMC7875830 DOI: 10.1016/j.heliyon.2021.e06160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/16/2020] [Accepted: 01/27/2021] [Indexed: 11/26/2022] Open
Abstract
Interspecies hybridization is driven by a complex interplay of factors where introgression plays an important role. In the present study, the transfer of genetic material, between two quite distant fish species from different genera, through spontaneous hybridization was documented with dedicated molecular and bioinformatics tools. We investigate the genomic landscape of putative stickleback-relative introgression by carefully analyzing the tractable transposable elements (TE) on the admixed genome of some individuals of two sympatric stickleback species inhabiting northwestern Russia, namely the three-spined (Gasterosteus aculeatus) and the nine-spined (Pungitius pungitius) sticklebacks. Our data revealed that unique TE amplification types exist, supporting our proposed hypothesis that infers on the interspecific introgression. By running a restriction site-associated DNA sequencing (RAD-Seq) with eight samples of G. aculeatus and P. pungitius and subjecting further the results to a contrasting analysis by variated bioinformatic tools, we identified the related introgression-linked markers. The admixture nature observed in a single sample of the nine-spined stickleback demonstrated the possible traces of remote introgression between these two species. Our work reveals the potential that introgression has on providing particular variants at a high-frequency speed while linking blocks of sequence with multiple functional mutations. However, even though our results are of significant interest, an increased number of samples displaying the introgression are required to further ascertain our conclusions.
Collapse
Affiliation(s)
- Artem Nedoluzhko
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
- Corresponding author.
| | - Fedor Sharko
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | | | - Eugenia Boulygina
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Amina Ibragimova
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Anton Teslyuk
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Jorge Galindo-Villegas
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
- Corresponding author.
| | - Sergey Rastorguev
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
49
|
Huang KM, Chain FJJ. Copy number variations and young duplicate genes have high methylation levels in sticklebacks. Evolution 2021; 75:706-718. [PMID: 33527399 DOI: 10.1111/evo.14184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Gene duplication is an important driver of genomic diversity that can promote adaptive evolution. However, like most mutations, a newly duplicated gene is often deleterious and removed from the genome by drift or natural selection. The early molecular changes that occur soon after duplication therefore may influence the long-term survival of gene duplicates, but relatively little empirical data exist on the events near the onset of duplication before mutations have time to accumulate. In this study, we contrast gene expression and DNA methylation levels of duplicate genes in the threespine stickleback, Gasterosteus aculeatus, including recently emerged duplications that segregate as copy number variations (CNVs). We find that younger duplicate genes have higher levels of promoter methylation than older genes, and that gene CNVs have higher promoter methylation than non-CNVs. These results suggest preferential duplication of highly methylated genes or rapid methylation changes soon after duplication. We also find a negative association between methylation and expression, providing a putative role for methylation in suppressing transcription that compensates for increases in gene copy numbers and promoting paralog retention. We propose that methylation contributes to the longevity of young duplicate genes, extending the window of opportunity for functional divergence via mutation.
Collapse
Affiliation(s)
- Katherine M Huang
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, 01854.,Comparative Media Studies/Writing, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Frédéric J J Chain
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, 01854
| |
Collapse
|
50
|
Kim WJ, Lee K, Lee D, Kim HC, Nam BH, Jung H, Yi SJ, Kim K. Transcriptome profiling of olive flounder responses under acute and chronic heat stress. Genes Genomics 2021; 43:151-159. [PMID: 33511573 DOI: 10.1007/s13258-021-01053-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND The olive flounder (Paralichthys olivaceus) is a saltwater fish, which is valuable to the economy. The olive flounder strives to adapt to environmental stressors through physiological, biochemical, and transcriptional responses. The rise in water temperature threatens the growth, development, reproduction, and survival of olive flounder. Each organ in the olive flounder can differentially respond to heat stress. OBJECTIVES The purpose of this study is to investigate organ-specific transcriptional changes in olive flounder tissues during heat stress. METHODS In this study, transcriptome dynamics of the gill, liver, and muscle of olive flounder to acute or chronic heat stress were investigated. RESULTS Principal component analysis plotting revealed that the transcriptome of each organ is quite separated. K-means clustering, gene ontology, and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed the differential transcriptome responses of each organ to heat stress. Heat stress commonly affects the pathways involved in the correct protein folding, DNA repair, and cell cycle. CONCLUSION Our results may provide a valuable molecular basis of heat acclimation in fishes.
Collapse
Affiliation(s)
- Woo-Jin Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Kyubin Lee
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Dain Lee
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Hyun-Chul Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Hyungtaek Jung
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Sun-Ju Yi
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Kyunghwan Kim
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|