1
|
Da Silva A, Ahbara A, Baazaoui I, Jemaa SB, Cao Y, Ciani E, Dzomba EF, Evans L, Gootwine E, Hanotte O, Harris L, Li MH, Mastrangelo S, Missohou A, Molotsi A, Muchadeyi FC, Mwacharo JM, Tallet G, Vernus P, Hall SJG, Lenstra JA. History and genetic diversity of African sheep: Contrasting phenotypic and genomic diversity. Anim Genet 2025; 56:e13488. [PMID: 39561986 DOI: 10.1111/age.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/06/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024]
Abstract
Domesticated sheep have adapted to contrasting and extreme environments and continue to play important roles in local community-based economies throughout Africa. Here we review the Neolithic migrations of thin-tailed sheep and the later introductions of fat-tailed sheep into eastern Africa. According to contemporary pictorial evidence, the latter occurred in Egypt not before the Ptolemaic period (305-25 BCE). We further describe the more recent history of sheep in Egypt, the Maghreb, west and central Africa, central-east Africa, and southern Africa. We also present a comprehensive molecular survey based on the analysis of 50 K SNP genotypes for 59 African breeds contributed by several laboratories. We propose that gene flow and import of fat-tailed sheep have partially overwritten the diversity profile created by the initial migration. We found a genetic contrast between sheep north and south of the Sahara and a west-east contrast of thin- and fat-tailed sheep. There is no close relationship between African and central and east Asian fat-tailed breeds, whereas we observe within Africa only a modest effect of tail types on breed relationships.
Collapse
Affiliation(s)
| | - Abulgasim Ahbara
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK
- Faculty of Sciences, Misurata University, Misurata, Libya
| | - Imen Baazaoui
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus University of Autònoma de Barcelona, Bellaterra, Spain
| | - Slim Ben Jemaa
- National Institute Agronomic Research of Tunisia, University of Carthage, Ariana, Tunisia
| | - Yinhong Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Institute of Zoology Chinese Academy of Sciences (CAS), Beijing, China
| | - Elena Ciani
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, University Bari "Aldo Moro", Bari, Italy
| | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Linda Evans
- Department of History and Archaeology, Macquarie University, Sydney, New South Wales, Australia
| | - Elisha Gootwine
- Institute of Animal Science, ARO, Volcani Center, Rishon LeZion, Israel
| | - Olivier Hanotte
- School of Life Sciences, The University of Nottingham, Nottingham, UK
- International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Laura Harris
- Department of History and Archaeology, Macquarie University, Sydney, New South Wales, Australia
| | - Meng-Hua Li
- Institute of Zoology Chinese Academy of Sciences (CAS), Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Ayao Missohou
- Animal Production and Nutrition Unit, Inter-State School of Veterinary Science and Medicine (EISMV), Dakar, Senegal
| | - Annelin Molotsi
- Department of Animal Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Farai C Muchadeyi
- Agricultural Research Council, Biotechnology Platform, Onderstepoort, South Africa
| | - Joram M Mwacharo
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK
- Small Ruminant Genomics, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Gaëlle Tallet
- University of Paris 1, Panthéon-Sorbonne, Paris, France
| | | | | | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Ben-Jemaa S, Yahyaoui G, Kdidi S, Najjari A, Lenstra JA, Mastrangelo S, Gaouar SBS, Mwacharo JM, Khorchani T, Yahyaoui MH. Genome-wide scans for signatures of selection in North African sheep reveals differentially selected regions between fat- and thin-tailed breeds. Anim Genet 2025; 56:e13487. [PMID: 39573836 DOI: 10.1111/age.13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 12/19/2024]
Abstract
North Africa counts several sheep breeds that can be categorized as fat- and thin-tailed. The former are well adapted to dryland environments. In this study, we used 50K genome-wide single nucleotide polymorphism profiles from 462 animals representing nine fat-tailed and 13 thin-tailed sheep breeds across North Africa to localize genomic regions putatively under differential selective pressures between the two types of breeds. We observed genetic clines from east to west and from north to south. The east-west cline separates the fat- and thin-tailed breeds, with the exception of the fat-tailed Algerian Barbarine, which is closely related to a genetically homogeneous cluster of Moroccan and Algerian thin-tailed breeds. Using a combination of three extended haplotype homozygosity tests, we detected seven candidate regions under divergent selection between fat- and thin-tailed sheep. The strongest selection signals reside on chromosomes 1 and 13, with the latter spanning the BMP2 gene, known to be associated with the fat-tail phenotype. Overall, the candidate regions under selection in fat-tailed sheep overlap with genes associated with adaptation to desert-like environments including adipogenesis, as well as heat and drought tolerance. Our results confirm previously reported candidate genes known to be a target of fat-tail selection in sheep but also reveal novel candidate genes specifically under selection in North African populations.
Collapse
Affiliation(s)
- Slim Ben-Jemaa
- Laboratoire Des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, Ariana, Tunisia
| | - Ghazi Yahyaoui
- Département de Biologie, Faculté Des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Samia Kdidi
- Laboratoire d'Elevage et Faune Sauvage, Institut Des Régions Arides, Medenine, Tunisia
| | - Afef Najjari
- Laboratoire de Microbiologie et Biomolécules Actives LR03ES03, Faculté Des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Semir B S Gaouar
- Applied Genetic in Agriculture, Ecology and Public Health Laboratory, University of Tlemcen, Tlemcen, Algeria
| | - Joram M Mwacharo
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Touhami Khorchani
- Laboratoire d'Elevage et Faune Sauvage, Institut Des Régions Arides, Medenine, Tunisia
| | - Mohamed H Yahyaoui
- Laboratoire d'Elevage et Faune Sauvage, Institut Des Régions Arides, Medenine, Tunisia
| |
Collapse
|
3
|
Chen K, Zhang Y, Pan Y, Xiang X, Peng C, He J, Huang G, Wang Z, Zhao P. Genomic insights into demographic history, structural variation landscape, and complex traits from 514 Hu sheep genomes. J Genet Genomics 2024:S1673-8527(24)00330-8. [PMID: 39643267 DOI: 10.1016/j.jgg.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Hu sheep is an indigenous breed from the Taihu Lake Plain in China, known for its high fertility. Although Hu sheep belong to the Mongolian group, their demographic history and genetic architecture remain inconclusive. Here, we analyze 697 sheep genomes from representatives of Mongolian sheep breeds. Our study suggests that the ancestral Hu sheep first separated from the Mongolian group approximately 3000 years ago. As Hu sheep migrated from the north and flourished in the Taihu Lake Plain around 1000 years ago, they developed a unique genetic foundation and phenotypic characteristics which are evident in the genomic footprints of selective sweeps and structural variation landscape. Genes associated with reproductive traits (BMPR1B and TDRD10) and horn phenotype (RXFP2) exhibit notable selective sweeps in the genome of Hu sheep. A genome-wide association analysis reveals that structural variations at LOC101110773, MAST2, and ZNF385B may significantly impact polledness, teat number, and early growth in Hu sheep, respectively. Our study offers insights into the evolutionary history of Hu sheep and may serve as a valuable genetic resource to enhance the understanding of complex traits in Hu sheep.
Collapse
Affiliation(s)
- Kaiyu Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuelang Zhang
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Yizhe Pan
- Agricultural Product Quality and Safety Research Center of Huzhou City, Huzhou, Zhejiang 313000, China
| | - Xin Xiang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chen Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Jiayi He
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Guiqing Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Zhengguang Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China.
| | - Pengju Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China.
| |
Collapse
|
4
|
Xu S, Akhatayeva Z, Liu J, Feng X, Yu Y, Badaoui B, Esmailizadeh A, Kantanen J, Amills M, Lenstra JA, Johansson AM, Coltman DW, Liu GE, Curik I, Orozco-terWengel P, Paiva SR, Zinovieva NA, Zhang L, Yang J, Liu Z, Wang Y, Yu Y, Li M. Genetic advancements and future directions in ruminant livestock breeding: from reference genomes to multiomics innovations. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2744-4. [PMID: 39609363 DOI: 10.1007/s11427-024-2744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
Ruminant livestock provide a rich source of products, such as meat, milk, and wool, and play a critical role in global food security and nutrition. Over the past few decades, genomic studies of ruminant livestock have provided valuable insights into their domestication and the genetic basis of economically important traits, facilitating the breeding of elite varieties. In this review, we summarize the main advancements for domestic ruminants in reference genome assemblies, population genomics, and the identification of functional genes or variants for phenotypic traits. These traits include meat and carcass quality, reproduction, milk production, feed efficiency, wool and cashmere yield, horn development, tail type, coat color, environmental adaptation, and disease resistance. Functional genomic research is entering a new era with the advancements of graphical pangenomics and telomere-to-telomere (T2T) gap-free genome assembly. These advancements promise to improve our understanding of domestication and the molecular mechanisms underlying economically important traits in ruminant livestock. Finally, we provide new perspectives and future directions for genomic research on ruminant genomes. We suggest how ever-increasing multiomics datasets will facilitate future studies and molecular breeding in livestock, including the potential to uncover novel genetic mechanisms underlying phenotypic traits, to enable more accurate genomic prediction models, and to accelerate genetic improvement programs.
Collapse
Affiliation(s)
- Songsong Xu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhanerke Akhatayeva
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Jiaxin Liu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xueyan Feng
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yi Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bouabid Badaoui
- Laboratory of Biodiversity, Ecology and Genome, Department of Biology, Faculty of Sciences Rabat, Mohammed V University, Rabat, 10106, Morocco
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, Iran
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, FI-31600, Finland
| | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, The Netherlands
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, 10000, Croatia
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Kaposvár, 7400, Hungary
| | | | - Samuel R Paiva
- Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Genetics, Brasília, Federal District, 70770917, Brazil
| | - Natalia A Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Moscow Region, Podolsk, 142132, Russian Federation
| | - Linwei Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ji Yang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yachun Wang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ying Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Menghua Li
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572024, China.
| |
Collapse
|
5
|
Li Y, Li X, Han Z, Yang R, Zhou W, Peng Y, He J, Liu S. Population structure and selective signature analysis of local sheep breeds in Xinjiang, China based on high-density SNP chip. Sci Rep 2024; 14:28133. [PMID: 39548146 PMCID: PMC11568293 DOI: 10.1038/s41598-024-76573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
The frigid and droughty climate of Xinjiang in China has given rise to unique indigenous sheep breeds with robust adaptability and resistance. To investigate the genetic mechanism of adaptability of Xinjiang sheep to the local extreme environment, we conducted population genetic structure analyses for three native Xinjiang sheep breeds: Altay sheep (ALT), Bashbay Sheep (BSBC), and Duolang sheep (DLC), as well as two foreign sheep breeds: Suffolk and Dorset, using the Ovine Infinium HD SNP BeadChip(680 K). Our findings revealed distinct genetic and evolutionary histories between Xinjiang and foreign sheep breeds. Principal Component Analysis (PCA) and phylogenetic tree effectively differentiate these five sheep breeds based on their geographical origins, and the domestication level of Xinjiang sheep is comparatively lower than that of foreign sheep breeds. Furthermore, by utilizing three selective signature methods, namely Fixation Index (Fst), Cross Population Extended Haplotype Homozygosity Test (XP-EHH), and Nucleotide Diversity (π), we have successfully identified 22 potential candidate genes. Among these genes, there are TBXT, PDGFD, and VEGFA, which are closely related to tail type and lipid metabolism; VIL1, SLC11A1, and ZBTB46, which are associated with immune function; and candidate genes such as BNC1, HDAC1, and BMP5, which impact sheep reproductive traits. This study establishes a foundation for conserving and utilizing local sheep germplasm resources in Xinjiang and provides molecular insights into the genetic mechanisms governing sheep adaptation to extreme cold and arid environments.
Collapse
Affiliation(s)
- Yanhao Li
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China
| | - Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China
| | - Zhipeng Han
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China
| | - Ruizhi Yang
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China
- College of Life Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China
| | - Yuwei Peng
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China
| | - Jianzhong He
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China.
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China.
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China.
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China.
| |
Collapse
|
6
|
Niu Y, Li Y, Zhao Y, He X, Zhao Q, Pu Y, Ma Y, Jiang L. Whole-genome sequencing identifies functional genes for environmental adaptation in Chinese sheep. J Genet Genomics 2024; 51:1278-1285. [PMID: 39260683 DOI: 10.1016/j.jgg.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Sheep (Ovis aries), among the first domesticated species, are now globally widespread and exhibit remarkable adaptability to diverse environments. In this study, we perform whole-genome sequencing of 266 animals from 18 distinct Chinese sheep populations, each displaying unique phenotypes indicative of adaptation to varying environmental conditions. Integrating 131 environmental factors with single nucleotide polymorphism variations, we conduct a comprehensive genetic-environmental association analysis. This analysis identifies 35 key genes likely integral to the environmental adaptation of sheep. The functions of these genes include fat tail formation (HOXA10, HOXA11, JAZF1), wool characteristics (FER, FGF5, MITF, PDE4B), horn phenotypes (RXFP2), reproduction (HIBADH, TRIM71, C6H4orf22), and growth traits (ADGRL3, TRHDE). Notably, we observe a significant correlation between the frequency of missense mutations in the PAPSS2 and RXFP2 genes and variations in altitude. Our study reveals candidate genes for adaptive variation in sheep and demonstrates the diversity in how sheep adapt to their environment.
Collapse
Affiliation(s)
- Yinan Niu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yefang Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yuhetian Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xiaohong He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Qianjun Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yabin Pu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yuehui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Lin Jiang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
7
|
Zhang J, Zhang CL, Li X, Yang R, Zhou W, Han Z, Liu S. Genetic analysis of key agronomic traits of local sheep breeds in Xinjiang, China. Int J Biol Macromol 2024; 280:135869. [PMID: 39341303 DOI: 10.1016/j.ijbiomac.2024.135869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
The formation of sheep (Ovis aries) breeds is influenced by different ecological environments and populations with different living habits, resulting in the development of germplasm resources with stable genetic key agronomic traits. Thus, investigating the genetic mechanisms behind various agronomic traits can enhance the conservation and utilization of diverse sheep breeds. Here, we explored the sheep variome and selection signatures using the Ovine Infinium HD SNP BeadChip (600 K SNPs) from 23 sheep breeds, comprising a total of 1215 sheep. The genetic mechanisms of wool quality and tail morphology were analyzed by selective sweep and genome-wide association study. Based on the results of within-population selective sweep analysis, we performed gene network analysis and divided them into 6 gene communities. We identified genetic regions containing genes linked to sheep wool and tail, which have been and may continue to be important targets for breeding and selection. Furthermore, our results revealed the expression profiles of genes in these regions across different biological systems. Our study provides insights into categorizing sheep breeds into distinct gene communities, as well as references for constructing genetic network pathways related to key agronomic traits in sheep and other domestic animals.
Collapse
Affiliation(s)
- Jihu Zhang
- College of Animal Science and Technology, Tarim University, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production & Construction Corps, Xinjiang, China
| | - Cheng-Long Zhang
- College of Animal Science and Technology, Tarim University, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production & Construction Corps, Xinjiang, China
| | - Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production & Construction Corps, Xinjiang, China
| | - Ruizhi Yang
- College of Animal Science and Technology, Tarim University, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production & Construction Corps, Xinjiang, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production & Construction Corps, Xinjiang, China
| | - Zhipeng Han
- College of Animal Science and Technology, Tarim University, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production & Construction Corps, Xinjiang, China
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production & Construction Corps, Xinjiang, China.
| |
Collapse
|
8
|
Lv FH, Wang DF, Zhao SY, Lv XY, Sun W, Nielsen R, Li MH. Deep Ancestral Introgressions between Ovine Species Shape Sheep Genomes via Argali-Mediated Gene Flow. Mol Biol Evol 2024; 41:msae212. [PMID: 39404100 PMCID: PMC11542629 DOI: 10.1093/molbev/msae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/12/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Previous studies revealed extensive genetic introgression between Ovis species, which affects genetic adaptation and morphological traits. However, the exact evolutionary scenarios underlying the hybridization between sheep and allopatric wild relatives remain unknown. To address this problem, we here integrate the reference genomes of several ovine and caprine species: domestic sheep, argali, bighorn sheep, snow sheep, and domestic goats. Additionally, we use 856 whole genomes representing 169 domestic sheep populations and their six wild relatives: Asiatic mouflon, urial, argali, snow sheep, thinhorn sheep, and bighorn sheep. We implement a comprehensive set of analyses to test introgression among these species. We infer that the argali lineage originated ∼3.08 to 3.35 Mya and hybridized with the ancestor of Pachyceriforms (e.g. bighorn sheep and snow sheep) at ∼1.56 Mya. Previous studies showed apparent introgression from North American Pachyceriforms into the Bashibai sheep, a Chinese native sheep breed, despite of their wide geographic separation. We show here that, in fact, the apparent introgression from the Pachyceriforms into Bashibai can be explained by the old introgression from Pachyceriforms into argali and subsequent recent introgression from argali into Bashibai. Our results illustrate the challenges of estimating complex introgression histories and provide an example of how indirect and direct introgression can be distinguished.
Collapse
Affiliation(s)
- Feng-Hua Lv
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dong-Feng Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Si-Yi Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiao-Yang Lv
- International Joint Research Laboratory, Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225001, China
| | - Wei Sun
- International Joint Research Laboratory, Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225001, China
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Statistics, UC Berkeley, Berkeley, CA 94707, USA
- Globe Institute, University of Copenhagen, Copenhagen 1350, Denmark
| | - Meng-Hua Li
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Liang X, Duan Q, Li B, Wang Y, Bu Y, Zhang Y, Kuang Z, Mao L, An X, Wang H, Yang X, Wan N, Feng Z, Shen W, Miao W, Chen J, Liu S, Storz JF, Liu J, Nevo E, Li K. Genomic structural variation contributes to evolved changes in gene expression in high-altitude Tibetan sheep. Proc Natl Acad Sci U S A 2024; 121:e2322291121. [PMID: 38913905 PMCID: PMC11228492 DOI: 10.1073/pnas.2322291121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
Tibetan sheep were introduced to the Qinghai Tibet plateau roughly 3,000 B.P., making this species a good model for investigating genetic mechanisms of high-altitude adaptation over a relatively short timescale. Here, we characterize genomic structural variants (SVs) that distinguish Tibetan sheep from closely related, low-altitude Hu sheep, and we examine associated changes in tissue-specific gene expression. We document differentiation between the two sheep breeds in frequencies of SVs associated with genes involved in cardiac function and circulation. In Tibetan sheep, we identified high-frequency SVs in a total of 462 genes, including EPAS1, PAPSS2, and PTPRD. Single-cell RNA-Seq data and luciferase reporter assays revealed that the SVs had cis-acting effects on the expression levels of these three genes in specific tissues and cell types. In Tibetan sheep, we identified a high-frequency chromosomal inversion that exhibited modified chromatin architectures relative to the noninverted allele that predominates in Hu sheep. The inversion harbors several genes with altered expression patterns related to heart protection, brown adipocyte proliferation, angiogenesis, and DNA repair. These findings indicate that SVs represent an important source of genetic variation in gene expression and may have contributed to high-altitude adaptation in Tibetan sheep.
Collapse
Affiliation(s)
- Xiaolong Liang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Qijiao Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Bowen Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Yinjia Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Yueting Bu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Yonglu Zhang
- Fengjia Town Health Center, Rushan City, Weihai City264200, China
| | - Zhuoran Kuang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Leyan Mao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Xuan An
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Huihua Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Xiaojie Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Na Wan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Zhilong Feng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Wei Shen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Weilan Miao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Jiaqi Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Sanyuan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE68588
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa3498838, Israel
| | - Kexin Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| |
Collapse
|
10
|
Zhong T, Hou D, Zhao Q, Zhan S, Wang L, Li L, Zhang H, Zhao W, Yang S, Niu L. Comparative whole-genome resequencing to uncover selection signatures linked to litter size in Hu Sheep and five other breeds. BMC Genomics 2024; 25:480. [PMID: 38750582 PMCID: PMC11094944 DOI: 10.1186/s12864-024-10396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Hu sheep (HS), a breed of sheep carrying the FecB mutation gene, is known for its "year-round estrus and multiple births" and is an ideal model for studying the high fecundity mechanisms of livestock. Through analyzing and comparing the genomic selection features of Hu sheep and other sheep breeds, we identified a series of candidate genes that may play a role in Hu sheep's high fecundity mechanisms. In this study, we conducted whole-genome resequencing on six breeds and screened key mutations significantly correlated with high reproductive traits in sheep. Notably, the CC2D1B gene was selected by the fixation index (FST) and the cross-population composite likelihood ratio (XP-CLR) methods in HS and other five breeds. It was worth noting that the CC2D1B gene in HS was different from that in other sheep breeds, and seven missense mutations have been identified. Furthermore, the linkage disequilibrium (LD) analysis revealed a strong linkage disequilibrium in this specific gene region. Subsequently, by performing different grouping based on FecB genotypes in Hu sheep, genome-wide selective signal analysis screened several genes related to reproduction, such as BMPR1B and PPM1K. Besides, FST analysis identified functional genes related to reproductive traits, including RHEB, HSPA2, PPP1CC, HVCN1, and CCDC63. Additionally, a missense mutation was found in the CCDC63 gene and the haplotype was different between the high reproduction (HR) group and low reproduction (LR) group in HS. In summary, we discovered genetic differentiation among six distinct breeding sheep breeds at the whole genome level. Additionally, we identified a set of genes which were associated with reproductive performance in Hu sheep and visualized how these genes differed in different breeds. These findings laid a theoretical foundation for understanding genetic mechanisms behind high prolific traits in sheep.
Collapse
Affiliation(s)
- Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dunying Hou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhao
- College of Animal Science, Xichang University, Xichang, 615013, China
| | - Shizhong Yang
- Academy of Agricultural Sciences Liangshan, Xichang, 615000, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
11
|
Atağ G, Kaptan D, Yüncü E, Başak Vural K, Mereu P, Pirastru M, Barbato M, Leoni GG, Güler MN, Er T, Eker E, Yazıcı TD, Kılıç MS, Altınışık NE, Çelik EA, Morell Miranda P, Dehasque M, Floridia V, Götherström A, Bilgin CC, Togan İ, Günther T, Özer F, Hadjisterkotis E, Somel M. Population Genomic History of the Endangered Anatolian and Cyprian Mouflons in Relation to Worldwide Wild, Feral, and Domestic Sheep Lineages. Genome Biol Evol 2024; 16:evae090. [PMID: 38670119 PMCID: PMC11109821 DOI: 10.1093/gbe/evae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
Once widespread in their homelands, the Anatolian mouflon (Ovis gmelini anatolica) and the Cyprian mouflon (Ovis gmelini ophion) were driven to near extinction during the 20th century and are currently listed as endangered populations by the International Union for Conservation of Nature. While the exact origins of these lineages remain unclear, they have been suggested to be close relatives of domestic sheep or remnants of proto-domestic sheep. Here, we study whole genome sequences of n = 5 Anatolian mouflons and n = 10 Cyprian mouflons in terms of population history and diversity, comparing them with eight other extant sheep lineages. We find reciprocal genetic affinity between Anatolian and Cyprian mouflons and domestic sheep, higher than all other studied wild sheep genomes, including the Iranian mouflon (O. gmelini). Studying diversity indices, we detect a considerable load of short runs of homozygosity blocks (<2 Mb) in both Anatolian and Cyprian mouflons, reflecting small effective population size (Ne). Meanwhile, Ne and mutation load estimates are lower in Cyprian compared with Anatolian mouflons, suggesting the purging of recessive deleterious variants in Cyprian sheep under a small long-term Ne, possibly attributable to founder effects, island isolation, introgression from domestic lineages, or differences in their bottleneck dynamics. Expanding our analyses to worldwide wild and feral Ovis genomes, we observe varying viability metrics among different lineages and a limited consistency between viability metrics and International Union for Conservation of Nature conservation status. Factors such as recent inbreeding, introgression, and unique population dynamics may have contributed to the observed disparities.
Collapse
Affiliation(s)
- Gözde Atağ
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Damla Kaptan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Eren Yüncü
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Paolo Mereu
- Department of Biochemical Sciences, University of Sassari, Sassari, Italy
| | - Monica Pirastru
- Department of Biochemical Sciences, University of Sassari, Sassari, Italy
| | - Mario Barbato
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | | | - Merve Nur Güler
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Tuğçe Er
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Elifnaz Eker
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Tunca Deniz Yazıcı
- Graduate School for Evolution, Ecology and Systematics, Ludwig Maximillian University of Munich, Munich, Germany
| | - Muhammed Sıddık Kılıç
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | | | - Ecem Ayşe Çelik
- Department of Settlement Archeology, Middle East Technical University, Ankara, Turkey
| | - Pedro Morell Miranda
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Marianne Dehasque
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Viviana Floridia
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Anders Götherström
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm University, Stockholm, Sweden
| | - Cemal Can Bilgin
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - İnci Togan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Füsun Özer
- Department of Anthropology, Hacettepe University, Ankara, Turkey
| | - Eleftherios Hadjisterkotis
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, Nicosia, Cyprus
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
12
|
Liang Y, Zhao B, Shen Y, Peng M, Qiao L, Liu J, Pan Y, Yang K, Liu W. Elucidating the Role of circTIAM1 in Guangling Large-Tailed Sheep Adipocyte Proliferation and Differentiation via the miR-485-3p/PLCB1 Pathway. Int J Mol Sci 2024; 25:4588. [PMID: 38731807 PMCID: PMC11083075 DOI: 10.3390/ijms25094588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Fat tissue-a vital energy storage organ-is intricately regulated by various factors, including circular RNA, which plays a significant role in modulating fat development and lipid metabolism. Therefore, this study aims to clarify the regulatory mechanism of sheep adipocyte proliferation and differentiation by investigating the involvement of circTIAM1, miR-485-3p, and its target gene PLCB1. Through previous sequencing data, circTIAM1 was identified in sheep adipocytes, with its circularization mechanism elucidated, confirming its cytoplasmic localization. Experimental evidence from RNase R treatment and transcription inhibitors highlighted that circTIAM1 is more stable than linear RNA. Additionally, circTIAM1 promoted sheep adipocyte proliferation and differentiation. Furthermore, bioinformatic analysis demonstrated a robust interaction between miR-485-3p and circTIAM1. Further experiments revealed that miR-485-3p inhibits fat cell proliferation and differentiation by inhibiting PLCB1, with circTIAM1 alleviating the inhibitory effect via competitive binding. In summary, our findings elucidate the mechanism through which circTIAM1 regulates Guangling Large-Tailed sheep adipocyte proliferation and differentiation via the miR-485-3p-PLCB1 pathway, offering a novel perspective for further exploring fat metabolism regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wenzhong Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
13
|
Jin M, Wang H, Liu G, Lu J, Yuan Z, Li T, Liu E, Lu Z, Du L, Wei C. Whole-genome resequencing of Chinese indigenous sheep provides insight into the genetic basis underlying climate adaptation. Genet Sel Evol 2024; 56:26. [PMID: 38565986 PMCID: PMC10988870 DOI: 10.1186/s12711-024-00880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Chinese indigenous sheep are valuable resources with unique features and characteristics. They are distributed across regions with different climates in mainland China; however, few reports have analyzed the environmental adaptability of sheep based on their genome. We examined the variants and signatures of selection involved in adaptation to extreme humidity, altitude, and temperature conditions in 173 sheep genomes from 41 phenotypically and geographically representative Chinese indigenous sheep breeds to characterize the genetic basis underlying environmental adaptation in these populations. RESULTS Based on the analysis of population structure, we inferred that Chinese indigenous sheep are divided into four groups: Kazakh (KAZ), Mongolian (MON), Tibetan (TIB), and Yunnan (YUN). We also detected a set of candidate genes that are relevant to adaptation to extreme environmental conditions, such as drought-prone regions (TBXT, TG, and HOXA1), high-altitude regions (DYSF, EPAS1, JAZF1, PDGFD, and NF1) and warm-temperature regions (TSHR, ABCD4, and TEX11). Among all these candidate genes, eight ABCD4, CNTN4, DOCK10, LOC105608545, LOC121816479, SEM3A, SVIL, and TSHR overlap between extreme environmental conditions. The TSHR gene shows a strong signature for positive selection in the warm-temperature group and harbors a single nucleotide polymorphism (SNP) missense mutation located between positions 90,600,001 and 90,650,001 on chromosome 7, which leads to a change in the protein structure of TSHR and influences its stability. CONCLUSIONS Analysis of the signatures of selection uncovered genes that are likely related to environmental adaptation and a SNP missense mutation in the TSHR gene that affects the protein structure and stability. It also provides information on the evolution of the phylogeographic structure of Chinese indigenous sheep populations. These results provide important genetic resources for future breeding studies and new perspectives on how animals can adapt to climate change.
Collapse
Affiliation(s)
- Meilin Jin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huihua Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gang Liu
- National Animal Husbandry Service, National Center of Preservation and Utilization of Animal Genetic Resources, Beijing, China
| | - Jian Lu
- National Animal Husbandry Service, National Center of Preservation and Utilization of Animal Genetic Resources, Beijing, China
| | - Zehu Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Taotao Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Engming Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lan-Zhou, China
| | - Lixin Du
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
14
|
Baazaoui I, Bedhiaf-Romdhani S, Mastrangelo S, Lenstra JA, Da Silva A, Benjelloun B, Ciani E. Refining the genomic profiles of North African sheep breeds through meta-analysis of worldwide genomic SNP data. Front Vet Sci 2024; 11:1339321. [PMID: 38487707 PMCID: PMC10938946 DOI: 10.3389/fvets.2024.1339321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction The development of reproducible tools for the rapid genotyping of thousands of genetic markers (SNPs) has promoted cross border collaboration in the study of sheep genetic diversity on a global scale. Methods In this study, we collected a comprehensive dataset of 239 African and Eurasian sheep breeds genotyped at 37,638 filtered SNP markers, with the aim of understanding the genetic structure of 22 North African (NA) sheep breeds within a global context. Results and discussion We revealed asubstantial enrichment of the gene pool between the north and south shores of the Mediterranean Sea, which corroborates the importance of the maritime route in the history of livestock. The genetic structure of North African breeds mirrors the differential composition of genetic backgrounds following the breed history. Indeed, Maghrebin sheep stocks constitute a geographically and historically coherent unit with any breed-level genetic distinctness among them due to considerable gene flow. We detected a broad east-west pattern describing the most important trend in NA fat-tailed populations, exhibited by the genetic closeness of Egyptian and Libyan fat-tailed sheep to Middle Eastern breeds rather than Maghrebin ones. A Bayesian FST scan analysis revealed a set of genes with potentially key adaptive roles in lipid metabolism (BMP2, PDGFD VEGFA, TBX15, and WARS2), coat pigmentation (SOX10, PICK1, PDGFRA, MC1R, and MTIF) and horn morphology RXFP2) in Tunisian sheep. The local ancestry method detected a Merino signature in Tunisian Noire de Thibar sheep near the SULF1gene introgressed by Merino's European breeds. This study will contribute to the general picture of worldwide sheep genetic diversity.
Collapse
Affiliation(s)
- Imen Baazaoui
- Laboratory of Animal and Fodder Production, National Institute of Agronomic Research of Tunisia, Ariana, Tunisia
| | - Sonia Bedhiaf-Romdhani
- Laboratory of Animal and Fodder Production, National Institute of Agronomic Research of Tunisia, Ariana, Tunisia
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anne Da Silva
- Faculté des Sciences et Techniques de Limoges, E2LIM, Limoges, France
| | - Badr Benjelloun
- National Institute of Agronomic Research (INRA Maroc), Regional Centre of Agronomic Research, Beni Mellal, Morocco
| | - Elena Ciani
- Dipartamento Bioscienze, Biotecnologie, Biofarmaceutica, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
15
|
Blondeau Da Silva S, Mwacharo JM, Li M, Ahbara A, Muchadeyi FC, Dzomba EF, Lenstra JA, Da Silva A. IBD sharing patterns as intra-breed admixture indicators in small ruminants. Heredity (Edinb) 2024; 132:30-42. [PMID: 37919398 PMCID: PMC10799084 DOI: 10.1038/s41437-023-00658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
In this study, we investigated how IBD patterns shared between individuals of the same breed could be informative of its admixture level, with the underlying assumption that the most admixed breeds, i.e. the least genetically isolated, should have a much more fragmented genome. We considered 111 goat breeds (i.e. 2501 individuals) and 156 sheep breeds (i.e. 3304 individuals) from Europe, Africa and Asia, for which beadchip SNP genotypes had been performed. We inferred the breed's level of admixture from: (i) the proportion of the genome shared by breed's members (i.e. "genetic integrity level" assessed from ADMIXTURE software analyses), and (ii) the "AV index" (calculated from Reynolds' genetic distances), used as a proxy for the "genetic distinctiveness". In both goat and sheep datasets, the statistical analyses (comparison of means, Spearman correlations, LM and GAM models) revealed that the most genetically isolated breeds, also showed IBD profiles made up of more shared IBD segments, which were also longer. These results pave the way for further research that could lead to the development of admixture indicators, based on the characterization of intra-breed shared IBD segments, particularly effective as they would be independent of the knowledge of the whole genetic landscape in which the breeds evolve. Finally, by highlighting the fragmentation experienced by the genomes subjected to crossbreeding carried out over the last few generations, the study reminds us of the need to preserve local breeds and the integrity of their adaptive architectures that have been shaped over the centuries.
Collapse
Affiliation(s)
| | - Joram M Mwacharo
- Animal and Veterinary Sciences, Scotlands Rural College (SRUC) and Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, EH25 9RG, Midlothian, UK
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Menghua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Abulgasim Ahbara
- Animal and Veterinary Sciences, Scotlands Rural College (SRUC) and Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, EH25 9RG, Midlothian, UK
- Department of Zoology, Faculty of Sciences, Misurata University, Misurata, Libya
| | | | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anne Da Silva
- Faculté des Sciences et Techniques de Limoges, E2LIM, 87000, Limoges, France.
| |
Collapse
|
16
|
Yang L, Zhang X, Hu Y, Zhu P, Li H, Peng Z, Xiang H, Zhou X, Zhao X. Ancient mitochondrial genome depicts sheep maternal dispersal and migration in Eastern Asia. J Genet Genomics 2024; 51:87-95. [PMID: 37330109 DOI: 10.1016/j.jgg.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/20/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
Sheep have been one of the most important groups of animals since ancient times. However, the knowledge of their migration routes and genetic relationships is still poorly understood. To investigate sheep maternal migration histories alongside Eurasian communications routes, in this study, we obtain mitochondrial genomes (mitogenomes) from 17 sheep remains in 6 Chinese sites and 1 Uzbekistan site dated 4429-3100 years before present (BP). By obtaining the mitogenomes from the sheep (4429-3556 BP) found in the Tongtian Cave site in Xinjiang, Altai region of northwest China, our results support the emergence of haplogroup C sheep in Xinjiang as early as 4429-3556 BP. The combined phylogenetic analyses with extant ancient and modern sheep mitogenomes suggest that the Uzbekistan-Altai region may have been a migration hub for early sheep in eastern Asia. At least two migration events have taken place for sheep crossing Eurasia to China, one passing by Uzbekistan and Northwest China to the middle and lower reaches of the Yellow River at approximately 4000 BP and another following the Altai region to middle Inner Mongolia from 4429 BP to 2500 BP. Overall, this study provides further evidence for early sheep utilization and migration patterns in Eastern Asia.
Collapse
Affiliation(s)
- Liu Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal, Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Xing Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Yaning Hu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal, Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Piao Zhu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Zhenyu Peng
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China.
| | - Xinying Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.
| | - Xingbo Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal, Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Zhu M, Yang Y, Yang H, Zhao Z, Zhang H, Blair HT, Zheng W, Wang M, Fang C, Yu Q, Zhou H, Qi H. Whole-genome resequencing of the native sheep provides insights into the microevolution and identifies genes associated with reproduction traits. BMC Genomics 2023; 24:392. [PMID: 37434152 DOI: 10.1186/s12864-023-09479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Sheep genomes undergo numerous genes losses, gains and mutation that generates genome variability among breeds of the same species after long time natural and artificial selection. However, the microevolution of native sheep in northwest China remains elusive. Our aim was to compare the genomes and relevant reproductive traits of four sheep breeds from different climatic environments, to unveil the selection challenges that this species cope with, and the microevolutionary differences in sheep genomes. Here, we resequenced the genomes of 4 representative sheep breeds in northwest China, including Kazakh sheep and Duolang sheep of native breeds, and Hu sheep and Suffolk sheep of exotic breeds with different reproductive characteristics. RESULTS We found that these four breeds had a similar expansion experience from ~ 10,000 to 1,000,000 years ago. In the past 10,000 years, the selection intensity of the four breeds was inconsistent, resulting in differences in reproductive traits. We explored the sheep variome and selection signatures by FST and θπ. The genomic regions containing genes associated with different reproductive traits that may be potential targets for breeding and selection were detected. Furthermore, non-synonymous mutations in a set of plausible candidate genes and significant differences in their allele frequency distributions across breeds with different reproductive characteristics were found. We identified PAK1, CYP19A1 and PER1 as a likely causal gene for seasonal reproduction in native sheep through qPCR, Western blot and ELISA analyses. Also, the haplotype frequencies of 3 tested gene regions related to reproduction were significantly different among four sheep breeds. CONCLUSIONS Our results provide insights into the microevolution of native sheep and valuable genomic information for identifying genes associated with important reproductive traits in sheep.
Collapse
Affiliation(s)
- Mengting Zhu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yonglin Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Hua Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China.
| | - Zongsheng Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China.
| | - Hongmei Zhang
- First Affiliated Hospital, School of Medical College, Shihezi University, Shihezi, Xinjiang, China
| | - Hugh T Blair
- Institute Veterinary, Animal & Biomedical Sciences, Massey University, Auckland, Palmerston North, New Zealand
| | - Wei Zheng
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Mingyuan Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Chenhui Fang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Qian Yu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Huaqian Zhou
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Hangdong Qi
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
18
|
Cheng H, Zhang Z, Wen J, Lenstra JA, Heller R, Cai Y, Guo Y, Li M, Li R, Li W, He S, Wang J, Shao J, Song Y, Zhang L, Billah M, Wang X, Liu M, Jiang Y. Long divergent haplotypes introgressed from wild sheep are associated with distinct morphological and adaptive characteristics in domestic sheep. PLoS Genet 2023; 19:e1010615. [PMID: 36821549 PMCID: PMC9949681 DOI: 10.1371/journal.pgen.1010615] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023] Open
Abstract
The worldwide sheep population comprises more than 1000 breeds. Together, these exhibit a considerable morphological diversity, which has not been extensively investigated at the molecular level. Here, we analyze whole-genome sequencing individuals of 1,098 domestic sheep from 154 breeds, and 69 wild sheep from seven Ovis species. On average, we detected 6.8%, 1.0% and 0.2% introgressed sequence in domestic sheep originating from Iranian mouflon, urial and argali, respectively, with rare introgressions from other wild species. Interestingly, several introgressed haplotypes contributed to the morphological differentiations across sheep breeds, such as a RXFP2 haplotype from Iranian mouflon conferring the spiral horn trait, a MSRB3 haplotype from argali strongly associated with ear morphology, and a VPS13B haplotype probably originating from urial and mouflon possibly associated with facial traits. Our results reveal that introgression events from wild Ovis species contributed to the high rate of morphological differentiation in sheep breeds, but also to individual variation within breeds. We propose that long divergent haplotypes are a ubiquitous source of phenotypic variation that allows adaptation to a variable environment, and that these remain intact in the receiving population probably due to reduced recombination.
Collapse
Affiliation(s)
- Hong Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhuangbiao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiayue Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Johannes A. Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yudong Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yingwei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ran Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wenrong Li
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Sangang He
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Jintao Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junjie Shao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuxuan Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Masum Billah
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Mingjun Liu
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
- * E-mail: (ML); (YJ)
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- * E-mail: (ML); (YJ)
| |
Collapse
|
19
|
Zhou L, Raza SHA, Ma B, Shater AF, Mohammedsaleh ZM, Jahejo AR, Li J, Gui L. Mutations in FGFR1 were associated with growth traits in sheep ( Ovis aries). Anim Biotechnol 2023; 34:1-7. [PMID: 34097574 DOI: 10.1080/10495398.2021.1929271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
For its role in the mediation of myoblast proliferation, fibroblast growth factor receptor 1 (FGFR1) was considered a functional candidate gene for growth performance in Tibetan sheep. Via the polymerase chain reaction-restriction fragment length polymorphism (PCR-PFLP) approach, four single nucleotide polymorphisms (SNPs) including g.14752C > T (intron 1), g.45361A > G (intron 7), g.49400A > G (3'UTR region) and g.49587A > T (3'UTR region), were identified in 422 ewes. The association analysis demonstrated that individuals carrying the AA genotype of g.49400A > G had significantly greater withers height, length than those with GG genotype (p < 0.05). Individuals with genotype AA of g.49587A > T had significantly greater weight and chest circumference than those with genotype TT (p < 0.01). Additionally, the individuals with Hap1/1 diplotypes (CAAA-CAAA) were highly significantly associated with weight and chest circumference than Hap1/2 diplotypes (CAAA-CAAT) (p < 0.05). The quantitative real-time polymerase chain reaction (qPCR) analysis revealed that the FGFR1 was detectable expressed in muscle tissues within three different age stage. Remarkably higher mRNA expression was detected at fetal lamb stage as compared with adult ewes (p < 0.01). The outcome of this research confirmed that both g.49400A > G and g.49587A > T of FGFR1 were involved in growth-related traits, which may be considered to be genetic markers for improving the growth traits of Tibetan sheep.
Collapse
Affiliation(s)
- Li Zhou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Boyan Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Abdullah F Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Ali Raza Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Jiangwei Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| |
Collapse
|
20
|
Li C, Wu Y, Chen B, Cai Y, Guo J, Leonard AS, Kalds P, Zhou S, Zhang J, Zhou P, Gan S, Jia T, Pu T, Suo L, Li Y, Zhang K, Li L, Purevdorj M, Wang X, Li M, Wang Y, Liu Y, Huang S, Sonstegard T, Wang MS, Kemp S, Pausch H, Chen Y, Han JL, Jiang Y, Wang X. Markhor-derived Introgression of a Genomic Region Encompassing PAPSS2 Confers High-altitude Adaptability in Tibetan Goats. Mol Biol Evol 2022; 39:6830663. [PMID: 36382357 PMCID: PMC9728798 DOI: 10.1093/molbev/msac253] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the genetic mechanism of how animals adapt to extreme conditions is fundamental to determine the relationship between molecular evolution and changing environments. Goat is one of the first domesticated species and has evolved rapidly to adapt to diverse environments, including harsh high-altitude conditions with low temperature and poor oxygen supply but strong ultraviolet radiation. Here, we analyzed 331 genomes of domestic goats and wild caprid species living at varying altitudes (high > 3000 m above sea level and low < 1200 m), along with a reference-guided chromosome-scale assembly (contig-N50: 90.4 Mb) of a female Tibetan goat genome based on PacBio HiFi long reads, to dissect the genetic determinants underlying their adaptation to harsh conditions on the Qinghai-Tibetan Plateau (QTP). Population genomic analyses combined with genome-wide association studies (GWAS) revealed a genomic region harboring the 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (PAPSS2) gene showing strong association with high-altitude adaptability (PGWAS = 3.62 × 10-25) in Tibetan goats. Transcriptomic data from 13 tissues revealed that PAPSS2 was implicated in hypoxia-related pathways in Tibetan goats. We further verified potential functional role of PAPSS2 in response to hypoxia in PAPSS2-deficient cells. Introgression analyses suggested that the PAPSS2 haplotype conferring the high-altitude adaptability in Tibetan goats originated from a recent hybridization between goats and a wild caprid species, the markhor (Capra falconeri). In conclusion, our results uncover a hitherto unknown contribution of PAPSS2 to high-altitude adaptability in Tibetan goats on QTP, following interspecific introgression and natural selection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peter Kalds
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Shiwei Zhou
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China,College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jingchen Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ping Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China,State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Shangqu Gan
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China,State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Ting Jia
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing 100044, China
| | - Tianchun Pu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing 100044, China
| | - Langda Suo
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Yan Li
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ke Zhang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Lan Li
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Myagmarsuren Purevdorj
- Lab of Animal Genetics and Animal Reproductive Technology, Research Institute of Animal Husbandry, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Xihong Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ming Li
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yu Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yao Liu
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Shuhong Huang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | | | - Ming-Shan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 94720
| | - Stephen Kemp
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi 30709-00100, Kenya
| | - Hubert Pausch
- Animal Genomics, ETH Zürich, 8092 Zürich, Switzerland
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | | | - Yu Jiang
- Corresponding authors: E-mails: ; ;
| | | |
Collapse
|
21
|
m6A Methylation Analysis Reveals Networks and Key Genes Underlying the Coarse and Fine Wool Traits in a Full-sib Merino Family. BIOLOGY 2022; 11:biology11111637. [PMID: 36358338 PMCID: PMC9687456 DOI: 10.3390/biology11111637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
Simple Summary Artificial breeding makes traits move forward in one direction and reach the extreme, such as ultra-fine wool covering the whole body of fine wool sheep. Nevertheless, many other domestic sheep remain the coarse wool type, and some mendelian genome loci have been identified as having major genes for these traits; however, the epigenetic regulation is still unclear. Abstract In our study, a set of lambs with coarse wool type all over their bodies were discovered within a full-sib family during an embryo transfer experiment of merino fine wool sheep. The difference between coarse and fine wool traits were studied from the perspective of RNA modification-N6-methyladenosine. A total of 31,153 peaks were collected, including 15,968 peaks in coarse skin samples and 15,185 peaks in fine skin samples. In addition, 7208 genes were differentially m6A methylated, including 4167 upregulated and 3041 downregulated in coarse skin samples. Four key genes (EDAR, FGF5, TCHH, KRT2) were obtained by comprehensive analysis of the MeRIP-seq and RNA sequence, which are closely related to primary wool follicle morphogenesis and development. The PI3K/AKT pathway was enriched through different m6A-related genes. These results provided new insights to understand the role of epigenetics in wool sheep domestication and breeding.
Collapse
|
22
|
Li W, Zeng W, Jin X, Xu H, Fang X, Ma Z, Cao G, Li R, Ma L. High-Altitude Stress Orchestrates mRNA Expression and Alternative Splicing of Ovarian Follicle Development Genes in Tibetan Sheep. Animals (Basel) 2022; 12:2812. [PMID: 36290198 PMCID: PMC9597790 DOI: 10.3390/ani12202812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 10/01/2023] Open
Abstract
High-altitude stress threatens the survival rate of Tibetan sheep and reduces their fertility. However, the molecular basis of this phenomenon remains elusive. Here, we used RNA-seq to elucidate the transcriptome dynamics of high-altitude stress in Tibetan sheep ovaries. In total, 104 genes were characterized as high-altitude stress-related differentially expressed genes (DEGs). In addition, 36 DEGs contributed to ovarian follicle development, and 28 of them were downregulated under high-altitude stress. In particular, high-altitude stress significantly suppressed the expression of two ovarian lymphatic system marker genes: LYVE1 and ADAMTS-1. Network analysis revealed that luteinizing hormone (LH)/follicle-stimulating hormone (FSH) signaling-related genes, such as EGR1, FKBP5, DUSP1, and FOS, were central regulators in the DEG network, and these genes were also suppressed under high-altitude stress. As a post-transcriptional regulation mechanism, alternative splicing (AS) is ubiquitous in Tibetan sheep. High-altitude stress induced 917 differentially alternative splicing (DAS) events. High-altitude stress modulated DAS in an AS-type-specific manner: suppressing skipped exon events but increasing retained intron events. C2H2-type zinc finger transcription factors and RNA processing factors were mainly enriched in DAS. These findings revealed high-altitude stress repressed ovarian development by suppressing the gene expression of LH/FSH hormone signaling genes and inducing intron retention of C2H2-type zinc finger transcription factors.
Collapse
Affiliation(s)
- Wenhao Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Weike Zeng
- College of Forestry, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiayang Jin
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Huiming Xu
- College of Forestry, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingyan Fang
- College of Forestry, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhijie Ma
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Gangjian Cao
- College of Forestry, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruizhe Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Liuyin Ma
- College of Forestry, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
23
|
Todd ET, Tonasso-Calvière L, Chauvey L, Schiavinato S, Fages A, Seguin-Orlando A, Clavel P, Khan N, Pérez Pardal L, Patterson Rosa L, Librado P, Ringbauer H, Verdugo M, Southon J, Aury JM, Perdereau A, Vila E, Marzullo M, Prato O, Tecchiati U, Bagnasco Gianni G, Tagliacozzo A, Tinè V, Alhaique F, Cardoso JL, Valente MJ, Telles Antunes M, Frantz L, Shapiro B, Bradley DG, Boulbes N, Gardeisen A, Horwitz LK, Öztan A, Arbuckle BS, Onar V, Clavel B, Lepetz S, Vahdati AA, Davoudi H, Mohaseb A, Mashkour M, Bouchez O, Donnadieu C, Wincker P, Brooks SA, Beja-Pereira A, Wu DD, Orlando L. The genomic history and global expansion of domestic donkeys. Science 2022; 377:1172-1180. [PMID: 36074859 DOI: 10.1126/science.abo3503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Donkeys transformed human history as essential beasts of burden for long-distance movement, especially across semi-arid and upland environments. They remain insufficiently studied despite globally expanding and providing key support to low- to middle-income communities. To elucidate their domestication history, we constructed a comprehensive genome panel of 207 modern and 31 ancient donkeys, as well as 15 wild equids. We found a strong phylogeographic structure in modern donkeys that supports a single domestication in Africa ~5000 BCE, followed by further expansions in this continent and Eurasia and ultimately returning to Africa. We uncover a previously unknown genetic lineage in the Levant ~200 BCE, which contributed increasing ancestry toward Asia. Donkey management involved inbreeding and the production of giant bloodlines at a time when mules were essential to the Roman economy and military.
Collapse
Affiliation(s)
- Evelyn T Todd
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Laure Tonasso-Calvière
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Loreleï Chauvey
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Stéphanie Schiavinato
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Antoine Fages
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Andaine Seguin-Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Pierre Clavel
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Naveed Khan
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France.,Department of Biotechnology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Lucía Pérez Pardal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
| | | | - Pablo Librado
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Marta Verdugo
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - John Southon
- Earth System Science Department, University of California, Irvine, CA 92697, USA
| | - Jean-Marc Aury
- Genoscope, Institut de biologie François Jacob, CEA, Université d'Evry, Université Paris-Saclay, Evry 91042, France
| | - Aude Perdereau
- Genoscope, Institut de biologie François Jacob, CEA, Université d'Evry, Université Paris-Saclay, Evry 91042, France
| | - Emmanuelle Vila
- Laboratoire Archéorient, Université Lyon 2, Lyon 69007, France
| | - Matilde Marzullo
- Dipartimento di Beni Culturali e Ambientali, Università degli Studi di Milano, Milan 20122, Italy
| | - Ornella Prato
- Dipartimento di Beni Culturali e Ambientali, Università degli Studi di Milano, Milan 20122, Italy
| | - Umberto Tecchiati
- Dipartimento di Beni Culturali e Ambientali, Università degli Studi di Milano, Milan 20122, Italy
| | - Giovanna Bagnasco Gianni
- Dipartimento di Beni Culturali e Ambientali, Università degli Studi di Milano, Milan 20122, Italy
| | | | - Vincenzo Tinè
- Soprintendenza archeologia belle arti e paesaggio per le province di Verona, Rovigo e Vicenza, Verona 37121, Italy
| | | | - João Luís Cardoso
- ICArEHB, Campus de Gambelas, University of Algarve, Faro 8005-139, Portugal.,Universidade Aberta, Lisbon 1269-001, Portugal
| | - Maria João Valente
- Faculdade de Ciências Humanas e Sociais, Centro de Estudos de Arqueologia, Artes e Ciências do Património, Universidade do Algarve, Faro 8000-117, Portugal
| | - Miguel Telles Antunes
- Centre for Research on Science and Geological Engineering, Universidade NOVA de Lisboa, Lisbon 1099-085, Portugal
| | - Laurent Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich 80539, Germany.,School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4DQ, United Kingdom
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, CA 95064, USA
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Nicolas Boulbes
- Institut de Paléontologie Humaine, Fondation Albert Ier, Paris / UMR 7194 HNHP, MNHN-CNRS-UPVD / EPCC Centre Européen de Recherche Préhistorique, Tautavel 66720, France
| | - Armelle Gardeisen
- Archéologie des Sociétés Méditéranéennes, Université Paul Valéry - Site Saint-Charles 2, Montpellier 34090, France
| | - Liora Kolska Horwitz
- National Natural History Collections, Edmond J. Safra Campus, Givat Ram, The Hebrew University, Jerusalem 9190401, Israel
| | - Aliye Öztan
- Archaeology Department, Ankara University, Ankara 06100, Turkey
| | - Benjamin S Arbuckle
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Vedat Onar
- Osteoarchaeology Practice and Research Center and Department of Anatomy, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, Istanbul 34320, Turkey
| | - Benoît Clavel
- Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Sébastien Lepetz
- Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Ali Akbar Vahdati
- Provincial Office of the Iranian Center for Cultural Heritage, Handicrafts and Tourism Organisation, North Khorassan, Bojnord 9416745775, Iran
| | - Hossein Davoudi
- Archaezoology section, Bioarchaeology Laboratory of the Central Laboratory, University of Tehran, Tehran CP1417634934, Iran
| | - Azadeh Mohaseb
- Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle, Paris 75005, France.,Archaezoology section, Bioarchaeology Laboratory of the Central Laboratory, University of Tehran, Tehran CP1417634934, Iran
| | - Marjan Mashkour
- Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle, Paris 75005, France.,Archaezoology section, Bioarchaeology Laboratory of the Central Laboratory, University of Tehran, Tehran CP1417634934, Iran.,Department of Osteology, National Museum of Iran, Tehran 1136918111, Iran
| | - Olivier Bouchez
- GeT-PlaGe - Génome et Transcriptome - Plateforme Génomique, GET - Plateforme Génome & Transcriptome, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Castaneet-Tolosan Cedex 31326, France
| | - Cécile Donnadieu
- GeT-PlaGe - Génome et Transcriptome - Plateforme Génomique, GET - Plateforme Génome & Transcriptome, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Castaneet-Tolosan Cedex 31326, France
| | - Patrick Wincker
- Genoscope, Institut de biologie François Jacob, CEA, Université d'Evry, Université Paris-Saclay, Evry 91042, France
| | - Samantha A Brooks
- Department of Animal Science, UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Albano Beja-Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal.,DGAOT, Faculty of Sciences, Universidade do Porto, Porto 4169-007, Portugal.,Sustainable Agrifood Production Research Centre (GreenUPorto), Universidade do Porto, Vairão 4485-646, Portugal
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.,Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| |
Collapse
|
24
|
Wang H, Zhong L, Dong Y, Meng L, Ji C, Luo H, Fu M, Qi Z, Mi L. Whole-genome resequencing reveals domestication and signatures of selection in Ujimqin, Sunit, and Wu Ranke Mongolian sheep breeds. Anim Biosci 2022; 35:1303-1313. [PMID: 35507861 PMCID: PMC9449395 DOI: 10.5713/ab.21.0569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/09/2022] [Indexed: 11/27/2022] Open
Abstract
Objective: The current study aimed to perform whole-genome resequencing of Chinese indigenous Mongolian sheep breeds including Ujimqin, Sunit, and Wu Ranke sheep breeds (UJMQ, SNT, WRK) and deeply analyze genetic variation, population structure, domestication, and selection for domestication traits among these Mongolian sheep breeds.Methods: Blood samples were collected from a total of 60 individuals comprising 20 WRK, 20 UJMQ, and 20 SNT. For genome sequencing, about 1.5 μg of genomic DNA was used for library construction with an insert size of about 350 bp. Pair-end sequencing were performed on Illumina NovaSeq platform, with the read length of 150 bp at each end. We then investigated the domestication and signatures of selection in these sheep breeds.Results: According to the population and demographic analyses, WRK and SNT populations were very similar, which were different from UJMQ populations. Genome wide association study identified 468 and 779 significant loci from SNT vs UJMQ, and UJMQ vs WRK, respectively. However, only 3 loci were identified from SNT vs WRK. Genomic comparison and selective sweep analysis among these sheep breeds suggested that genes associated with regulation of secretion, metabolic pathways including estrogen metabolism and amino acid metabolism, and neuron development have undergone strong selection during domestication.Conclusion: Our findings will facilitate the understanding of Chinese indigenous Mongolian sheep breeds domestication and selection for complex traits and provide a valuable genomic resource for future studies of sheep and other domestic animal breeding.
Collapse
|
25
|
Panigrahi M, Kumar H, Saravanan KA, Rajawat D, Sonejita Nayak S, Ghildiyal K, Kaisa K, Parida S, Bhushan B, Dutt T. Trajectory of livestock genomics in South Asia: A comprehensive review. Gene 2022; 843:146808. [PMID: 35973570 DOI: 10.1016/j.gene.2022.146808] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Livestock plays a central role in sustaining human livelihood in South Asia. There are numerous and distinct livestock species in South Asian countries. Several of them have experienced genetic development in recent years due to the application of genomic technologies and effective breeding programs. This review discusses genomic studies on cattle, buffalo, sheep, goat, pig, horse, camel, yak, mithun, and poultry. The frontiers covered in this review are genetic diversity, admixture studies, selection signature research, QTL discovery, genome-wide association studies (GWAS), and genomic selection. The review concludes with recommendations for South Asian livestock systems to increasingly leverage genomic technologies, based on the lessons learned from the numerous case studies. This paper aims to present a comprehensive analysis of the dichotomy in the South Asian livestock sector and argues that a realistic approach to genomics in livestock can ensure long-term genetic advancements.
Collapse
Affiliation(s)
- Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - K A Saravanan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Kaiho Kaisa
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
26
|
Analysis of the Genetic Diversity and Population Structure of Four Senegalese Sheep Breeds Using Medium-Density Single-Nucleotide Polymorphisms. Animals (Basel) 2022; 12:ani12121512. [PMID: 35739849 PMCID: PMC9219475 DOI: 10.3390/ani12121512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary This paper reported genetic parameters of four Senegalese sheep breeds, in relation to inbreeding, diversity and genetic proximity. The results provide informations on genetic conservation and adaptability of the breeds in the Senegalese context. Abstract In Senegal, sheep breeds have adapted to their environment and play a key socio-economic role. This study aimed to explore the genetic diversity and structure of four Senegalese sheep breeds (Peul-peul, Djallonke, Touabire, and Ladoum) and their relationships with global sheep breeds. To that end, forty-seven sheep were genotyped using the OvineSNP50 BeadChip, and these genotypic data were analysed with those of 73 sheep breeds representative of worldwide ovine diversity (2729 animals). The average observed heterozygosity (Ho) ranged from 0.293 in Djallonke sheep to 0.339 in Touabire sheep. The estimated Fis values were low, ranging from 0.019 for Ladoum to 0.034 for Peul-peul sheep. The estimated Fst values were low (0.003–0.044) among the trypanosusceptible breeds (Peul-peul, Touabire, and Ladoum) but high between the previous breeds and the trypanotolerant Djallonke breed (0.075–0.116), indicating better genetic conservation of the Djallonke sheep. A principal component analysis revealed clustering of the Senegalese sheep breeds according to their geographic distribution. However, owing to genetic improvement practices, the introgression of Touabire sheep blood seems to have reshaped the genetic landscape of the trypanosusceptible sheep breeds in Senegal. The Senegalese sheep breeds showed lower genetic diversity than their presumed ancestral sheep breeds of the Middle East. They also presented some relatedness with Caribbean sheep breeds, which reveals their contribution to the global genetic diversity and to the development of Caribbean sheep breeds.
Collapse
|
27
|
Kumar H, Panigrahi M, Panwar A, Rajawat D, Nayak SS, Saravanan KA, Kaisa K, Parida S, Bhushan B, Dutt T. Machine-Learning Prospects for Detecting Selection Signatures Using Population Genomics Data. J Comput Biol 2022; 29:943-960. [PMID: 35639362 DOI: 10.1089/cmb.2021.0447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Natural selection has been given a lot of attention because it relates to the adaptation of populations to their environments, both biotic and abiotic. An allele is selected when it is favored by natural selection. Consequently, the favored allele increases in frequency in the population and neighboring linked variation diminishes, causing so-called selective sweeps. A high-throughput genomic sequence allows one to disentangle the evolutionary forces at play in populations. With the development of high-throughput genome sequencing technologies, it has become easier to detect these selective sweeps/selection signatures. Various methods can be used to detect selective sweeps, from simple implementations using summary statistics to complex statistical approaches. One of the important problems of these statistical models is the potential to provide inaccurate results when their assumptions are violated. The use of machine learning (ML) in population genetics has been introduced as an alternative method of detecting selection by treating the problem of detecting selection signatures as a classification problem. Since the availability of population genomics data is increasing, researchers may incorporate ML into these statistical models to infer signatures of selection with higher predictive accuracy and better resolution. This article describes how ML can be used to aid in detecting and studying natural selection patterns using population genomic data.
Collapse
Affiliation(s)
- Harshit Kumar
- Divisions of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Manjit Panigrahi
- Divisions of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Anuradha Panwar
- Divisions of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Divya Rajawat
- Divisions of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Sonali Sonejita Nayak
- Divisions of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - K A Saravanan
- Divisions of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Kaiho Kaisa
- Divisions of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Subhashree Parida
- Divisions of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Bharat Bhushan
- Divisions of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
28
|
Liu T, Chen J, Jiang L, Qiao G. Human‐mediated eco‐evolutionary processes of the herbivorous insect
Hyalopterus arundiniformis
during the Holocene. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tongyi Liu
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
29
|
Machová K, Málková A, Vostrý L. Sheep Post-Domestication Expansion in the Context of Mitochondrial and Y Chromosome Haplogroups and Haplotypes. Genes (Basel) 2022; 13:genes13040613. [PMID: 35456419 PMCID: PMC9025449 DOI: 10.3390/genes13040613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/26/2022] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial DNA and nonrecombinant parts of Y-chromosome DNA are a great tool for looking at a species’ past. They are inherited for generations almost unaffected because they do not participate in recombination; thus, the time of occurrence of each mutation can be estimated based on the average mutation rate. Thanks to this, male and female haplogroups guide confirming events in the distant past (potential centers of domestication, settlement of areas, trade connections) as well as in modern breeding (crossbreeding, confirmation of paternity). This research focuses mainly on the development of domestic sheep and its post-domestication expansion, which has occurred through human trade from one continent to another. So far, five mitochondrial and five Y-chromosome haplogroups and dozens of their haplotypes have been detected in domestic sheep through studies worldwide. Mitochondrial DNA variability is more or less correlated with distance from the domestication center, but variability on the recombinant region of the Y chromosome is not. According to available data, central China shows the highest variability of male haplogroups and haplotypes.
Collapse
Affiliation(s)
- Karolína Machová
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
- Correspondence:
| | - Anežka Málková
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic;
| | - Luboš Vostrý
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| |
Collapse
|
30
|
Chong Y, Jiang X, Liu G. An ancient positively selected BMPRIB missense variant increases litter size of Mongolian sheep populations following latitudinal gradient. Mol Genet Genomics 2022; 297:155-167. [PMID: 35013854 DOI: 10.1007/s00438-021-01828-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
New gene mutation origination is a driving force for the evolution of organisms. The effect of FecB mutation in BMPRIB gene on the litter size of sheep has been well known for a long time, each copy of the mutant allele increases litter size by 0.4-0.5. However, the origin and adaptive evolution mechanism of FecB mutation are still unclear. Here we carried on the thorough analysis on evolutionary features of BMPRIB gene and found that 150 species as a whole is under purifying selection while sheep lineage shows evidence of positive selection. The results of allele age estimation revealed that the FecB mutation in Mongolian sheep of China originated in Mongolian Plateau at about 5000 years ago. Due the two shape drops in temperature subsequently, Mongolian sheep migrated from north to south following the northern nomadic people. Accordingly, the FecB mutant allele frequency increased, with the lowest in sheep locating at Mongolian plateau (0.01) and the highest in sheep locating at Yangtze River valley (0.96). In conclusion, the FecB mutation in Mongolian sheep of China originated in Mongolian Plateau at about 5000 years ago, and the differentiated litter size of Mongolian sheep might be the result of adaptation to various environments during the migration following latitudinal gradient. This study may well exemplify selection on an ancient variation triggered by drastic ecological shifts, and is also helpful to analyze the adaptive evolution mechanism of economic traits of domestic animals and identify major genes and molecular markers.
Collapse
Affiliation(s)
- Yuqing Chong
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Xunping Jiang
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Guiqiong Liu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China. .,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
31
|
Yudin NS, Yurchenko AA, Larkin DM. [Signatures of selection and candidate genes for adaptation to extreme environmental factors in the genomes of Turano-Mongolian cattle breeds]. Vavilovskii Zhurnal Genet Selektsii 2021; 25:190-201. [PMID: 34901717 PMCID: PMC8627871 DOI: 10.18699/vj21.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 11/19/2022] Open
Abstract
Changes in the environment force populations of organisms to adapt to new conditions, either through phenotypic plasticity or through genetic or epigenetic changes. Signatures of selection, such as specific changes in the frequency of alleles and haplotypes, as well as the reduction or increase in genetic diversity, help to identify changes in the cattle genome in response to natural and artificial selection, as well as loci and genetic variants directly affecting adaptive and economically important traits. Advances in genetics and biotechnology enable a rapid transfer of unique genetic variants that have originated in local cattle breeds in the process of adaptation to local environments into the genomes of cosmopolitan high-performance breeds, in order to preserve their outstanding performance in new environments. It is also possible to use genomic selection approach to increase the frequency of already present adaptive alleles in cosmopolitan breeds. The review examines recent work on the origin and evolution of Turano-Mongolian cattle breeds, adaptation of Turano-Mongolian cattle to extreme environments, and summarizes available information on potential candidate genes for climate adaptation of Turano-Mongolian breeds, including cold resistance genes, immune response genes, and high-altitude adaptation genes. The authors conclude that the current literature data do not provide preference to one of the two possible scenarios of Turano-Mongolian breed origins: as a result of the domestication of a wild aurochs at East Asia or as a result of the migration of taurine proto-population from the Middle East. Turano-Mongolian breeds show a high degree of adaptation to extreme climatic conditions (cold, heat, lack of oxygen in the highlands) and parasites (mosquitoes, ticks, bacterial and viral infections). As a result of high-density genotyping and sequencing of genomes and transcriptomes, prospective candidate genes and genetic variants involved in adaptation to environmental factors have recently been identified.
Collapse
Affiliation(s)
- N S Yudin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Yurchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D M Larkin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia The Royal Veterinary College, University of London, London, United Kingdom
| |
Collapse
|
32
|
Lv FH, Cao YH, Liu GJ, Luo LY, Lu R, Liu MJ, Li WR, Zhou P, Wang XH, Shen M, Gao L, Yang JQ, Yang H, Yang YL, Liu CB, Wan PC, Zhang YS, Pi WH, Ren YL, Shen ZQ, Wang F, Wang YT, Li JQ, Salehian-Dehkordi H, Hehua E, Liu YG, Chen JF, Wang JK, Deng XM, Esmailizadeh A, Dehghani-Qanatqestani M, Charati H, Nosrati M, Štěpánek O, Rushdi HE, Olsaker I, Curik I, Gorkhali NA, Paiva SR, Caetano AR, Ciani E, Amills M, Weimann C, Erhardt G, Amane A, Mwacharo JM, Han JL, Hanotte O, Periasamy K, Johansson AM, Hallsson JH, Kantanen J, Coltman DW, Bruford MW, Lenstra JA, Li MH. Whole-genome resequencing of worldwide wild and domestic sheep elucidates genetic diversity, introgression and agronomically important loci. Mol Biol Evol 2021; 39:6459180. [PMID: 34893856 PMCID: PMC8826587 DOI: 10.1093/molbev/msab353] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Domestic sheep and their wild relatives harbor substantial genetic variants that can form the backbone of molecular breeding, but their genome landscapes remain understudied. Here, we present a comprehensive genome resource for wild ovine species, landraces and improved breeds of domestic sheep, comprising high-coverage (∼16.10×) whole genomes of 810 samples from 7 wild species and 158 diverse domestic populations. We detected, in total, ∼121.2 million single nucleotide polymorphisms, ∼61 million of which are novel. Some display significant (P < 0.001) differences in frequency between wild and domestic species, or are private to continent-wide or individual sheep populations. Retained or introgressed wild gene variants in domestic populations have contributed to local adaptation, such as the variation in the HBB associated with plateau adaptation. We identified novel and previously reported targets of selection on morphological and agronomic traits such as stature, horn, tail configuration, and wool fineness. We explored the genetic basis of wool fineness and unveiled a novel mutation (chr25: T7,068,586C) in the 3′-UTR of IRF2BP2 as plausible causal variant for fleece fiber diameter. We reconstructed prehistorical migrations from the Near Eastern domestication center to South-and-Southeast Asia and found two main waves of migrations across the Eurasian Steppe and the Iranian Plateau in the Early and Late Bronze Ages. Our findings refine our understanding of genome variation as shaped by continental migrations, introgression, adaptation, and selection of sheep.
Collapse
Affiliation(s)
- Feng-Hua Lv
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yin-Hong Cao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | | | - Ling-Yun Luo
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ran Lu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ming-Jun Liu
- Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi, China
| | - Wen-Rong Li
- Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi, China
| | - Ping Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Xin-Hua Wang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Min Shen
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Lei Gao
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jing-Quan Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Hua Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yong-Lin Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Chang-Bin Liu
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Peng-Cheng Wan
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yun-Sheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Wen-Hui Pi
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yan-Ling Ren
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | - Zhi-Qiang Shen
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Yu-Tao Wang
- College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Jin-Quan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Hosein Salehian-Dehkordi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Eer Hehua
- Grass-Feeding Livestock Engineering Technology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yong-Gang Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jian-Fei Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Kui Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue-Mei Deng
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Hadi Charati
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Nosrati
- Department of Agriculture, Payame Noor University, Tehran, Iran
| | - Ondřej Štěpánek
- Department of Virology, State Veterinary Institute Jihlava, Jihlava, Czech Republic
| | - Hossam E Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Ingrid Olsaker
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Neena A Gorkhali
- Animal Breeding Division, National Animal Science Institute, Nepal Agriculture Research Council (NARC), Kathmandu, Nepal
| | - Samuel R Paiva
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Brasília, DF, Brazil
| | - Alexandre R Caetano
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Brasília, DF, Brazil
| | - Elena Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo 24 Moro, Bari, Italy
| | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Christina Weimann
- Department of Animal Breeding and Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Georg Erhardt
- Department of Animal Breeding and Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Agraw Amane
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- LiveGene Program, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Joram M Mwacharo
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
- CTLGH and SRUC, The Roslin Institute Building, Easter Bush Campus, Edinburgh, Scotland
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Olivier Hanotte
- LiveGene Program, International Livestock Research Institute, Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Kathiravan Periasamy
- Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jón H Hallsson
- Faculty of Natural Resources and Environmental Sciences, Agricultural University of Iceland, Borgarnes, Iceland
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Michael W Bruford
- School of Biosciences, Cardiff University, Cathays Park, Cardiff, Wales, United Kingdom
- Sustainable Places Research Institute, Cardiff University, Wales, United Kingdom
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- Corresponding author: E-mail:
| |
Collapse
|
33
|
Xu SS, Gao L, Shen M, Lyu F. Whole-Genome Selective Scans Detect Genes Associated With Important Phenotypic Traits in Sheep (Ovis aries ). Front Genet 2021; 12:738879. [PMID: 34868210 PMCID: PMC8637624 DOI: 10.3389/fgene.2021.738879] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Sheep (Ovis aries) is one of the important livestock with diverse phenotypic traits. However, little is known about the molecular mechanism of diverse phenotypic traits in domestic sheep. Using the genome-wide high-density SNP data (600K) in 253 samples from 13 populations, we conducted the tests of selective sweeps (i.e., pairwise FST and XP-CLR) associated with several important phenotypic traits (e.g., tail types, horn morphology, prolificacy, coat pigmentation, ear size, milk production, meat production, body size and wool fineness). We identified strong selective signatures in previously reported (e.g., T, RXFP2, BMPR1B, TYRP1, MSRB3, TF, CEBPA, GPR21 and HOXC8) and novel genes associated with the traits, such as CERS6, BTG1, RYR3, SLC6A4, NNAT and OGT for fat deposition in the tails, FOXO4 for fertility, PTCH1 and EMX2 for ear size, and RMI1 and SCD5 for body size. Further gene annotation analysis showed that these genes were identified to be the most probable genes accounting for the diverse phenotypic traits. Our results provide novel insights into the genetic mechanisms underlying the traits and also new genetic markers for genetic improvement in sheep and other livestock.
Collapse
Affiliation(s)
- Song-Song Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Shenzhen Branch, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lei Gao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Min Shen
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Fenghua Lyu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Chen ZH, Xu YX, Xie XL, Wang DF, Aguilar-Gómez D, Liu GJ, Li X, Esmailizadeh A, Rezaei V, Kantanen J, Ammosov I, Nosrati M, Periasamy K, Coltman DW, Lenstra JA, Nielsen R, Li MH. Whole-genome sequence analysis unveils different origins of European and Asiatic mouflon and domestication-related genes in sheep. Commun Biol 2021; 4:1307. [PMID: 34795381 PMCID: PMC8602413 DOI: 10.1038/s42003-021-02817-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
The domestication and subsequent development of sheep are crucial events in the history of human civilization and the agricultural revolution. However, the impact of interspecific introgression on the genomic regions under domestication and subsequent selection remains unclear. Here, we analyze the whole genomes of domestic sheep and their wild relative species. We found introgression from wild sheep such as the snow sheep and its American relatives (bighorn and thinhorn sheep) into urial, Asiatic and European mouflons. We observed independent events of adaptive introgression from wild sheep into the Asiatic and European mouflons, as well as shared introgressed regions from both snow sheep and argali into Asiatic mouflon before or during the domestication process. We revealed European mouflons might arise through hybridization events between a now extinct sheep in Europe and feral domesticated sheep around 6000-5000 years BP. We also unveiled later introgressions from wild sheep to their sympatric domestic sheep after domestication. Several of the introgression events contain loci with candidate domestication genes (e.g., PAPPA2, NR6A1, SH3GL3, RFX3 and CAMK4), associated with morphological, immune, reproduction or production traits (wool/meat/milk). We also detected introgression events that introduced genes related to nervous response (NEURL1), neurogenesis (PRUNE2), hearing ability (USH2A), and placental viability (PAG11 and PAG3) into domestic sheep and their ancestral wild species from other wild species.
Collapse
Affiliation(s)
- Ze-Hui Chen
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China ,grid.22935.3f0000 0004 0530 8290College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ya-Xi Xu
- grid.22935.3f0000 0004 0530 8290College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xing-Long Xie
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Dong-Feng Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Diana Aguilar-Gómez
- grid.47840.3f0000 0001 2181 7878Center for Computational Biology, University of California at Berkeley, Berkeley, CA 94720 USA
| | | | - Xin Li
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ali Esmailizadeh
- grid.412503.10000 0000 9826 9569Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahideh Rezaei
- grid.412503.10000 0000 9826 9569Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Juha Kantanen
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Innokentyi Ammosov
- grid.495192.2Laboratory of Reindeer Husbandry and Traditional Industries, Yakut Scientific Research Institute of Agriculture, The Sakha Republic (Yakutia), Yakutsk, Russia
| | - Maryam Nosrati
- grid.412462.70000 0000 8810 3346Department of Agriculture, Payame Noor University, Tehran, Iran
| | - Kathiravan Periasamy
- grid.420221.70000 0004 0403 8399Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - David W. Coltman
- grid.17089.37Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9 Canada
| | - Johannes A. Lenstra
- grid.5477.10000000120346234Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, 94720, USA. .,Department of Statistics, UC Berkeley, Berkeley, CA, 94707, USA. .,Globe Institute, University of Copenhagen, 1350, København K, Denmark.
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
35
|
Sun Z, Orozco-terWengel P, Chen G, Sun R, Sun L, Wang H, Shi W, Zhang B. Spatial dynamics of Chinese Muntjac related to past and future climate fluctuations. Curr Zool 2021; 67:361-370. [PMID: 34616935 PMCID: PMC8489110 DOI: 10.1093/cz/zoaa080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/16/2020] [Indexed: 11/23/2022] Open
Abstract
Climate fluctuations in the past and in the future are likely to result in population expansions, shifts, or the contraction of the ecological niche of many species, and potentially leading to the changes in their geographical distributions. Prediction of suitable habitats has been developed as a useful tool for the assessment of habitat suitability and resource conservation to protect wildlife. Here, we model the ancestral demographic history of the extant modern Chinese Muntjac Muntiacus reevesi populations using approximate Bayesian computation (ABC) and used the maximum entropy model to simulate the past and predict the future spatial dynamics of the species under climate oscillations. Our results indicated that the suitable habitats for the M. reevesi shifted to the Southeast and contracted during the Last Glacial Maximum, whereas they covered a broader and more northern position in the Middle Holocene. The ABC analyses revealed that the modern M. reevesi populations diverged in the Middle Holocene coinciding with the significant contraction of the highly suitable habitat areas. Furthermore, our predictions suggest that the potentially suitable environment distribution for the species will expand under all future climate scenarios. These results indicated that the M. reevesi diverged in the recent time after the glacial period and simultaneously as its habitat’s expanded in the Middle Holocene. Furthermore, the past and future climate fluctuation triggered the change of Chinese muntjac spatial distribution, which has great influence on the Chinese muntjac’s population demographic history.
Collapse
Affiliation(s)
- Zhonglou Sun
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | | | - Guotao Chen
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Ruolei Sun
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Lu Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Hui Wang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Wenbo Shi
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Baowei Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| |
Collapse
|
36
|
Tao L, Wang X, Zhong Y, Liu Q, Xia Q, Chen S, He X, Di R, Chu M. Combined approaches identify known and novel genes associated with sheep litter size and non-seasonal breeding. Anim Genet 2021; 52:857-867. [PMID: 34494299 DOI: 10.1111/age.13138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 01/29/2023]
Abstract
Improvement of ewe reproduction is considerable by appropriately increasing litter size and sustaining non-seasonal breeding. However, their genetic makeups have not been entirely elucidated. Genome-wide analyses of 821 individuals were performed by combining three genomic approaches (genome-wide association study, XP-nSL, and runs of homozygosity). Consequently, 35 candidate genes including three domestication genes (TSHR, GTF2A1, and KITLG) were identified. Other than the FecB mutation at BMPR1B, we described a significant association of a missense mutation rs406686139 at seasonal lambing-associated TSHR gene with litter size. Some promising novel genes may be relevant for sheep reproduction by multitude biological processes, such as FETUB functioning in fertilization, HNRNPA1 in oogenesis, DCUN1D1 in spermatogenesis, and HRG in fertility outcome. The present study suggests that improvement of ewe reproduction is attributed to selective breeding, and casts light on the genetic basis and improvement of sheep reproduction.
Collapse
Affiliation(s)
- Lin Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yingjie Zhong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiuyue Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Si Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
37
|
Wang ZH, Zhu QH, Li X, Zhu JW, Tian DM, Zhang SS, Kang HL, Li CP, Dong LL, Zhao WM, Li MH. iSheep: an Integrated Resource for Sheep Genome, Variant and Phenotype. Front Genet 2021; 12:714852. [PMID: 34490043 PMCID: PMC8418083 DOI: 10.3389/fgene.2021.714852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Zhong-Huang Wang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (China National Center for Bioinformation), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Qiang-Hui Zhu
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China.,CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin Li
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China.,CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun-Wei Zhu
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (China National Center for Bioinformation), Beijing, China
| | - Dong-Mei Tian
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (China National Center for Bioinformation), Beijing, China
| | - Si-Si Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (China National Center for Bioinformation), Beijing, China
| | - Hai-Long Kang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (China National Center for Bioinformation), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Cui-Ping Li
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (China National Center for Bioinformation), Beijing, China
| | - Li-Li Dong
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (China National Center for Bioinformation), Beijing, China
| | - Wen-Ming Zhao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (China National Center for Bioinformation), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
38
|
Kalds P, Luo Q, Sun K, Zhou S, Chen Y, Wang X. Trends towards revealing the genetic architecture of sheep tail patterning: Promising genes and investigatory pathways. Anim Genet 2021; 52:799-812. [PMID: 34472112 DOI: 10.1111/age.13133] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 12/22/2022]
Abstract
Different sheep breeds have evolved after initial domestication, generating various tail phenotypic patterns. The phenotypic diversity of sheep tail patterns offers ideal materials for comparative analysis of its genetic basis. Evolutionary biologists, animal geneticists, breeders, and producers have been curious to clearly understand the underlying genetics behind phenotypic differences in sheep tails. Understanding the causal gene(s) and mutation(s) underlying these differences will help probe an evolutionary riddle, improve animal production performance, promote animal welfare, and provide lessons that help comprehend human diseases related to fat deposition (i.e., obesity). Historically, fat tails have served as an adaptive response to aridification and climate change. However, the fat tail is currently associated with compromised mating and animal locomotion, fat distribution in the animal body, increased raising costs, reduced consumer preference, and other animal welfare issues such as tail docking. The developing genomic approaches provide unprecedented opportunities to determine causal variants underlying phenotypic differences among populations. In the last decade, researchers have performed several genomic investigations to assess the genomic causality underlying phenotypic variations in sheep tails. Various genes have been suggested with the prominence of several potentially significant causatives, including the BMP2 and PDGFD genes associated with the fat tail phenotype and the TBXT gene linked with the caudal vertebrae number and tail length. Although the potential genes related to sheep tail characteristics have been revealed, the causal variant(s) and mutation(s) of these high-ranking candidate genes are still elusive and need further investigation. The review discusses the potential genes, sheds light on a knowledge gap, and provides possible investigative approaches that could help determine the specific genomic causatives of sheep tail patterns. Besides, characterizing and revealing the genetic determinism of sheep tails will help solve issues compromising sheep breeding and welfare in the future.
Collapse
Affiliation(s)
- P Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Q Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - K Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - S Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Y Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - X Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
39
|
Ancient Faunal History Revealed by Interdisciplinary Biomolecular Approaches. DIVERSITY 2021. [DOI: 10.3390/d13080370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Starting four decades ago, studies have examined the ecology and evolutionary dynamics of populations and species using short mitochondrial DNA fragments and stable isotopes. Through technological and analytical advances, the methods and biomolecules at our disposal have increased significantly to now include lipids, whole genomes, proteomes, and even epigenomes. At an unprecedented resolution, the study of ancient biomolecules has made it possible for us to disentangle the complex processes that shaped the ancient faunal diversity across millennia, with the potential to aid in implicating probable causes of species extinction and how humans impacted the genetics and ecology of wild and domestic species. However, even now, few studies explore interdisciplinary biomolecular approaches to reveal ancient faunal diversity dynamics in relation to environmental and anthropogenic impact. This review will approach how biomolecules have been implemented in a broad variety of topics and species, from the extinct Pleistocene megafauna to ancient wild and domestic stocks, as well as how their future use has the potential to offer an enhanced understanding of drivers of past faunal diversity on Earth.
Collapse
|
40
|
Moosanezhad Khabisi M, Asadi Foozi M, Lv FH, Esmailizadeh A. Genome-wide DNA arrays profiling unravels the genetic structure of Iranian sheep and pattern of admixture with worldwide coarse-wool sheep breeds. Genomics 2021; 113:3501-3511. [PMID: 34293474 DOI: 10.1016/j.ygeno.2021.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/18/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Archaeological and genetic evidence show that sheep were originally domesticated in area around the North of Zagros mountains, North-west of Iran. The Persian plateau exhibits a variety of native sheep breeds with a common characteristic of coarse-wool production. Therefore, knowledge about the genetic structure and diversity of Iranian sheep and genetic connections with other sheep breeds is of great interest. To this end, we genotyped 154 samples from 11 sheep breeds distributed across Iran with the Ovine Infinium HD SNP 600 K BeadChip array, and analyzed this dataset combined with the retrieved data of 558 samples from 19 worldwide coarse-wool sheep breeds. The average genetic diversity ranged from 0.315 to 0.354, while the FST values ranged from 0.016 to 0.177 indicating a low differentiation of Iranian sheep. Analysis of molecular variance showed that 90.21 and 9.79% of the source of variation were related to differences within and between populations, respectively. Our results indicated that the coarse-wool sheep from Europe were clearly different from those of the Asia. Accordingly, the Asiatic mouflon was positioned between Asian and European countries. In addition, we found that the genetic background of Iranian sheep is present in sheep from China and Kyrgyzstan, as well as India. The revealed admixture patterns of the Iranian sheep and other coarse-wool sheep breeds probably resulted from the expansion of nomads and through the Silk Road trade network.
Collapse
Affiliation(s)
- Mozhdeh Moosanezhad Khabisi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133 Kerman, Iran
| | - Masood Asadi Foozi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133 Kerman, Iran
| | - Feng-Hua Lv
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133 Kerman, Iran.
| |
Collapse
|
41
|
Deniskova TE, Dotsev AV, Selionova MI, Reyer H, Sölkner J, Fornara MS, Aybazov AMM, Wimmers K, Brem G, Zinovieva NA. SNP-Based Genotyping Provides Insight Into the West Asian Origin of Russian Local Goats. Front Genet 2021; 12:708740. [PMID: 34276802 PMCID: PMC8282346 DOI: 10.3389/fgene.2021.708740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Specific local environmental and sociocultural conditions have led to the creation of various goat populations in Russia. National goat diversity includes breeds that have been selected for down and mohair production traits as well as versatile local breeds for which pastoralism is the main management system. Effective preservation and breeding programs for local goat breeds are missing due to the lack of DNA-based data. In this work, we analyzed the genetic diversity and population structure of Russian local goats, including Altai Mountain, Altai White Downy, Dagestan Downy, Dagestan Local, Karachaev, Orenburg, and Soviet Mohair goats, which were genotyped with the Illumina Goat SNP50 BeadChip. In addition, we addressed genetic relationships between local and global goat populations obtained from the AdaptMap project. Russian goats showed a high level of genetic diversity. Although a decrease in historical effective population sizes was revealed, the recent effective population sizes estimated for three generations ago were larger than 100 in all studied populations. The mean runs of homozygosity (ROH) lengths ranged from 79.42 to 183.94 Mb, and the average ROH number varied from 18 to 41. Short ROH segments (<2 Mb) were predominant in all breeds, while the longest ROH class (>16 Mb) was the least frequent. Principal component analysis, Neighbor-Net graph, and Admixture clustering revealed several patterns in Russian local goats. First, a separation of the Karachaev breed from other populations was observed. Moreover, genetic connections between the Orenburg and Altai Mountain breeds were suggested and the Dagestan breeds were found to be admixed with the Soviet Mohair breed. Neighbor-Net analysis and clustering of local and global breeds demonstrated the close genetic relations between Russian local and Turkish breeds that probably resulted from past admixture events through postdomestication routes. Our findings contribute to the understanding of the genetic relationships of goats originating in West Asia and Eurasia and may be used to design breeding programs for local goats to ensure their effective conservation and proper management.
Collapse
Affiliation(s)
| | - Arsen V Dotsev
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Marina I Selionova
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - Henry Reyer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Johann Sölkner
- Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | | | - Ali-Magomed M Aybazov
- All-Russian Research Institute of Sheep and Goat Breeding - Branch of the Federal State Budgetary Scientific Institution, North Caucasian Agrarian Center, Stavropol, Russia
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Gottfried Brem
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | | |
Collapse
|
42
|
Rossi C, Ruß-Popa G, Mattiangeli V, McDaid F, Hare AJ, Davoudi H, Laleh H, Lorzadeh Z, Khazaeli R, Fathi H, Teasdale MD, A'ali A, Stöllner T, Mashkour M, Daly KG. Exceptional ancient DNA preservation and fibre remains of a Sasanian saltmine sheep mummy in Chehrābād, Iran. Biol Lett 2021; 17:20210222. [PMID: 34256582 PMCID: PMC8278039 DOI: 10.1098/rsbl.2021.0222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
Mummified remains have long attracted interest as a potential source of ancient DNA. However, mummification is a rare process that requires an anhydrous environment to rapidly dehydrate and preserve tissue before complete decomposition occurs. We present the whole-genome sequences (3.94 X) of an approximately 1600-year-old naturally mummified sheep recovered from Chehrābād, a salt mine in northwestern Iran. Comparative analyses of published ancient sequences revealed the remarkable DNA integrity of this mummy. Hallmarks of postmortem damage, fragmentation and hydrolytic deamination are substantially reduced, likely owing to the high salinity of this taphonomic environment. Metagenomic analyses reflect the profound influence of high-salt content on decomposition; its microbial profile is predominated by halophilic archaea and bacteria, possibly contributing to the remarkable preservation of the sample. Applying population genomic analyses, we find clustering of this sheep with Southwest Asian modern breeds, suggesting ancestry continuity. Genotyping of a locus influencing the woolly phenotype showed the presence of an ancestral 'hairy' allele, consistent with hair fibre imaging. This, along with derived alleles associated with the fat-tail phenotype, provides genetic evidence that Sasanian-period Iranians maintained specialized sheep flocks for different uses, with the 'hairy', 'fat-tailed'-genotyped sheep likely kept by the rural community of Chehrābād's miners.
Collapse
Affiliation(s)
- Conor Rossi
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02 VF25, Ireland
| | - Gabriela Ruß-Popa
- Austrian Academy of Sciences, Austrian Archaeological Institute, Archaeological Sciences, Hollandstraße 11-13, 1020 Vienna, Austria
| | - Valeria Mattiangeli
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02 VF25, Ireland
| | - Fionnuala McDaid
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02 VF25, Ireland
| | - Andrew J. Hare
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02 VF25, Ireland
| | - Hossein Davoudi
- Central Laboratory, Bioarchaeology Laboratory, University of Tehran, 1417634934 Tehran, Iran
| | - Haeedeh Laleh
- Central Laboratory, Bioarchaeology Laboratory, University of Tehran, 1417634934 Tehran, Iran
- Faculty of Humanities, Department of Archaeology, University of Tehran, 1417935840 Tehran, Iran
| | - Zahra Lorzadeh
- Central Laboratory, Bioarchaeology Laboratory, University of Tehran, 1417634934 Tehran, Iran
| | - Roya Khazaeli
- Central Laboratory, Bioarchaeology Laboratory, University of Tehran, 1417634934 Tehran, Iran
| | - Homa Fathi
- Central Laboratory, Bioarchaeology Laboratory, University of Tehran, 1417634934 Tehran, Iran
| | - Matthew D. Teasdale
- McDonald Institute for Archaeological Research, Dept. of Archaeology, University of Cambridge, Cambridge CB2 3ER, UK
| | - Abolfazl A'ali
- Zanjan Cultural Heritage Centre, Archaeological Museum of Zanjan, Emaarate Zolfaghari, Taleghani St., Zanjan, Iran
| | - Thomas Stöllner
- Research Department, Haus der Archäologien, Ruhr University Bochum, Institute for Archaeological Studies and Deutsches Bergbau-Museum Bochum, Am Bergbaumuseum 31, D-44791 Bochum, Germany
| | - Marjan Mashkour
- Central Laboratory, Bioarchaeology Laboratory, University of Tehran, 1417634934 Tehran, Iran
- Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements (AASPE), Muséum national d'Histoire naturelle, Sorbonne Université, CNRS, CP 56, 55 rue Buffon, 75005 Paris, France
| | - Kevin G. Daly
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02 VF25, Ireland
| |
Collapse
|
43
|
Chebii VJ, Mpolya EA, Muchadeyi FC, Domelevo Entfellner JB. Genomics of Adaptations in Ungulates. Animals (Basel) 2021; 11:1617. [PMID: 34072591 PMCID: PMC8230064 DOI: 10.3390/ani11061617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
Ungulates are a group of hoofed animals that have long interacted with humans as essential sources of food, labor, clothing, and transportation. These consist of domesticated, feral, and wild species raised in a wide range of habitats and biomes. Given the diverse and extreme environments inhabited by ungulates, unique adaptive traits are fundamental for fitness. The documentation of genes that underlie their genomic signatures of selection is crucial in this regard. The increasing availability of advanced sequencing technologies has seen the rapid growth of ungulate genomic resources, which offers an exceptional opportunity to understand their adaptive evolution. Here, we summarize the current knowledge on evolutionary genetic signatures underlying the adaptations of ungulates to different habitats.
Collapse
Affiliation(s)
- Vivien J. Chebii
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania;
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya;
| | - Emmanuel A. Mpolya
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania;
| | - Farai C. Muchadeyi
- Agricultural Research Council Biotechnology Platform (ARC-BTP), Private Bag X5, Onderstepoort 0110, South Africa;
| | - Jean-Baka Domelevo Entfellner
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya;
| |
Collapse
|
44
|
Salehian-Dehkordi H, Xu YX, Xu SS, Li X, Luo LY, Liu YJ, Wang DF, Cao YH, Shen M, Gao L, Chen ZH, Glessner JT, Lenstra JA, Esmailizadeh A, Li MH, Lv FH. Genome-Wide Detection of Copy Number Variations and Their Association With Distinct Phenotypes in the World's Sheep. Front Genet 2021; 12:670582. [PMID: 34093663 PMCID: PMC8175073 DOI: 10.3389/fgene.2021.670582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 11/19/2022] Open
Abstract
Copy number variations (CNVs) are a major source of structural variation in mammalian genomes. Here, we characterized the genome-wide CNV in 2059 sheep from 67 populations all over the world using the Ovine Infinium HD (600K) SNP BeadChip. We tested their associations with distinct phenotypic traits by conducting multiple independent genome-wide tests. In total, we detected 7547 unique CNVs and 18,152 CNV events in 1217 non-redundant CNV regions (CNVRs), covering 245 Mb (∼10%) of the whole sheep genome. We identified seven CNVRs with frequencies correlating to geographical origins and 107 CNVRs overlapping 53 known quantitative trait loci (QTLs). Gene ontology and pathway enrichment analyses of CNV-overlapping genes revealed their common involvement in energy metabolism, endocrine regulation, nervous system development, cell proliferation, immune, and reproduction. For the phenotypic traits, we detected significantly associated (adjusted P < 0.05) CNVRs harboring functional candidate genes, such as SBNO2 for polycerate; PPP1R11 and GABBR1 for tail weight; AKT1 for supernumerary nipple; CSRP1, WNT7B, HMX1, and FGFR3 for ear size; and NOS3 and FILIP1 in Wadi sheep; SNRPD3, KHDRBS2, and SDCCAG3 in Hu sheep; NOS3, BMP1, and SLC19A1 in Icelandic; CDK2 in Finnsheep; MICA in Romanov; and REEP4 in Texel sheep for litter size. These CNVs and associated genes are important markers for molecular breeding of sheep and other livestock species.
Collapse
Affiliation(s)
- Hosein Salehian-Dehkordi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ya-Xi Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Song-Song Xu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Xin Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ling-Yun Luo
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ya-Jing Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dong-Feng Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Yin-Hong Cao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Min Shen
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Lei Gao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Ze-Hui Chen
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Joseph T Glessner
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Ali Esmailizadeh
- Department of Animal Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Feng-Hua Lv
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
45
|
Xue J, Lv Q, Khas E, Bai C, Ma B, Li W, Cao Q, Fan Z, Ao C. Tissue-specific regulatory mechanism of LncRNAs and methylation in sheep adipose and muscle induced by Allium mongolicum Regel extracts. Sci Rep 2021; 11:9186. [PMID: 33911127 PMCID: PMC8080592 DOI: 10.1038/s41598-021-88444-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Allium mongolicum Regel (A. mongolicum) is a perennial and xerophytic Liliaceous allium plant in high altitude desert steppe and desert areas. Feeding A. mongolicum greatly reduced unpleasant mutton flavor and improves meat quality of sheep. We analyzed epigenetic regulatory mechanisms of water extracts of A. mongolicum (WEA) on sheep muscle and adipose using RNA-Seq and whole-genome Bisulfite sequencing. Feeding WEA reduced differentially expressed genes and long non-coding RNAs (lncRNAs) between two tissues but increased differentially methylation regions (DMRs). LncRNA and DMR targets were both involved in ATP binding, ubiquitin, protein kinase binding, regulation of cell proliferation, and related signaling pathways, but not unsaturated fatty acids metabolism. Besides, tissue specific targets were involved in distinct functional annotations, e.g., Golgi membrane and endoplasmic reticulum for muscle lncRNA, oxidative phosphorylation metabolism for adipose lncRNA, dsRNA binding for muscle DMRs. Epigenetic regulatory networks were also discovered to discovered essential co-regulated modules, e.g., co-regulated insulin secretion module (PDPK1, ATP1A2, CACNA1S and CAMK2D) in adipose. The results indicated that WEA induced distinct epigenetic regulation on muscle and adipose to diminish transcriptome differences between tissues, which highlights biological functions of A. mongolicum, tissue similarity and specificity, as well as regulatory mechanism of mutton odor.
Collapse
Affiliation(s)
- Jiangdong Xue
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, China
| | - Qi Lv
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction in Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Erdene Khas
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Chen Bai
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Bingjie Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction in Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wangjiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qina Cao
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zejun Fan
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Changjin Ao
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
46
|
Cao YH, Xu SS, Shen M, Chen ZH, Gao L, Lv FH, Xie XL, Wang XH, Yang H, Liu CB, Zhou P, Wan PC, Zhang YS, Yang JQ, Pi WH, Hehua EE, Berry DP, Barbato M, Esmailizadeh A, Nosrati M, Salehian-Dehkordi H, Dehghani-Qanatqestani M, Dotsev AV, Deniskova TE, Zinovieva NA, Brem G, Štěpánek O, Ciani E, Weimann C, Erhardt G, Mwacharo JM, Ahbara A, Han JL, Hanotte O, Miller JM, Sim Z, Coltman D, Kantanen J, Bruford MW, Lenstra JA, Kijas J, Li MH. Historical Introgression from Wild Relatives Enhanced Climatic Adaptation and Resistance to Pneumonia in Sheep. Mol Biol Evol 2021; 38:838-855. [PMID: 32941615 PMCID: PMC7947771 DOI: 10.1093/molbev/msaa236] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
How animals, particularly livestock, adapt to various climates and environments over short evolutionary time is of fundamental biological interest. Further, understanding the genetic mechanisms of adaptation in indigenous livestock populations is important for designing appropriate breeding programs to cope with the impacts of changing climate. Here, we conducted a comprehensive genomic analysis of diversity, interspecies introgression, and climate-mediated selective signatures in a global sample of sheep and their wild relatives. By examining 600K and 50K genome-wide single nucleotide polymorphism data from 3,447 samples representing 111 domestic sheep populations and 403 samples from all their seven wild relatives (argali, Asiatic mouflon, European mouflon, urial, snow sheep, bighorn, and thinhorn sheep), coupled with 88 whole-genome sequences, we detected clear signals of common introgression from wild relatives into sympatric domestic populations, thereby increasing their genomic diversities. The introgressions provided beneficial genetic variants in native populations, which were significantly associated with local climatic adaptation. We observed common introgression signals of alleles in olfactory-related genes (e.g., ADCY3 and TRPV1) and the PADI gene family including in particular PADI2, which is associated with antibacterial innate immunity. Further analyses of whole-genome sequences showed that the introgressed alleles in a specific region of PADI2 (chr2: 248,302,667-248,306,614) correlate with resistance to pneumonia. We conclude that wild introgression enhanced climatic adaptation and resistance to pneumonia in sheep. This has enabled them to adapt to varying climatic and environmental conditions after domestication.
Collapse
Affiliation(s)
- Yin-Hong Cao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Song-Song Xu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Min Shen
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- Xinjiang Academy of Agricultural and Reclamation Sciences, State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Shihezi, China
| | - Ze-Hui Chen
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Lei Gao
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- Xinjiang Academy of Agricultural and Reclamation Sciences, State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Shihezi, China
| | - Feng-Hua Lv
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xing-Long Xie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Xin-Hua Wang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- Xinjiang Academy of Agricultural and Reclamation Sciences, State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Shihezi, China
| | - Hua Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- Xinjiang Academy of Agricultural and Reclamation Sciences, State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Shihezi, China
| | - Chang-Bin Liu
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- Xinjiang Academy of Agricultural and Reclamation Sciences, State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Shihezi, China
| | - Ping Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- Xinjiang Academy of Agricultural and Reclamation Sciences, State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Shihezi, China
| | - Peng-Cheng Wan
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- Xinjiang Academy of Agricultural and Reclamation Sciences, State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Shihezi, China
| | - Yun-Sheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- Xinjiang Academy of Agricultural and Reclamation Sciences, State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Shihezi, China
| | - Jing-Quan Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- Xinjiang Academy of Agricultural and Reclamation Sciences, State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Shihezi, China
| | - Wen-Hui Pi
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- Xinjiang Academy of Agricultural and Reclamation Sciences, State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Shihezi, China
| | - EEr Hehua
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Donagh P Berry
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Mario Barbato
- Department of Animal Sciences, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Nosrati
- Department of Agriculture, Payame Noor University, Tehran, Iran
| | - Hosein Salehian-Dehkordi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | | | - Arsen V Dotsev
- L.K. Ernst Federal Science Center for Animal Husbandry, Moscow Region, Podolsk, Russian Federation
| | - Tatiana E Deniskova
- L.K. Ernst Federal Science Center for Animal Husbandry, Moscow Region, Podolsk, Russian Federation
| | - Natalia A Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Moscow Region, Podolsk, Russian Federation
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Ondřej Štěpánek
- Department of Virology, State Veterinary Institute Jihlava, Jihlava, Czech Republic
| | - Elena Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo 24, Moro, Bari, Italy
| | - Christina Weimann
- Department of Animal Breeding and Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Georg Erhardt
- Department of Animal Breeding and Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Joram M Mwacharo
- Small Ruminant Genomics, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Abulgasim Ahbara
- School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Olivier Hanotte
- School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Addis Abeba, Ethiopia
- Center for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Joshua M Miller
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Zijian Sim
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Fish and Wildlife Enforcement Branch Forensic Unit, Government of Alberta, Edmonton, AB, Canada
| | - David Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Michael W Bruford
- School of Biosciences, Cardiff University, Cathays Park, Cardiff, United Kingdom
- Sustainable Places Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - James Kijas
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Brisbane, QLD, Australia
| | - Meng-Hua Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
47
|
Li LL, Ma SK, Peng W, Fang YG, Duo HR, Fu HY, Jia GX. Genetic diversity and population structure of Tibetan sheep breeds determined by whole genome resequencing. Trop Anim Health Prod 2021; 53:174. [PMID: 33611716 DOI: 10.1007/s11250-021-02605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/08/2021] [Indexed: 12/01/2022]
Abstract
Tibetan sheep is one of primitive Chinese sheep breeds, which achieved the divergence about 2500 years ago in Qinghai plateau region. According to different geographic conditions, especially altitudes, Tibetan sheep evolved into different breeds. In this study, we performed whole genome resequencing of 5 representative Tibetan sheep breeds. Comparative genomic analysis showed that they can be divided into different clades with a close genetic relationship. However, some genes with common selective regions were enriched for hypoxic adaptability in different breeds living at higher altitude, including GHR, BMP15, and CPLANE1. Furthermore, breed-specific selective regions about physical characteristics, especially wool growth, were found in genes such as BSND, USP24, NCAPG, and LCORL. This study could contribute to our understanding about trait formation and offer a reference for breeding of Tibetan sheep.
Collapse
Affiliation(s)
- Lei-Lei Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shi-Ke Ma
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Wei Peng
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - You-Gui Fang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Hai-Rui Duo
- School of Geography Science, Qinghai Normal University, Xining, 810016, China
| | - Hong-Yun Fu
- Qinghai Headquarter of Animal Husbandry Extension Station, Xining, 810008, China
| | - Gong-Xue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.
| |
Collapse
|
48
|
Whole Genome Sequencing Reveals the Effects of Recent Artificial Selection on Litter Size of Bamei Mutton Sheep. Animals (Basel) 2021; 11:ani11010157. [PMID: 33445473 PMCID: PMC7827510 DOI: 10.3390/ani11010157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Bamei mutton sheep is a Chinese domestic sheep breed developed by crossing German Mutton Merino sheep and indigenous Mongolian sheep for meat production. There is large variation in the reproductive abilities of Bamei mutton sheep. After recent artificial selection, the average lambing rate of the Bamei mutton nucleus group was over 150%. We used the FST (Fixation Index) and XP-EHH (The Cross-Population Extended Haplotype Homozygosity) statistical approach to detect the selective sweeps between high- and low-fecundity Bamei mutton sheep groups. JUN (JUN proto-oncogene, AP-1 transcription factor subunit), ITPR3 (inositol 1,4,5-trisphosphate receptor type 3, PLCB2 (phospholipase C beta 2), HERC5 (HECT and RLD domain containing E3 ubiquitin protein ligase 5), and KDM4B (lysine demethylase 4B) were detected that are potential responsible for litter size. These observations provide a new opportunity to research the genetic variation influencing fecundity traits within a population evolving under artificial selection. Abstract Bamei mutton sheep is a Chinese domestic sheep breed developed by crossing German Mutton Merino sheep and indigenous Mongolian sheep for meat production. Here, we focused on detecting candidate genes associated with the increasing of the litter size in this breeds under recent artificial selection to improve the efficiency of mutton production. We selected five high- and five low-fecundity Bamei mutton sheep for whole-genome resequencing to identify candidate genes for sheep prolificacy. We used the FST and XP-EHH statistical approach to detect the selective sweeps between these two groups. Combining the two selective sweep methods, the reproduction-related genes JUN, ITPR3, PLCB2, HERC5, and KDM4B were detected. JUN, ITPR3, and PLCB2 play vital roles in GnRH (gonadotropin-releasing hormone), oxytocin, and estrogen signaling pathway. Moreover, KDM4B, which had the highest FST value, exhibits demethylase activity. It can affect reproduction by binding the promoters of estrogen-regulated genes, such as FOXA1 (forkhead box A1) and ESR1 (estrogen receptor 1). Notably, one nonsynonymous mutation (p.S936A) specific to the high-prolificacy group was identified at the TUDOR domain of KDM4B. These observations provide a new opportunity to research the genetic variation influencing fecundity traits within a population evolving under artificial selection. The identified genomic regions that are responsible for litter size can in turn be used for further selection.
Collapse
|
49
|
Xia Q, Wang X, Pan Z, Zhang R, Wei C, Chu M, Di R. Genetic diversity and phylogenetic relationship of nine sheep populations based on microsatellite markers. Arch Anim Breed 2021; 64:7-16. [PMID: 34084899 PMCID: PMC8160997 DOI: 10.5194/aab-64-7-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/02/2020] [Indexed: 11/11/2022] Open
Abstract
The objective of this study was to assess the genetic diversity and
phylogenetic relationship of nine sheep populations, including two famous
high prolific populations and seven popular mutton populations raised in
China. Overall, these sheep populations in this study exhibited a rich
genetic diversity. Both the expected heterozygosity and Nei's unbiased gene
diversity ranged from 0.64 to 0.75, with the lowest value found in Dorset sheep (DST) and
the highest in Hu sheep (HUS) and Ba Han sheep (BAS). The polymorphic information content (PIC) varied between 0.59 in DST and 0.71 in HUS and BAS. Specifically, for
individual breeds, the small-tail Han sheep (STH) and the four introduced populations did not
display the expected diversity; therefore more attention should be paid to
the maintenance of diversity during management of these populations. The
results of un-weighted pair-group method (UPGMA) phylogenetic tree and structure analysis indicated that the
nine investigated populations can be divided into two groups. Suffolk (SUF) and DST
were clustered in one group, and the other group can be further divided into
three clusters: German Mutton Merino (GMM)–BAS–Bamei Mutton sheep (BAM), HUS–STH and Du Han (DOS)–Dorper (DOP). This clustering result is
consistent with sheep breeding history. TreeMix analysis also hinted at the
possible gene flow from GMM to SUF. Together, an in-depth view of genetic
diversity and genetic relationship will have important implications for
breed-specific management.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Zhangyuan Pan
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Rensen Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Caihong Wei
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
50
|
Mei C, Gui L, Hong J, Raza SHA, Aorigele C, Tian W, Garcia M, Xin Y, Yang W, Zhang S, Zan L. Insights into adaption and growth evolution: a comparative genomics study on two distinct cattle breeds from Northern and Southern China. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:959-967. [PMID: 33614243 PMCID: PMC7868925 DOI: 10.1016/j.omtn.2020.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/31/2020] [Indexed: 11/29/2022]
Abstract
Mongolian cattle (MG, Bos taurus) and Minnan cattle (MN, Bos indicus) are two different breeds of Chinese indigenous cattle, representing North type and South type, respectively. However, their value and potential have not yet been discovered at the genomic level. In this study, 26 individuals of MN and MG were sequenced for the first time at an average of 13.9- and 12.8-fold, respectively. Large numbers of different variations were identified. In addition, the analyses of phylogenetic and population structure showed that these two cattle breeds are distinct from each other, and results of linkage disequilibrium analysis revealed that these two cattle breeds have undergone various degrees of intense natural or artificial selection. Subsequently, 496 and 306 potential selected genes (PSRs) were obtained in MN and MG, containing 1,096 and 529 potential selected genes (PSGs), respectively. These PSGs, together with the analyzed copy number variation (CNV)-related genes, showed potential relations with their phenotypic characteristics, including environmental adaptability (e.g., DVL2, HSPA4, CDHR4), feed efficiency (e.g., R3HDM1, PLAG1, XKR4), and meat/milk production (e.g., PDHB, LEMD3, APOF). The results of this study help to gain new insights into the genetic characteristics of two distinct cattle breeds and will contribute to future cattle breeding.
Collapse
Affiliation(s)
- Chugang Mei
- Northwest A&F University, Yangling 712100, Shaanxi, China.,National Beef Cattle Improvement Center, Yangling 712100, China
| | - Linsheng Gui
- Northwest A&F University, Yangling 712100, Shaanxi, China.,Qinghai University, Xining 810008, China
| | - Jieyun Hong
- Northwest A&F University, Yangling 712100, Shaanxi, China.,Yunnan Agricultural University, Kunming 650031, China
| | | | - Chen Aorigele
- Inner Mongolia Agricultural University, Hohhot 010000, China
| | - Wanqiang Tian
- Yangling Vocational & Technical College, Yangling 712100, China
| | | | - Yaping Xin
- Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wucai Yang
- Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Song Zhang
- Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Linsen Zan
- Northwest A&F University, Yangling 712100, Shaanxi, China.,National Beef Cattle Improvement Center, Yangling 712100, China
| |
Collapse
|