1
|
Männer L, Schell T, Spies J, Galià-Camps C, Baranski D, Ben Hamadou A, Gerheim C, Neveling K, Helfrich EJN, Greve C. Chromosome-level genome assembly of the sacoglossan sea slug Elysia timida (Risso, 1818). BMC Genomics 2024; 25:941. [PMID: 39375624 PMCID: PMC11460185 DOI: 10.1186/s12864-024-10829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Sequencing and annotating genomes of non-model organisms helps to understand genome architecture, the genetic processes underlying species traits, and how these genes have evolved in closely-related taxa, among many other biological processes. However, many metazoan groups, such as the extremely diverse molluscs, are still underrepresented in the number of sequenced and annotated genomes. Although sequencing techniques have recently improved in quality and quantity, molluscs are still neglected due to difficulties in applying standardized protocols for obtaining genomic data. RESULTS In this study, we present the chromosome-level genome assembly and annotation of the sacoglossan sea slug species Elysia timida, known for its ability to store the chloroplasts of its food algae. In particular, by optimizing the long-read and chromosome conformation capture library preparations, the genome assembly was performed using PacBio HiFi and Arima HiC data. The scaffold and contig N50s, at 41.8 Mb and 1.92 Mb, respectively, are approximately 30-fold and fourfold higher compared to other published sacoglossan genome assemblies. Structural annotation resulted in 19,904 protein-coding genes, which are more contiguous and complete compared to publicly available annotations of Sacoglossa with respect to metazoan BUSCOs. We found no evidence for horizontal gene transfer (HGT), i.e. no photosynthetic genes encoded in the sacoglossan nucleus genome. However, we detected genes encoding polyketide synthases in E. timida, indicating that polypropionates are produced. HPLC-MS/MS analysis confirmed the presence of a large number of polypropionates, including known and yet uncharacterised compounds. CONCLUSIONS We can show that our methodological approach helps to obtain a high-quality genome assembly even for a "difficult-to-sequence" organism, which may facilitate genome sequencing in molluscs. This will enable a better understanding of complex biological processes in molluscs, such as functional kleptoplasty in Sacoglossa, by significantly improving the quality of genome assemblies and annotations.
Collapse
Affiliation(s)
- Lisa Männer
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany.
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany.
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Julia Spies
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-Von-Laue Straße 9, Frankfurt am Main, 60438, Germany
| | - Carles Galià-Camps
- Centre d'Estudis Avançats de Blanes (CEAB, CSIC), Accés Cala St. Francesc 14, Blanes, Girona, 17300, Spain
- Institut de Recerca de La Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Damian Baranski
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Alexander Ben Hamadou
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Charlotte Gerheim
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Eric J N Helfrich
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-Von-Laue Straße 9, Frankfurt am Main, 60438, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany.
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany.
| |
Collapse
|
2
|
Cartaxana P, Morelli L, Cassin E, Havurinne V, Cabral M, Cruz S. Prey species and abundance affect growth and photosynthetic performance of the polyphagous sea slug Elysia crispata. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230810. [PMID: 37650060 PMCID: PMC10465201 DOI: 10.1098/rsos.230810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Some sacoglossan sea slugs steal functional macroalgal chloroplasts (kleptoplasts). In this study, we investigated the effects of algal prey species and abundance on the growth and photosynthetic capacity of the tropical polyphagous sea slug Elysia crispata. Recently hatched sea slugs fed and acquired chloroplasts from the macroalga Bryopsis plumosa, but not from Acetabularia acetabulum. However, adult sea slugs were able to switch diet to A. acetabulum, rapidly replacing the great majority of the original kleptoplasts. When fed with B. plumosa, higher feeding frequency resulted in significantly higher growth and kleptoplast photosynthetic yield, as well as a slower relative decrease in these parameters upon starvation. Longevity of A. acetabulum-derived chloroplasts in E. crispata was over twofold that of B. plumosa. Furthermore, significantly lower relative weight loss under starvation was observed in sea slugs previously fed on A. acetabulum than on B. plumosa. This study shows that functionality and longevity of kleptoplasts in photosynthetic sea slugs depend on the origin of the plastids. Furthermore, we have identified A. acetabulum as a donor of photosynthetically efficient chloroplasts common to highly specialized monophagous and polyphagous sea slugs capable of long-term retention, which opens new experimental routes to unravel the unsolved mysteries of kleptoplasty.
Collapse
Affiliation(s)
- Paulo Cartaxana
- ECOMARE – Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Luca Morelli
- ECOMARE – Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Elena Cassin
- ECOMARE – Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Vesa Havurinne
- ECOMARE – Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Miguel Cabral
- ECOMARE – Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Sónia Cruz
- ECOMARE – Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
3
|
Abstract
Kleptoplasty, the process by which a host organism sequesters and retains algal chloroplasts, is relatively common in protists. The origin of the plastid varies, as do the length of time it is retained in the host and the functionality of the association. In metazoa, the capacity for long-term (several weeks to months) maintenance of photosynthetically active chloroplasts is a unique characteristic of a handful of sacoglossan sea slugs. This capability has earned these slugs the epithets "crawling leaves" and "solar-powered sea slugs." This Unsolved Mystery explores the basis of chloroplast maintenance and function and attempts to clarify contradictory results in the published literature. We address some of the mysteries of this remarkable association. Why are functional chloroplasts retained? And how is the function of stolen chloroplasts maintained without the support of the algal nucleus?
Collapse
|
4
|
Havurinne V, Aitokari R, Mattila H, Käpylä V, Tyystjärvi E. Ultraviolet screening by slug tissue and tight packing of plastids protect photosynthetic sea slugs from photoinhibition. PHOTOSYNTHESIS RESEARCH 2022; 152:373-387. [PMID: 34826025 PMCID: PMC9458594 DOI: 10.1007/s11120-021-00883-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/22/2021] [Indexed: 05/16/2023]
Abstract
One of the main mysteries regarding photosynthetic sea slugs is how the slug plastids handle photoinhibition, the constant light-induced damage to Photosystem II of photosynthesis. Recovery from photoinhibition involves proteins encoded by both the nuclear and plastid genomes, and slugs with plastids isolated from the algal nucleus are therefore expected to be incapable of constantly repairing the damage as the plastids inside the slugs grow old. We studied photoinhibition-related properties of the sea slug Elysia timida that ingests its plastids from the green alga Acetabularia acetabulum. Spectral analysis of both the slugs and the algae revealed that there are two ways the slugs use to avoid major photoinhibition of their plastids. Firstly, highly photoinhibitory UV radiation is screened by the slug tissue or mucus before it reaches the plastids. Secondly, the slugs pack the plastids tightly in their thick bodies, and therefore plastids in the outer layers protect the inner ones from photoinhibition. Both properties are expected to greatly improve the longevity of the plastids inside the slugs, as the plastids do not need to repair excessive amounts of damage.
Collapse
Affiliation(s)
- Vesa Havurinne
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Riina Aitokari
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Heta Mattila
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Ville Käpylä
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Esa Tyystjärvi
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland.
| |
Collapse
|
5
|
Cartaxana P, Rey F, LeKieffre C, Lopes D, Hubas C, Spangenberg JE, Escrig S, Jesus B, Calado G, Domingues R, Kühl M, Calado R, Meibom A, Cruz S. Photosynthesis from stolen chloroplasts can support sea slug reproductive fitness. Proc Biol Sci 2021; 288:20211779. [PMID: 34583582 PMCID: PMC8479339 DOI: 10.1098/rspb.2021.1779] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Some sea slugs are able to steal functional chloroplasts (kleptoplasts) from their algal food sources, but the role and relevance of photosynthesis to the animal host remain controversial. While some researchers claim that kleptoplasts are slowly digestible 'snacks', others advocate that they enhance the overall fitness of sea slugs much more profoundly. Our analysis shows light-dependent incorporation of 13C and 15N in the albumen gland and gonadal follicles of the sea slug Elysia timida, representing translocation of photosynthates to kleptoplast-free reproductive organs. Long-chain polyunsaturated fatty acids with reported roles in reproduction were produced in the sea slug cells using labelled precursors translocated from the kleptoplasts. Finally, we report reduced fecundity of E. timida by limiting kleptoplast photosynthesis. The present study indicates that photosynthesis enhances the reproductive fitness of kleptoplast-bearing sea slugs, confirming the biological relevance of this remarkable association between a metazoan and an algal-derived organelle.
Collapse
Affiliation(s)
- Paulo Cartaxana
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Aveiro 3810-193, Portugal
- Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Felisa Rey
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Aveiro 3810-193, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Charlotte LeKieffre
- Cell and Plant Physiology Laboratory, University of Grenoble Alpes, CNRS, CEA, INRAE, Grenoble Cedex, France
| | - Diana Lopes
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Aveiro 3810-193, Portugal
| | - Cédric Hubas
- Biologie des Organismes et Écosystèmes Aquatiques (UMR BOREA 8067), Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, CNRS, IRD, Station Marine de Concarneau, Place de la croix, Concarneau 29900, France
| | - Jorge E. Spangenberg
- Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Bruno Jesus
- Laboratoire Mer Molécules Santé, Faculté des Sciences et des Techniques, Université de Nantes, Nantes 44322, France
| | - Gonçalo Calado
- Department of Life Sciences, Lusófona University, Campo Grande 376, Lisbon 1749-024, Portugal
- NOVA School of Science and Technology, MARE—Marine and Environmental Sciences Centre, Campus de Caparica, Caparica 2829-516, Portugal
| | - Rosário Domingues
- Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, Helsingør 3000, Denmark
| | - Ricardo Calado
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Aveiro 3810-193, Portugal
| | - Anders Meibom
- Laboratory for Biological Geochemistry, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Sónia Cruz
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
6
|
Havurinne V, Handrich M, Antinluoma M, Khorobrykh S, Gould SB, Tyystjärvi E. Genetic autonomy and low singlet oxygen yield support kleptoplast functionality in photosynthetic sea slugs. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5553-5568. [PMID: 33989402 PMCID: PMC8318255 DOI: 10.1093/jxb/erab216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/12/2021] [Indexed: 05/04/2023]
Abstract
The kleptoplastic sea slug Elysia chlorotica consumes Vaucheria litorea, stealing its plastids, which then photosynthesize inside the animal cells for months. We investigated the properties of V. litorea plastids to understand how they withstand the rigors of photosynthesis in isolation. Transcription of specific genes in laboratory-isolated V. litorea plastids was monitored for 7 days. The involvement of plastid-encoded FtsH, a key plastid maintenance protease, in recovery from photoinhibition in V. litorea was estimated in cycloheximide-treated cells. In vitro comparison of V. litorea and spinach thylakoids was applied to investigate reactive oxygen species formation in V. litorea. In comparison to other tested genes, the transcripts of ftsH and translation elongation factor EF-Tu (tufA) decreased slowly in isolated V. litorea plastids. Higher levels of FtsH were also evident in cycloheximide-treated cells during recovery from photoinhibition. Charge recombination in PSII of V. litorea was found to be fine-tuned to produce only small quantities of singlet oxygen, and the plastids also contained reactive oxygen species-protective compounds. Our results support the view that the genetic characteristics of the plastids are crucial in creating a photosynthetic sea slug. The plastid's autonomous repair machinery is likely enhanced by low singlet oxygen production and elevated expression of FtsH.
Collapse
Affiliation(s)
- Vesa Havurinne
- Department of Biotechnology/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Maria Handrich
- Department of Biology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Mikko Antinluoma
- Department of Biotechnology/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Sergey Khorobrykh
- Department of Biotechnology/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Sven B Gould
- Department of Biology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Esa Tyystjärvi
- Department of Biotechnology/Molecular Plant Biology, University of Turku, Turku, Finland
- Correspondence:
| |
Collapse
|
7
|
Aoki R, Matsunaga S. A Photosynthetic Animal: A Sacoglossan Sea Slug that Steals Chloroplasts. CYTOLOGIA 2021. [DOI: 10.1508/cytologia.86.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ryota Aoki
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science
| | - Sachihiro Matsunaga
- Laboratory of Integrated Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences
| |
Collapse
|
8
|
Seasonality and Longevity of the Functional Chloroplasts Retained by the Sacoglossan Sea Slug Plakobranchus ocellatus van Hasselt, 1824 Inhabiting A Subtropical Back Reef Off Okinawa-jima Island, Japan. Zool Stud 2021; 59:e65. [PMID: 34140982 DOI: 10.6620/zs.2020.59-65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/12/2020] [Indexed: 01/19/2023]
Abstract
Plakobranchus ocellatus is a sacoglossan sea slug that feeds on multiple algal species and retains chloroplasts as kleptoplasts for several months. The seasonal differences in the photosynthetic properties of kleptoplasts were examined in sacoglossans collected from a subtropical back reef off of Okinawa-jima (26°21'55"N 127°44'10"E) in 2017-2018. The effective quantum yield of photosystem II in kleptoplasts indicated that stronger ambient light causes more stress in kleptoplasts. The maximum quantum yields (QY) at 20°C, 30°C, and 40°C indicated that kleptoplasts were more functional in photosynthesis in winter than in spring or summer, whereas kleptoplasts may have the highest tolerance to high temperatures in summer. In the long-starvation experiment (LSE), the relative ratio of body weight (relW) linearly decreased and the sacoglossans died within 2 months in the total dark condition, whereas in the LSE with illumination, the animals survived up to 5 months. The time course for the decrease in the relative ratio of the QY (relQY) in the LSE indicated that the photosynthetic function was almost normal for 2 months, regardless of the presence or absence of illumination, after which time relQY gradually decreased to zero. In the field, P. ocellatus continuously took up new kleptoplasts that have suitable properties of photosynthetic ability for each season. In a subtropical environment, in which water temperatures vary from below 20°C to above 30°C, seasonal changes could cause a temporary shortage of algal food and affect the photosynthetic activity of P. ocellatus kleptoplast. Our results, however, indicated the kleptoplasts of P. ocellatus functioned normally for several months and maintained the presence of this sacoglossan in a subtropical environment throughout the year.
Collapse
|
9
|
Maeda T, Takahashi S, Yoshida T, Shimamura S, Takaki Y, Nagai Y, Toyoda A, Suzuki Y, Arimoto A, Ishii H, Satoh N, Nishiyama T, Hasebe M, Maruyama T, Minagawa J, Obokata J, Shigenobu S. Chloroplast acquisition without the gene transfer in kleptoplastic sea slugs, Plakobranchus ocellatus. eLife 2021; 10:60176. [PMID: 33902812 PMCID: PMC8079154 DOI: 10.7554/elife.60176] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Some sea slugs sequester chloroplasts from algal food in their intestinal cells and photosynthesize for months. This phenomenon, kleptoplasty, poses a question of how the chloroplast retains its activity without the algal nucleus. There have been debates on the horizontal transfer of algal genes to the animal nucleus. To settle the arguments, this study reported the genome of a kleptoplastic sea slug, Plakobranchus ocellatus, and found no evidence of photosynthetic genes encoded on the nucleus. Nevertheless, it was confirmed that light illumination prolongs the life of mollusk under starvation. These data presented a paradigm that a complex adaptive trait, as typified by photosynthesis, can be transferred between eukaryotic kingdoms by a unique organelle transmission without nuclear gene transfer. Our phylogenomic analysis showed that genes for proteolysis and immunity undergo gene expansion and are up-regulated in chloroplast-enriched tissue, suggesting that these molluskan genes are involved in the phenotype acquisition without horizontal gene transfer.
Collapse
Affiliation(s)
- Taro Maeda
- National Institute for Basic Biology, Okazaki, Japan
| | - Shunichi Takahashi
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyu, Okinawa, Japan
| | - Takao Yoshida
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Shigeru Shimamura
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Yoshihiro Takaki
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Yukiko Nagai
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | | | | | - Asuka Arimoto
- Marine Biological Laboratory, Hiroshima University, Hiroshima, Japan
| | | | - Nori Satoh
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki, Japan.,SOKENDAI, the Graduate University for Advanced Studies, Okazaki, Japan
| | | | - Jun Minagawa
- National Institute for Basic Biology, Okazaki, Japan.,SOKENDAI, the Graduate University for Advanced Studies, Okazaki, Japan
| | - Junichi Obokata
- Kyoto Prefectural University, Kyoto, Japan.,Setsunan Universiy, Hirakata, Japan
| | - Shuji Shigenobu
- National Institute for Basic Biology, Okazaki, Japan.,SOKENDAI, the Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
10
|
Melo Clavijo J, Frankenbach S, Fidalgo C, Serôdio J, Donath A, Preisfeld A, Christa G. Identification of scavenger receptors and thrombospondin-type-1 repeat proteins potentially relevant for plastid recognition in Sacoglossa. Ecol Evol 2020; 10:12348-12363. [PMID: 33209293 PMCID: PMC7663992 DOI: 10.1002/ece3.6865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022] Open
Abstract
Functional kleptoplasty is a photosymbiotic relationship, in which photosynthetically active chloroplasts serve as an intracellular symbiont for a heterotrophic host. Among Metazoa, functional kleptoplasty is only found in marine sea slugs belonging to the Sacoglossa and recently described in Rhabdocoela worms. Although functional kleptoplasty has been intensively studied in Sacoglossa, the fundamentals of the specific recognition of the chloroplasts and their subsequent incorporation are unknown. The key to ensure the initiation of any symbiosis is the ability to specifically recognize the symbiont and to differentiate a symbiont from a pathogen. For instance, in photosymbiotic cnidarians, several studies have shown that the host innate immune system, in particular scavenger receptors (SRs) and thrombospondin-type-1 repeat (TSR) protein superfamily, is playing a major role in the process of recognizing and differentiating symbionts from pathogens. In the present study, SRs and TSRs of three Sacoglossa sea slugs, Elysia cornigera, Elysia timida, and Elysia chlorotica, were identified by translating available transcriptomes into potential proteins and searching for receptor specific protein and/or transmembrane domains. Both receptors classes are highly diverse in the slugs, and many new domain arrangements for each receptor class were found. The analyses of the gene expression of these three species provided a set of species-specific candidate genes, that is, SR-Bs, SR-Es, C-type lectins, and TSRs, that are potentially relevant for the recognition of kleptoplasts. The results set the base for future experimental studies to understand if and how these candidate receptors are indeed involved in chloroplast recognition.
Collapse
Affiliation(s)
- Jenny Melo Clavijo
- Fakultät für Mathematik und Naturwissenschaften, Zoologie und BiologiedidaktikBergische Universität WuppertalWuppertalGermany
| | - Silja Frankenbach
- Department of Biology and CESAM – Center for Environmental and Marine StudiesUniversity of AveiroAveiroPortugal
| | - Cátia Fidalgo
- Department of Biology and CESAM – Center for Environmental and Marine StudiesUniversity of AveiroAveiroPortugal
| | - João Serôdio
- Department of Biology and CESAM – Center for Environmental and Marine StudiesUniversity of AveiroAveiroPortugal
| | - Alexander Donath
- Center for Molecular Biodiversity ResearchZoological Research Museum Alexander KoenigBonnGermany
| | - Angelika Preisfeld
- Fakultät für Mathematik und Naturwissenschaften, Zoologie und BiologiedidaktikBergische Universität WuppertalWuppertalGermany
| | - Gregor Christa
- Fakultät für Mathematik und Naturwissenschaften, Zoologie und BiologiedidaktikBergische Universität WuppertalWuppertalGermany
| |
Collapse
|
11
|
Torres JP, Lin Z, Winter JM, Krug PJ, Schmidt EW. Animal biosynthesis of complex polyketides in a photosynthetic partnership. Nat Commun 2020; 11:2882. [PMID: 32513940 PMCID: PMC7280274 DOI: 10.1038/s41467-020-16376-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/29/2020] [Indexed: 11/09/2022] Open
Abstract
Complex polyketides are typically associated with microbial metabolism. Here, we report that animals also make complex, microbe-like polyketides. We show there is a widespread branch of fatty acid synthase- (FAS)-like polyketide synthase (PKS) proteins, which sacoglossan animals use to synthesize complex products. The purified sacogolassan protein EcPKS1 uses only methylmalonyl-CoA as a substrate, otherwise unknown in animal lipid metabolism. Sacoglossans are sea slugs, some of which eat algae, digesting the cells but maintaining functional chloroplasts. Here, we provide evidence that polyketides support this unusual photosynthetic partnership. The FAS-like PKS family represents an uncharacterized branch of polyketide and fatty acid metabolism, encoding a large diversity of biomedically relevant animal enzymes and chemicals awaiting discovery. The biochemical characterization of an intact animal polyketide biosynthetic enzyme opens the door to understanding the immense untapped metabolic potential of metazoans. Complex polyketides are usually produced by microbes, whereas the origin of polyketides found in animals remained unknown. This study shows that sacoglossan animals, such as sea slugs, employ fatty acid synthase-like proteins to produce microbe-like polyketides.
Collapse
Affiliation(s)
- Joshua P Torres
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jaclyn M Winter
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Patrick J Krug
- Department of Biological Sciences, California State University, Los Angeles, CA, 90032, USA
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
12
|
Donohoo SA, Wade RM, Sherwood AR. Finding the Sweet Spot: Sub-Ambient Light Increases Fitness and Kleptoplast Survival in the Sea Slug Plakobranchus cf. ianthobaptus Gould, 1852. THE BIOLOGICAL BULLETIN 2020; 238:154-166. [PMID: 32597715 DOI: 10.1086/709371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sacoglossans, or "sap-sucking" sea slugs, are primarily algivorous, with many taxa exhibiting kleptoplasty, the feeding and retaining of photosynthetically active chloroplasts from algae. The Plakobranchus species complex exhibits some of the longest kleptoplast retention and survival times under starvation conditions, but the contributions of these kleptoplasts to their survival and overall fitness have been widely debated. In this study we assessed the effects of starvation and light on the fitness of Plakobranchus cf. ianthobaptus and its kleptoplasts by placing starved individuals in eight daily average light treatments, ranging from near dark (2 µmol photon m-2 s-1) to ambient light (470 µmol photon m-2 s-1). Slug weight was used as a metric of fitness, and kleptoplast photosynthetic activity was determined via maximum quantum yield (Fv/Fm) by pulse-amplitude modulated fluorometry as a proxy for kleptoplast health. Plakobranchus individuals in near-dark and high light treatments (>160 µmol photon m-2 s-1) experienced significantly greater weight loss than those in low light (65 µmol photon m-2 s-1) and moderate light treatments (95-135 µmol photon m-2 s-1). Additionally, individuals in high light treatments experienced a rapid decline in kleptoplast photosynthetic activity, while all other treatments experienced minimal decline. This relationship between kleptoplast degradation and weight loss suggests an important link between fitness and kleptoplasty. Given the significant negative effects of ambient conditions, regular refreshment and replenishment of kleptoplasts or physiological or behavioral adjustments are likely employed for the benefits of kleptoplasty to be maintained.
Collapse
|
13
|
Ganley JG, Derbyshire ER. Linking Genes to Molecules in Eukaryotic Sources: An Endeavor to Expand Our Biosynthetic Repertoire. Molecules 2020; 25:E625. [PMID: 32023950 PMCID: PMC7036892 DOI: 10.3390/molecules25030625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
The discovery of natural products continues to interest chemists and biologists for their utility in medicine as well as facilitating our understanding of signaling, pathogenesis, and evolution. Despite an attenuation in the discovery rate of new molecules, the current genomics and transcriptomics revolution has illuminated the untapped biosynthetic potential of many diverse organisms. Today, natural product discovery can be driven by biosynthetic gene cluster (BGC) analysis, which is capable of predicting enzymes that catalyze novel reactions and organisms that synthesize new chemical structures. This approach has been particularly effective in mining bacterial and fungal genomes where it has facilitated the discovery of new molecules, increased the understanding of metabolite assembly, and in some instances uncovered enzymes with intriguing synthetic utility. While relatively less is known about the biosynthetic potential of non-fungal eukaryotes, there is compelling evidence to suggest many encode biosynthetic enzymes that produce molecules with unique bioactivities. In this review, we highlight how the advances in genomics and transcriptomics have aided natural product discovery in sources from eukaryotic lineages. We summarize work that has successfully connected genes to previously identified molecules and how advancing these techniques can lead to genetics-guided discovery of novel chemical structures and reactions distributed throughout the tree of life. Ultimately, we discuss the advantage of increasing the known biosynthetic space to ease access to complex natural and non-natural small molecules.
Collapse
Affiliation(s)
- Jack G Ganley
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708-0346, USA
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708-0346, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
14
|
Cartaxana P, Morelli L, Jesus B, Calado G, Calado R, Cruz S. The photon menace: kleptoplast protection in the photosynthetic sea slug Elysia timida. ACTA ACUST UNITED AC 2019; 222:jeb.202580. [PMID: 31171599 DOI: 10.1242/jeb.202580] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/02/2019] [Indexed: 11/20/2022]
Abstract
Absorption of excessive light by photosymbiotic organisms leads to the production of reactive oxygen species that can damage both symbiont and host. This is highly relevant in sacoglossan sea slugs that host functional chloroplasts 'stolen' from their algal foods (kleptoplasts), because of limited repair capacities resulting from the absence of algal nuclear genes. Here, we experimentally demonstrate (i) a host-mediated photoprotection mechanism in the photosynthetic sea slug Elysia timida, characterized by the closure of the parapodia under high irradiance and the reduction of kleptoplast light exposure; and (ii) the activation of a reversible xanthophyll cycle in kleptoplasts, which allows excessive energy to be dissipated. The described mechanisms reduce photoinactivation under high irradiance. We conclude that both host-mediated behavioural and plastid-based physiological photoprotective mechanisms can mitigate oxidative stress induced by high light in E. timida These mechanisms may play an important role in the establishment of long-term photosynthetically active kleptoplasts.
Collapse
Affiliation(s)
- Paulo Cartaxana
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Luca Morelli
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Jesus
- Laboratoire Mer Molécules Santé, Faculté des Sciences et des Techniques, Université de Nantes, 44322 Nantes, France
| | - Gonçalo Calado
- Departamento de Ciências da Vida, Universidade Lusófona, 1749-024 Lisboa, Portugal
| | - Ricardo Calado
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Sónia Cruz
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Cai H, Li Q, Fang X, Li J, Curtis NE, Altenburger A, Shibata T, Feng M, Maeda T, Schwartz JA, Shigenobu S, Lundholm N, Nishiyama T, Yang H, Hasebe M, Li S, Pierce SK, Wang J. A draft genome assembly of the solar-powered sea slug Elysia chlorotica. Sci Data 2019; 6:190022. [PMID: 30778257 PMCID: PMC6380222 DOI: 10.1038/sdata.2019.22] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/10/2019] [Indexed: 11/09/2022] Open
Abstract
Elysia chlorotica, a sacoglossan sea slug found off the East Coast of the United States, is well-known for its ability to sequester chloroplasts from its algal prey and survive by photosynthesis for up to 12 months in the absence of food supply. Here we present a draft genome assembly of E. chlorotica that was generated using a hybrid assembly strategy with Illumina short reads and PacBio long reads. The genome assembly comprised 9,989 scaffolds, with a total length of 557 Mb and a scaffold N50 of 442 kb. BUSCO assessment indicated that 93.3% of the expected metazoan genes were completely present in the genome assembly. Annotation of the E. chlorotica genome assembly identified 176 Mb (32.6%) of repetitive sequences and a total of 24,980 protein-coding genes. We anticipate that the annotated draft genome assembly of the E. chlorotica sea slug will promote the investigation of sacoglossan genetics, evolution, and particularly, the genetic signatures accounting for the long-term functioning of algal chloroplasts in an animal.
Collapse
Affiliation(s)
- Huimin Cai
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China
| | - Qiye Li
- BGI-Shenzhen, Shenzhen 518083, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
| | | | - Ji Li
- BGI-Shenzhen, Shenzhen 518083, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
| | - Nicholas E Curtis
- Department of Biology, Ave Maria University, Ave Maria, Florida 34142, USA
| | - Andreas Altenburger
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark
| | - Tomoko Shibata
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Mingji Feng
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Taro Maeda
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Julie A Schwartz
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, USA
| | - Shuji Shigenobu
- National Institute for Basic Biology, Okazaki 444-8585, Japan.,Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Nina Lundholm
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Kanazawa 920-0934, Japan
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki 444-8585, Japan.,Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Shuaicheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China
| | - Sidney K Pierce
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, USA.,Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| |
Collapse
|
16
|
|
17
|
Christa G, Pütz L, Sickinger C, Melo Clavijo J, Laetz EMJ, Greve C, Serôdio J. Photoprotective Non-photochemical Quenching Does Not Prevent Kleptoplasts From Net Photoinactivation. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Melo Clavijo J, Donath A, Serôdio J, Christa G. Polymorphic adaptations in metazoans to establish and maintain photosymbioses. Biol Rev Camb Philos Soc 2018; 93:2006-2020. [PMID: 29808579 DOI: 10.1111/brv.12430] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
Abstract
Mutualistic symbioses are common throughout the animal kingdom. Rather unusual is a form of symbiosis, photosymbiosis, where animals are symbiotic with photoautotrophic organisms. Photosymbiosis is found among sponges, cnidarians, flatworms, molluscs, ascidians and even some amphibians. Generally the animal host harbours a phototrophic partner, usually a cyanobacteria or a unicellular alga. An exception to this rule is found in some sea slugs, which only retain the chloroplasts of the algal food source and maintain them photosynthetically active in their own cytosol - a phenomenon called 'functional kleptoplasty'. Research has focused largely on the biodiversity of photosymbiotic species across a range of taxa. However, many questions with regard to the evolution of the ability to establish and maintain a photosymbiosis are still unanswered. To date, attempts to understand genome adaptations which could potentially lead to the evolution of photosymbioses have only been performed in cnidarians. This knowledge gap for other systems is mainly due to a lack of genetic information, both for non-symbiotic and symbiotic species. Considering non-photosymbiotic species is, however, important to understand the factors that make symbiotic species so unique. Herein we provide an overview of the diversity of photosymbioses across the animal kingdom and discuss potential scenarios for the evolution of this association in different lineages. We stress that the evolution of photosymbiosis is probably based on genome adaptations, which (i) lead to recognition of the symbiont to establish the symbiosis, and (ii) are needed to maintain the symbiosis. We hope to stimulate research involving sequencing the genomes of various key taxa to increase the genomic resources needed to understand the most fundamental question: how have animals evolved the ability to establish and maintain a photosymbiosis?
Collapse
Affiliation(s)
- Jenny Melo Clavijo
- Center for Molecular Biodiversity Research (zmb), Zoological Research Museum Alexander Koenig, Adenauerallee 160, Bonn, 53113, Germany
| | - Alexander Donath
- Center for Molecular Biodiversity Research (zmb), Zoological Research Museum Alexander Koenig, Adenauerallee 160, Bonn, 53113, Germany
| | - João Serôdio
- Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Campus Santiago, Aveiro, 3810-192, Portugal
| | - Gregor Christa
- Center for Molecular Biodiversity Research (zmb), Zoological Research Museum Alexander Koenig, Adenauerallee 160, Bonn, 53113, Germany.,Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Campus Santiago, Aveiro, 3810-192, Portugal
| |
Collapse
|