1
|
Jalil AT, Zair MA, Hanthal ZR, Naser SJ, Aslandook T, Abosaooda M, Fadhil A. Role of the AMP-Activated Protein Kinase in the Pathogenesis of Polycystic Ovary Syndrome. Indian J Clin Biochem 2024; 39:450-458. [PMID: 39346714 PMCID: PMC11436500 DOI: 10.1007/s12291-023-01139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/09/2023] [Indexed: 10/01/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder characterized by elevated androgen levels, menstrual irregularities, and polycystic morphology of the ovaries. Affecting 6-10% of women in childbearing age, PCOS is a leading cause of infertility worldwide. In recent years, there has been a growing acknowledgment of the involvement of adenosine monophosphate-activated protein kinase (AMPK) in the development of polycystic ovary syndrome (PCOS). The expression of AMPK is diminished in polycystic ovaries, and when AMPK is silenced in human granulosa cells, there is a rise in the expression of steroidogenic enzymes, resulting in increased production of estradiol and progesterone. Additionally, in mouse models, the inhibiting AMPK intensifies the polycystic appearance of ovaries and impairs the process of ovulation. Moreover, it has been shown that AMPK activators like metformin and resveratrol ameliorate PCOS associated signs and symptoms in experimental and clinical studies. These findings, collectively, indicate the key role of AMPK in the pathogenesis of PCOS. Understanding the role of AMPK in PCOS will offer rewarding information on details of PCOS pathogenesis and will provide novel more specific therapeutic approaches. The present review summarizes the latest findings regarding the role of AMPK in PCOS obtained in experimental and clinical studies.
Collapse
Affiliation(s)
- Abduldaheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hilla, Babylon Iraq
| | - Mahdi Abd Zair
- Department of Pharmacy, Kut University College, Kut, Wasit Iraq
| | | | - Sarmad Jaafar Naser
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Tahani Aslandook
- Department of Dentistry, Al-Turath University College, Baghdad, Iraq
| | - Munther Abosaooda
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ali Fadhil
- Medical Laboratory Technology Department, College of Medical Technology, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
2
|
Rempuia V, Gurusubramanian G, Roy VK. Intra-testicular visfatin inhibition disrupts androgen and estrogen signalling in the mouse testis. Reprod Biol 2024; 24:100956. [PMID: 39342686 DOI: 10.1016/j.repbio.2024.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
Visfatin is expressed in the testis of chicken, humans and rodents; however, direct role of visfatin in the adult testis has not been studied. We investigated testicular responses after intra-testicular injection of FK866. The effects of visfatin inhibition were accessed at 24 hrs and 1 week post FK866 treatment. The testicular histoarchitecture were degenerated after 24 hrs of FK866 treatment along with supressed testosterone and proliferating markers and resumption in these parameters showed after 1 week. The expression of AR and ERα were down-regulated after 1 week of FK866 treatment. The expression of BCl2 was down-regulated along with a slight elevation of caspase3 after 24 hrs; however, both proteins still showed suppressed expression after 1 week. Furthermore, ERβ expression, 3βHSD, and 17βHSD were down-regulated in both groups compared to the control. Despite the down-regulation of some factors, the testicular proliferation and histoarchitecture showed resumption in the testis after 1 week of FK866 treatment. This could be due to increased testosterone secretion by suppressing aromatase expression. In conclusion, our result is the first report on the direct role of visfatin in the adult testis. Visfatin has a stimulatory role in testosterone synthesis and proliferation in the testis. Moreover, some deregulated factors in the testis after 1 week of FK866 treatment, despite normal histoarchitecture treatment, could be a compensatory mechanism after visfatin inhibitions.
Collapse
Affiliation(s)
- Vanlal Rempuia
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India.
| |
Collapse
|
3
|
Mączka K, Stasiak O, Przybysz P, Grymowicz M, Smolarczyk R. The Impact of the Endocrine and Immunological Function of Adipose Tissue on Reproduction in Women with Obesity. Int J Mol Sci 2024; 25:9391. [PMID: 39273337 PMCID: PMC11395521 DOI: 10.3390/ijms25179391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity, which leads to metabolic dysregulation and body function impairment, emerges as one of the pressing health challenges worldwide. Excessive body fat deposits comprise a dynamic and biologically active organ possessing its own endocrine function. One of the mechanisms underlying the pathophysiology of obesity is low-grade systemic inflammation mediated by pro-inflammatory factors such as free fatty acids, lipopolysaccharides, adipokines (including leptin, resistin and visfatin) and cytokines (TNF-α, IL-1β, Il-6), which are secreted by adipose tissue. Together with obesity-induced insulin resistance and hyperandrogenism, the exacerbated immune response has a negative impact on the hypothalamic-pituitary-gonadal axis at all levels and directly affects reproduction. In women, it results in disrupted ovarian function, irregular menstrual cycles and anovulation, contributing to infertility. This review focuses on the abnormal intracellular communication, altered gene expression and signaling pathways activated in obesity, underscoring its multifactorial character and consequences at a molecular level. Extensive presentation of the complex interplay between adipokines, cytokines, immune cells and neurons may serve as a foundation for future studies in search of potential sites for more targeted treatment of reproductive disorders related to obesity.
Collapse
Affiliation(s)
- Katarzyna Mączka
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Olga Stasiak
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Paulina Przybysz
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Monika Grymowicz
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| |
Collapse
|
4
|
Dobrzyn K, Kopij G, Kiezun M, Zaobidna E, Gudelska M, Zarzecka B, Paukszto L, Rak A, Smolinska N, Kaminski T. Visfatin (NAMPT) affects global gene expression in porcine anterior pituitary cells during the mid-luteal phase of the oestrous cycle. J Anim Sci Biotechnol 2024; 15:96. [PMID: 38978053 PMCID: PMC11232246 DOI: 10.1186/s40104-024-01054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The pituitary belongs to the most important endocrine glands involved in regulating reproductive functions. The proper functioning of this gland ensures the undisturbed course of the oestrous cycle and affects the female's reproductive potential. It is believed that visfatin, a hormone belonging to the adipokine family, may regulate reproductive functions in response to the female's metabolic state. Herein we verified the hypothesis that suggests a modulatory effect of visfatin on the anterior pituitary transcriptome during the mid-luteal phase of the oestrous cycle. RESULTS RNA-seq analysis of the porcine anterior pituitary cells revealed changes in the expression of 202 genes (95 up-regulated and 107 down-regulated in the presence of visfatin, when compared to the non-treated controls), assigned to 318 gene ontology terms. We revealed changes in the frequency of alternative splicing events (235 cases), as well as long noncoding RNA expression (79 cases) in the presence of the adipokine. The identified genes were associated, among others, with reproductive system development, epithelial cell proliferation, positive regulation of cell development, gland morphogenesis and cell chemotaxis. CONCLUSIONS The obtained results indicate a modulatory influence of visfatin on the regulation of the porcine transcriptome and, in consequence, pituitary physiology during the mid-luteal phase of the oestrous cycle.
Collapse
Affiliation(s)
- Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marlena Gudelska
- School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Lukasz Paukszto
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Agnieszka Rak
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Nina Smolinska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kaminski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
5
|
An Z, Xie C, Lu H, Wang S, Zhang X, Yu W, Guo X, Liu Z, Shang D, Wang X. Mitochondrial Morphology and Function Abnormality in Ovarian Granulosa Cells of Patients with Diminished Ovarian Reserve. Reprod Sci 2024; 31:2009-2020. [PMID: 38294667 DOI: 10.1007/s43032-024-01459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
In this study, we examined the changes in the mitochondrial structure and function in cumulus granulosa cells of patients with diminished ovarian reserve (DOR) to explore the causes and mechanisms of decreased mitochondrial quality. The mitochondrial ultrastructure was observed by transmission electron microscope, and the function was determined by detecting the ATP content, reactive oxygen species (ROS) levels, the number of mitochondria, and the mitochondrial membrane potential. The expression of ATP synthases in relation to mitochondrial function was analyzed. Additionally, protein immunoblotting was used to compare the expression levels of mitochondrial kinetic protein, the related channel protein in the two groups. Patients with DOR had abnormal granulosa cell morphology, increased mitochondrial abnormalities, decreased mitochondrial function, and disturbed mitochondrial dynamics. Additionally, the silent information regulator 1 (SIRT1)/phospho-AMP-activated protein kinase (P-AMPK)-peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) pathway expression was decreased, which was speculated to be associated with the decreased mitochondrial mass in the DOR group. The mitochondrial mass was decreased in granulosa cells of patients in the DOR group. The mitochondrial dysfunction observed in granulosa cells of patients in the DOR group may be associated with dysregulation of the SIRT1/P-AMPK-PGC-1α-mitochondrial transcription factor A (TFAM) pathway.
Collapse
Affiliation(s)
- Zhuo An
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
- Hebei Medical University, No. 361 Zhongshan Road, Chang'An District, Shijiazhuang, 050017, China
| | - Congcong Xie
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
| | - Hui Lu
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
| | - Xiujia Zhang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
| | - Wenbo Yu
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
| | - Xiaoli Guo
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
| | - Zehao Liu
- Hebei Children's Hospital, Shijiazhuang, 050031, China
| | - Dandan Shang
- Hebei Medical University, No. 361 Zhongshan Road, Chang'An District, Shijiazhuang, 050017, China.
| | - Xueying Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China.
| |
Collapse
|
6
|
Maylem ERS, Schütz LF, Spicer LJ. The role of asprosin in regulating ovarian granulosa- and theca-cell steroidogenesis: a review with comparisons to other adipokines. Reprod Fertil Dev 2024; 36:RD24027. [PMID: 39074236 DOI: 10.1071/rd24027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
Adipose tissues produce a variety of biologically active compounds, including cytokines, growth factors and adipokines. Adipokines are important as they function as endocrine hormones that are related to various metabolic and reproductive diseases. The goal of this review was to summarise the role of asprosin, a recently discovered adipokine, and compare its role in ovarian steroidogenesis with that of other adipokines including adiponectin, leptin, resistin, apelin, visfatin, chemerin, irisin, and gremlin 1. The summary of concentrations of these adipokines in humans, rats and other animals will help researchers identify appropriate doses to test in future studies. Review of the literature indicated that asprosin increases androstenedione production in theca cells (Tc), and when cotreated with FSH increases oestradiol production in granulosa cells (Gc). In comparison, other adipokines (1) stimulate Gc oestradiol production but inhibit Tc androgen production (adiponectin), (2) inhibit Gc oestradiol production and Tc androstenedione production (leptin and chemerin), (3) inhibit Gc steroidogenesis with no effect on Tc (resistin), (4) inhibit Gc oestradiol production but stimulate Tc androgen production (gremlin 1), and (5) increase steroid secretion by Gc, with unknown effects on Tc steroidogenesis (apelin and visfatin). Irisin has direct effects on Gc but its precise role (inhibitory or stimulatory) may be species dependent and its effects on Tc will require additional research. Thus, most adipokines have direct effects (either positive or negative) on steroid production in ovarian cells, but how they all work together to create a cumulative effect or disease will require further research.
Collapse
Affiliation(s)
- Excel Rio S Maylem
- Philippine Carabao Center, National Headquarters and Gene Pool, Science City of Munoz, Nueva Ecija, Philippines
| | - Luis Fernando Schütz
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
7
|
Mlyczyńska E, Rytelewska E, Zaobidna E, Respekta-Długosz N, Kopij G, Dobrzyń K, Kieżun M, Smolińska N, Kamiński T, Rak A. In vitro effect of visfatin on endocrine functions of the porcine corpus luteum. Sci Rep 2024; 14:14780. [PMID: 38926439 PMCID: PMC11208563 DOI: 10.1038/s41598-024-65102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Previously, we demonstrated the expression of visfatin in porcine reproductive tissues and its effect on pituitary endocrinology. The objective of this study was to examine the visfatin effect on the secretion of steroid (P4, E2) and prostaglandin (PGE2, PGF2α), the mRNA and protein abundance of steroidogenic markers (STAR, CYP11A1, HSD3B, CYP19A1), prostaglandin receptors (PTGER2, PTGFR), insulin receptor (INSR), and activity of kinases (MAPK/ERK1/2, AKT, AMPK) in the porcine corpus luteum. We noted that the visfatin effect strongly depends on the phase of the estrous cycle: on days 2-3 and 14-16 it reduced P4, while on days 10-12 it stimulated P4. Visfatin increased secretion of E2 on days 2-3, PGE2 on days 2-3 and 10-12, reduced PGF2α release on days 14-16, as well as stimulated the expression of steroidogenic markers on days 10-12 of the estrous cycle. Moreover, visfatin elevated PTGER mRNA expression and decreased its protein level, while we noted the opposite changes for PTGFR. Additionally, visfatin activated ERK1/2, AKT, and AMPK, while reduced INSR phosphorylation. Interestingly, after inhibition of INSR and signalling pathways visfatin action was abolished. These findings suggest a regulatory role of visfatin in the porcine corpus luteum.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Edyta Rytelewska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Natalia Respekta-Długosz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
8
|
Kopij G, Kiezun M, Gudelska M, Dobrzyn K, Zarzecka B, Rytelewska E, Zaobidna E, Swiderska B, Malinowska A, Rak A, Kaminski T, Smolinska N. Visfatin impact on the proteome of porcine luteal cells during implantation. Sci Rep 2024; 14:14625. [PMID: 38918475 PMCID: PMC11199572 DOI: 10.1038/s41598-024-65577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Visfatin (VIS) is a hormone belonging to the adipokines' group secreted mainly by the adipose tissue. VIS plays a crucial role in the control of energy homeostasis, inflammation, cell differentiation, and angiogenesis. VIS expression was confirmed in the hypothalamic-pituitary-gonadal (HPG) axis structures, as well as in the uterus, placenta, and conceptuses. We hypothesised that VIS may affect the abundance of proteins involved in the regulation of key processes occurring in the corpus luteum (CL) during the implantation process in pigs. In the present study, we performed the high-throughput proteomic analysis (liquid chromatography with tandem mass spectrometry, LC-MS/MS) to examine the in vitro influence of VIS (100 ng/mL) on differentially regulated proteins (DRPs) in the porcine luteal cells (LCs) on days 15-16 of pregnancy (implantation period). We have identified 511 DRPs, 276 of them were up-regulated, and 235 down-regulated in the presence of VIS. Revealed DRPs were assigned to 162 gene ontology terms. Western blot analysis of five chosen DRPs, ADAM metallopeptidase with thrombospondin type 1 motif 1 (ADAMTS1), lanosterol 14-α demethylase (CYP51A1), inhibin subunit beta A (INHBA), notch receptor 3 (NOTCH3), and prostaglandin E synthase 2 (mPGES2) confirmed the veracity and accuracy of LC-MS/MS method. We indicated that VIS modulates the expression of proteins connected with the regulation of lipogenesis and cholesterologenesis, and, in consequence, may be involved in the synthesis of steroid hormones, as well as prostaglandins' metabolism. Moreover, we revealed that VIS affects the abundance of protein associated with ovarian cell proliferation, differentiation, and apoptosis, as well as CL new vessel formation and tissue remodelling. Our results suggest important roles for VIS in the regulation of ovarian functions during the peri-implantation period.
Collapse
Affiliation(s)
- Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marlena Gudelska
- School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Edyta Rytelewska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Bianka Swiderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics PAS in Warsaw, Warsaw, Poland
| | - Agata Malinowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics PAS in Warsaw, Warsaw, Poland
| | - Agnieszka Rak
- Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Kraków, Poland
| | - Tadeusz Kaminski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Nina Smolinska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| |
Collapse
|
9
|
Rempuia V, Gurusubramanian G, Roy VK. Differential effect of visfatin inhibition on the testicular androgen and estrogen receptors expression in early pubertal mice. Endocrine 2024; 84:1216-1228. [PMID: 38273138 DOI: 10.1007/s12020-024-03692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND It is now well known that visfatin is expressed in the testis and ovary of various animals. Visfatin is known to regulate gonadal functions such as steroidogenesis, proliferation, and apoptosis in the ovary and testis of mice. Recently, we have shown that visfatin has an inhibitory role in the infantile mice testis. It has also been shown that visfatin stimulates testicular steroidogenesis in adult rats. However, the role of visfatin during puberty has not been investigated in relation to the above-mentioned process. OBJECTIVE The objective of the present study was to examine the effect of visfatin inhibition by FK866 from PND25 to PND35 (pre-pubertal to early pubertal) in male Swiss albino mice on steroidogenesis, proliferation, and apoptosis. METHODS Sixteen mice (25 days old) were divided into two groups, one group was given normal saline and the other group was administered with an inhibitor of visfatin (FK866) at the dose of 1.5 mg/kg by intraperitoneal injection for 10 days. Histopathological and immunohistochemical analysis, western blot analysis and hormonal assay were done. RESULTS Visfatin inhibition resulted in increased estrogen secretion, body weight, seminiferous tubule diameter, germinal epithelium height, and proliferation along with increased expression of BCl2, casapse3, ERs and aromatase expression in the mice testis. Visfatin inhibition down-regulated the testicular visfatin expression and also decreased abundance in the adipose tissues. CONCLUSION In conclusion, decreased AR expression and increased ERs expression by FK866, suggest that visfatin might have a stimulatory effect on AR signaling than ERs in the early pubertal stage of mice.
Collapse
Affiliation(s)
- Vanlal Rempuia
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| |
Collapse
|
10
|
Berenji E, Valipour Motlagh A, Fathi M, Esmaeili M, Izadi T, Rezvanian P, Zanjirband M, Safaeinejad Z, Nasr-Esfahani MH. Discovering therapeutic possibilities for polycystic ovary syndrome by targeting XIST and its associated ceRNA network through the analysis of transcriptome data. Sci Rep 2024; 14:6180. [PMID: 38486041 PMCID: PMC10940664 DOI: 10.1038/s41598-024-56524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Long non-coding RNA (lncRNA) regulates many physiological processes by acting as competitive endogenous RNA (ceRNA). The dysregulation of lncRNA X-inactive specific transcript (XIST) has been shown in various human disorders. However, its role in the pathogenesis of polycystic ovary syndrome (PCOS) is yet to be explored. This study aimed to explore the underlying mechanism of XIST in the pathogenesis of PCOS, specifically through dataset functional analysis. GEO PCOS datasets including RNA-seq, microarray, and miRNA-seq in granulosa cells (GCs) and blood, were examined and comprehensively analyzed. Enrichment analysis, ROC curve constructions, lncRNA-miRNA-mRNA interaction network analyses, and qRT-PCR validation were performed followed by a series of drug signature screenings. Our results revealed significant dysregulation in the expression of 1131 mRNAs, 30 miRNAs, and XIST in GCs of PCOS patients compared to healthy individuals. Of the120 XIST-correlated upregulated genes, 25 were enriched in inflammation-related pathways. Additionally, 5 miRNAs were identified as negative regulators of XIST-correlated genes. Accordingly, a ceRNA network containing XIST-miRNAs-mRNAs interactions was constructed. Furthermore, 6 genes, including AQP9, ETS2, PLAU, PLEK, SOCS3, and TNFRSF1B served as both GCs and blood-based biomarkers. By analyzing the number of interactions among XIST, miRNAs, and mRNAs, we pinpointed ETS2 as the pivotal gene within the ceRNA network. Our findings reveal a novel XIST- hsa-miR-146a-5p, hsa-miR-144-3p, and hsa-miR-1271-5p-ETS2 axis that comprehensively elucidates the XIST-associated mechanism underlying PCOS onset. qRT-PCR analysis further confirmed the, overexpression of both XIST and ETS2 . Furthermore, our results demonstrated that XIST and ETS2 were correlated with some assisted reproductive technologies outcomes. Finally, we identified two novel compounds including, methotrexate/folate and threonine using drug-gene interaction databases for PCOS management. These findings provide novel insights into the molecular etiology, diagnosis, and potential therapeutic interventions for PCOS.
Collapse
Affiliation(s)
- Elahe Berenji
- ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box 816513-1378, Isfahan, Iran
| | - Ali Valipour Motlagh
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box 816513-1378, Isfahan, Iran
| | - Marziyeh Fathi
- ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box 816513-1378, Isfahan, Iran
| | - Maryam Esmaeili
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box 816513-1378, Isfahan, Iran
| | - Tayebeh Izadi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box 816513-1378, Isfahan, Iran
| | - Parsa Rezvanian
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box 816513-1378, Isfahan, Iran
| | - Maryam Zanjirband
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box 816513-1378, Isfahan, Iran
| | - Zahra Safaeinejad
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box 816513-1378, Isfahan, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box 816513-1378, Isfahan, Iran.
| |
Collapse
|
11
|
Kopij G, Kiezun M, Dobrzyn K, Zaobidna E, Zarzecka B, Rak A, Kaminski T, Kaminska B, Smolinska N. Visfatin Affects the Transcriptome of Porcine Luteal Cells during Early Pregnancy. Int J Mol Sci 2024; 25:2339. [PMID: 38397019 PMCID: PMC10889815 DOI: 10.3390/ijms25042339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Visfatin/NAMPT (VIS), the hormone exerting a pleiotropic effect, is also perceived as an important factor in the regulation of reproductive processes and pregnancy maintenance. Previous studies confirmed its involvement in the control of porcine pituitary and ovary function. In this study, we hypothesized that VIS may affect the global transcriptome of luteal cells and thus regulate the functioning of the ovaries. Illumina's NovaSeq 6000 RNA sequencing was performed to investigate the differentially expressed genes (DEGs) and long non-coding RNAs (DELs) as well as the occurrence of differential alternative splicing events (DASs) in the porcine luteal cells exposed to VIS (100 ng/mL) during the implantation period. The obtained results revealed 170 DEGs (99 up- and 71 downregulated) assigned to 45 functional annotations. Moreover, we revealed 40 DELs, of which 3 were known and 37 were described for the first time. We identified 169 DASs events. The obtained results confirmed a significant effect of VIS on the transcriptome and spliceosome of luteal cells, including the genes involved in the processes crucial for successful implantation and pregnancy maintenance as angiogenesis, steroidogenesis, inflammation, cell development, migration, and proliferation.
Collapse
Affiliation(s)
- Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Agnieszka Rak
- Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland;
| | - Tadeusz Kaminski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Barbara Kaminska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Nina Smolinska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| |
Collapse
|
12
|
Szymanska K, Rytelewska E, Zaobidna E, Kiezun M, Gudelska M, Kopij G, Dobrzyn K, Mlyczynska E, Kurowska P, Kaminska B, Nynca A, Smolinska N, Rak A, Kaminski T. The Effect of Visfatin on the Functioning of the Porcine Pituitary Gland: An In Vitro Study. Cells 2023; 12:2835. [PMID: 38132154 PMCID: PMC10742260 DOI: 10.3390/cells12242835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Visfatin (VIS), also known as nicotinamide phosphoribosyltransferase (NAMPT), is the rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD+). Recently, VIS has been also recognized as an adipokine. Our previous study revealed that VIS is produced in the anterior and posterior lobes of the porcine pituitary. Moreover, the expression and secretion of VIS are dependent on the phase of the estrous cycle and/or the stage of early pregnancy. Based on this, we hypothesized that VIS may regulate porcine pituitary function. This study was conducted on anterior pituitary (AP) glands harvested from pigs during specific phases of the estrous cycle. We have shown the modulatory effect of VIS in vitro on LH and FSH secretion by porcine AP cells (determined by ELISA). VIS was also found to stimulate cell proliferation (determined by Alamar Blue) without affecting apoptosis in these cells (determined using flow cytometry technique). Moreover, it was indicated that VIS may act in porcine AP cells through the INSR, AKT/PI3K, MAPK/ERK1/2, and AMPK signaling pathways (determined by ELISA or Western Blot). This observation was further supported by the finding that simultaneous treatment of cells with VIS and inhibitors of these pathways abolished the observed VIS impact on LH and FSH secretion (determined by ELISA). In addition, our research indicated that VIS affected the mentioned processes in a manner that was dependent on the dose of VIS and/or the phase of the estrous cycle. Thus, these findings suggest that VIS may regulate the functioning of the porcine pituitary gland during the estrous cycle.
Collapse
Affiliation(s)
- Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Marlena Gudelska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Ewa Mlyczynska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (A.R.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, 30-348 Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (A.R.)
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Anna Nynca
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (A.R.)
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| |
Collapse
|
13
|
Kurowska P, Dawid M, Oprocha J, Respekta N, Serra L, Estienne A, Pawlicki P, Kotula-Balak M, Guérif F, Dupont J, Rak A. Spexin role in human granulosa cells physiology and PCOS: expression and negative impact on steroidogenesis and proliferation†. Biol Reprod 2023; 109:705-719. [PMID: 37658762 PMCID: PMC10651070 DOI: 10.1093/biolre/ioad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/18/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023] Open
Abstract
Spexin (SPX) is a novel neuropeptide and adipokine negatively correlated with obesity and insulin resistance. A recent study investigated expression and regulatory function of SPX in the hypothalamus and pituitary; however, the effect on ovarian function is still unknown. The aim of this study was to characterize the expression of SPX and its receptors, galanin receptors 2 and 3 (GALR2/3), in the human ovary and to study its in vitro effect on granulosa cells (GC) function. Follicular fluid (FF) and GC were obtained from normal weight and obese healthy and diagnosed with polycystic ovarian syndrome (PCOS) women. Expression of SPX and GALR2/3 in the ovary was studied by qPCR, western blot, and immunohistochemistry. The level of SPX in FF was assessed by enzyme-linked immunosorbent assay. The in vitro effect of recombinant human SPX on GC proliferation, steroidogenesis, and signaling pathways (MAP3/1, STAT3, AKT, PKA) was analyzed. Moreover, GC proliferation and estradiol (E2) secretion were measured with and without an siRNA against GALR2/3 and pharmacological inhibition of the above kinases. The results showed that both the SPX concentration in FF and its gene expression were decreased in GC of obese and PCOS women, while the protein expression of GALR2/3 was increased. We noted that SPX reduced GC proliferation and steroidogenesis; these effects were mediated by GALR2/3 and kinases MAP3/1, AKT, and STAT3 for proliferation or kinases MAP3/1 and PKA for E2 secretion. The obtained data clearly documented that SPX is a novel regulator of human ovarian physiology and possibly plays a role in PCOS pathogenesis.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Julia Oprocha
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Loïse Serra
- National Research Institute for Agriculture, Food and the Environment, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Anthony Estienne
- National Research Institute for Agriculture, Food and the Environment, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Piotr Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - Małgorzata Kotula-Balak
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - Fabrice Guérif
- National Research Institute for Agriculture, Food and the Environment, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Reproductive Medicine and Biology Department, University Hospital of Tours, Tours, France
| | - Joelle Dupont
- National Research Institute for Agriculture, Food and the Environment, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
14
|
Mlyczyńska E, Kurowska P, Rytelewska E, Zaobina E, Pich K, Kieżun M, Dobrzyń K, Kisielewska K, Kopij G, Smolińska N, Kamiński T, Rak A. Expression of visfatin in the ovarian follicles of prepubertal and mature gilts and in vitro effect of gonadotropins, insulin, steroids, and prostaglandins on visfatin levels. Theriogenology 2023; 211:28-39. [PMID: 37562189 DOI: 10.1016/j.theriogenology.2023.07.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/18/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Recent studies have demonstrated that visfatin participates in the regulation of female reproduction. Due to the lack of data concerning the level of visfatin in the ovarian follicles of pigs, one of the most economically important livestock species, the aim of this study was to investigate the expression and localisation of visfatin and the follicular fluid concentration in the ovarian follicles of prepubertal and mature gilts. We also aimed to examine the in vitro effects of gonadotropins (LH, FSH), insulin, progesterone (P4), oestradiol (E2), prostaglandin E2 (PGE2) and F2α (PGF2α) on visfatin levels. In the present study, we have demonstrated that visfatin expression is dependent on the maturity of the animals and the stage of ovarian follicle development. Visfatin signal was detected in individual follicular compartments from primordial to antral follicles and even in atretic follicles. We have shown that the expression of visfatin in granulosa cells was higher than in theca cells. The level of visfatin is upregulated by LH, FSH, E2, and P4 and downregulated by insulin, while prostaglandins have modulatory effects, dependent on the dose and type of ovarian follicular cells. To summarise, our research has shown that visfatin is widely expressed in the ovarian follicles of prepubertal and mature pigs, and its expression is regulated by gonadotropins, insulin, steroids, and prostaglandins, suggesting that visfatin appears to be an important intra-ovarian factor that could regulate porcine ovarian follicular function.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Ewa Zaobina
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Kisielewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
15
|
Szymanska K, Zaobidna E, Rytelewska E, Mlyczynska E, Kurowska P, Dobrzyn K, Kiezun M, Kaminska B, Smolinska N, Rak A, Kaminski T. Visfatin in the porcine pituitary gland: expression and regulation of secretion during the oestrous cycle and early pregnancy. Sci Rep 2023; 13:18253. [PMID: 37880346 PMCID: PMC10600231 DOI: 10.1038/s41598-023-45255-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Visfatin is a multifunctional protein which, besides the control of energy homeostasis, seems to be also involved in the regulation of female fertility through the influence on the endocrine hypothalamus-pituitary-gonadal axis, including the pituitary. The aim of this study was to investigate the expression of visfatin mRNA and protein in the anterior (AP) and posterior pituitary lobes of the pig during the oestrous cycle and early pregnancy. In AP, we also examined colocalisation of visfatin with pituitary tropic hormones. Moreover, we aimed to evaluate the in vitro effects of GnRH, FSH, LH, and insulin on visfatin protein concentration and secretion in AP cells during the cycle. The study showed that visfatin is present in all types of porcine pituitary endocrine cells and its expression is reliant on stage of the cycle or pregnancy. GnRH, FSH, LH and insulin stimulated visfatin secretion by AP cells on days 17 to 19 of the cycle, while on days 2 to 3 visfatin release was enhanced only by LH. Summarising, visfatin is locally produced in the pituitary in a way dependent on hormonal milieu typical for reproductive status of pigs. Further research is required to clarify the role of visfatin in the pituitary gland.
Collapse
Affiliation(s)
- Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Ewa Mlyczynska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719, Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| |
Collapse
|
16
|
Li C, Zhou M, He X, Di R, Zhang Z, Ren C, Liu Q, Chu M. Comparative proteomics of ovaries elucidated the potential targets related to ovine prolificacy. Front Vet Sci 2023; 10:1096762. [PMID: 37675075 PMCID: PMC10477366 DOI: 10.3389/fvets.2023.1096762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
Small Tail Han (STH) sheep, a unique Chinese breed, is recognized for its early maturity, year-round estrus, and prolificacy. However, the molecular mechanism of its high prolificacy has not been fully elucidated. The Proteomics approach is feasible and effective to reveal the proteins involved in the complex physiological processes of any organism. Given this, we performed the protein expression profiling of ovarian tissues during the luteal phase using polytocous STH sheep (litter size ≥2, three consecutive lambings) and monotocous STH sheep (litter size =1, three consecutive lambings) (PL vs. ML), and the follicular phase using polytocous STH sheep (litter size ≥2, three consecutive lambings) and monotocous STH sheep (litter size =1, three consecutive lambings) (PF vs. MF), respectively. Parallel Reaction Monitoring (PRM) was conducted to validate the differentially abundant proteins (DAPs). The tandem mass tag (TMT) quantitative proteomic results showed that a total of 5,237 proteins were identified, of which 49 and 44 showed differential abundance in the PL vs. ML and PF vs. MF groups, respectively. Enrichments analyses indicated that the DAPs including TIA1 cytotoxic granule-associated RNA-binding protein-like 1 (TIAL1), nicotinamide phosphoribosyltransferase (NAMPT), and cellular retinoic acid-binding protein 1 (CRABP1) were enriched at the luteal phase, while TIAL1, inhibin beta-a-subunit (A2ICA4), and W5PG55 were enriched at the follicular phase, potentially mediating reproductive processes in polytocous ewes. Furthermore, six DAPs were verified using PRM, confirming the accuracy of the TMT data acquired in this study. Together, our work expanded the database of indigenous sheep breeds and provided new ovarian candidate molecular targets, which will help in the study of the genetic mechanisms of ovine prolificacy.
Collapse
Affiliation(s)
- Chunyan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming, China
| | - Mei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Batalha IM, Maylem ERS, Spicer LJ, Pena Bello CA, Archilia EC, Schütz LF. Effects of asprosin on estradiol and progesterone secretion and proliferation of bovine granulosa cells. Mol Cell Endocrinol 2023; 565:111890. [PMID: 36822263 DOI: 10.1016/j.mce.2023.111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 01/28/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Asprosin is an adipokine synthesized by the white adipose tissue that regulates glucose homeostasis and that has been reported to affect bovine theca cell function and follicular growth, but its role on granulosa cell functions remains to be unveiled. Hence, the objective of this study was to investigate asprosin impacts on granulosa cell steroidogenesis. Bovine granulosa cells from small ovarian follicles were cultured in vitro to investigate the effects of asprosin on cell proliferation, production of steroids, mRNA abundance of genes that encode steroidogenic enzymes and cell cycle regulators, and protein relative abundance of steroidogenic signaling pathways. Asprosin was shown to affect granulosa cell functions in a dose-dependent manner. In the presence of FSH, asprosin enhanced estradiol production and stimulated an increase in mRNA expression of FSHR and CYP19A1 in a dose-dependent manner. In the presence of IGF1, asprosin decreased estradiol production, increased progesterone production, altered PKA relative protein expression, and tended to alter the ratio of p-ERK1/2/total ERK1/2 protein expression in a dose-dependent manner. Furthermore, asprosin increased p-53 gene expression in basal culture conditions and with or without FSH and IGF1. Taken together, findings of this study show that asprosin is a regulator of granulosa cell functions and the effects of asprosin depend on dose and cell culture conditions.
Collapse
Affiliation(s)
- Isadora Maria Batalha
- Departament of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Excel Rio S Maylem
- Department of Animal and Food Sciences, Oklahoma State University Stillwater, OK 74078, USA
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University Stillwater, OK 74078, USA
| | - Camilo Andres Pena Bello
- Departament of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Evandro Carlos Archilia
- Departament of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Luis Fernando Schütz
- Departament of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
18
|
Mlyczyńska E, Zaobidna E, Rytelewska E, Dobrzyń K, Kieżun M, Kopij G, Szymańska K, Kurowska P, Dall'Aglio C, Smolińska N, Kamiński T, Rak A. Expression and regulation of visfatin/NAMPT in the porcine corpus luteum during the estrous cycle and early pregnancy. Anim Reprod Sci 2023; 250:107212. [PMID: 36913896 DOI: 10.1016/j.anireprosci.2023.107212] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Visfatin/NAMPT creates a hormonal link between energy metabolism and female reproduction. A recent study documented visfatin expression in the ovary and its action on follicular cells; however, the expression of visfatin in luteal cells is still unknown. The aim of this study, therefore, was to investigate the transcript and protein expression of visfatin as well as its immunolocalization in the corpus luteum (CL) and to examine the involvement of extracellular signal-regulated kinases (ERK1/2) in the regulation of visfatin level in response to LH, insulin, progesterone (P4), prostaglandin E2 (PGE2) and F2α (PGF2α). Corpora lutea were harvested from gilts on days 2-3, 10-12 and 14-16 of the estrous cycle and on days 10-11, 12-13, 15-16 and 27-28 of pregnancy. The current study demonstrated that visfatin expression depends on hormonal status related to the phase of the estrous cycle or early pregnancy. Visfatin was immunolocalized to the cytoplasm of small and large luteal cells. Moreover, visfatin protein abundance was increased by P4, and decreased by both prostaglandins, while LH and insulin have modulatory effects, depending on the phase of the cycle. Interestingly, LH, P4 and PGE2 effects were abolished in response to the inhibition of ERK1/2 kinase. Thus, this study demonstrated that expression of visfatin in the porcine CL is determined by the endocrine status related to the estrous cycle and early pregnancy and by the action of LH, insulin, P4 and prostaglandins via activation of the ERK1/2 pathway.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karolina Szymańska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Cecylia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
19
|
Anima B, Guruswami G, Roy VK. Postnatal developmental expression and localization of apelin and apelin receptor protein in the ovary and uterus of mice. Mol Reprod Dev 2023; 90:42-52. [PMID: 36459577 DOI: 10.1002/mrd.23657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 12/04/2022]
Abstract
Postnatal ovarian and uterine development is crucial to accomplished female fertility. Thus, the investigations of factors that present in pre-pubertal stages are important as it might be responsible for the regulation of ovarian and uterine function. Apelin, an adipokine and its receptor (APJ) are present in female reproductive organs. However, no study has reported its postnatal expression in uterus and ovary. Thus, we investigated the postnatal developmental changes in expression and localization of apelin and APJ in the ovary and uterus of mice. Postnatal ovary and uterus were collected from postnatal day (PND) 1, 7, 14, 21, 42, 65 and performed western blot analysis and immunohistochemistry. Uterine APJ is elevated in PND14 and PND65, whereas, ovarian APJ elevated in PND7, PND14, and PND65. Apelin expression in both ovary and uterus showed intense staining at PND65 and PND14. Our results showed that apelin and APJ abundance was lower at PND21 in uterus and ovary. In conclusion, apelin and APJ are developmentally regulated in the ovary and uterus, and its localization in the different compartments of ovary and uterus suggest its distribution specific physiological role in the uterus and ovary.
Collapse
Affiliation(s)
- Borgohain Anima
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | - Vikas K Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| |
Collapse
|
20
|
The Complex Roles of Adipokines in Polycystic Ovary Syndrome and Endometriosis. Biomedicines 2022; 10:biomedicines10102503. [PMID: 36289764 PMCID: PMC9598769 DOI: 10.3390/biomedicines10102503] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) and endometriosis are frequent diseases of the female reproductive tract causing high morbidity as they can significantly affect fertility and quality of life. Adipokines are pleiotropic signaling molecules secreted by white or brown adipose tissues with a central role in energy metabolism. More recently, their involvement in PCOS and endometriosis has been demonstrated. In this review article, we provide an update on the role of adipokines in both diseases and summarize previous findings. We also address the results of multi-omics approaches in adipokine research to examine the role of single nucleotide polymorphisms (SNPs) in genes coding for adipokines and their receptors, the secretome of adipocytes and to identify epigenetic alterations of adipokine genes that might be conferred from mother to child. Finally, we address novel data on the role of brown adipose tissue (BAT), which seems to have notable effects on PCOS. For this review, original research articles on adipokine actions in PCOS and endometriosis are considered, which are listed in the PubMed database.
Collapse
|
21
|
Chen P, Jia R, Liu Y, Cao M, Zhou L, Zhao Z. Progress of Adipokines in the Female Reproductive System: A Focus on Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2022; 13:881684. [PMID: 35692386 PMCID: PMC9178087 DOI: 10.3389/fendo.2022.881684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue, one type of loose connective tissue in the human body, maintains the primary task of energy storage. Adipose tissue is not only an energy reservoir but also plays a vital role as the largest endocrine organ of the whole body via releasing a variety of adipokines, which participate in many pathophysiological processes, such as energy metabolism regulation, glucose and lipid metabolism, and inflammation. Polycystic ovary syndrome (PCOS) is a disorder that mainly involves the female reproductive system, affecting women of childbearing age particularly. Insulin resistance (IR) and hyperandrogenemia (HA) have been implicated as a critical link involving the etiology and outcome of PCOS. A great deal of studies has bridged the gap between adipokines (such as Adiponectin, Chemerin, Metrnl, Apelin, Resistin, Visfatin, Leptin, Vaspin, Lipocalin 2, and Omentin) and reproductive fitness. In this review, we will focus on the adipokines' functions on PCOS and come up with some points of view on the basis of current research.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiming Zhao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
22
|
Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New Aspects of Corpus Luteum Regulation in Physiological and Pathological Conditions: Involvement of Adipokines and Neuropeptides. Cells 2022; 11:957. [PMID: 35326408 PMCID: PMC8946127 DOI: 10.3390/cells11060957] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The corpus luteum is a small gland of great importance because its proper functioning determines not only the appropriate course of the estrous/menstrual cycle and embryo implantation, but also the subsequent maintenance of pregnancy. Among the well-known regulators of luteal tissue functions, increasing attention is focused on the role of neuropeptides and adipose tissue hormones-adipokines. Growing evidence points to the expression of these factors in the corpus luteum of women and different animal species, and their involvement in corpus luteum formation, endocrine function, angiogenesis, cells proliferation, apoptosis, and finally, regression. In the present review, we summarize the current knowledge about the expression and role of adipokines, such as adiponectin, leptin, apelin, vaspin, visfatin, chemerin, and neuropeptides like ghrelin, orexins, kisspeptin, and phoenixin in the physiological regulation of the corpus luteum function, as well as their potential involvement in pathologies affecting the luteal cells that disrupt the estrous cycle.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Mathilde Daudon
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Barbara Kamińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Joelle Dupont
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| |
Collapse
|
23
|
Ji R, Jia FY, Chen X, Wang ZH, Jin WY, Yang J. Salidroside alleviates oxidative stress and apoptosis via AMPK/Nrf2 pathway in DHT-induced human granulosa cell line KGN. Arch Biochem Biophys 2022; 715:109094. [PMID: 34813774 DOI: 10.1016/j.abb.2021.109094] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022]
Abstract
In the past few years, emerging evidence established persistent oxidative stress to be a key player in the pathogenesis of polycystic ovary syndrome (PCOS). Particularly, it damages the function of granulosa cells, and thus hinders the development of follicles. The present study aimed to explore and establish the protective effects of salidroside on dihydrotestosterone (DHT)-induced Granulosa-like tumor cell line (KGN), mediated via antioxidant mechanisms. The study assessed the positive effects of salidroside on DHT-induced apoptosis, reactive oxygen species (ROS) accumulation, damage of antioxidant capacity, and mitochondrial membrane potential depolarization. Interestingly, salidroside partly reversed DHT mediated effects, via stimulation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and the downstream antioxidant proteins heme oxygenase-1(HO-1) and quinine oxidoreductase 1(NQO1). Additionally, the knockdown of Nrf2 partly moderated the antioxidant and anti-apoptosis effects of salidroside in DHT-treated KGN cells. Mechanistically, AMP-activated protein kinase (AMPK) was identified to be the upstream signaling involved in salidroside-induced Nrf2 activation, as silencing of AMPK partly prevented the upregulation of Nrf2 and the downstream proteins HO-1 and NQO1. Altogether, the present study is the first to effectively demonstrate the inhibitory effect of salidroside on DHT-stimulated oxidative stress and apoptosis in KGN cells, which was dependent on Nrf2 activation that involved AMPK.
Collapse
Affiliation(s)
- Rui Ji
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Fang-Yuan Jia
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, Henan, China; Department of Aortic Surgery, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Ze-Hao Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Wen-Yi Jin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China.
| |
Collapse
|
24
|
Ala M, Ala M. Metformin for Cardiovascular Protection, Inflammatory Bowel Disease, Osteoporosis, Periodontitis, Polycystic Ovarian Syndrome, Neurodegeneration, Cancer, Inflammation and Senescence: What Is Next? ACS Pharmacol Transl Sci 2021; 4:1747-1770. [PMID: 34927008 DOI: 10.1021/acsptsci.1c00167] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Diabetes is accompanied by several complications. Higher prevalence of cancers, cardiovascular diseases, chronic kidney disease (CKD), obesity, osteoporosis, and neurodegenerative diseases has been reported among patients with diabetes. Metformin is the oldest oral antidiabetic drug and can improve coexisting complications of diabetes. Clinical trials and observational studies uncovered that metformin can remarkably prevent or alleviate cardiovascular diseases, obesity, polycystic ovarian syndrome (PCOS), osteoporosis, cancer, periodontitis, neuronal damage and neurodegenerative diseases, inflammation, inflammatory bowel disease (IBD), tuberculosis, and COVID-19. In addition, metformin has been proposed as an antiaging agent. Numerous mechanisms were shown to be involved in the protective effects of metformin. Metformin activates the LKB1/AMPK pathway to interact with several intracellular signaling pathways and molecular mechanisms. The drug modifies the biologic function of NF-κB, PI3K/AKT/mTOR, SIRT1/PGC-1α, NLRP3, ERK, P38 MAPK, Wnt/β-catenin, Nrf2, JNK, and other major molecules in the intracellular signaling network. It also regulates the expression of noncoding RNAs. Thereby, metformin can regulate metabolism, growth, proliferation, inflammation, tumorigenesis, and senescence. Additionally, metformin modulates immune response, autophagy, mitophagy, endoplasmic reticulum (ER) stress, and apoptosis and exerts epigenetic effects. Furthermore, metformin protects against oxidative stress and genomic instability, preserves telomere length, and prevents stem cell exhaustion. In this review, the protective effects of metformin on each disease will be discussed using the results of recent meta-analyses, clinical trials, and observational studies. Thereafter, it will be meticulously explained how metformin reprograms intracellular signaling pathways and alters molecular and cellular interactions to modify the clinical presentations of several diseases.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), 1416753955 Tehran, Iran
| | - Mahan Ala
- School of Dentistry, Golestan University of Medical Sciences (GUMS), 4814565589 Golestan, Iran
| |
Collapse
|
25
|
Pal S, Haldar C, Verma R. Photoperiodic modulation of ovarian metabolic, survival, proliferation and gap junction markers in adult golden hamster, Mesocricetus auratus. Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111083. [PMID: 34571152 DOI: 10.1016/j.cbpa.2021.111083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022]
Abstract
Female reproductive physiology is greatly dependent on tight regulation of metabolic and survival factors. Photoperiod regulates female reproductive rhythms but very less information exists explaining whether photoperiod could modulate thyroid hormone homeostasis, metabolic/energy parameters along with survival, proliferation and gap junction proteins in the ovary of a long-day breeder, Mesocricetus auratus. Adult female hamsters were exposed to different photoperiodic regimes i.e., critical photoperiod (CP; 12.5L:11.5D), short photoperiod (SP; 8L:16D) and long photoperiod (LP; 16L:8D) for 12 weeks. LP upregulated thyroidal and gonadal activity as apparent by histoarchitecture, thyroid hormone profile [triiodothyronine (T3), thyroxin (T4) and thyroid stimulating hormone (TSH)], luteinizing hormone (LH), follicle stimulating hormone (FSH), estradiol (E2) and progesterone (P4) levels when compared with SP exposed hamsters. Further, LP increased thyroid hormone receptor-α/deiodinase-2 (TRα/Dio-2), estrogen receptor-α (ERα)/aromatase and insulin receptor/glucose transporter-4 (IR/GLUT-4) expressions in ovary. Interestingly, ovarian sirtuin-1 (SIRT-1) expression was also upregulated under LP condition along with cell proliferation (proliferating cell nuclear antigen or PCNA), survival (B cell lymphoma-2 or Bcl-2) and gap junction (connexin-43) markers when compared to SP exposed hamsters. We also noted elevated levels of circulatory leptin, insulin along with melatonin and its receptor (MT-1) in ovary under SP condition. Thus, we suggest that photoperiod plays a vital role in regulation of thyroid and reproductive hormone homeostasis along with key metabolic and survival markers in the ovary of adult golden hamsters, M. auratus providing further insight into the regulation of female reproductive seasonality in a long-day breeder.
Collapse
Affiliation(s)
- Sriparna Pal
- Pineal Research Lab, Reproduction Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India.
| | - Chandana Haldar
- Pineal Research Lab, Reproduction Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India.
| | - Rakesh Verma
- Pineal Research Lab, Reproduction Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India.
| |
Collapse
|
26
|
Bernardi O, Estienne A, Reverchon M, Bigot Y, Froment P, Dupont J. Adipokines in metabolic and reproductive functions in birds: An overview of current knowns and unknowns. Mol Cell Endocrinol 2021; 534:111370. [PMID: 34171419 DOI: 10.1016/j.mce.2021.111370] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023]
Abstract
Adipose tissue is now recognized as an active endocrine organ, which synthesizes and secretes numerous peptides factors called adipokines. In mammals, they exert pleiotropic effects affecting energy metabolism but also fertility. In mammals, secretion of adipokines is altered in adipose tissue dysfunctions and may participate to obesity-associated disorders. Thus, adipokines are promising candidates both for novel pharmacological treatment strategies and as diagnostic tools. As compared to mammals, birds exhibit several unique physiological features, which make them an interesting model for comparative studies on endocrine control of metabolism and adiposity and reproductive functions. Some adipokines such as leptin and visfatin may have different roles in avian species as compared to mammals. In addition, some of them found in mammals such as CCL2 (chemokine ligand 2), resistin, omentin and FGF21 (Fibroblast Growth factor 21) have not yet been mapped to the chicken genome model and among its annotated gene models. This brief review aims to summarize data (structure, metabolic and reproductive roles and molecular mechanisms involved) related to main avian adipokines (leptin, adiponectin, visfatin, and chemerin) and we will briefly discuss the adipokines that are still lacking in avian species.
Collapse
Affiliation(s)
- Ophélie Bernardi
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France; SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380, Nouzilly, France
| | - Anthony Estienne
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380, Nouzilly, France
| | - Yves Bigot
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France.
| |
Collapse
|
27
|
Shokrollahi B, Shang JH, Saadati N, Ahmad HI, Yang CY. Reproductive roles of novel adipokines apelin, visfatin, and irisin in farm animals. Theriogenology 2021; 172:178-186. [PMID: 34175524 DOI: 10.1016/j.theriogenology.2021.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022]
Abstract
The adipose tissue has a substantial impact on reproduction in mammals, specifically in females. As an energy depository organ, it is precisely associated with the reproductive success of mammals. Adipose tissue secretes many single molecules that are called 'adipokines' which mainly act as endocrine hormones. Adipokines homeostasis is fundamental to energy regulation, metabolic and cardiovascular diseases. The endocrine function of adipokines is influential for the long-term control of energy metabolism and performs an important function in metabolic state and fertility modulation. During the last years, new roles for adipokines have been appearing in the field of fertility. The adipokines have functions in reproduction at levels of the hypothalamus, the pituitary, and the gonads in humans, rodents, and other animals. Normal levels of adipokines are indispensable to protect the integrity of the hypothalamus-hypophysis-gonadal axis, regular ovulatory processes, and successful embryo implantation. Leptin and adiponectin are the most studied adipokines, but also the novel adipokines; apelin, visfatin, and irisin are important adipokines having several functions within the reproductive tract. Due to the known and unknown effects of these novel adipokines in the reproduction of farm animals, in this review, we will highlight the reproductive functions of apelin, visfatin, and irisin and summarize the known reproductive effects in farm animals to introduce the gaps for future studies in farm animals.
Collapse
Affiliation(s)
- Borhan Shokrollahi
- Department of Animal Science, Faculty of Agriculture, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Jiang-Hua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Nazila Saadati
- Department of Plant Biotechnology, Faculty of Agriculture, Kurdistan University, Sanandaj, Kurdistan province, Iran
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan
| | - Chun-Yan Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| |
Collapse
|
28
|
Alam F, Rehman R, Fatima SS, Ashraf M, Khan TA. Suggested role of silent information regulator 1 (SIRT1) gene in female infertility: A cross-sectional study in Pakistan. Int J Clin Pract 2021; 75:e14132. [PMID: 33735475 DOI: 10.1111/ijcp.14132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 03/02/2021] [Indexed: 01/09/2023] Open
Abstract
AIM & OBJECTIVE Silent information regulator 1 (SIRT1) gene stimulates the expression of antioxidants and repairs damaged cells. It affects the mitochondrial activity within the oocytes to overcome the oxidant stress. We aimed to assess an association of SIRT1 polymorphism (Tag SNPs rs10509291 and rs12778366) with fertility, and assess serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), oestradiol, progesterone, manganese superoxide (MnSOD) and SIRT1. MATERIAL AND METHODS In this cross-sectional study, 207 fertile and 135 infertile subjects between the ages of 18-45 years were recruited. Polymerase chain reaction (PCR) was performed; products were electrophoresed in a 2% agarose gel. Descriptive analysis of continuous variables was expressed as mean ± standard deviation. Mann-Whitney test was performed for comparison of groups, P value <.001 was considered significant. Single Nucleotide Polymorphism (SNP) data were analysed by applying chi-squared statistics. RESULTS All subjects were age matched (P = .896). SIRT1 levels were significantly lower in infertile females when compared with fertile subjects (P < .001). AA (rs10509291) and CC (rs12778366) variant frequency was higher in the infertile than fertile subjects (P < .01). Similarly, the frequency of A allele (rs10509291) and C allele (rs12778366) was higher in infertile subjects (P < .001). Infertile females (29%) showed existence of SNP rs10509291 while 49% demonstrated genetic variation of rs12778366. MnSOD and SIRT1 levels were found to be lower in these subjects. CONCLUSION The presence of SIRT1 genetic variants (rs10509291 and rs12778366) apparently disturbs the expression of SIRT1 deteriorating mitochondrial antioxidant function within the oocytes, instigating oxidative stress within. Their probable effect on modulating oocyte maturation may be the cause of infertility in females.
Collapse
Affiliation(s)
- Faiza Alam
- Department of Physiology, University of Karachi, University Road, Karachi, Pakistan
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Badar Seri Begawan, Brunei Darussalam
| | - Rehana Rehman
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Syeda Sadia Fatima
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Mussarat Ashraf
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Taseer Ahmed Khan
- Department of Physiology, University of Karachi, University Road, Karachi, Pakistan
| |
Collapse
|
29
|
Nikanfar S, Oghbaei H, Rastgar Rezaei Y, Zarezadeh R, Jafari-Gharabaghlou D, Nejabati HR, Bahrami Z, Bleisinger N, Samadi N, Fattahi A, Nouri M, Dittrich R. Role of adipokines in the ovarian function: Oogenesis and steroidogenesis. J Steroid Biochem Mol Biol 2021; 209:105852. [PMID: 33610800 DOI: 10.1016/j.jsbmb.2021.105852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/28/2020] [Accepted: 01/30/2021] [Indexed: 01/02/2023]
Abstract
Adipokines are mainly produced by adipose tissue; however, their expression has been reported in other organs including female reproductive tissues. Therefore, adipokines have opened new avenues of research in female fertility. In this regard, studies reported different roles for certain adipokines in ovarian function, although the role of other recently identified adipokines is still controversial. It seems that adipokines are essential for normal ovarian function and their abnormal levels could be associated with ovarian-related disorders. The objective of this study is to review the available information regarding the role of adipokines in ovarian functions including follicular development, oogenesis and steroidogenesis and also their involvement in ovary-related disorders.
Collapse
Affiliation(s)
- Saba Nikanfar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Oghbaei
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Rastgar Rezaei
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Zarezadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Bahrami
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nathalie Bleisinger
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen, Nürnberg, Erlangen, Germany
| | - Naser Samadi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen, Nürnberg, Erlangen, Germany; Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ralf Dittrich
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen, Nürnberg, Erlangen, Germany
| |
Collapse
|
30
|
Kaminski T, Kiezun M, Zaobidna E, Dobrzyn K, Wasilewska B, Mlyczynska E, Rytelewska E, Kisielewska K, Gudelska M, Bors K, Kopij G, Szymanska K, Kaminska B, Rak A, Smolinska N. Plasma level and expression of visfatin in the porcine hypothalamus during the estrous cycle and early pregnancy. Sci Rep 2021; 11:8698. [PMID: 33888798 PMCID: PMC8062436 DOI: 10.1038/s41598-021-88103-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Visfatin appears to be an energy sensor involved in the regulation of female fertility, which creates a hormonal link integrating the control of energy homeostasis and reproduction. This study evaluates the expression levels of visfatin gene and protein in selected areas of the porcine hypothalamus responsible for gonadotropin-releasing hormone synthesis: the mediobasal hypothalamus (MBH) and preoptic area (POA), and visfatin concentrations in the blood plasma. The tissue samples were harvested from gilts on days 2-3, 10-12, 14-16, and 17-19 of the estrous cycle, and on days 10-11, 12-13, 15-16, 27-28 of pregnancy. Visfatin was localized in the cytoplasm and nucleus of cells creating both studied hypothalamic structures. The study demonstrated that visfatin gene and protein expression in MBH and POA depends on hormonal status related to the phase of the estrous cycle or early pregnancy. Blood plasma concentrations of visfatin during the estrous cycle were higher on days 2-3 in relation to other studied phases of the cycle, while during early pregnancy, the highest visfatin contents were observed on days 12-13. This study demonstrated visfatin expression in the porcine hypothalamus and its dependence on the hormonal milieu related to the estrous cycle and early pregnancy.
Collapse
Affiliation(s)
- Tadeusz Kaminski
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Marta Kiezun
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Ewa Zaobidna
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Kamil Dobrzyn
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Barbara Wasilewska
- grid.412607.60000 0001 2149 6795Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska St. 30, 10-082 Olsztyn, Poland
| | - Ewa Mlyczynska
- grid.5522.00000 0001 2162 9631Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa St. 9, 31–387 Krakow, Poland
| | - Edyta Rytelewska
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Katarzyna Kisielewska
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Marlena Gudelska
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Kinga Bors
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Grzegorz Kopij
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Karolina Szymanska
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Barbara Kaminska
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Agnieszka Rak
- grid.5522.00000 0001 2162 9631Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa St. 9, 31–387 Krakow, Poland
| | - Nina Smolinska
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| |
Collapse
|
31
|
Thakre A, Gupta M, Magar SP, Bahiram KB, Sardar VM, Korde JP, Bonde SW, Hyder I. Transcriptional and translational abundance of visfatin (NAMPT) in buffalo ovary during estrous cycle and its in vitro effect on steroidogenesis. Domest Anim Endocrinol 2021; 75:106583. [PMID: 33249344 DOI: 10.1016/j.domaniend.2020.106583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 11/18/2022]
Abstract
Visfatin is a highly conserved adipokine protein having multiple biological effects, including regulation of reproduction. Evidence in recent years has shown a pivotal role of visfatin in ovarian functions. The present study was conducted to evaluate the mRNA and protein abundance of visfatin in ovarian follicles and corpora lutea (CL) during different stages of their development in the ovary of water buffalo (Bubalus bubalis) and to investigate the role of visfatin on estradiol (E2) and progesterone (P4) secretion. Ovarian follicles were categorized in to small (F1), medium (F2), large (F3), and preovulatory (F4) follicles, whereas the CL were categorized into early (CL1), mid (CL2), late (CL3), and regressing (CL4) CL stage. In follicles, the mRNA and protein abundance of visfatin increased with an increase in follicle size in granulosa cells (GCs) and theca interna (TI) cells. In CL, the transcript of visfatin was significantly (P < 0.05) higher in the late luteal phase (CL3) than that in other phases. The translational abundance of visfatin was significantly higher in the mid and late luteal phase. Visfatin was localized in the cytoplasm of GC and TI of ovarian follicles and small and large luteal cells of CL. GCs were cultured in vitro and treated at 0, 1, and 10 ng/mL visfatin either alone or in the presence of FSH (30 ng/mL) or IGF-I (10 ng/mL) for 48 h. The luteal cells were treated with visfatin at 0, 1, and 10 ng/mL dose for 48h. There was significant (P < 0.05) increase in estradiol (E2) secretion from GCs at 10 ng/mL dose of visfatin and visfatin (10 ng/mL) +IGF-I (10 ng/mL). Visfatin also increased (P < 0.05) progesterone (P4) secretion from cultured luteal cells at both 1 and 10 ng/mL dose. In GCs, visfatin in the presence of IGF-I increased the transcriptional abundance of cytochrome P45019A1 (CYP19A1), the gene for key enzyme aromatase. In luteal cells, the visfatin increased mRNA abundance of factors involved in progesterone synthesis viz. steroidogenic acute regulatory protein (StAR), cytochrome P45011A1 (CYP11A1), 3beta-hydroxysteroid dehydrogenase (HSD3B1). The present study provided evidence that visfatin is expressed in ovarian follicles and CL of buffalo ovary and visfatin has a stimulatory effect on estradiol and progesterone secretion in ovarian cells of water buffalo.
Collapse
Affiliation(s)
- A Thakre
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur 440006, India
| | - M Gupta
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur 440006, India.
| | - S P Magar
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur 440006, India
| | - K B Bahiram
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur 440006, India
| | - V M Sardar
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur 440006, India
| | - J P Korde
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur 440006, India
| | - S W Bonde
- Department of Veterinary Biochemistry, Nagpur Veterinary College, Nagpur 440006, India
| | - I Hyder
- Department of Veterinary Physiology, NTR College of Veterinary Science, Gannavaram, 521101 India
| |
Collapse
|
32
|
Annie L, Gurusubramanian G, Roy VK. Inhibition of visfatin by FK866 mitigates pathogenesis of cystic ovary in letrozole-induced hyperandrogenised mice. Life Sci 2021; 276:119409. [PMID: 33781825 DOI: 10.1016/j.lfs.2021.119409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome is a common reproductive disorder in the female of reproductive age, which is characterized by hyperandrogenism, insulin resistance, cystic ovary and infertility. The level of pro-inflammatory adipokine, visfatin is elevated in PCOS conditions in human and animal. In this study, letrozole induced hyperandrogenised PCOS mice model have been used to unravel the effects of visfatin inhibition. The results showed that letrozole induced hyperandrogenisation significantly (p < 0.05) elevates ovarian visfatin concentration from 66.03 ± 1.77 to 112.08 ± 3.7 ng/ml, and visfatin expression to 2.5 fold (p < 0.05) compared to control. Visfatin inhibition in PCOS by FK866 has significantly (p < 0.05) suppressed the secretion of androgens, androstenedione (from 0.329 ± 0.07 to 0.097 ± 0.01 ng/ml) and testosterone levels (from 0.045 ± 0.003 to 0.014 ± 0.0009 ng/ml). Ovarian histology showed that visfatin inhibition suppressed cyst formation and promotes corpus luteum formation. Visfatin inhibition has suppressed apoptosis and increases the expression of BCL2 along with increase in the proliferation (GCNA expression elevated). Visfatin inhibition has increased ovarian glucose content (from 167.05 ± 8.5 to 210 ± 7 mg/dl), along with increase in ovarian GLUT8 expression. In vitro study has also supported the in vivo findings where FK866 treatment significantly (p < 0.05) suppressed testosterone (control-3.84 ± 0.44 ng/ml, 1 nM FK866-2.02 ± 0.048 ng/ml, 10 nM FK866-1.74 ± 0.20 ng/ml) and androstenedione (control-4.68 ± 0.91 ng/ml, 1 nM FK866-3.38 ± 0.27 ng/ml, 10 nM FK866-4.55 ± 0.83 ng/ml) production from PCOS ovary. In conclusion, this is first report, which showed that visfatin inhibition by FK866 in hyperandrogenised mice ameliorates pathogenesis of PCOS. Thus, it may be suggested that visfatin inhibition could have a therapeutic potential in PCOS management along with other intervention.
Collapse
Affiliation(s)
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004, India.
| |
Collapse
|
33
|
Kurowska P, Mlyczyńska E, Dawid M, Sierpowski M, Estienne A, Dupont J, Rak A. Adipokines change the balance of proliferation/apoptosis in the ovarian cells of human and domestic animals: A comparative review. Anim Reprod Sci 2021; 228:106737. [PMID: 33756403 DOI: 10.1016/j.anireprosci.2021.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
Adipose tissue secretes multiple hormones termed adipokines, which are important regulators of many processes. There are four types of evidence supporting an association between adipokines and female fertility which are effects that occur: centrally at the pituitary; peripherally and locally at the ovary and reproductive tract; directly on the oocyte/embryo and during pregnancy. In this review, there was a focus on the description of adipokines (leptin, apelin, resistin, chemerin, adiponectin, vaspin and visfatin) on ovarian cell proliferation, cell cycle progression and apoptosis in comparison to effects on human and domestic animal ovaries including pigs, cattle and chickens. Knowledge about molecules which regulate the balance between proliferation and apoptosis so that these processes are optimal for ovarian function is essential for understanding the physiology and reducing the incidence of infertility. Furthermore, oogenesis, folliculogenesis, oocyte loss/selection and atresia are important processes for optimal ovarian physiological functions. There, however, is ovulation from only a few follicles, while the majority undergo atresia that is induced by apoptosis.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Mateusz Sierpowski
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Anthony Estienne
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Joelle Dupont
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
34
|
Estienne A, Bongrani A, Ramé C, Kurowska P, Błaszczyk K, Rak A, Ducluzeau PH, Froment P, Dupont J. Energy sensors and reproductive hypothalamo-pituitary ovarian axis (HPO) in female mammals: Role of mTOR (mammalian target of rapamycin), AMPK (AMP-activated protein kinase) and SIRT1 (Sirtuin 1). Mol Cell Endocrinol 2021; 521:111113. [PMID: 33301839 DOI: 10.1016/j.mce.2020.111113] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
In female, energy metabolism influences reproductive function by modulating the Hypothalamic Pituitary Ovarian axis including the hypothalamic GnRH neuronal network, the pituitary gonadotropin secretion and the ovarian follicle growth and steroidogenesis. Several hormones and neuropeptides or metabolites are important signals between energy balance and reproduction. These energy sensors mediate their action on reproductive cells through specific kinases or signaling pathways. This review focuses on the role of three main enzymes-specifically, mTOR, AMPK, and SIRT1 at the hypothalamic pituitary and ovarian axis in normal female fertility and then we discuss their possible involvement in some women reproductive disorders known to be associated with metabolic complications, such as polycystic ovary syndrome (PCOS) and premature ovarian failure (POF).
Collapse
Affiliation(s)
- Anthony Estienne
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Alice Bongrani
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Klaudia Błaszczyk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Pierre-Henri Ducluzeau
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France.
| |
Collapse
|
35
|
Annie L, Gurusubramanian G, Kumar Roy V. Visfatin protein may be responsible for suppression of proliferation and apoptosis in the infantile mice ovary. Cytokine 2021; 140:155422. [PMID: 33476980 DOI: 10.1016/j.cyto.2021.155422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022]
Abstract
Visfatin is an important adipokines, which are expressed in different tissues including ovary of mammals. The postnatal ovary in rodents undergoes dramatic changes of intra-ovarian factors in relation to proliferation and apoptosis. There are studies which showed that gonadal visfatin changes in postnatal life. However, role of visfatin in the early postnatal period i.e. infantile period has not been studied. Therefore, the present study was aimed to explore the role of visfatin in the early postnatal ovarian functions. Furthermore, to explore the role of visfatin, the endogenous visfatin was inhibited from PND14-PND21 by FK866 with dose of 1.5 mg/kg. Our results showed gain in body weight and ovarian weight after visfatin inhibition. The inhibition of visfatin increased the ovarian proliferation (increase in PCNA, GCNA expression and BrdU incorporation) and apoptosis (increase in BAX and active caspase3 expression). Moreover, visfatin inhibition decreased the expression of antiapoptotic/survival protein, BCL2 in the ovary. These findings suggest that visfatin in the infantile ovary may suppress the proliferation and apoptosis by up-regulating BCL2 expression. An interesting finding has been observed that circulating estrogen and progesterone remain unaffected, although visfatin inhibition up-regulated ER-β and down-regulated ER-α. It may also be suggested that visfatin could regulates proliferation and apoptosis via modulating estrogen signaling. In conclusion, visfatin inhibits the proliferation and apoptosis without modulating the ovarian steroid biosynthesis and visfatin mediated BCL2 expression could also be mechanism to preserve the good quality follicle in early postnatal period.
Collapse
Affiliation(s)
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram - 796 004, India.
| |
Collapse
|
36
|
Kratz EM, Kokot I, Dymicka-Piekarska V, Piwowar A. Sirtuins-The New Important Players in Women's Gynecological Health. Antioxidants (Basel) 2021; 10:84. [PMID: 33435147 PMCID: PMC7827899 DOI: 10.3390/antiox10010084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
The participation of sirtuins in the regulation of oxidative stress and inflammation lies at the basis of their possible modes of action and is related to their expression in various cell structures; their location in the mitochondria and blood plasma has been indicated as of primary importance. Despite many existing studies, research on sirtuins continues to present an opportunity to discover new functions and dependencies, especially when it comes to women's gynecological health. Sirtuins have a significant role in both the formation and the course of many gynecological diseases. Their role is particularly important and well documented in the course of the development of cancer within the female reproductive organs; however, disturbances observed in the ovary and oocyte as well as in follicular fluid are also widely investigated. Additionally, sirtuins take part in some gynecological disturbances as regulative factors in pathways associated with insulin resistance, glucose and lipids metabolism disorders. In this review, we would like to summarize the existing knowledge about sirtuins in the manner outlined above.
Collapse
Affiliation(s)
- Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
| | - Izabela Kokot
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
| | - Violetta Dymicka-Piekarska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona Street 15A, 15-269 Bialystok, Poland;
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
37
|
Shpakov AO. Improvement Effect of Metformin on Female and Male Reproduction in Endocrine Pathologies and Its Mechanisms. Pharmaceuticals (Basel) 2021; 14:ph14010042. [PMID: 33429918 PMCID: PMC7826885 DOI: 10.3390/ph14010042] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Metformin (MF), a first-line drug to treat type 2 diabetes mellitus (T2DM), alone and in combination with other drugs, restores the ovarian function in women with polycystic ovary syndrome (PCOS) and improves fetal development, pregnancy outcomes and offspring health in gestational diabetes mellitus (GDM) and T2DM. MF treatment is demonstrated to improve the efficiency of in vitro fertilization and is considered a supplementary drug in assisted reproductive technologies. MF administration shows positive effect on steroidogenesis and spermatogenesis in men with metabolic disorders, thus MF treatment indicates prospective use for improvement of male reproductive functions and fertility. MF lacks teratogenic effects and has positive health effect in newborns. The review is focused on use of MF therapy for restoration of female and male reproductive functions and improvement of pregnancy outcomes in metabolic and endocrine disorders. The mechanisms of MF action are discussed, including normalization of metabolic and hormonal status in PCOS, GDM, T2DM and metabolic syndrome and restoration of functional activity and hormonal regulation of the gonadal axis.
Collapse
Affiliation(s)
- Alexander O Shpakov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| |
Collapse
|
38
|
Zhang L, Wang Z, Lu T, Meng L, Luo Y, Fu X, Hou Y. Mitochondrial Ca 2+ Overload Leads to Mitochondrial Oxidative Stress and Delayed Meiotic Resumption in Mouse Oocytes. Front Cell Dev Biol 2020; 8:580876. [PMID: 33384990 PMCID: PMC7770107 DOI: 10.3389/fcell.2020.580876] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Overweight or obese women seeking pregnancy is becoming increasingly common. Human maternal obesity gives rise to detrimental effects during reproduction. Emerging evidence has shown that these abnormities are likely attributed to oocyte quality. Oxidative stress induces poor oocyte conditions, but whether mitochondrial calcium homeostasis plays a key role in oocyte status remains unresolved. Here, we established a mitochondrial Ca2+ overload model in mouse oocytes. Knockdown gatekeepers of the mitochondrial Ca2+ uniporters Micu1 and Micu2 as well as the mitochondrial sodium calcium exchanger NCLX in oocytes both increased oocytes mitochondrial Ca2+ concentration. The overload of mitochondria Ca2+ in oocytes impaired mitochondrial function, leaded to oxidative stress, and changed protein kinase A (PKA) signaling associated gene expression as well as delayed meiotic resumption. Using this model, we aimed to determine the mechanism of delayed meiosis caused by mitochondrial Ca2+ overload, and whether oocyte-specific inhibition of mitochondrial Ca2+ influx could improve the reproductive abnormalities seen within obesity. Germinal vesicle breakdown stage (GVBD) and extrusion of first polar body (PB1) are two indicators of meiosis maturation. As expected, the percentage of oocytes that successfully progress to the germinal vesicle breakdown stage and extrude the first polar body during in vitro culture was increased significantly, and the expression of PKA signaling genes and mitochondrial function recovered after appropriate mitochondrial Ca2+ regulation. Additionally, some indicators of mitochondrial performance-such as adenosine triphosphate (ATP) and reactive oxygen species (ROS) levels and mitochondrial membrane potential-recovered to normal. These results suggest that the regulation of mitochondrial Ca2+ uptake in mouse oocytes has a significant role during oocyte maturation as well as PKA signaling and that proper mitochondrial Ca2+ reductions in obese oocytes can recover mitochondrial performance and improve obesity-associated oocyte quality.
Collapse
Affiliation(s)
- Luyao Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zichuan Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tengfei Lu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Meng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Luo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
39
|
Annie L, Gurusubramanian G, Roy VK. Changes in the localization of ovarian visfatin protein and its possible role during estrous cycle of mice. Acta Histochem 2020; 122:151630. [PMID: 32992122 DOI: 10.1016/j.acthis.2020.151630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
Visfatin is a crucial adipokine, which also regulates ovarian functions in many animals. Mice estrous cycle is characterized by a dynamic complex physiological process in the reproductive system. Expression of various factors changes during the estrous cycle in the ovary. To the best of our knowledge, no previous study has been conducted on the expression of visfatin in mice ovaries during the estrous cycle. Therefore, we investigated the localization and expression of visfatin protein in the ovary of mice during the estrous cycle. Western blot analysis showed the elevated expression of visfatin in proestrus and lowest in diestrus. Immunohistochemical localization of visfatin showed intense staining in the corpus luteum of proestrus and diestrus ovaries. Thecal cells, granulosa cells, and oocytes also showed the presence of visfatin. Expression of ovarian visfatin was correlated to BCL2 and active caspase3 expression and exhibited a significant positive correlation. Furthermore, in vivo inhibition of visfatin by FK866 in the proestrus ovary down-regulated active caspase3 and PCNA expression, and up-regulated the BCL2 expression. These results suggest the role of visfatin in the proliferation and apoptosis of the follicles and specific localization of visfatin in the corpus luteum also indicate its role in corpus luteum function, which may be in progesterone biosynthesis and regression of old corpus luteum. However, further study is required to support these findings. In conclusion, visfatin may also be regulating follicular growth during the estrous cycle by regulating proliferation and apoptosis.
Collapse
|
40
|
Rasha F, Mims BM, Castro-Piedras I, Barnes BJ, Grisham MB, Rahman RL, Pruitt K. The Versatility of Sirtuin-1 in Endocrinology and Immunology. Front Cell Dev Biol 2020; 8:589016. [PMID: 33330467 PMCID: PMC7717970 DOI: 10.3389/fcell.2020.589016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Sirtuins belong to the class III family of NAD-dependent histone deacetylases (HDAC) and are involved in diverse physiological processes that range from regulation of metabolism and endocrine function to coordination of immunity and cellular responses to stress. Sirtuin-1 (SIRT1) is the most well-studied family member and has been shown to be critically involved in epigenetics, immunology, and endocrinology. The versatile roles of SIRT1 include regulation of energy sensing metabolic homeostasis, deacetylation of histone and non-histone proteins in numerous tissues, neuro-endocrine regulation via stimulation of hypothalamus-pituitary axes, synthesis and maintenance of reproductive hormones via steroidogenesis, maintenance of innate and adaptive immune system via regulation of T- and B-cell maturation, chronic inflammation and autoimmune diseases. Moreover, SIRT1 is an appealing target in various disease contexts due to the promise of pharmacological and/or natural modulators of SIRT1 activity within the context of endocrine and immune-related disease models. In this review we aim to provide a broad overview on the role of SIRT1 particularly within the context of endocrinology and immunology.
Collapse
Affiliation(s)
- Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brianyell McDaniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Isabel Castro-Piedras
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Betsy J. Barnes
- Laboratory of Autoimmune and Cancer Research, Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Molecular Medicine and Department of Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
41
|
Nejabati HR, Samadi N, Shahnazi V, Mihanfar A, Fattahi A, Latifi Z, Bahrami-asl Z, Roshangar L, Nouri M. Nicotinamide and its metabolite N1-Methylnicotinamide alleviate endocrine and metabolic abnormalities in adipose and ovarian tissues in rat model of Polycystic Ovary Syndrome. Chem Biol Interact 2020; 324:109093. [DOI: 10.1016/j.cbi.2020.109093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/18/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023]
|
42
|
Estienne A, Brossaud A, Reverchon M, Ramé C, Froment P, Dupont J. Adipokines Expression and Effects in Oocyte Maturation, Fertilization and Early Embryo Development: Lessons from Mammals and Birds. Int J Mol Sci 2020; 21:E3581. [PMID: 32438614 PMCID: PMC7279299 DOI: 10.3390/ijms21103581] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/28/2022] Open
Abstract
Some evidence shows that body mass index in humans and extreme weights in animal models, including avian species, are associated with low in vitro fertilization, bad oocyte quality, and embryo development failures. Adipokines are hormones mainly produced and released by white adipose tissue. They play a key role in the regulation of energy metabolism. However, they are also involved in many other physiological processes including reproductive functions. Indeed, leptin and adiponectin, the most studied adipokines, but also novel adipokines including visfatin and chemerin, are expressed within the reproductive tract and modulate female fertility. Much of the literature has focused on the physiological and pathological roles of these adipokines in ovary, placenta, and uterine functions. The purpose of this review is to summarize the current knowledge regarding the involvement of leptin, adiponectin, visfatin, and chemerin in the oocyte maturation, fertilization, and embryo development in both mammals and birds.
Collapse
Affiliation(s)
- Anthony Estienne
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Adeline Brossaud
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRAE Val de Loire, F-37380 Nouzilly, France;
| | - Christelle Ramé
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Pascal Froment
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| |
Collapse
|
43
|
Estienne A, Bongrani A, Reverchon M, Ramé C, Ducluzeau PH, Froment P, Dupont J. Involvement of Novel Adipokines, Chemerin, Visfatin, Resistin and Apelin in Reproductive Functions in Normal and Pathological Conditions in Humans and Animal Models. Int J Mol Sci 2019; 20:ijms20184431. [PMID: 31505789 PMCID: PMC6769682 DOI: 10.3390/ijms20184431] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
It is well known that adipokines are endocrine factors that are mainly secreted by white adipose tissue. Their central role in energy metabolism is currently accepted. More recently, their involvement in fertility regulation and the development of some reproductive disorders has been suggested. Data concerning the role of leptin and adiponectin, the two most studied adipokines, in the control of the reproductive axis are consistent. In recent years, interest has grown about some novel adipokines, chemerin, visfatin, resistin and apelin, which have been found to be strongly associated with obesity and insulin-resistance. Here, we will review their expression and role in male and female reproduction in humans and animal models. According to accumulating evidence, they could regulate the secretion of GnRH (Gonadotropin-Releasing Hormone), gonadotropins and steroids. Furthermore, their expression and that of their receptors (if known), has been demonstrated in the human and animal hypothalamo-pituitary-gonadal axis. Like leptin and adiponectin, these novel adipokines could thus represent metabolic sensors that are able to regulate reproductive functions according to energy balance changes. Therefore, after investigating their role in normal fertility, we will also discuss their possible involvement in some reproductive troubles known to be associated with features of metabolic syndrome, such as polycystic ovary syndrome, gestational diabetes mellitus, preeclampsia and intra-uterine growth retardation in women, and sperm abnormalities and testicular pathologies in men.
Collapse
Affiliation(s)
- Anthony Estienne
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Alice Bongrani
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380 Nouzilly, France
| | - Christelle Ramé
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Pierre-Henri Ducluzeau
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
- Internal Medicine Department, Unit of Endocrinology, CHRU Tours, F-37044 Tours, France
| | - Pascal Froment
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours F-37041 Tours, France.
- IFCE, F-37380 Nouzilly, France.
| |
Collapse
|
44
|
Bongrani A, Mellouk N, Rame C, Cornuau M, Guérif F, Froment P, Dupont J. Ovarian Expression of Adipokines in Polycystic Ovary Syndrome: A Role for Chemerin, Omentin, and Apelin in Follicular Growth Arrest and Ovulatory Dysfunction? Int J Mol Sci 2019; 20:ijms20153778. [PMID: 31382403 PMCID: PMC6695651 DOI: 10.3390/ijms20153778] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
Adipokines are a potential link between reproduction and energy metabolism and could partly explain some infertilities related to some pathophysiology, such as polycystic ovary syndrome (PCOS). However, adipokines were predominantly assessed in blood samples, while very little is known concerning their variations in follicular fluid (FF) and ovarian granulosa cells (GCs) of PCOS women. Thus, the objectives of our study were to investigate adiponectin, chemerin, resistin, visfatin, omentin, and apelin ovarian expression in PCOS women in comparison with controls and women with only a polycystic ovary morphology. In total, 78 women undergoing an in vitro fertilization procedure were divided into three groups: 23 PCOS women, 28 women presenting only ≥12 follicles per ovary (ECHO group), and 27 control women. Each group almost equally included normal weight and obese women. Follicular fluid (FF) concentration and granulosa cells (GCs) mRNA expression of adipokines and their receptors were assessed by ELISA and RT-qPCR, respectively. Omentin levels in FF and GC were higher in PCOS than in ECHO and control women, while apelin expression was increased in both PCOS and ECHO groups. FF chemerin concentration was predominant in normal-weight PCOS women compared to BMI (Body Mass Index)-matched ECHO and control women, while GC mRNA levels were higher in the obese PCOS group than in the ECHO one. Compared to PCOS, ECHO women had increased FF adiponectin concentrations and lower plasma AMH levels. The FF concentration of all adipokines was higher in obese subjects except for adiponectin, predominant in normal-weight women. In conclusion, women with PCOS expressed higher GC chemerin and omentin, whereas the ECHO group presented higher levels of FF adiponectin and apelin and lower plasma AMH and LH concentrations. Chemerin, omentin, and apelin expression was differently regulated in women with PCOS, suggesting their possible role in follicular growth arrest and ovulatory dysfunction characterizing PCOS pathogenesis.
Collapse
Affiliation(s)
- Alice Bongrani
- Institut National de la Recherche Agronomique Unité Mixte de Recherche Physiology Department, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Centre National de la Recherche Scientifique, Life Science Department Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l'équitation F-37380 Nouzilly, France
| | - Namya Mellouk
- Institut National de la Recherche Agronomique Unité Mixte de Recherche Physiology Department, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Centre National de la Recherche Scientifique, Life Science Department Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l'équitation F-37380 Nouzilly, France
| | - Christelle Rame
- Institut National de la Recherche Agronomique Unité Mixte de Recherche Physiology Department, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Centre National de la Recherche Scientifique, Life Science Department Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l'équitation F-37380 Nouzilly, France
| | - Marion Cornuau
- Service de Médecine et Biologie de la Reproduction, CHRU Bretonneau, 2, boulevard Tonnellé, F-37044 Tours, France
| | - Fabrice Guérif
- Institut National de la Recherche Agronomique Unité Mixte de Recherche Physiology Department, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Centre National de la Recherche Scientifique, Life Science Department Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l'équitation F-37380 Nouzilly, France
- Service de Médecine et Biologie de la Reproduction, CHRU Bretonneau, 2, boulevard Tonnellé, F-37044 Tours, France
| | - Pascal Froment
- Institut National de la Recherche Agronomique Unité Mixte de Recherche Physiology Department, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Centre National de la Recherche Scientifique, Life Science Department Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l'équitation F-37380 Nouzilly, France
| | - Joëlle Dupont
- Institut National de la Recherche Agronomique Unité Mixte de Recherche Physiology Department, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Centre National de la Recherche Scientifique, Life Science Department Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours, F-37041 Tours, France.
- Institut Français du Cheval et de l'équitation F-37380 Nouzilly, France.
| |
Collapse
|
45
|
Rehman R, Abidi SH, Alam F. Metformin, Oxidative Stress, and Infertility: A Way Forward. Front Physiol 2018; 9:1722. [PMID: 30555352 PMCID: PMC6281994 DOI: 10.3389/fphys.2018.01722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Rehana Rehman
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Faiza Alam
- Department of Physiology, University of Karachi, Karachi, Pakistan
| |
Collapse
|
46
|
Kaplan DS, Canak A, Isık E, Orkmez M, Kumru B. Relationship of fibroblast growth factor 21, sirtuin 1, visfatin, and regulators in children with short stature. Growth Factors 2018; 36:172-177. [PMID: 30304969 DOI: 10.1080/08977194.2018.1513504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is mainly secreted by the liver. It is a factor that is not fully understood in relation to growth. Sirtuin 1 (SIRT1) is a deacetylase protein. It is thought that may have an effect on the release and function of GH and IGF-1. Visfatin is synthesized from adipose tissue as primary. It may be prognostic marker associated with growth factors. As a result of our work, FGF21 is not associated with short stature but levels of SIRT1 and visfatin are associated with short stature. The decrease in visfatin value in the short-stature group is thought to be due to an insufficient amount of adipose tissue, which is important for growth and development. SIRT1 might decrease GH effect by increasing STAT5 deacetylation in the liver and we think that the result of this reduction of SIRT1 would negatively impact IGF-1 and IGFBP-3 production.
Collapse
Affiliation(s)
- Davut Sinan Kaplan
- a Medical Faculty, Department of Physiology, Health Sciences Institution , University of Gaziantep , Gaziantep , Turkey
| | - Asuman Canak
- a Medical Faculty, Department of Physiology, Health Sciences Institution , University of Gaziantep , Gaziantep , Turkey
| | - Emregul Isık
- b The Polyclinic Child Endocrinology , Gaziantep Cengiz Gökcek Maternity and Children's Hospital , Gaziantep , Turkey
| | - Mustafa Orkmez
- c Medical Faculty, Department of Medical Biochemistry, Health Sciences Institution , University of Gaziantep , Gaziantep , Turkey
| | - Burcu Kumru
- d Nutritionist, Division of Nutrition and Diet , Gaziantep Cengiz Gökcek Maternity and Children's Hospital , Gaziantep , Turkey
| |
Collapse
|
47
|
Maillard V, Elis S, Desmarchais A, Hivelin C, Lardic L, Lomet D, Uzbekova S, Monget P, Dupont J. Visfatin and resistin in gonadotroph cells: expression, regulation of LH secretion and signalling pathways. Reprod Fertil Dev 2018; 29:2479-2495. [PMID: 28672116 DOI: 10.1071/rd16301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 05/21/2017] [Indexed: 12/15/2022] Open
Abstract
Visfatin and resistin appear to interfere with reproduction in the gonads, but their potential action at the hypothalamic-pituitary level is not yet known. The aim of the present study was to investigate the mRNA and protein expression of these adipokines in murine gonadotroph cells and to analyse the effects of different concentrations of recombinant mouse visfatin and resistin (0.01, 0.1, 1 and 10ngmL-1) on LH secretion and signalling pathways in LβT2 cells and/or in primary female mouse pituitary cells. Both visfatin and resistin mRNA and protein were found in vivo in gonadotroph cells. In contrast with resistin, the primary tissue source of visfatin in the mouse was the skeletal muscle, and not adipose tissue. Visfatin and resistin both decreased LH secretion from LβT2 cells after 24h exposure of cells (P<0.03). These results were confirmed for resistin in primary cell culture (P<0.05). Both visfatin (1ngmL-1) and resistin (1ngmL-1) increased AMP-activated protein kinase α phosphorylation in LβT2 cells after 5 or 10min treatment, up to 60min (P<0.04). Extracellular signal-regulated kinase 1/2 phosphorylation was transiently increased only after 5min resistin (1ngmL-1) treatment (P<0.01). In conclusion, visfatin and resistin are expressed in gonadotroph cells and they may affect mouse female fertility by regulating LH secretion at the level of the pituitary.
Collapse
Affiliation(s)
- Virginie Maillard
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Sébastien Elis
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Alice Desmarchais
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Céline Hivelin
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Lionel Lardic
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Didier Lomet
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Svetlana Uzbekova
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Philippe Monget
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Joëlle Dupont
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| |
Collapse
|
48
|
Bakhshalizadeh S, Amidi F, Shirazi R, Shabani Nashtaei M. Vitamin D3 regulates steroidogenesis in granulosa cells through AMP-activated protein kinase (AMPK) activation in a mouse model of polycystic ovary syndrome. Cell Biochem Funct 2018; 36:183-193. [PMID: 29676471 DOI: 10.1002/cbf.3330] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/20/2018] [Accepted: 03/04/2018] [Indexed: 01/11/2023]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder in reproductive-aged women. Hormonal abnormality caused by steroidogenesis disturbances appears to be the main culprit of the clinical picture in PCOS. Vitamin D3 could regulate steroidogenesis in granulosa cells, but the mechanism of action of vitamin D3 on steroidogenesis remains unknown. AMP-activated protein kinase (AMPK) has a modulating role in steroid hormone production. We investigated the effect of vitamin D3 on steroidogenesis in cultured granulosa cells of dehydroepiandrosterone-induced PCOS mice and studied the involvement of AMPK signalling pathway in the current process. Immunoblotting assay showed that vitamin D3 could increase phosphorylation of AMPK alpha and acetyl-CoA carboxylase, main substrate of AMPK. Vitamin D3 and 5-aminoimidazole-4-carboxamide-1-β-D-riboside or Aicar (AMPK activator) not only reduced gene expression of steroidogenic enzymes (P450scc or Cyp11a1, StAR, Cyp19a1 and 3B-HSD), but also reduced production of progesterone and 17B-estradiol assessed by radioimmunoassay. Pretreatment with compound C (AMPK inhibitor) decreased APMK phosphorylation and eliminated the effects of vitamin D3 and Aicar on steroidogenic enzymes expression and estradiol and progesterone production. This study showed that vitamin D3 has the main role in regulating of steroidogenesis in granulosa cells of mouse polycystic ovary through activation of the AMPK signalling pathway. SIGNIFICANCE OF THE STUDY Polycystic ovarian syndrome (PCOS) is an endocrine disorder of women in reproductive age. This disorder is partly related to disruption in steroidogenesis pathway and dysregulation of estradiol and progesterone production in granulosa cells of polycystic ovaries. Previously, we have shown that vitamin D3 could modulate steroidogenesis pathway in PCOS granulosa cells. In this study, we investigate the molecular mechanism of vitamin D3 in regulation of steroidogenesis pathway. We have shown that vitamin D3 has a modulating role in steroidogenesis pathway of granulosa cells by regulation of AMP-activated protein kinase (AMPK) as an underlying molecular mechanism in mouse polycystic ovary.
Collapse
Affiliation(s)
- Shabnam Bakhshalizadeh
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fardin Amidi
- Department of Anatomy, School of medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shirazi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Wu XT, Yang Z, Ansari AR, Xiao K, Pang XX, Luo Y, Song H. Visfatin regulates the production of lipopolysaccharide-induced inflammatory cytokines through p38 signaling in murine macrophages. Microb Pathog 2018; 117:55-59. [DOI: 10.1016/j.micpath.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/02/2018] [Accepted: 02/01/2018] [Indexed: 12/16/2022]
|
50
|
Tatone C, Di Emidio G, Barbonetti A, Carta G, Luciano AM, Falone S, Amicarelli F. Sirtuins in gamete biology and reproductive physiology: emerging roles and therapeutic potential in female and male infertility. Hum Reprod Update 2018; 24:267-289. [DOI: 10.1093/humupd/dmy003] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Gynecology Unit, Reproductive Service, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Gynecology Unit, Reproductive Service, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy
| | | | - Gaspare Carta
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Gynecology Unit, Reproductive Service, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy
| | - Alberto M Luciano
- Department of Health, Animal Science and Food Safety, Reproductive and Developmental Biology Laboratory, University of Milan, 20133 Milan, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Institute of Translational Pharmacology (IFT), CNR, 67100 L’Aquila, Italy
| |
Collapse
|